
Catapult® C Library Builder
User’s and Reference Manual

Calypto Design Systems, Inc
2933 Bunker Hill Lane, Suite 202
Santa Clara, CA 95054
Tel: +1-408-850-2300
Fax: +1-408-850-2301

The software described herein is copyright ©2002-2011 Calypto Design Systems, Inc. All rights
reserved. The software described herein, which contains confidential information and trade secrets, is
property of Calypto Design Systems, Inc.

This manual is copyright ©2005-2011 Calypto Design Systems, Inc. Printed in U.S.A. All rights reserved.
This document may not, in whole or in part, be copied, photocopied, reproduced, translated, transmitted,
or reduced to any electronic medium or machine-readable form without prior written consent from
Calypto Design Systems, Inc.

This manual and its contents are confidential information of Calypto Design Systems, Inc., and should be
treated as confidential information by the user under the terms of the nondisclosure agreement and
software license agreement, as applicable, between Calypto Design Systems, Inc. and user.

Last Updated: October 2011

Product Version: Release 2011a

Catapult C Library Builder User’s and Reference Manual, 2011a 3
October 2011

Table of Contents

Chapter 1
Introduction. 11

Library Builder Overview . 11
Catapult C Library Builder Licenses . 12

Invoking the Graphical User Interface. 12
Features of the User Interface . 13

Library Builder Main Window . 13
The Task Bar Window . 15
The Command Input and Transcript Window . 15
The Library Explorer Window . 19
The Library Editor Window . 21
The Farm Window . 22
Getting Help . 23

Setting Library Builder Options . 24
Set General Options . 24
Set Messages Options . 27
Set Component Library Options . 31
Set Catapult C Synthesis Options . 31
Set Farm Options . 33
Set Input Compiler Options . 35
View Compiler Settings . 37
Set Text Editor Options . 37
Set Flows Options . 38
Set Precision Flow Options. 39
Set Design Compiler Flow Options . 41
Set RTL Compiler Flow Options . 43
Set TalusDesign Flow Options . 45
Saving and Restoring Session Options . 47

Chapter 2
Creating and Editing Libraries . 51

Setting the Working Directory. 51
Creating a New Library . 51

Cadence RTL Compiler Options . 53
Magma Talus Design Options . 57
Precision RTL Synthesis Options . 59
Synopsys Design Compiler Options . 61

Editing RAM Library Properties . 67
Editing the RAM Library Variables . 68
Editing RAM Components Parameters. 69
Editing RAM Formula Information . 70
Editing RAM Timing . 71

Table of Contents

4
October 2011

Catapult C Library Builder User’s and Reference Manual, 2011a

Editing RAM Ports . 72
Saving Libraries . 73

Chapter 3
Library Characterization. 75

Multi-Point Characterization . 76
Characterizing Libraries or Components . 78

Queuing Multiple Libraries for Multi-day Run . 81
Library Characterization Results . 81

Delay Characterization Properties . 82
Resetting the Data Before Another Characterization . 83
Plotting the Characterization Data . 83
Adding/Removing QMODs . 85
Viewing the Characterization Transcript . 87

Troubleshooting Library Failures . 88
Using the Library Farm . 90

Enabling and Configuring Library Farm Options. 90
Setting Up Library Farm Hosts. 92

Chapter 4
Creating Custom Operators and Interfaces . 95

Introduction . 95
Creating the Custom Operator C++ Function . 96
Creating a Library for the Custom Operators . 96

Creating an ASIC Blank Library . 96
Creating an FPGA Blank Library . 97

Importing Custom Operators from C++ and HDL . 97
Importing Operators from C++ Functions . 98
Importing Netlists . 101

Editing Libraries . 105
Modules . 106
Creating RAM without a Reset. 118
Programmable Reset Polarity and Multiple Resets . 118
Manually Defining Custom Operators . 120
Creating Custom Operators with State . 124

Verifying the Custom Operator RTL and Custom C++ Function . 127
Using Custom Interfaces with SCVerify . 127

Chapter 5
Commands . 135

General Command Syntax . 135
Documentation Conventions for Catapult Commands . 136
Command Interface to the SIF Database . 138
Common Command Switches . 141

Using Tcl Commands in Scripts . 143
Interactive Command Line . 144
GUI . 144
Command Line Invocation Argument . 144

Table of Contents

Catapult C Library Builder User’s and Reference Manual, 2011a 5
October 2011

Tcl Startup Script . 145
Command Reference . 145

application get. 148
application exit . 150
application report . 151
catapult -product library_builder . 152
dofile . 154
flow get . 155
flow package names . 157
flow package option add . 158
flow package option get . 160
flow package option remove. 161
flow package option set . 162
flow package provide . 163
flow package require. 165
flow package script . 167
flow package vcompare . 168
flow package versions. 170
flow package vsatisfies . 171
flow run. 172
help command. 173
help message . 175
library add . 177
library characterize . 180
library edit. 181
library get . 182
library import . 185
library load . 190
library rename . 192
library remove. 194
library report . 196
library save . 198
library save_commands (Deprecated). 200
library set . 201
logfile . 203
options defaults . 204
options exists. 205
options get. 206
options load. 208
options save. 210
options set . 213
quit . 215
set_working_dir . 216
utility farm add . 217
utility farm get . 218
utility farm release . 220
utility farm remove . 221
utility farm reserve . 222
utility farm reset . 223

Table of Contents

6
October 2011

Catapult C Library Builder User’s and Reference Manual, 2011a

utility farm set . 224

Index

Third-Party Information

Catapult C Library Builder User’s and Reference Manual, 2011a 7
October 2011

List of Figures

Figure 1-1. Setting Up the C Library Builder Shortcut . 13
Figure 1-2. Library Builder Session Window . 14
Figure 1-3. Command Input and Transcript Window . 15
Figure 1-4. Parts of a Message in the Transcript Window . 16
Figure 1-5. Viewing the Long Description of a Message . 17
Figure 1-6. Filtering Comments Out of the Transcript (before and after) 18
Figure 1-7. Library Explorer Window. 19
Figure 1-8. Library Editor Window. 22
Figure 1-9. Library Farm Window . 23
Figure 1-10. Set Options General Menu . 25
Figure 1-11. Messages Options Dialog Box . 28
Figure 1-12. Set Options Component Library . 31
Figure 1-13. Set Options Catapult C Synthesis Dialog . 32
Figure 1-14. Library Farm Set Up . 33
Figure 1-15. Input Options Dialog Box . 36
Figure 1-16. Compiler Settings Page . 37
Figure 1-17. Set Options Text Editor Menu . 38
Figure 1-18. Flow Options. 39
Figure 1-19. Precision Flow Options . 39
Figure 1-20. Design Compiler Flow Options . 41
Figure 1-21. RTL Compiler Flow Options . 44
Figure 1-22. Talus Design Flow Options. 46
Figure 2-1. Library Creation Dialog Box for Cadence RTL Compiler 54
Figure 2-2. Library Creation Dialog Box for Talus Design . 57
Figure 2-3. Library Creation Dialog Box for Precision RTL . 60
Figure 2-4. Library Creation Dialog Box for Design Compiler . 62
Figure 2-5. Editing the RAM Library Title Variable. 69
Figure 2-6. Editing RAM Parameter Information . 70
Figure 2-7. Editing RAM Formula Information . 71
Figure 2-8. Editing RAM Timing Values . 72
Figure 2-9. Editing RAM Ports . 73
Figure 3-1. Adder Characteristics Graph. 76
Figure 3-2. Multi-Point Characterization Settings on Library Creation Dialog 77
Figure 3-3. Characterizing the Library or Component . 79
Figure 3-4. Characterization Status Information . 80
Figure 3-5. Characterization Passes. 82
Figure 3-6. Sequential Timing Delay Diagram . 83
Figure 3-7. Opening a Plot Window for the mgc_xor Module . 84
Figure 3-8. Updated Plot with Ninps along X-Axis . 85
Figure 3-9. Adding QMOD from the Plot Window . 86

List of Figures

8
October 2011

Catapult C Library Builder User’s and Reference Manual, 2011a

Figure 3-10. Viewing the Characterization Transcript . 87
Figure 3-11. Opening Failed Object in Catapult C Synthesis . 89
Figure 3-12. Entering New Area and Timing Values . 90
Figure 3-13. Library Farm Window . 92
Figure 4-1. Library with Imported Operator . 100
Figure 4-2. Dependencies Imported from Netlist . 105
Figure 4-3. Parameters Imported from Netlist. 107
Figure 4-4. Parameters Set Manually . 108
Figure 4-5. Input Register Setting . 108
Figure 4-6. Effects of Input Register Setting . 109
Figure 4-7. Port Settings Overview . 109
Figure 4-8. Effect of Input Register on SeqDelay . 110
Figure 4-9. Using the GUI to Set Properties . 111
Figure 4-10. Operator with State (MAC). 125
Figure 4-11. mgc_in_wire_wait Transactor Resource. 128
Figure 4-12. mgc_in_wire_wait Transactor Resource Body . 129
Figure 4-13. mgc_in_wire_wait Transactor Resource at_active_clk Method 130
Figure 4-14. mgc_in_wire_wait Transactor Resource update_z Method 130
Figure 4-15. mgc_in_wire_wait Transactor Resource drive_v_signals Method 131
Figure 4-16. FSL Timing . 132
Figure 5-1. Hierarchy of Objects in the SIF Database. 138
Figure 5-2. Nodes of Interest in the Library Database Hierarchy . 183

Catapult C Library Builder User’s and Reference Manual, 2011a 9
October 2011

List of Tables

Table 1-1. Types of Library Builder Message . 29
Table 1-2. Platform Identifiers in Registry Filenames . 48
Table 3-1. Component Characterization Status . 81
Table 4-1. Categories of Module Types . 101
Table 4-2. Pin Associations . 111
Table 4-3. Operator Pin Bindings . 112
Table 4-4. Property Mapping . 117
Table 5-1. Basic Tcl Syntax . 135
Table 5-2. . 136
Table 5-3. . 136
Table 5-4. Documentation Conventions for Command Syntax . 137
Table 5-5. Commands That Take Database Path Arguments . 139
Table 5-6. Alphabetical Command Summary . 145
Table 5-7. . 168

List of Tables

10
October 2011

Catapult C Library Builder User’s and Reference Manual, 2011a

Catapult C Library Builder User’s and Reference Manual, 2011a 11
October 2011

Chapter 1
Introduction

Library Builder Overview
Catapult™ Library Builder generates libraries for Catapult C Synthesis. These libraries can
consist of both technology-specific operators and IP blocks. The technology specific operators,
or base library components, such as adders and multipliers, are used by Catapult C Synthesis to
schedule an algorithm. Library Builder obtains technology-specific timing and area data for
these operators (characterization) by using downstream synthesis tools such as Design
Compiler and Precision RTL. Operators are characterized based on specific target technologies
enabling Catapult C Synthesis to construct very efficient schedules and deliver predictable
timing closure for your algorithms.

In addition to the base operator library, Library Builder allows you to build custom IP
components such as memory interfaces, register files, and so on. Predefined memory templates
are provided for RAM components. You can also create custom components for any existing IP
written in RTL.

Use the Library Builder to:

• Create and characterize new libraries: For more information, see “Creating a New
Library” on page 51 and “Library Characterization” on page 75.

• Reload and edit previously characterized libraries: You can reload previously
characterized libraries into Library Builder and perform basic analysis and alterations.
You have the ability to re-characterize the entire library or parts of the library. For more
information, see “Resetting the Data Before Another Characterization” on page 83.

• Distribute library characterization tasks to multiple machines: Library Builder
contains the “Library Farm” tool that can be used to speed up the process of library
characterization by running characterization tasks in parallel on multiple host
computers. For more information, see “Using the Library Farm” on page 90.

• Change Component Area and Delay Values: Library Builder provides an easy way to
change the area/delay values returned from synthesis. Once these values are modified,
the tool will not overwrite these values as part of subsequent characterization runs
unless you specifically give an “overwrite” command.

• Analyze and debug libraries: One of the primary values of the tool is the ability to
analyze and debug why a characterization run failed. This tool gives you an easy method
to quickly browse the characterization results for obvious errors. Library Builder
generates data files and log files that can be used for troubleshooting. For more
information, see “Troubleshooting Library Failures” on page 88.

Catapult C Library Builder User’s and Reference Manual, 2011a12

Introduction
Invoking the Graphical User Interface

October 2011

• Create memory templates: Library Builder lets you modify existing RAM templates.
For more information, see “Editing RAM Library Properties” on page 67.

• Create custom operators and interfaces: For more information, see “Creating Custom
Operators and Interfaces” on page 95.

Catapult C Library Builder Licenses
Catapult C Library Builder is a standalone product with which you will be able to create, alter,
or view libraries. The automatic “characterization flow” (see “Library Characterization” on
page 75) will invoke Catapult C Synthesis and Design Compiler, therefore you will be required
to have licenses for these downstream products. The characterization flow itself is licensed
separately. The Library Builder product includes one characterization license which allows
characterizations to run on the local host machine. You can purchase additional licenses so that
the Library Farm can run characterizations remotely on multiple hosts.

Invoking the Graphical User Interface
You can run Catapult C Library Builder from the GUI or from a shell command line. The shell
interface requires that you understand Tcl command syntax and scripting techniques. The
section “General Command Syntax” on page 135 provides information about how Tcl
commands are used in the Catapult tool. Reference help files about the Tcl language are
available in the Catapult software tree at $MGC_HOME/pkgs/tcl_msg/man (UNIX man pages)
and $MGC_HOME/pkgs/tcl_msg/doc (Windows help files).

You invoke the GUI by entering the “catapult -product library_builder” command from
a Windows shell or a UNIX/Linux shell. By default, the invocation directory becomes the
Library Builder working directory. To change the working directory, see “Setting the Working
Directory” on page 51. You can also configure Library Builder to start in a different working
directory by changing the “General Options” settings as described in the section “Set General
Options” on page 24.

In a Windows environment, you can optionally create a Shortcut on the Desktop and set the
shortcut properties similar to that shown in Figure 1-1. The Catapult setup program can create
an invocation icon on your desktop for you.

Introduction
Features of the User Interface

Catapult C Library Builder User’s and Reference Manual, 2011a 13
October 2011

Figure 1-1. Setting Up the C Library Builder Shortcut

Features of the User Interface
This section introduces the key features of the Library Builder graphical user interface (GUI). It
describes the layout of the windows and their controls, such as menus, command buttons and
dialog boxes. This section covers the following topics:

Library Builder Main Window . 13
The Task Bar Window . 15
The Command Input and Transcript Window . 15
The Library Explorer Window . 19
The Library Editor Window . 21
The Farm Window . 22
Getting Help . 23

Library Builder Main Window
Figure 1-2 shows the default layout of the Catapult C Library Builder session window and
identifies the key features. The main work windows, Library Explorer, Library Editor and Farm
share the upper right portion of the session window. The Task Bar window in the upper left
portion gives you quick access to some basic commands. Across the bottom portion of the
session is the Command Input and Transcript window.

Catapult C Library Builder User’s and Reference Manual, 2011a14

Introduction
Features of the User Interface

October 2011

At the top of the session window is a set of pulldown menus and a tool bar for quick access to
commonly used commands. All window can be moved, resized, undocked from the session
window, or changed to/from a tabbed window. For a detailed discussion about how to rearrange
the windows, refer to section “Changing the Window Layout” in the Catapult C Synthesis
User’s and Reference Manual.

Note
For the purpose of this discussion, Figure 1-2 shows how the session window appears
when all of its major features are enabled. Some features, such as the Farm window, are
not visible by default in the initial invocation window. Refer “Creating Custom Operators
and Interfaces,” for information about using the Library Editor.

You can hide or show the Toolbar and Status Bar by selecting the corresponding item on the
View pulldown menu. The View menu is also used to redisplay other windows that have been
hidden.

Figure 1-2. Library Builder Session Window

Introduction
Features of the User Interface

Catapult C Library Builder User’s and Reference Manual, 2011a 15
October 2011

The Task Bar Window
The Task Bar is a convenient command interface to the primary Library Builder tasks (see
Figure 1-2). By default, this window is visible at all times.

The Command Input and Transcript Window
This window, shown in Figure 1-3, accepts Tcl commands as input and it displays a scrolling
transcript of all activity performed during the session. The message filtering buttons and drop
down menus allow you to change the visibility of messages and search for messages by their
severity classification.

Figure 1-3. Command Input and Transcript Window

The command input line is a Tcl command interpreter that can access the host operating system
shell as well as input commands to Catapult. Refer to chapter 5, “Commands” for information
about all Catapult Tcl commands and the Tcl interface. As commands are entered, a transcript
of the commands and any system messages they generate are displayed in the transcript area of
the window.

The label next to the command input area shows a count of the number of commands entered.
The command input area provides context sensitive command completion. Pressing the TAB
key will attempt resolve the text on the command line to a valid command name. One of three
outcomes can result:

1. If the text can be uniquely matched to one command, that command replaces the text on
the command line.

2. If it matches more than one command, the list of possible matches are displayed in the
transcript.

Catapult C Library Builder User’s and Reference Manual, 2011a16

Introduction
Features of the User Interface

October 2011

3. If no match is possible, no change is made and an audible beep is generated.

Transcript Area
Transcript messages are color coded by type (severity classification). Error messages are red,
warning messages are orange, informational messages are green, commands are blue and
comments are black. Each message appears on a single line and has four parts, as shown in
Figure 1-4. First is an icon that identifies its severity level. Second is the message text in a
concise form. Third is cross-probe information consisting of the name and line number of the
source code file related to the message. Forth is the message identifier. For a detailed discussion
about message identifiers and how to configure their severity levels, refer to “Understanding
Messages in the Transcript” in the Catapult C Synthesis User’s and Reference Manual.

Figure 1-4. Parts of a Message in the Transcript Window

Viewing the Long Description
Message descriptions in the transcript are short and concise. Additional information is available
for some messages by double-clicking on the message ID at the end of the line. As shown in
Figure 1-5, that action opens the “Long Description” window. In addition to displaying the long
description, the window also allows you to change the severity level of that message ID.

You can also use the “help message” command to display the long description of a message in
the transcript window. For example, the following command will display the long description of
the “CIN-6” comment:

help message CIN-6
The pragma design top tells the tool where to start synthesis. This
message tells you that the pragma has been detected.

Introduction
Features of the User Interface

Catapult C Library Builder User’s and Reference Manual, 2011a 17
October 2011

Figure 1-5. Viewing the Long Description of a Message

Filtering Buttons and Drop Down Menus
The message filtering buttons at the top of the window allow you to toggle the visibility of each
message type. Each button also has a drop down menu that provides addition filtering and
search options.

Catapult C Library Builder User’s and Reference Manual, 2011a18

Introduction
Features of the User Interface

October 2011

Figure 1-6. Filtering Comments Out of the Transcript (before and after)

The menu items are as follows (<msg_type> is either Errors, Warnings, Infos or Comments):

• Hide <msg_type> / Show <msg_type>

• Show <msg_type> Only

• Goto Previous <msg_type>

• Goto Next <msg_type>

• Show All
(Makes all messages visible regardless of <msg_type>)

The “Commands” button drop-down menu has the following items:

• Show Only Commands / Show All

• Show Hierarchy / Hide Hierarchy

• Goto Previous Command

• Goto Next Command

Introduction
Features of the User Interface

Catapult C Library Builder User’s and Reference Manual, 2011a 19
October 2011

In “Show Hierarchy” display mode, all messages generated by a command are subordinate to
that command. Each command can be individually expanded or collapsed to show or hide its
subordinate messages.

The “Location” button toggles the cross-probe information to display a file icon instead of the
file name and line number. The icon takes up less space on the line and allows more of the
message description to be seen.

The Library Explorer Window
The Library Explorer window shown in Figure 1-7 allows you to edit and characterize library
modules.

Figure 1-7. Library Explorer Window

The following list describes the columns of the Library Explorer window:

• Library — Hierarchical display of the currently loaded libraries. Expand a library
object to see the component modules (MODs), qualified modules (QMODS), and
characterization data sets as shown in Figure 1-7.

A MOD is a library component that implements one or more of the operators available
to the Catapult scheduler. Memory is an example of a MOD implementing multiple
operators, one operator for read and one operator for write.

A QMOD is a configuration of the module used during characterization to estimate the
module (MOD) properties. Library Builder uses several QMODs during the
characterization process.

Catapult C Library Builder User’s and Reference Manual, 2011a20

Introduction
Features of the User Interface

October 2011

Each QMOD contains relative characterization data sets. Each data set is created by
using different constraints on the QMOD to determine the best QofR tradeoffs. For more
information, see “Multi-Point Characterization” on page 76.

• Status — Characterization state of each item in the library.

Depending on the selected MOD type and characterization settings, the following columns
display characterization results for the data sets. Click on the values to edit them.

• Area — Component area characterization.

• Delay — For sequential logic, this value is the output register to output value. For
combinational logic, this value is the total input to output delay.

• ClockPeriod — Clock period characterization constraint.

• MinClkPrd — Minimum clock period is the fastest time the component can be
scheduled. MinClkPrd only displays when a pipelined component is selected.

• Slack — ClockPeriod minus MinClkPrd.

• InputDelay — Input to register delay.

• InputSetup — Input register setup time.

• R2RDelay — Register to register delay.

• R2RSetup — Register to register setup time.

Note
For more information on delay properties, see “Delay Characterization Properties” on
page 82.

• IntPwr — Internal Power.

• LkgPwr — Leakage power.

• SwgPwr — Switching power.

• InputConstraint — Input delay constraint.

Right-click on items in the Library column to display available commands. Depending on the
type of object selected, a subset of the following commands displays:

• Characterize — Launch the designated RTL synthesis tool to synthesize all of the
qualified modules under the selected item. For example, if the library is selected, every
QMOD in the library is characterized. If a MOD is selected, only the QMODs for that
MOD are characterized. The resulting area and timing data reported by the RTL
synthesis tool is stored in the library database. Refer to “Library Characterization” for
more information about the characterization process.

Introduction
Features of the User Interface

Catapult C Library Builder User’s and Reference Manual, 2011a 21
October 2011

• Clean — For all QMODs under the selected item, clears the characterization data from
the database. This commands resets the status to Pending for all affected QMODs.

• Edit — Opens the selected library in the Library Editor. Refer to “Creating and Editing
Libraries” for more information about the Library Editor.

• Save As... — Saves the selected library to a file. The default file name is
<lib_name>.lib. Refer to “Saving Libraries” for more information.

• Save Characterization Commands/Data/Results As... — Creates a Tcl command file
that, when executed in the Library Builder tool, will reconstruct the database of selected
library. In other words, this command exports the library database to an ASCII text
format file.

• Plot — Graphs the characterization data of all QMODs under the selected module.
Refer to “Plotting the Characterization Data” for more information.

• Report — Generates a report of the characterization data for selected module, or the
entire library.

• Properties — Displays the name and working directory for the selected library.

The Library Editor Window
This window is a graphical editing environment that allows you to create and modify all
elements in a library. As shown in Figure 1-9, the left side of the window is a hierarchical view
of the library elements. The right side of the window is a context sensitive editor. The editor
displays the appropriate edit interface for the type of library element that is selected in the
hierarchy view. Refer to “Creating Custom Operators and Interfaces,” for more information
about how to create and modify library components,

Catapult C Library Builder User’s and Reference Manual, 2011a22

Introduction
Features of the User Interface

October 2011

Figure 1-8. Library Editor Window

The Farm Window
The Farm window, shown in Figure 1-9, is used for managing a network of computers that are
available to run library characterization tasks. This window allows you to add, remove, and
configure a set of host machines to which characterization jobs can be distributed. The Host
column shows the list of computers available in the Farm and the number of tasks they can
accept. The other columns report status and results of tasks that are running.

For more information about the Library Farm, refer to “Using the Library Farm” on page 90.

Introduction
Features of the User Interface

Catapult C Library Builder User’s and Reference Manual, 2011a 23
October 2011

Figure 1-9. Library Farm Window

Getting Help
You can access help information by using either context-sensitive links to specific topics, or by
using the Help pulldown menu to display information on the version of Library Builder or to
display Library Builder documentation.

Context-Sensitive Online Help

• The Help button on dialog boxes opens help topics specific to the dialog box.

• The help button on the session window tool bar opens help topics about the active
window.

• Clicking on message numbers in the Transcript window opens a help message pop-up
box. See “Set Messages Options” on page 27 for information about message numbers.

Command-line Help

• Enter a command name and the -help argument to display a listing of the options for that
command along with brief descriptions.

• Enter the “help command” or “help message” commands.

Catapult C Library Builder User’s and Reference Manual, 2011a24

Introduction
Setting Library Builder Options

October 2011

Help Menu

• Select Help > About Catapult Library Builder... to display a Library Builder splash screen
containing information on the Library Builder version.

• Select Help > Open Manuals Bookcase to access all of the Catapult C Synthesis product
manual and release notes.

Setting Library Builder Options
This section describes how to configure default settings for the Library Builder system options.
All options are initialized with factory default values the first time the software is installed.
When you change a default setting, the new setting remains becomes the default for the duration
of the Library Builder session. To preserve your new settings for future sessions, refer to
“Saving and Restoring Session Options” on page 47.

To modify the system options, select Tools > Set Options... to open the Catapult Library Builder
Options window, as shown in Figure 1-10 on page 25, then select a category in the panel on the
left to display the options dialog box for that category. You set a variety of options in the
following categories:

• “Set General Options” on page 24

• “Set Messages Options” on page 27

• “Set Component Library Options” on page 31

• “Set Catapult C Synthesis Options” on page 31

• “Set Farm Options” on page 33

• “Set Input Compiler Options” on page 35

• “View Compiler Settings” on page 37

• “Set Text Editor Options” on page 37

• “Set Flows Options” on page 38

• “Set Precision Flow Options” on page 39

• “Set Design Compiler Flow Options” on page 41

• “Set RTL Compiler Flow Options” on page 43

• “Set TalusDesign Flow Options” on page 45

Set General Options
The General options dialog box, as shown in Figure 1-10, allows you to specify default settings
for the following features:

Introduction
Setting Library Builder Options

Catapult C Library Builder User’s and Reference Manual, 2011a 25
October 2011

• Startup Directory

These options are used to set the default current working directory. If not set, then the
current working directory is the directory from which the executable is called.

If Library Builder is running on a Windows operating system and you invoke the tool
from the Start menu, you will probably want to enable this option. This will cause
Library Builder to start up in the last directory in which it was started.

o Restore Previous Working Directory

Check this box to restore the working directory from the previous session. If this
option is checked, the “Or Restore This Working Directory” setting is ignored. You
can also set this option using the “options set General RestoreCWD
<true_or_false>” command.

o Or Restore This Working Directory:

Use this option to set the default working directory to one specific directory, causing
Library Builder to always start in that directory. Click the Browse icon to navigate to
the directory that you want to use on startup. You can also set this option using the
“options set General StartInWD <path>” command.

Figure 1-10. Set Options General Menu

• Save Settings on Exit

Catapult C Library Builder User’s and Reference Manual, 2011a26

Introduction
Setting Library Builder Options

October 2011

Check this box to save options settings on exit. The options are saved into the Catapult C
Library Builder Registry. This insures that the options settings will appear each time the
tool is invoked, regardless of the invocation directory. You can also set this option using
the “options set General SaveSettings<true_or_false>” command. For more
information about saving option settings and about the Catapult registry, refer to the
section “Saving and Restoring Session Options” on page 47.

• Show Tool Bar

Uncheck the box to hide the session window Tool Bar on startup. The view menu can be
used to display the Tool Bar if it is hidden. You can also set this option using the
“options set General ShowToolBar <true_or_false>” command.

• Show Task Bar

Uncheck the box to hide the Task Bar window on startup. The view menu can be used to
display the Task Bar when it’s hidden. You can also set this option using the “options
set General ShowTaskBar <true_or_false>” command.

• Automated characterization tasks

These options are used to set default parameters for the library characterization tasks:

o Auto Save Library Backup File (minutes)

Specify the time interval in minutes between each automatic backup of the
characterization library. A backup saves the in-memory library to the file
<working_dir>/<lib_name>.char/<lib_name>.wlib. In the event that you need
to recover the backup library, open the library file with the “library load
-recover” command, which will automatically search for and load the backup files.
Alternatively, you can use the File > Open Library... menu item to open a backup file
directly. You can also set this option by using the “options set General
AutoSaveLibraryBackup <integer>” command.

o Auto Rerun Failed Component (retries)

Specify the number of times Library Builder should attempt to characterize a
component that fails to characterize. A setting of zero means no retries will be
attempted. If the characterization fails after the specified number of attempts, the
component is given a failed status in the library. Invocation failures do not count
against the retry count. A component group that times out will be unbundled for the
retry.

You can also set this option by using the “options set General
AutoRerunFailedComponent <integer>” command.

o Maximum Task Runtime (minutes)

Specify the maximum amount of time in minutes that each characterization task is
allowed to run. Adjust the number of minutes to suit the performance the target host
machine. Slower machines need a higher value. Multipliers and modulus require the

Introduction
Setting Library Builder Options

Catapult C Library Builder User’s and Reference Manual, 2011a 27
October 2011

most time. If you increase/decrease the “Maximum Components Per Task” setting (see
below), you should increase/decrease this setting proportionally. A setting of zero
means unlimited runtime. You can also set this option by using the “options set
General MaxTaskRunTime <integer>” command.

o Maximum Components Per Task

Specifies the maximum number of components that can be characterized in a single
task. Because each task must invoke a downstream synthesis tool, increasing the
number of components per task will reduce the total number of tool invocations
across the library. If you increase/decrease the “Maximum Task Runtime (minutes)”
setting (see above), you should increase/decrease this setting proportionally. You
can also set this option by using the “options set General
MaxComponentsPerTask <integer>” command.

o Remove Project Directories for Local Tasks

A temporary project directory is created for each characterization task
(<working_dir>/<lib_name>.char/<task_name>.proj). By default, each
directory is automatically deleted when the task completes successfully. If any
component within the task fails, the project directory is not deleted. Uncheck this
option to preserve all project directories regardless of their pass/fail status. You can
also set this option using the “options set General RemoveProjectDirectories
<true_or_false>” command.

o Automated characterization component netlist type

Select the netlist format, either VHDL or Verilog, that will be sent to the downstream
synthesis tool. You should select your primary downstream language. You can also set
this option using the “options set General NetlistFormat <VHDL_or_Verilog>”
command.

Set Messages Options
This set of options allows you to override the default severity level of system messages reported
by Library Builder. All messages are assigned one of the following severity levels:

• Error — Problem that causes Catapult to fail.

• Warning — Problem that should be examined.

• Info — Informational message.

• Comment — Status message.

• Unclassified — All other messages.

Using the Messages options dialog box, as shown in Figure 1-11, you can change the factory
default severity level of individual messages. For example, you can raise the severity of a
warning message from Warning to Error.

Catapult C Library Builder User’s and Reference Manual, 2011a28

Introduction
Setting Library Builder Options

October 2011

For each severity level, Library Builder provides an override list to which you can add or delete
message numbers (unique identifiers). The Messages dialog box provides an easy interface for
modifying these override lists. For each list, use its Add, Edit and Delete buttons to alter its set
of messages. For details about how to identify and specify message numbers, refer to the
sections “Message Classifications and Conventions” on page 29, and “Naming Convention for
Messages” on page 30.

Note
Catapult C Library Builder does not let you create new messages or delete existing
system messages. Adding or deleting simply changes the set of messages in the severity
level override lists.

You can modify message lists from the command line using the options set command with
one of the following options Message/ErrorOverride, Message/WarningOverride,
Message/InformationalOverride, or Message/Hide. These commands can change the
priority of a message by adding it to a different list. If a message belongs to multiple lists, then
the higher priority list is used. This means that a message may never be downgraded. This
command will check if the options are valid and report an error if they are not.

Figure 1-11. Messages Options Dialog Box

• Adding a Message to a List

Introduction
Setting Library Builder Options

Catapult C Library Builder User’s and Reference Manual, 2011a 29
October 2011

Click the Add button next to a message category (Error, Warning, Informational, or Hide)
and the Add dialog box displays. Type the ID code of the message that you want to add
and click OK to accept the entry. The message ID list in the Messages options dialog box
updates when you OK the Add dialog box.

• Editing a Message from a List

Select the message number you want to edit from the Error, Warning, Informational, or Hide
lists and click the Edit button to open the Edit dialog box. Modify the value and click OK
to accept the change.

• Deleting a Message from a List

Select the message number you want to delete from the Error, Warning, Informational, or
Hide lists and click the Delete button. The message number is removed indicating it has
been deleted from that list.

The library database is not updated until either the OK button or Apply button on the Message
options dialog box is clicked. At that point, Library Builder reflects the changes in the transcript
window, as shown in the example below.

Message Classifications and Conventions
The Library Builder messages are classified by the context in which they appear in the tool.
Table 1-1 describes the meaning of the context codes that appear at the end of messages in the
transcript.

Table 1-1. Types of Library Builder Message

Context Code Description

Flow Messages

CRD C reading

CIN C SIFgen

HIER Hierarchical

LOOP Loop

MEM Memory and Interface Mapping

ALOC Allocation

SCHD Scheduling

FSM FSM Extraction + Reg Sharing

ASG Assignment - Component binding and Sharing

Optimization Messages

OPT Sequential Design Analysis + Other optimizations

Catapult C Library Builder User’s and Reference Manual, 2011a30

Introduction
Setting Library Builder Options

October 2011

Naming Convention for Messages
Each qualifying Message in Library Builder is named with the character string for its
classification followed by a unique number related to that character string. The message number
displays in the transcript window as shown below:

Loading options from registry.
library load C:/Catapult/my_lib.lib
Reading component library 'C:/Catapult/my_lib.lib'... (LIB-49)
/LIBS/my_lib

The message number associated with the message is at the end of the line. It consists of a
context code and a number. In the example above, the tool displays the message number
(LIB-49), which is an informational message about reading a component library. For warning
or error messages, the word Warning or Error appears at the beginning of the message. Double-
click on a message number to display additional help associated with the message.

Other Messages

BASIC Low level

VHDL VHDL Netlisting

VLOG Verilog Netlisting

NL General Netlisting

PRJ Project

SOL Solution

LIB Library

LIC License

READ SIF Reading

WRITE SIF Writing

SIFG SIF Gen (VHDL and Verilog)

SEQ Sequential Component Analysis

CNS Constraint Management

Table 1-1. Types of Library Builder Message (cont.)

Context Code Description

Introduction
Setting Library Builder Options

Catapult C Library Builder User’s and Reference Manual, 2011a 31
October 2011

Set Component Library Options

Figure 1-12. Set Options Component Library

• Library Search Path

This is the Library Search path. You can also set this option using the “options set
ComponentLibs SearchPath <list_of_paths>” command.

• Template Search Path

This is the search path used by Library Builder for the templates used to create libraries.
You can also set this option using the “options set ComponentLibs
TemplateSearchPath <list_of_paths>” command.

Use the Add, Edit and Delete buttons to modify the paths in the list. Use the up and down arrows
to move a selected path higher or lower in the search order. Click OK and changes take effect
immediately. To save changes to the area where options were originally read, choose Tools >
Save Options.

Set Catapult C Synthesis Options
This set of options allow you to customize the default invocation string for the supported
synthesis tools.

Catapult C Library Builder User’s and Reference Manual, 2011a32

Introduction
Setting Library Builder Options

October 2011

Figure 1-13. Set Options Catapult C Synthesis Dialog

Catapult Synthesis Settings

• Use full synthesis tool for characterization tasks

Enabling this option allows the Library Builder to use Catapult C Synthesis licenses for
running characterization tasks. By default, the Library Builder uses dedicated licenses
explicitly for characterization tasks. Each Catapult C Synthesis license that is in use by a
characterization task will be unavailable to the Catapult C Synthesis tool until the
characterization task is complete.

You can also set this option using the “options set CatapultC
UseFullSynthesisTool <true_or_false>” command.

• Path

This path will be checked first to find the Catapult C Synthesis executable. If none is
found, then on Unix, the standard $PATH variable will be checked. On Windows, the
registry will be checked followed by the standard path.

This field will only evaluate the CATAPULT_HOME environment variable. You can not
use any other environment variable in the path. You can omit the CATAPULT_HOME
variable and specify an absolute pathname.

Click the Browse icon to browse to the directory where Catapult software is installed.
You can also set this option using the “options set CatapultC Path <path>”
command.

• Command Line Flags

This displays the command line flags set for the Catapult C Synthesis tool. You can also
set this option using the “options set CatapultC Flags <list_of_flags>”
command.

Introduction
Setting Library Builder Options

Catapult C Library Builder User’s and Reference Manual, 2011a 33
October 2011

Set Farm Options
These options are global settings that apply to all Library Farm hosts and tasks. For information
about adding hosts and configuring tasks, refer to “Using the Library Farm” on page 90.

Figure 1-14. Library Farm Set Up

Host Database

• Enable Farm

Check this box to enable the Library Farm feature. You can also set this option using the
“options set Farm EnableFarm <true_or_false>” command.

• Database Path

Select the directory containing Library Farm information. Host information will be
stored here by the Library Builder. Multiple Library Builders can use the same
directory, they will share the available tasks. Click on the Browse icon to browse the file
system the host database path. You can also set this option using the “options set
Farm HostDatabasePath <path>” command.

• Max Parallel Tasks

Use the scroll arrows to select the maximum number of tasks to run in parallel across all
hosts in the farm. Library farm will only run this number of tasks even if more hosts are
available in the farm. For example, suppose you have 15 Catapult licenses available, and
20 hosts in your farm. You should set this option to 15 or fewer. Setting it to fewer will
keep some licenses available for other to use.

Catapult C Library Builder User’s and Reference Manual, 2011a34

Introduction
Setting Library Builder Options

October 2011

A zero in this field means that tasks are unlimited. You can also set this option using the
“options set Farm MaxParallelTasks <integer>” command.

Suspend Host Usage

• On Invocation Failures (minutes)

Specify the length of time in minutes to suspend usage of a host if the downstream
synthesis tool fails to invoke. The host is reactivated after the waiting period. You can
also set this option using the “options set Farm SuspendHostOnInvocationFailure
<integer>” command.

• On Other Failures (minutes)

Specify the length of time in minutes to suspend usage of a host if that host fails for
reasons other than a failure of the downstream synthesis tool invocation. The host is
reactivated after the waiting period. You can also set this option using the “options
set Farm SuspendHostOnFailure <integer>” command.

Remote Shell

• Command

Displays the remote shell command associated with the library farm. You can also set
this option using the “options set Farm RshCommand <rsh_cmd_expr>” command.

The default command is rsh. The internal variables %HOSTNAME% and
‘%COMMAND%’ are passed as parameters to the remote shell command. The
%HOSTNAME% parameter contains the name of the target host machine. The
%COMMAND% parameter contains the library characterization command.

The Remote Shell Command supports the following internal variables:

o %COMMAND%
This variable contains the Catapult C Synthesis invocation command, which consists
of the path to the catapult executable, its command line flags, and the -shell
option. The values held in the %COMMAND% variable are set in the Catapult C
Synthesis options dialog. Refer to “Set Catapult C Synthesis Options” on page 31 for
more information.

Note
When the Library Builder is configured to use dedicated licenses for characterization
tasks instead of Catapult C Synthesis licenses, you must use the %COMMAND% variable in
the Remote Shell Command field. Do not enter a literal invocation command line. The
variable automatically supplies special command-line flags that are required for the
dedicated license.

When used without quotes, each string in the variable is evaluated as separate
arguments. For example, if the Catapult C Synthesis Flags option contained the

Introduction
Setting Library Builder Options

Catapult C Library Builder User’s and Reference Manual, 2011a 35
October 2011

string “-mgls_license_file 123@licserver,” the variable would expand to the
following set of strings:

<Catapult_Install>/bin/catapult -mgls_license_file 123@licserver
-shell

When enclosed in double quotes (“%COMMAND%”), the entire contents of the variable
is appended to the remote shell command as a single argument. Use the quoted form
if the remote shell command is the “rsh” command, which expects the command to
be a single argument.

o %HOSTNAME%
Evaluates to the target ‘Host’ machine as specified in the Farm tab of the GUI.

o %COMMANDFILE%
Evaluates to the command file name to be evaluated by Catapult C Synthesis to
synthesize the design and gather characterization details. If %COMMANDFILE% is
not specified, the command file will be piped to the standard input of the application.

o %OUTPUTFILE%
Evaluates to the transcript file to be generated by Catapult C Synthesis. If
%OUTPUTFILE% is not specified, the standard output from the application will be
captured in the output file.

o %CWD%
Evaluates to the OS-specific form of the pathname of the working directory for the
characterization job.

The above variables may be specified zero or more times. In addition, they can be
embedded inside of other arguments in the Remote Shell Command. For example, if the
Remote Shell Command is:

Launch -working_dir=%CWD% -exec %COMMAND%

Then the expanded command would be:

Launch -working_dir=/tmp/workdir
-exec <Catapult_Install>/bin/catapult
-shell

Enter Library Farm set up information and click OK or Apply to accept the Library Farm settings
or Cancel to close without saving. See also “Configuring Library Farm to Use the Load Sharing
Facility (LSF) software” on page 91.

Set Input Compiler Options
Use the Input dialog box to specify default compiler settings. You can specify a compiler for
Catapult to use, compiler command flags, and search paths for header files and library files.

Catapult C Library Builder User’s and Reference Manual, 2011a36

Introduction
Setting Library Builder Options

October 2011

Figure 1-15. Input Options Dialog Box

• Compiler Home

The Compiler Home options specify the location of the compiler Catapult will use.

o Type: This field provides a list of the compilers Catapult finds installed on your
system. On UNIX/Linux systems, the compiler installed in $MGC_HOME/bin is listed.
On Windows systems, Microsoft compilers found in the Windows registry are listed,
followed by the compiler supplied with ModelSim, if installed.

You can either select a compiler from the list, or you can select the Custom option to
specify a different compiler. You can also set this option using the “options set
Input Compiler <name_or_custom>” command.

This field works in conjunction with the View Compiler Settings page described in
the next section.

o Custom Path: This field is used only when the “Custom” choice is selected in the
Type field. Enter the path to top-level directory where the compiler is installed. You
can either type the path in the text box or use the file system browser (click on the
icon to the right of the text box). You can also set this option using the “options
set Input CompilerHome <path>” command.

• Compiler Flags

Introduction
Setting Library Builder Options

Catapult C Library Builder User’s and Reference Manual, 2011a 37
October 2011

Command line flags passed to the compiler during C compilation. Compiler options can
also be set by right-clicking on the input file. You can also set this option using the
“options set Input CompilerFlags <list_of_flags>” command.

• Header File Search Path

This search path will be added to the default search path for the Catapult compiler. Use
the Add, Edit and Delete buttons to modify the list of directories in the search path. You
can also set this option using the “options set Input SearchPath
<list_of_paths>” command.

• Library File Search Path

This search path will be added to the default search path for the Catapult compiler. Use
the Add, Edit and Delete buttons to modify the list of directories in the search path. You
can also set this option using the “options set Input LibPaths <list_of_paths>”
command.

View Compiler Settings
The View Compiler Settings page works in conjunction with the “Compiler Home” field on the
“Input” options dialog box. This read-only page shows information about the compiler selected
in the Compiler Home field. If the “Custom” option is selected and the “Custom Path” value is not
valid, the fields on this page will be blank.

Figure 1-16. Compiler Settings Page

Set Text Editor Options
The Text Editor dialog box lets you set options for the DesignPad editor. You can override the
default settings by using the popup menu in the DesignPad editor window.

Catapult C Library Builder User’s and Reference Manual, 2011a38

Introduction
Setting Library Builder Options

October 2011

Figure 1-17. Set Options Text Editor Menu

• Default Window Layout

Specify the default type of window to be used for Text Editor documents. Select either
tabbed document window or a free floating window. You can also set this option using
the “options set TextEditor WindowLayout <Floating_or_Tabbed>” command.

• Show Code Browser

Specify whether or not the Code Browser feature of the DesignPad editor is visible by
default. The code browser allows you to move to selected sections in the code. You can
also set this option using the “options set TextEditor CodeBrowser
<true_or_false>” command.

• Show Line Numbers

Specify whether or not the DesignPad editor displays line numbers by default. You can
also set this option using the “options set TextEditor LineNumbers
<true_or_false>” command.

• Enable Outline Mode

Specify whether or not the Outline mode is enabled by default in the DesignPad editor.
Outline mode provides a hierarchical view of the text in the editor. It allows you
collapse/expand sections of the document independently. Outline mode is indicated by
plus or minus icons to the left of a text block. Click a plus/minus icon to expand/collapse
a block. You can also set this option using the “options set TextEditor
OutlineMode <true_or_false>” command.

Click OK to accept the setting or Cancel to close without saving the setting.

Set Flows Options
The Flows dialog box allows you to configure the search paths for user-defined flow. Refer to
the section “Flow Customization” in the Catapult C Synthesis User’s and Reference Manual for
information about user-defined flows.

Introduction
Setting Library Builder Options

Catapult C Library Builder User’s and Reference Manual, 2011a 39
October 2011

• Flow Search Path

Add and delete directory pathnames to user-defined flow package files. During startup,
Catapult scans all of the flow package files (.flo) in the Flows Search Path and
constructs an index of the packages it finds. The paths are searched in the order in which
they appear. If duplicate filenames are found, only the first one is indexed. The default
Catapult flow packages are scanned prior to user-defined flow packages.

Use the Add, Edit and Delete buttons to modify the paths in the list. Use the up and down
arrows to move a selected path higher or lower in the search order.

You can also set this option using the “options set Flows FlowSearchPath
<list_of_paths>” command.

Figure 1-18. Flow Options

Set Precision Flow Options
Set the default library characterization values for the Precision RTL Synthesis flow.

Figure 1-19. Precision Flow Options

Catapult C Library Builder User’s and Reference Manual, 2011a40

Introduction
Setting Library Builder Options

October 2011

• Path

Specifies a search path for the Precision RTL Synthesis executable. If none is found,
then the standard UNIX $PATH variable is searched. On Windows, the registry is
checked followed by the standard path. Click the folder icon to browse to the directory
where the Precision executable is installed. You can also set this option using the
“options set Flows/Precision Path <path>” command.

This field only evaluates the PRECISION_HOME environment variable. You can not
use any other environment variable in the path. You can omit the PRECISION_HOME
variable and specify an absolute pathname.

• Command Line Flags

Specifies command line switches for the Precision RTL Synthesis executable. You can
also set this option using “options set Flows/Precision Flags <list_of_flags>”
command.

• Add IO Pads

Specifies Precision RTL Synthesis option: Optimization - Add IO Pads. You can also set
this option using the “options set Flows/Precision addio <true_or_false>”
command.

• Run Retiming

Specifies Precision RTL Synthesis option: Retiming. You can also set this option using
the “options set Flows/Precision retiming <true_or_false>” command.

• Run Integrated Place and Route in Precision

Enables the Precision RTL Synthesis option to automatically place and route the design.
You can also set this option using the “options set Flows/Precision run_pnr
<true_or_false>” command.

• Run Next Generation User Interface

Enables the new Precision RTL Synthesis graphical user interface. When this option is
disabled, the old GUI is used. You can also set this option using the “options set
Flows/Precision newgui <true_or_false>” command.

• RTL Plus

Runs the RTL Plus version of Precision Synthesis. Precision RTL Plus performs
physically aware synthesis. You can also set this option using the “options set
Flows/Precision rltplus <true_or_false>” command.

• Place and Route Install Path

Specifies the path to the default place and route tool. You can also set this option using
the “options set Flows/Precision PlaceAndRouteInstallPath <path>”
command.

Introduction
Setting Library Builder Options

Catapult C Library Builder User’s and Reference Manual, 2011a 41
October 2011

• Output File Folder Name

Specifies the default name of the output file folder that appears in the Catapult C
Synthesis GUI. The hierarchical path to the folder is
“<solution_name>/Synthesis/<folder_name>”. You can also set this option using the
“options set Flows/Precision FOLDERNAME <string>” command. The factory
default value for this field is “Precision.”

• Gather detailed timing information

Includes the following types of timing data in the Precision timing report:

o input to register

o register to register

o register to output

You can also set this option using the “options set Flows/Precision
GatherDetailedTimingData <true_or_false>” command.

Set Design Compiler Flow Options
Sets the default library characterization values for the Design Compiler (DC) flow.

Figure 1-20. Design Compiler Flow Options

• Library Search Path

Catapult C Library Builder User’s and Reference Manual, 2011a42

Introduction
Setting Library Builder Options

October 2011

Adds/deletes pathnames to DC library directories. When DC is invoked, it searches the
specified paths in addition to its default library search paths. Use the Add, Edit and
Delete buttons to modify the paths in the list. Use the up and down arrows to move a
selected path higher or lower in the search order. You can also set this option using the
“options set Flows/DesignCompiler SearchPath <list_of_paths>” command.

• Executable Path

The path to the bin directory containing the DC executable. This search path is checked
first, and if the executable is not found, the standard path is checked. Click the folder
button to navigate to the desired path. You can also set this option using the “options
set Flows/DesignCompiler Path <path>” command.

• Design Compiler Executable

This option specifies the name of the DC tool to invoke. The default tool is dc_shell.
You can also set this option using the “options set Flows/DesignCompiler
ShellExe <string>” command.

• Additional Compile Options

Command line switches for the DC executable. You can also set this option using the
“options set Flows/DesignCompiler CompileOpts <list_of_options>”
command.

• Command-Line Mode

Enter the environment mode to run the DC executable in. The supported modes are dctcl
and dcsh. You can also set this option using the “options set
Flows/DesignCompiler ShellType <mode>” command.

• Command Line Flags

This displays the command line flags set for DC. You can also set this option using
“options set Flows/DesignCompiler Flags <list_of_flags>” command.

• License Server

List of license servers for DC licenses. Catapult assigns the specified list to the FLEXnet
environment variable SNPSLMD_LICENSE_FILE prior to launching DC. Refer to the
FLEXnet Licensing End User Guide for information about the syntax of FLEXnet
environment variables. You can also set this option using “options set
Flows/DesignCompiler LicenseServer <list_of_servers>” command.

• Design License to check out

Specifies a list of Synopsys DesignWare license features to be obtained. The list items
are space separated. If the value is set, it is passed directly to the DC command
“get_license” in the generated DC script so the specified license features are checked out
at the beginning of synthesis. (They are held until the remove_license command is used

Introduction
Setting Library Builder Options

Catapult C Library Builder User’s and Reference Manual, 2011a 43
October 2011

or until the program is exited or until the DC shell is closed.) Refer to the license key file
at your site to determine which licensed features are available.

This option overrides any default settings defined in Catapult libraries. For more
information about DesignWare settings in Catapult libraries, refer to “The Library
Options Tab.”

• Design Licenses not to use

Specifies a list of DesignWare licenses that the DC tool is not allowed to use. The list
items are space separated. The list is assigned to the DC variable
“synlib_dont_get_license” in the generated DC script.

This option overrides any default settings defined in Catapult libraries. For more
information about DesignWare settings in Catapult libraries, refer to “The Library
Options Tab.”

• Design Licenses to wait for

Specifies a list of DesignWare licenses that the DC tool should wait for if they are
temporarily unavailable. The list items are space separated. The value of this variable is
assigned to the DC variable “synlib_wait_for_design_license” in the generated DC
script.

This option overrides any default settings defined in Catapult libraries. For more
information about DesignWare settings in Catapult libraries, refer to “The Library
Options Tab.”

• Enable Power Reporting

Directs the DC to generate a power analysis report. You can also set this option using
the “options set Flows/DesignCompiler EnablePowerReporting
<true_or_false>” command.

Set RTL Compiler Flow Options
Sets the default library characterization values for the RTL Compiler flow.

Catapult C Library Builder User’s and Reference Manual, 2011a44

Introduction
Setting Library Builder Options

October 2011

Figure 1-21. RTL Compiler Flow Options

• Library Search Path

Adds/deletes pathnames to directories containing RTL Compiler libraries. Use the Add,
Edit and Delete buttons to modify the paths in the list. Use the up and down arrows to
move a selected path higher or lower in the search order.

You can also set this option using the “options set Flows/RTLCompiler
SearchPath <list_of_paths>” command.

• Executable Name

Specifies the name of the RTL Compiler tool to invoke. The default tool is rc. You can
also set this option using the “options set Flows/RTLCompiler ShellExe
<string>” command.

• Executable path

Specifies the full path to the directory containing the RTL Compiler executable. Click
the folder button to browse to the directory where software is installed. You can also set
this option using the “options set Flows/RTLCompiler Path <path>” command.

Introduction
Setting Library Builder Options

Catapult C Library Builder User’s and Reference Manual, 2011a 45
October 2011

• Command-Line Flags

Specifies additional command line flags to pass to RTL Compiler. You can also set this
option using the “options set Flows/RTLCompiler Flags <list_of_flags>”
command.

• License Server

Lists the license servers for the RTL Compiler licenses. List items are separated by
spaces. Catapult assigns the specified list to the FLEXnet environment variable
CDS_LIC_FILE prior to launching the RTL Compiler. Refer to the FLEXnet Licensing
End User Guide for information about the syntax of FLEXnet environment variables.
You can also set this option using “options set Flows/RTLCompiler
LicenseServer <list_of_servers>” command.

• Enable Power Reporting

Directs the RTL Compiler to generate a power analysis report. You can also set this
option using the “options set Flows/RTLCompiler EnablePowerReporting
<true_or_false>” command.

Set TalusDesign Flow Options
Set the default library characterization values for the Magma Talus Design flow. The Talus
Design flow is for downstream RTL synthesis and library characterization. The Catapult
Library Builder provides library templates for creating compatible libraries but does not
currently provide prebuilt and characterized Talus Design libraries. You must create your own
libraries with the Catapult Library Builder.

Catapult C Library Builder User’s and Reference Manual, 2011a46

Introduction
Setting Library Builder Options

October 2011

Figure 1-22. Talus Design Flow Options

• Library Search Path

Adds/deletes pathnames to directories containing Talus Design libraries. The specified
libraries are searched in addition to the Talus Design default library search paths. Use
the Add, Edit and Delete buttons to modify the paths in the list. Use the up and down
arrows to move a selected path higher or lower in the search order.

You can also set this option using the “options set Flows/TalusDesign SearchPath
<list_of_paths>” command.

• Talus Executable Name

Specifies the name of the Talus Design tool to invoke. The default is talus. Click the
folder button to browse to the desired executable.You can also set this option using the
“options set Flows/TalusDesign shellExe <string>” command.

• Executable Path

Specifies a path to search for the Talus Design executable. If none is found, the standard
path is checked. Click the folder button to browse to the desired path. You can also set
this option using the “options set Flows/TalusDesign Path <path>” command.

• Command-Line Flags

Specifies the command line switches for the Talus Design executable. You can also set
this option using the “options set Flows/TalusDesign Flags <list_of_flags>”
command.

• License Server

Introduction
Setting Library Builder Options

Catapult C Library Builder User’s and Reference Manual, 2011a 47
October 2011

List of license servers for Talus Design licenses. Catapult assigns the specified list to the
FLEXnet environment variable MAGMA_LICENSE_FILE prior to launching Talus
Design. Refer the FLEXnet Licensing End User Guide for information about the syntax
of FLEXnet environment variables. You can also set this option using “options set
Flows/TalusDesign LicenseServer <list_of_servers>” command.

• Additional Licenses to Check out

List one or more license names that can be used. List items are separated by spaces. You
can also set this option using the “options set Flows/TalusDesign Licenses
<list_of_composites>” command.

• Enable Power Reporting

Directs Talus Design to generate a power analysis report. You can also set this option
using the “options set Flows/TalusDesign EnablePowerReporting
<true_or_false>” command.

Saving and Restoring Session Options
Saving your option settings can serve three purposes. First, saved settings can be loaded
automatically each time a new Library Builder session is started. Second, the “Save Options
As...” command enables you to save any number of alternate configurations. Third, when a new
release of Catapult software is installed, option settings that were saved from the previous
release are automatically applied to the new release.

By default the options are saved in the Catapult registry, unless you explicitly save them to a
catapult.ini file. Refer to “Catapult C Library Builder Registry” on page 48 and “The
Catapult Initialization File” on page 48 for more information.

Saving Options
You can use either the Tools > Save Options or Tools > Save Options As... pulldown menus.
Alternatively, you can use the options save command. When using Save Options As..., name the
output file catapult.ini if you want Library Builder to load it automatically at startup.

• When saving settings specific to a library project, use Save Options As... and save them
to a catapult.ini file in the project directory.

• Save Options will save the settings to the source location from which they were loaded
when the session started. The default location is the Catapult C Library Builder registry.

Additionally, you can have Catapult automatically save your settings each time you exit the
tools. Refer to the section “Set General Options” on page 24 for information about this option.

Catapult C Library Builder User’s and Reference Manual, 2011a48

Introduction
Setting Library Builder Options

October 2011

Restoring Options
During startup, Catapult C Library Builder searches for saved options in the following
locations, in the order listed. A message displays in the transcript window telling you the source
location of the loaded options.

1. A catapult.ini file in the current working directory

2. A catapult.ini file in the user’s HOME directory

3. The Catapult registry

Catapult C Library Builder Registry
On Windows systems, Catapult C Library Builder uses the Windows registry to store the
settings. On UNIX systems, the registry is a directory created and maintained by Library
Builder at $HOME/.catapult. In it, Library Builder keeps separate files for each different
platform and software version. Table 1-2 lists the platform identifiers that are embedded in the
filenames:

The Catapult Initialization File
The Library Builder initialization file, catapult.ini, is an ASCII text file containing the
default settings for all Library Builder system options. Example 1-1 shows the format of the
Library Builder catalpult.ini file. The example is an excerpt of the factory default settings.

Example 1-1. Example catapult.ini File

[General]
RestoreCWD = false
StartInWD =
SaveSettings = false
ShowToolBar = true
ShowFlowWindow = true
PdfViewer = acroread
AutoSaveLibraryBackup = 5
AutoRerunFailedComponent = 3
MaxTaskRunTime = 360
MaxComponentsPerTask = 10
RemoveProjectDirectories = true
NetlistFormat = VHDL

[Message]

Table 1-2. Platform Identifiers in Registry Filenames

Platform Name Identifier

Linux ixl

Solaris ss5

Introduction
Setting Library Builder Options

Catapult C Library Builder User’s and Reference Manual, 2011a 49
October 2011

ErrorOverride = ASSERT-1 CIN-17 CIN-48 CIN-46 CIN-49 CIN-50 CIN-54
HIER-4 SIF-6 CNS-9 HIER-20
WarningOverride =
InformationalOverride =
Hide = CRD-177

[ComponentLibs]
SearchPath = {$MGC_HOME/pkgs/siflibs}
{$MGC_HOME/pkgs/siflibs/designcompiler}
{$MGC_HOME/pkgs/siflibs/psr2006a.112}
{$MGC_HOME/pkgs/siflibs/psr2005c.151}
{$MGC_HOME/pkgs/siflibs_inhouse} {$MGC_HOME/pkgs/ccs_altera}
TemplateSearchPath = {$MGC_HOME/pkgs/siflibs/templates}
{$MGC_HOME/pkgs/siflibs_inhouse/templates}

[CatapultC]
UseFullSynthesisTool = false
Path = $CATAPULT_HOME/bin
Flags =

[Farm]
EnableFarm = false
HostDatabasePath = ./hostdb
MaxParallelTasks = 0
SuspendHostOnInvocationFailure = 0
SuspendHostOnFailure = 0
RshCommand = rsh %HOSTNAME% '%COMMAND%'

[TextEditor]
WindowLayout = Tabbed
CodeBrowser = false
LineNumbers = true
OutlineMode = false

[Flows]
FlowSearchPath =

[Flows/DesignCompiler]
SearchPath =
Path =
Flags =
ShellType = dctcl

[Flows/DesignCompiler/FOLDERNAME]
<type> = string
<description> = Output File Folder Name
<default> = Design Compiler
<value> = Design Compiler

[Flows/Precision]
Path = $PRECISION_HOME/bin
Flags =
addio = false
retiming = false
run_pnr = false

[Flows/Precision/FOLDERNAME]
<type> = string

Catapult C Library Builder User’s and Reference Manual, 2011a50

Introduction
Setting Library Builder Options

October 2011

<description> = Output File Folder Name
<default> = Precision
<value> = Precision

Catapult C Library Builder User’s and Reference Manual, 2011a 51
October 2011

Chapter 2
Creating and Editing Libraries

Setting the Working Directory . 51

Creating a New Library . 51

Editing RAM Library Properties . 67

Saving Libraries . 73

The Library Builder provides ASIC and FPGA library templates to help you to create and
characterize libraries for use in the Catapult C Synthesis tool. The general procedure for
characterization is as follows:

1. Create a working directory where the new library will be built (a working area).

2. Invoke the Library Builder and set the working directory within the tool. See “Setting
the Working Directory” on page 51.

3. Create a new library from one of the supplied templates. See “Creating a New Library”
on page 51 and “Editing RAM Library Properties” on page 67.

4. Use the Library Explorer window or the Farm window to characterize the library. See
“Library Characterization” on page 75 and “Using the Library Farm” on page 90.

5. Save the library. See “Saving Libraries” on page 73.

Setting the Working Directory
The Library Builder works with the files in a working directory which you create before you
invoke the tool. This is the place where all generated output files are placed.

1. Click on the Set Working Directory task in the Task Bar window or use the File > Set
Working Directory... menu item to open file system browser.

2. Browse to the directory that you want to set as the working directory and click OK to
make it your working directory.

Alternatively, you can use the set_working_dir command.

Creating a New Library
Catapult C Library Builder provides many different library templates for the various types of
libraries you can create. The “Base ASIC Library” template contains all of the basic components
needed for synthesis. There are various templates for creating ROM, Custom RAM and

Catapult C Library Builder User’s and Reference Manual, 2011a52

Creating and Editing Libraries
Creating a New Library

October 2011

RegisterFile libraries. Finally, the “Blank Library” template is an empty library that you populate
with custom component modules and operators.

The procedure for creating a library by using the GUI is as follows:

1. Click the New Library task in the Task Bar window, or select the File > New > New Library
menu item to open the Library Creation dialog box.

2. In the Library Creation dialog box, select the synthesis tool to be used for characterization.
For ASIC libraries, choose either the Cadence RTL Compiler, Magma Talus Design, or
Synopsys Design Compiler. For FPGA libraries, select Precision RTL Synthesis. When a
tool is selected, a list of library templates for that tool display below it.

3. Select a library template under the selected synthesis tool.

Fill in the fields on the right side of the Library Creation dialog box. Items in red are
required. Refer to:

o “Cadence RTL Compiler Options” on page 53

o “Magma Talus Design Options” on page 57

o “Precision RTL Synthesis Options” on page 59

o “Synopsys Design Compiler Options” on page 61

4. Click OK. The new library is created in the Library Builder database but not saved to
disk until you explicitly save it.

5. Edit the library. In the Library Explorer window, double-click on the newly created library
to open the Library Editor. (or right-click and select Edit from on the pop-up menu).

6. Save the new library and close the Library Editor.

7. Characterize the new library and save the changes. (See “Characterizing Libraries or
Components” earlier in this chapter.)

8. Add the new library to the Catapult C Synthesis library search path. Use Tools > Set
Options > Component Libraries in the Catapult C Synthesis application.

The command line interface uses the “flow run” command to launch the “library add” flow for
the specified synthesis tool. Library Builder provides different flow packages for each of the
supported synthesis tools. The flow package names are DesignCompiler, RTLCompiler, and
Precision. Run the flow for the target synthesis tool and specify a library template and its
required settings. The flow will add the library to the Library Builder database.

The command format is:

flow run /<package>/library add <lib_template> <options>

For example, the following command creates a “Base ASIC Library” (“base”) for the Design
Compiler tool.

Creating and Editing Libraries
Creating a New Library

Catapult C Library Builder User’s and Reference Manual, 2011a 53
October 2011

flow run /DesignCompiler/library add base \
-libname my_lib \
-libtitle my_lib \
-vendor Sample \
-technology 180nm \
-link_library sample_180nm.db \
-target_library sample_180nm.db

The set of valid options varies depending on the type of library template. To get a list of the
valid template names for a flow package, use the “-help” switch as follows:

flow run /<package>/library add -help

Similarly, to see the set of valid options for a particular library template, use the following
command:

flow run /<package>/library add <lib_template> -help

The set of options correspond to the data fields in the Library Creation window. For descriptions
of the available options, refer to:

• “Cadence RTL Compiler Options” on page 53.

• “Magma Talus Design Options” on page 57,

• “Precision RTL Synthesis Options” on page 59

• “Synopsys Design Compiler Options” on page 61,

Cadence RTL Compiler Options
Figure 2-1 shows the Settings tab for the Base ASIC Library template. Other templates have the
same settings. All data fields on the Settings tab are required. All other tabs provide optional
settings. Most of the optional fields are the same for all templates, but some are only available
for specific types of templates. This section describes all possible fields found on each tab,
regardless of which template the field may appear on.

Catapult C Library Builder User’s and Reference Manual, 2011a54

Creating and Editing Libraries
Creating a New Library

October 2011

Figure 2-1. Library Creation Dialog Box for Cadence RTL Compiler

The Settings Tab
Enter basic configuration information on the Settings tab:

• Catapult Technology Settings

o Library Name: Enter a symbolic name for the new library that will be appear in the
Resource Type list of the Architectural Constraints dialog box in the Catapult C
Synthesis tool. For more information, refer to “Specifying Architectural
Constraints” in the Catapult C Synthesis User’s and Reference Manual.

o Library Title: This title appears in the Compatible Libraries list of the Setup Design
dialog box in the Catapult C Synthesis tool when the user selects the vendor and
technology that are associated with this new library.

o Default Selected: Specifies whether or not the new library will be selected by default
when it appears in the Setup Design dialog box in the Catapult C Synthesis tool.

Creating and Editing Libraries
Creating a New Library

Catapult C Library Builder User’s and Reference Manual, 2011a 55
October 2011

• Catapult Setup Design Settings

o Vendor and Technology: The new library is associated with the specified vendor and
technology names. When these names are selected in the Setup Design dialog box in
the Catapult C Synthesis tool, your new library will appear in the Compatible Libraries
list of the dialog box.

The names must match those in Catapult. For example, vendor name “Sample” and
technology name “065nm.”

• RTL Compiler Settings:
These values must match the corresponding values in the target RTL Compiler
technology file/files (.lib) or a synthesis error occurs when the library is generated.
These values are passed directly to RTL Compiler as command line arguments via the
command script generated by Catapult.

If the target technology is available in multiple RTL Compiler libraries, such as a fast
and a slow library, you can characterize this Library Builder library using one or more of
the libraries; List each RTL Compiler library in the Link Library and Target Library
fields. Library Builder characterizes components using a combination of the technology
libraries to give you the best trade off between area and performance.

o Link Library: A list of link library names (space separated and enclosed in braces).

o Target Library: A list of target library names (space separated and enclosed in
braces).

The value is used in the following command line in the RC script:

set_attr library sample_065nm.lib

o LEF Library: A list of LEF (Layout Exchange Format) library names. List items are
space separated and enclosed in braces.

The Advanced Tab
Optionally modify the settings on the Advanced tab:

• Library Settings

o Time Unit: Specifies the timescale unit that will be found in RTL Compiler output
reports and input constraint files. Catapult always computes and expresses time in
nanoseconds internally. When Catapult reads time data from the RTL Compiler
report file, it converts the time values to nanoseconds based on the timescale
specified in the “Time unit” field. Similarly, when Catapult generates a constraint
file, it converts time data from nanoseconds to the target units.

Choose one of the following timescale units: nanoseconds (“ns”), picoseconds
(“ps”) or femtoseconds (“fs”). The default setting is nanoseconds.

The following Library Settings apply only to memory templates.

Catapult C Library Builder User’s and Reference Manual, 2011a56

Creating and Editing Libraries
Creating a New Library

October 2011

o Component Area: The value in this field is assigned to the “area” property on the
“All” binding of module(s).

o Component Delay: For RAM /ROM templates, the value in this field is assigned to
the “delay” property on “read_ram”/“read_rom” binding of the module. For the
RAM_pipe template, the “delay” property is on the “All” binding.

o Default value for Address and Data ports: The field only applies to RAM
templates. Valid values are 0 = active low, 1 = active high, X.

o Default chip select active: The field only applies to RAM templates. Valid values
are 0 = active low, 1 = active high, U = unused.

• RTL Compiler Settings
This group of settings apply only to the “Base ASIC Library” template. Each setting
corresponds to a setting in the RTL Compiler tool. Refer to the RTL Compiler
documentation for information about each setting.

• Characterization Settings
The following Characterization Clock Period settings apply only to the “Base ASIC
Library”, “RAM - Pipe” and ROM templates. They allow you to override the default
settings for multi-point characterization of library components. Refer to “Multi-Point
Characterization” on page 76 for more information.

o Clock Period Fastest: This value specifies the clock speed setting (typically nano-
seconds) for DC when characterizing the fastest clock period (largest area).

o Clock Period Smallest: This value specifies the clock speed setting (typically nano-
seconds) for DC when characterizing the slowest clock period (smallest area).

o Clock Period Percentages: This field specifies a set of points within the range of
clock speeds bounded by the fastest and smallest settings above. The points are
specified as percentages of the range. The default set consists of four points: 100%,
75%, 50% and 0%, where 100 = fastest and 0 = smallest.

The Library Options Tab
• WireLoad

o Wire Load Model: This field allows you to specify arguments for the RC attribute
set_attr wireload_model. If this field is not empty, it is passed directly to RC by
the RC script generated by Catapult.

o Wire Load Mode: This variable allows you to specify arguments for the RC attribute
set_attr wireload_mode. If this field is not empty, it is passed directly to RC by
the RC script generated by Catapult.

o Wire Load Selection Group: This field allows you to specify arguments for the RC
attribute set_attr wireload_selection. If this field is not empty, it is passed
directly to RC by the RC script generated by Catapult.

Creating and Editing Libraries
Creating a New Library

Catapult C Library Builder User’s and Reference Manual, 2011a 57
October 2011

The Flow Options Tab
Optionally modify the default settings for the Cadence RTL Compiler flow options. These flow
options are used in the Catapult C Synthesis tool during library characterization. These settings
are not saved as part of the library, but are global to the Library Builder session. Refer to “Set
RTL Compiler Flow Options” on page 43 for a description of these options.

Magma Talus Design Options
Figure 2-2 shows the Settings tab for the Base ASIC Library template. Other templates have the
same settings except that they do not have the “TalusDesign Settings” group. All data fields on
the Settings tab are required. The Advanced tab and Flow Options tab contain optional settings.
Most of the optional fields are the same for all templates, but some are only available for
specific types of templates. This section describes all possible fields found on each tab,
regardless of which template the field may appear on.

Figure 2-2. Library Creation Dialog Box for Talus Design

The Settings Tab
Enter basic configuration information on the Settings tab:

Catapult C Library Builder User’s and Reference Manual, 2011a58

Creating and Editing Libraries
Creating a New Library

October 2011

• Catapult Technology Settings

o Library name: Enter a symbolic name for the new library that will be appear in the
Resource Type list of the Architectural Constraints dialog box in the Catapult C
Synthesis tool.

o Library title: This title appears in the Compatible Libraries list of the Setup Design
dialog box in the Catapult C Synthesis tool when the user selects the technology
associated with this library.

o Default Selected: Specifies whether or not this library is selected by default when it
appears in the Setup Design dialog box in the Catapult C Synthesis tool.

• Catapult Setup Design Settings

o Vendor and Technology: The new library will be associated with the specified
vendor and technology names. When these names are selected in the Setup Design
dialog box in the Catapult C Synthesis tool, the new library will appear in the
Compatible Libraries list of the Setup Design dialog. Example names might be, vendor
name “TSMC” and technology name “tsmc18lv.”

• Talus Design Settings

The following fields specify settings that will be passed to the Talus Design tool. The
values you enter in this section must match the corresponding values of the target Talus
Design technology library file or files (.volcano). If the fields don’t match, you’ll get a
synthesis error in Talus Design when you try to generate your library.

o Volcano database directory: The full path to the Volcano technology database. For
example:

<your_path>/tsmc18lv_typ_beh_magma.volcano

o Volcano db library path: The path within the Volcano library specifying the target
technology name. For example:

/tsmc18lv

The Advanced Tab
Optionally modify the characterization settings on the Advanced tab. Only the Base ASIC Library
and the ROM templates have advanced options.

• Library Settings

The following Library Settings apply only to memory templates.

o Component Area: The value in this field is assigned to the “area” property on the
“All” binding of module(s).

Creating and Editing Libraries
Creating a New Library

Catapult C Library Builder User’s and Reference Manual, 2011a 59
October 2011

o Component Delay: For RAM /ROM templates, the value in this field is assigned to
the “delay” property on “read_ram”/“read_rom” binding of the module. For the
RAM_pipe template, the “delay” property is on the “All” binding.

o Default value for Address and Data ports: The field only applies to RAM templates.
Valid values are 0 = active low, 1 = active high, X.

o Default chip select active: The field only applies to RAM templates. Valid values are
0 = active low, 1 = active high, U = unused.

• Talus Design Settings
This group of settings apply only to the “Base ASIC Library” template. Each setting
corresponds to a setting in the Talus Design tool. Refer to the Talus Design tool
documentation for information about each setting.

• Characterization Settings
The following Characterization Clock Period settings apply only to the “Base ASIC
Library”, “RAM - Pipe” and ROM templates. They allow you to override the default
settings for multi-point characterization of library components. Refer to “Multi-Point
Characterization” on page 76 for more information.

o Clock Period Fastest: This value specifies the clock speed setting for Talus Design
when characterizing the fastest clock period (largest area).

o Clock Period Smallest: This value specifies the clock speed setting for Talus Design
when characterizing the slowest clock period (smallest area).

o Clock Period Percentages: This field specifies a set of points within the range of
clock speeds bounded by the fastest and smallest settings above. The points are
specified as percentages of the range. The default set consists of four points: 100%,
75%, 50% and 0%, where 100 = fastest and 0 = smallest.

The Flow Options Tab
Optionally modify the default settings for the TalusDesign flow options. These flow options are
used in the Catapult C Synthesis tool during library characterization. These settings are not
saved as part of the library, but are global to the Library Builder session. Refer to “Set
TalusDesign Flow Options” on page 45 for a description of these options.

Precision RTL Synthesis Options
Figure 2-3 shows the Settings tab for the Base ASIC Library template. All data fields on the
Settings tab are required.

The Advanced tab and Flow Options tab contain optional settings. Most of the optional fields are
the same for all templates, but some are only available for specific types of templates. This
section describes all possible fields found on each tab, regardless of which template the field
may appear on.

Catapult C Library Builder User’s and Reference Manual, 2011a60

Creating and Editing Libraries
Creating a New Library

October 2011

Figure 2-3. Library Creation Dialog Box for Precision RTL

The Settings Tab
Enter basic configuration information on the Configuration tab:

• Catapult Technology Settings

o Library Name: Enter a symbolic name for the new library that will be appear in the
Resource Type list of the Architectural Constraints dialog box in the Catapult C
Synthesis tool. For more information, refer to “Specifying Architectural
Constraints” in the Catapult C Synthesis User’s and Reference Manual.

o Library Title: This title appears in the Compatible Libraries list of the Setup Design
dialog box in the Catapult C Synthesis tool if the user selects the vendor and
technology that are associated with this new library.

o Default selected: Specifies whether or not this library is selected by default when it
appears in the Setup Design dialog box in the Catapult C Synthesis tool.

• Catapult Setup Design Settings

The new library is associated with the FPGA technology specified by the fields:
Manufacturer, Family, Part and Speed. The library parts are characterized for the
specified technology. Note that for Custom RAM templates, the Part field is optional
and appears on the Advanced tab.

Creating and Editing Libraries
Creating a New Library

Catapult C Library Builder User’s and Reference Manual, 2011a 61
October 2011

The set of valid values for these fields consists of technologies supported by the
Precision RTL Synthesis tool. Refer to the section “Setting Up the Design” in
Catapult C Synthesis User’s and Reference Manual. The values must match the naming
used in Precision RTL Synthesis, although these fields are not case-sensitive.

For example, Manufacturer names include Altera and Xilinx. Example Family names
include Cyclone, Stratix and VIRTEX.

The Advanced Tab
The Advanced tab values are optional and apply to all RAM/ROM memory templates.

• Catapult Setup Design Settings

The Part setting specifies the list of library parts that are compatible with this
RAM/ROM. The value can be specified as a glob expression or a literal list. The default
value is ‘*’, which makes the RAM/ROM compatible with all parts.

• Library Settings
The following options apply only to memory templates.

o Component Area: The value in this field is assigned to the “area” property on the
“All” binding of module(s).

o Component Delay: For RAM /ROM templates, the value in this field is assigned to
the “delay” property on “read_ram”/“read_rom” binding of the module. For the
RAM_pipe template, the “delay” property is on the “All” binding.

o Default value for Address and Data ports: The field only applies to RAM
templates. Valid values are 0 = active low, 1 = active high, X.

The Flow Options Tab
Optionally modify the default settings for the Precision flow options. These flow options are
used in the Catapult C Synthesis tool during library characterization. These settings are not
saved as part of the library, but are global to the Library Builder session. Refer to “Set Precision
Flow Options” on page 39 for a description of these options.

Synopsys Design Compiler Options
Figure 2-4 shows the Settings tab for the Base ASIC Library template. All other tabs provide
optional settings. Some of the optional fields are the same for all templates but some are only
available for specific types of templates. This section describes all possible fields found on each
tab, regardless of which template the field may appear on.

Catapult C Library Builder User’s and Reference Manual, 2011a62

Creating and Editing Libraries
Creating a New Library

October 2011

Figure 2-4. Library Creation Dialog Box for Design Compiler

The Settings Tab
Enter basic configuration information on the Settings tab:

• Catapult Technology Settings

o Library Name: Symbolic name for the new library that displays in the Resource Type
list of the Architectural Constraints dialog box in the Catapult C Synthesis tool. For
more information, refer to “Specifying Architectural Constraints” in the Catapult C
Synthesis User’s and Reference Manual.

o Library Title: Title that Catapult displays in the Compatible Libraries list of the Setup
Design dialog box when the vendor and technology associated with the new library
are selected. The specified string is assigned to the ui_libtitle variable in the library.

o Default Selected: Specifies whether or not the new library is selected by default
when it displays in the Setup Design dialog box in the Catapult.

o Minimize characterization points: Speeds up the characterization process by
minimizing the number of data points (QMODS) used during characterization. This
option may affect the accuracy of the components in the new library. For more
information about QMODS and the characterization process, see “Library
Characterization” on page 75.

• Catapult Setup Design Settings

Creating and Editing Libraries
Creating a New Library

Catapult C Library Builder User’s and Reference Manual, 2011a 63
October 2011

o Vendor and Technology: The new library is associated with the specified vendor and
technology names. When these names are selected in the Setup Design dialog box in
the Catapult, the new library displays in the Compatible Libraries list.

The names must match those in Catapult. For example, vendor name “LSI Logic” and
technology name “lcbg11p.”

• Design Compiler Settings:
This group of settings apply only to the “Base ASIC Library” template. Each setting
corresponds to a setting in the Deign Compiler tool. Refer to the Design Compiler
documentation for information about each setting.

These values must match the corresponding values in the target Design Compiler
technology file/files (.db) or a synthesis error occurs when the library is generated.
These values are passed directly to Design Compiler as command line arguments via the
command script generated by Catapult.

If the target technology is available in multiple Design Compiler libraries, such as a fast
and a slow library, you can characterize this Library Builder library using one or more of
the libraries; List each design Compiler library in the Link Library and Target Library
fields. Library Builder characterizes components using a combination of the technology
libraries to provide the best trade off between area and performance.

o Link Library: A list of link libraries (space separated and enclosed in braces). This
value is saved in the library variable named link_library and is used later in the
following command line in the DC script:

set_link_library = {list lib_1.db lib_2.db}

o Target Library: A list of target libraries names (space separated and enclosed in
braces). This value is typically the same as the Link Library value. This value is used
in the following command line in the DC script:

set_target_library = {list lib_1.db lib_2.db}

Note that for the Blank Library template, these are optional settings found on the Advanced
tab.

The Advanced Tab
The settings on the Advanced tab are optional:

• Library Settings

These options apply only to the Base ASIC Library template and should match the
settings in the DC technology library.

o Time Unit: Specifies the timescale unit used in DC output reports and input constraint
files. Options include: nanoseconds (ns), picoseconds (ps) or femtoseconds (fs). The
default setting is ns.

Catapult C Library Builder User’s and Reference Manual, 2011a64

Creating and Editing Libraries
Creating a New Library

October 2011

o Capacitance Unit: Specifies the capacitance scale used by DC output reports and
input constraints files. Options include: nF (nanofarads), pF (picofarads), and fF
(femtofarads).

The following options apply only to memory templates:

o Component Area: The value in this field is assigned to the “area” property on the
“All” binding of module(s).

o Component Delay: For RAM /ROM templates, the value in this field is assigned to
the “delay” property on “read_ram”/“read_rom” binding of the module. For the
RAM_pipe template, the “delay” property is on the “All” binding.

o Default value for Address and Data ports: The field only applies to RAM templates.
Valid values are 0 = active low, 1 = active high, X.

Default chip select active: The field only applies to RAM templates. Valid values are
0 = active low, 1 = active high, U = unused.

• Design Compiler Settings

This group of settings apply only to the Base ASIC Library template. Each setting
corresponds to a setting in DC. Refer to the DC documentation for information about
corresponding options.

o External Capacitive Load (in library units): Specifies the output load. Corresponds to
the set_load command in DC. Best practice is to use the capacitance value from an
input pin of a simple cell such as a buffer, inverter, or 2-input AND gate. For
example:

[expr {1* [load_of CORE65LPHVT/HS65_LH_IVX9/A]}]

Value can be an expression or a floating point. If possible, cut and paste the
capacitance value from the input pin. For example: 0.001714

o Operating Conditions: Specifies operating conditions for the new library. This value
supersedes the default value defined in the technology library.

The value is the name of operating conditions. For example, wc_1.10V_125C

o External Driver Cell Library: Specifies the library where the external driving cell is
located.

o External Driver Cell: Specifies the external driver cell name.

o External Driver Cell Pin: Specifies the name of the driving pin on the external driver
cell.

o Input Transition (Slew): Specifies input delay as a number in units (ns or ps) as an
alternative to defining an external driving cell.

Creating and Editing Libraries
Creating a New Library

Catapult C Library Builder User’s and Reference Manual, 2011a 65
October 2011

o Report Timing Significant Digits: Specifies the number of decimal places used in the
timing measurements. Be sure to specify enough decimal places to effectively
capture the data in the library.

o Enable Scan Registers: Enables registers with built-in scan chain I/O for synthesis.

o Set Compile Mode to Ultra: Enables ultra mode for synthesis (post-characterization).
This option improves QofR but increases the synthesis time.

o Advanced Retiming: Specifies the optimize_registers command instead of the
balance_registers command for DC. The optimize_registers command requires a
specific DC license. for more information, see the DC documentation.

o No Boundary optimization: Disables boundary optimization in DC.

• Characterization Settings
The following Characterization Clock Period settings apply only to the “Base ASIC
Library”, “RAM - Pipe” and ROM templates. They allow you to override the default
settings for multi-point characterization of library components. Refer to “Multi-Point
Characterization” on page 76 for more information.

o Clock Period Fastest: Specifies the clock speed setting (typically nano-seconds) for
DC when characterizing the fastest clock period (largest area).

o Clock Period Smallest: Specifies the clock speed setting (typically nano-seconds) for
DC when characterizing the slowest clock period (smallest area).

o Clock Period Percentages: Specifies a set of points within the range of clock speeds
bounded by the fastest and smallest settings above. The points are specified as
percentages of the range. The default set consists of four points: 100%, 75%, 50%
and 0%, where 100 = fastest and 0 = smallest.

The Library Options Tab
The settings on the Library Options tab are optional and only available on the Base ASIC
Library template.

• DesignWare

DesignWare refers to Synopsys DesignWare Building Block IP, which is a technology-
independent, microarchitecture level library that is tightly integrated into the Synopsys
synthesis environment. The DesignWare libraries standard.sldb, dw_foundation.sldb,
dw01.sldb, dw02.sldb, dw03.sldb and so on, come with DC, and DC is more efficient in
inferring typical microarchitectures such as adders, multipliers and such, if the licensed
DesignWare architectures are enabled. In general, you can expect better QofR when
using DesignWare libraries, as well as shorter DC runtimes.

DesignWare microarchitectures from the latter libraries require a DesignWare license.
In order for the DC tool to use licensed DesignWare libraries, a list of the DesignWare
libraries to be used must be provided to DC. Use the “Synthetic Library(ies)” option to

Catapult C Library Builder User’s and Reference Manual, 2011a66

Creating and Editing Libraries
Creating a New Library

October 2011

specify that list. Three other Catapult variables, “get_license”, “dont_get_license” and
“wait_for_design_license”, can be used to control the DC tool’s access to DesignWare
licenses. A DesignWare license is required for inferring licensed DesignWare blocks. If
the DesignWare license feature is not present, the blocks that require that feature are not
inferred. If the feature is present but currently unavailable, the DC tool errors out. That
behavior can be modified to make the process wait for certain temporarily unavailable
license features or not to use certain license features.

o License(s) to check out: Specifies a list of license features to be obtained. The list
items are space separated. If the value is set, it is passed directly to the DC command
“get_license” in the generated DC script so the specified license features are checked
out at the beginning of synthesis. (They are held until the remove_license command
is used or until the program is exited or until the DC shell is closed.) Refer to the
license key file at your site to determine which licensed features are available. The
command syntax for editing this variable in an existing library is:

library set /LIBS/<lib_name>/VARS/get_license --
-VALUE <list_of_licenses>

o Synthetic Library(ies): Specifies a list of DesignWare synthetic libraries that the DC
tool should use during characterization and synthesis. The list items are space
separated. The command syntax for editing this variable in an existing library is:

library set /LIBS/<lib_name>/VARS/synthetic_library --
-VALUE {<list_of_libs>}

o Design Licenses not to use: Specifies a list of DesignWare licenses that the DC tool
is not allowed to use. The list items are space separated. The command syntax for
editing this variable in an existing library is:

library set /LIBS/<lib_name>/VARS/dont_get_license --
-VALUE <list_of_licenses>

The value of this variable is assigned to the DC variable “synlib_dont_get_license”
in the generated DC script.

o Design Licenses to wait for: Specifies a list of design licenses that the DC tool should
wait for if they are temporarily unavailable. The list items are space separated. The
command syntax for editing this variable in an existing library is:

library set /LIBS/<lib_name>/VARS/wait_for_design_license --
-VALUE <list_of_licenses>

The value of this variable is assigned to the DC variable
“synlib_wait_for_design_license” in the generated DC script.

• WireLoad

o Wire Load Model: This field allows you to specify arguments for the DC command
set_wire_load_model. If this field is not empty, it is passed directly to DC by the
DC script generated by Catapult. When specifying the arguments, you must include

Creating and Editing Libraries
Editing RAM Library Properties

Catapult C Library Builder User’s and Reference Manual, 2011a 67
October 2011

the option name and its value. For example, to include the “-name” option with a
value of “tsmc18_wl20,” you would enter the following string in the Wire Load
Model field:

-name tsmc18_wl20

The example above will add the command line to the DC script:

set_wire_load_model -name tsmc18_wl20

o Wire Load Mode: This variable allows you to specify arguments for the DC
command set_wire_load_mode. If the value is anything other than “none”, it is
passed directly to DC by the DC script generated by Catapult. The command syntax
for editing this variable in an existing library is:

library set /LIBS/<lib_name>/VARS/wire_load_mode --
-VALUE <none | top | enclosed | segmented>

o Wire Load Selection Group: This field allows you to specify arguments for the DC
command set_wire_load_selection_group. If this field is not empty, it is passed
directly to DC by the DC script generated by Catapult. The command syntax for
editing this variable in an existing library is:

library set /LIBS/<lib_name>/VARS/wire_load_selection_group
-- -VALUE <string>

For example, setting this variable to "-lib myWireLib.db -max myGroup" will add
the following command line to the DC script:

set_wire_load_selection_group -lib myWireLib.db -max myGroup

The Flow Options Tab
Optionally modify the default settings for the Design Compiler flow options. These flow
options are used in the Catapult C Synthesis tool during library characterization. These settings
are not saved as part of the library, but are global to the Library Builder session. Refer to “Set
Design Compiler Flow Options” on page 41 for a description of these options.

Editing RAM Library Properties
This section describes how to edit a RAM library. It covers the following tasks:

• “Editing the RAM Library Variables” on page 68

• “Editing RAM Components Parameters” on page 69

• “Editing RAM Formula Information” on page 70

• “Editing RAM Timing” on page 71

• “Editing RAM Ports” on page 72

Catapult C Library Builder User’s and Reference Manual, 2011a68

Creating and Editing Libraries
Editing RAM Library Properties

October 2011

Library Builder comes with the following templates for creating RAM library components:

• Sync w/Dual RW Ports: Contains RAM templates with dual read/write ports, one address
line that controls both the read and write port.

• Sync w/Separate RW Ports: Contains RAM templates with separate read/write ports, one
address line for the read port and one for the write port.

• Sync w/Single RW Ports: Contains RAM templates with a single read/write port.

You can modify pre-existing RAM templates as follows:

1. Select New Library from the Task Bar or the file menu. This will open the Library
Creation dialog box from which you select one of the RAM templates.

2. Select a RAM template and set the fields in red on the “Settings” tab to match your
Library. Refer to “Creating a New Library” on page 51 detailed information about
filling in the Library Creation dialog box.

3. Optionally select the “Advanced” tab and set other types of data fields, such as area and
delay values, and default port values.

4. Then click OK on the Library Creation dialog box to open the template in Library Editor.

5. If you did not set the area and delay values in step 3 above, you must edit the RAM
template in the Library Editor and define the following three Bindings properties: area
and both read_ram delay properties.

a. Expand the folders Mods > RAM * > Bindings.

b. Select the All binding and edit the area property.

c. Select each read_ram binding and edit the delay properties.

d. Save the RAM template. After the template is edited, it can be saved to a new library
name. For more information, see “Saving Libraries” on page 73.

6. Add the new library to the Catapult library search path. If the new library is in the library
search path for Library Builder, it will be available the next time you choose the File >
Open Library... menu.

Editing the RAM Library Variables
You can add a new variable, edit an existing variable, or delete a variable. For example, you can
edit the RAM library ui_libtitle variable, whose title string displays in the Setup Design
Technology window of the Catapult C Synthesis tool.

1. Click on the “VARS” folder in the hierarchy view on the left. This displays all of the
variable names and values on the right.

Creating and Editing Libraries
Editing RAM Library Properties

Catapult C Library Builder User’s and Reference Manual, 2011a 69
October 2011

2. Select the ui_libtitle variable and click the Edit button to display the Edit Variable
dialog box. It displays the variable name and its current value. Enter the desired value
and click OK to accept the change.

Figure 2-5. Editing the RAM Library Title Variable

Editing RAM Components Parameters
Open the MODS folder and then select “Parameters”. This is where Library Builder controls the
number of ports on the RAM. You can add new RAM information, edit existing information, or
delete information.

Catapult C Library Builder User’s and Reference Manual, 2011a70

Creating and Editing Libraries
Editing RAM Library Properties

October 2011

Figure 2-6. Editing RAM Parameter Information

Editing RAM Formula Information
The BINDINGS folder is where you edit the formula for the area of the RAM. To set RAM
formulas, open the BINDINGS folder and click on the “All” binding. The formula can use any of
the PARAMETERS as variables, but usually only the number of words and the bitwidth control
the area of a RAM.

The “user selectable” property can be set to true (1=true, 0=false) on individual parameters to
make them editable by designers in the Catapult Constraint Editor. In a Catapult session, when
editing the architectural constraints of a resource, any “user selectable” parameters of the library
component is editable in the “Resource Options” field of the Constraint Editor. Each parameter
field has a drop-down list of valid values to choose from.

Creating and Editing Libraries
Editing RAM Library Properties

Catapult C Library Builder User’s and Reference Manual, 2011a 71
October 2011

Figure 2-7. Editing RAM Formula Information

Editing RAM Timing
To edit the timing for the read/write operations of RAM, go to the BINDINGS folder and click on
the read_ram or write_ram binding and modify the following timing properties:

SeqDelay Number of Cycles that the operation takes. If the ports associated with that
operation have input registers, this property is needed. If the ports are
asynchronous, delete this property.

InitDelay Number of cycles between accesses to this port. Default is SeqDelay + 1, but
it can be set smaller for pipelined operation.

Delay Combinational delay.

Catapult C Library Builder User’s and Reference Manual, 2011a72

Creating and Editing Libraries
Editing RAM Library Properties

October 2011

Figure 2-8. Editing RAM Timing Values

Editing RAM Ports
Open RAM component and select Ports. If you have a RAM with an asynchronous read, then
you should remove the input register for the read address. The clock, reset and enable should
never have an input register.

Creating and Editing Libraries
Saving Libraries

Catapult C Library Builder User’s and Reference Manual, 2011a 73
October 2011

Figure 2-9. Editing RAM Ports

Saving Libraries
Library edits are not saved until you explicitly save the library to disk with one of the following
options:

• Select “Save All Libraries As” from the “Library Tasks” window or the File pulldown
menu. This command saves all open libraries together as a single file. The default file
name is Catapult.lib.

• From within the Library Explorer window, right-click on a library and select the Save As...
menu item. The default file name is the name of the selected library.

In both cases a file system browser is provided for you to navigate to the location where you
want the file saved. Place the library in the Catapult search path to make available to Catapult C
Synthesis sessions. If you save it in an alternate location, you must add that path to the

Catapult C Library Builder User’s and Reference Manual, 2011a74

Creating and Editing Libraries
Saving Libraries

October 2011

Catapult C Synthesis library search path (Use Tools > Set Options > Component Libraries in the
Catapult C Synthesis application).

Catapult C Library Builder User’s and Reference Manual, 2011a 75
October 2011

Chapter 3
Library Characterization

Characterization is the process of synthesizing the components in a library in order to obtain
their area and timing characteristics. The synthesis is performed by one of the supported
synthesis tool (Synopsys Design Compiler, Cadence RTL Compiler, or Magma Talus Design)
and the area/timing characteristics are then saved with the components in the library.
Components in the Catapult “Base ASIC Library” template are characterized at multiple
performance points, producing a robust library with which Catapult Synthesis can deliver
highly accurate area estimates. See “Multi-Point Characterization” on page 76 for more
information.

Note
A module (MOD) is a library component implementing one of the operators available

to the scheduler. For example the MODs mgc_mul and mgc_mul_pipe (multiplier and
pipelined multiplier) implement the functionality of the multiplication operator MUL.

A QMOD is module with all characterization parameters explicitly specified. For
example mgc_and(1,2) is a qualified configuration of mgc_and with one output and two
inputs (a single AND2 gate).

Library characterization consists of the following steps:

1. In the Library Explorer window, select the items to characterize. If the top level is
selected, the entire library is characterized. Expand the tree to select individual MODs,
QMODs or QMOD datasets.

2. Launch the characterization process on the selected items. See “Characterizing Libraries
or Components” on page 78.

3. After characterization is complete, use the Plot window, reports and transcript files to
view and analyze the characterization data and resolve any failures.

4. If errors occurred during characterization, use the characterization transcript to diagnose
the problem. Refer to “Troubleshooting Library Failures” on page 88.

During the characterization process, the Catapult C Library Builder commands are displayed in
the Transcript window, giving you a record of the entire session. You can scroll through the
transcript and print or save it.

Catapult C Library Builder User’s and Reference Manual, 2011a76

Library Characterization
Multi-Point Characterization

October 2011

Multi-Point Characterization
During the characterization process, Catapult C Library Builder collects multiple sets
characterization data (area and timing) for each component. You can think of each data set as a
point along an area versus delay graph of the component. For example, Figure 3-1 shows the
how the graph of a 16-bit Adder might look.

Figure 3-1. Adder Characteristics Graph

Typically the characteristics of the two end points (Fastest and Smallest) are rarely used in
designs. So the Library Builder allows you to specify multiple points between the end points at
which area and timing data will be collected. The target points are specified as percentages of
the range bounded by the fastest and smallest points.

By default, four data sets are collected and their distribution is: 100%, 75%, 50% and 0%
(“Fastest” = 100% and “Smallest” = 0%). You can specify a different number of data sets and/or
different percentages when creating a new library. Those options are on the Advanced tab of the
Library Creation dialog box, shown in Figure 3-2. Refer to “Creating a New Library” on
page 51 for detailed information.

Library Characterization
Multi-Point Characterization

Catapult C Library Builder User’s and Reference Manual, 2011a 77
October 2011

Figure 3-2. Multi-Point Characterization Settings on Library Creation Dialog

The characterization process works as follows for each component:

• Obtain “fastest” data set:
Run the synthesis tool with a target delay constraint specified by the Clock Period
Fastest setting. (default is 0.01 ns.)

Caution
The clock periods must be able to generate the fastest design, i.e. the period must be small
enough to constrain a simple logic gate such that it does not meet timing. If the tool is
able to easily meet timing the curve described on the previous page will not be accurate.

• Obtain “smallest” data set:
Run the synthesis tool with a target delay constraint specified by the Clock Period
Smallest setting. (default is 100,000 ns.)

Catapult C Library Builder User’s and Reference Manual, 2011a78

Library Characterization
Characterizing Libraries or Components

October 2011

• Obtain each intermediate data set:
Use the actual delay values obtained from the “fastest” and “smallest” characterizations
to calculate the target delay constraints to be used for the intermediate characterization
runs. Then run the synthesis tool for each intermediate point. Intermediate points are
specified by the Clock Period Percentages setting.

For ASIC libraries, the Library Explorer window displays “Status”, “Area”, “Delay”, “Clockperiod”
and “Minclkprd” columns. The ClockPeriod column is the clock period to which the design was
constrained for characterization. The MinClkPrd column is for sequential components, this
includes registers. The minimum clock period is the fastest time that the component can be
scheduled. The delay is the maximum, input to register, or register to register delay. The
Delay column for these components refers to the final register to output delay. The “Minclkprd”
column will not appear until a pipelined component is selected in the “Components” column.

Characterizing Libraries or Components
Once the library is loaded into the Library Explorer window, right-click on the object you want to
characterize and choose the “Characterize” command. The characterize command operates on all
objects hierarchically contained under the selected object. For example, if a module is selected,
each qualified module it contains will be characterized. Similarly, if the library object is
selected, the entire library will be characterized.

Select “Characterize” on the Task Bar to characterize all libraries in the Library Explorer window.
Figure 3-3 illustrates how to initiate the characterization command.

Library Characterization
Characterizing Libraries or Components

Catapult C Library Builder User’s and Reference Manual, 2011a 79
October 2011

Figure 3-3. Characterizing the Library or Component

As the characterization process runs, it displays information about its progress in the Status
column of the Library Explorer window, as well as in the Transcript window. A full transcript of
the characterization task is automatically saved in the project directory (see “Viewing the
Characterization Transcript” on page 87).

To stop a characterization job in progress, click on the Stop button on the tool bar. It usually
take a minute or so for the job to terminate. After it terminates, the component(s) that were
being characterized will have a “Failed Generate” status.

When characterizing a large number of components, the Library Builder queues a series of
characterization “tasks”, and each task will contain a multiple components. The maximum

Catapult C Library Builder User’s and Reference Manual, 2011a80

Library Characterization
Characterizing Libraries or Components

October 2011

number of components that can be grouped into a task is configurable. To adjust the default
setting, edit the “Maximum Components Per Task” option (Refer to “Set General Options” on
page 24).

Figure 3-4 shows an example of the how the Library Explorer window might appear while a
characterization job is in progress. For this example, all of the “mgc_equal” components are
being characterized, and the “Maximum Components Per Task” option has been set to four. The
figure shows the first group of four components is in progress, indicated by the “Generating”
status. The remaining mgc_equal components have a “Queued” status, and will be processed in
turn.

Figure 3-4. Characterization Status Information

Library Characterization
Library Characterization Results

Catapult C Library Builder User’s and Reference Manual, 2011a 81
October 2011

Figure 3-4 also shows some of the other status values for characterization, such as “Passed”,
“Pending” and “Failed Generate”. Table 3-1 defines the meaning of the status values that may
appear in the Status column:

Queuing Multiple Libraries for Multi-day Run
You can also set up a queue of libraries to characterize as follows:

1. Create all of the new libraries using the steps described previously in this section.

2. Click the Characterize task on the Task Bar to run the characterization process on all
open libraries.

Library Characterization Results
If the library characterization passes, the status is set to “Passed” and the area and timing results
display in the Library Explorer windows shown in Figure 3-5.

This component was characterized using four-point characterization (default setting). So the
display shows separate line items for each target point, plus the fastest and smallest points.
Refer to “Multi-Point Characterization” on page 76 for information about configuring multi-
point settings.

Table 3-1. Component Characterization Status

Status Description

Pending Component currently has no characterization data and is not
currently queued for characterization.

Queued Component is in the queue for automatic characterization.

Configuring Initial state of the automatic characterization process which
configures the design constraints and generates the
characterization task script.

Generating Characterization task is running. The component is being
synthesized and the resulting area and timing characteristics
are being collected.

Passed Characterization task completed successfully and
area/timing data was obtained.

Failed Analyze An error was encountered when parsing the transcript to
collect timing and area estimates for the design.

Failed Generate Characterization task returned a non-zero exit status or did
not obtain timing and area information.

Failed Invocation The downstream synthesis tool failed to invoke.

Catapult C Library Builder User’s and Reference Manual, 2011a82

Library Characterization
Library Characterization Results

October 2011

Figure 3-5. Characterization Passes

Delay Characterization Properties
After a successful characterization of a library/component, the Library Explorer window
displays delay property values for each data set. These delay properties reflect the maximum
values, regardless of the path. Depending on the component type, the following values display:

• Delay — If sequential, this value is the register to output value. If combinational, this
value is the total input to output delay.

• ClockPeriod — Clock period constraint.

• MinClkPrd — Minimum clock period is the fastest time a pipelined component can be
scheduled. It is either InputDelay + InputSetup, R2RDelay + R2RSetup, or Delay,
whichever is largest.

• Slack — If sequential, this value is ClockPeriod minus MinClkPrd. If combinational,
this value is ClockPeriod minus Delay.

• InputDelay — Input to register delay.

• InputSetup — Input register setup time.

• R2RDelay — Register to register delay.

• R2RSetup — Register to register setup time.

Figure 3-6 illustrates how these timing delay values are determined.

Library Characterization
Library Characterization Results

Catapult C Library Builder User’s and Reference Manual, 2011a 83
October 2011

Figure 3-6. Sequential Timing Delay Diagram

Resetting the Data Before Another Characterization
Before you can rerun characterization on a library that has passed characterization, you must
clear the values. Right-click on the target object and select Clean from the popup menu.
However you can recharacterize a single component without having to clean it beforehand.

Once the values are removed from the Area and Timing fields, right-click on the target object
and select Characterize from the popup menu.

Plotting the Characterization Data
The “Plot” window provides a graphical view of the interpolated and measured characterization
values for a user-specified range of qualified modules (QMODs) in a library module (MOD).
The user interface of the Plot window allows you to dynamically plot different ranges of
QMODs by selecting different combinations of properties and parameter values. It also allows
you to add, remove and characterize QMODs.

As shown in Figure 3-7, the Plot window is accessed from the Library Explorer window by
right-clicking on a MOD and selecting “Plot” from the popup menu. The main area of the Plot
window contains a graph of the characterization data. The red and gold circles on the graph
represent characterized QMODs, their measured values obtained from the downstream RTL
synthesis tool. The blue circles are estimated characterization values for valid QMOD
configurations that do not yet exist in the MOD. The gold color circle indicates the QMOD

Catapult C Library Builder User’s and Reference Manual, 2011a84

Library Characterization
Library Characterization Results

October 2011

whose measured value deviates the most from the Library Builder estimated value for it. In
other words, the gold QMOD has the largest margin of error (Max Error) relative to all other
measured QMODs on the graph.

Figure 3-7. Opening a Plot Window for the mgc_xor Module

The Y-axis is the range of values for one of the MODs characterization properties. The X-axis is
the range of valid values for one of its parameters. All other parameters are set to fixed values
within their respective valid ranges. By default, the first property listed in the MOD’s “All”
bindings is the initial Y-axis setting, and the first parameter listed is the initial X-axis setting.
Similarly for each fixed parameter, the first valid value in its range is the default setting.

Use the interface panel on right side of the window to plot different configurations. For
example, using the drop-down menu of X-Axis field, select the ninps parameter. The plot

Library Characterization
Library Characterization Results

Catapult C Library Builder User’s and Reference Manual, 2011a 85
October 2011

automatically updates to graph ninps on the X-axis and width as a fixed value, shown in
Figure 3-8.

Figure 3-8. Updated Plot with Ninps along X-Axis

In Figure 3-8, of all the QMODs in mgc_xor MOD, only the following nine measured QMOD
configurations are plotted because they are the only ones that match the “Plot” and “Fixed
Parameters” settings. The first parameter, “width,” is fixed at the value 1, and all values of the
“ninps” parameter are plotted along the X-Axis. :

mgc_xor(1,2) mgc_xor(1,20)
mgc_xor(1,4) mgc_xor(1,24)
mgc_xor(1,8) mgc_xor(1,28)
mgc_xor(1,12) mgc_xor(1,32)
mgc_xor(1,16)

The “Range To Display” field allows you to change the number of estimated data points (blue
circles) that are plotted. Generally, the Range To Display number should be close to the X-axis
value of the highest measured QMOD. For example, in Figure 3-8, the Range To Display is 33,
and the highest “ninps” value in the range of QMODs is 32 (mgc_xor(1,32)).

Adding/Removing QMODs
You can use the Plot window to add new QMODs to the MOD by right-clicking the blue circles
and selecting “Add QMOD” (or “Add and Characterize QMOD”) from the popup menu. The
new QMOD will be immediately added to the library and have the same parameter values as the

Catapult C Library Builder User’s and Reference Manual, 2011a86

Library Characterization
Library Characterization Results

October 2011

selected blue circle. If it is added but not characterized, it is represented on the graph as a green
vertical line (unknown Y-Axis value). After it is characterized, it will become either a red or
gold circle.

Figure 3-9 illustrates the procedure by adding the new QMOD mgc_xor(12, 28). The Library
Builder automatically updates the QMOD list in the Library Explorer window and in the
module’s “Qmods” section in the Library Editor window.

To remove a QMOD, right-click on it and choose “Remove QMOD” from the popup menu.

Figure 3-9. Adding QMOD from the Plot Window

Library Characterization
Library Characterization Results

Catapult C Library Builder User’s and Reference Manual, 2011a 87
October 2011

Viewing the Characterization Transcript
Once the library characterization starts, progress and commands being run are displayed in the
Transcript window. Double-click on a component (or right-click and select View Transcript as
shown in Figure 3-10) to see a transcript of the commands and tasks performed by Catapult C
Library Builder.

If you run a “grouped” job, the transcript will collapse certain sections so that only the most
relevant part are visible. It may be desirable to see others by expanding the +/- hierarchy points,
or use the expand all.

Figure 3-10. Viewing the Characterization Transcript

Catapult C Library Builder User’s and Reference Manual, 2011a88

Library Characterization
Troubleshooting Library Failures

October 2011

Troubleshooting Library Failures
If the library characterization fails, Library Builder displays a message about the failure. If this
occurs, you can launch Catapult C Synthesis to further investigate the failure. Use Catapult C
Synthesis to modify the component and synthesize it. The area and delay data obtained in
Catapult C Synthesis can be copied into your library in Library Builder.

Note
This option is not available if you are using Library Farm.

Procedure:

1. If the “Remove Project Directories for Local Tasks” option is enabled, disable it and run
the “Characterize” command on the object again.

Library Builder always creates a Catapult C Synthesis project directory for each
characterization task. By default, the project directories are deleted when the task is
finished. Disabling this option will preserve the directory.

To disable the option, refer to “Set General Options” on page 24, or use the following
command:

options set General RemoveProjectDirectories false
false

2. Launch Catapult C Synthesis by right-clicking on the failed library object in the Library
Explorer window and select Open Catapult Project from the popup menu. This will open
a Catapult C Synthesis session, load the failed module into the project and generate
RTL. Refer to Figure 3-11.

3. Modify the component as needed to fix the problem and generate RTL.

4. Double-click on the “Synthesize rlt.vhdl” makefile to launch Design Compiler.
Alternatively, right-click on “Synthesize rlt.vhdl” and select the Launch DesignCompiler
command from the popup menu, as shown in Figure 3-11.

5. After obtaining the area and delay data in Catapult C Synthesis, use the Library Explorer
window to manually enter the data for the failed object. Double-click on a data field to
edit, such as Area, Delay or Clockperiod and enter the value. If a valid value is entered in
the field, the status for the component will be changed to “Passed.” Refer to Figure 3-12.

Library Characterization
Troubleshooting Library Failures

Catapult C Library Builder User’s and Reference Manual, 2011a 89
October 2011

Figure 3-11. Opening Failed Object in Catapult C Synthesis

Catapult C Library Builder User’s and Reference Manual, 2011a90

Library Characterization
Using the Library Farm

October 2011

Figure 3-12. Entering New Area and Timing Values

Using the Library Farm
Library Builder contains a Library Farm tool that can be used distribute library characterization
tasks to host computers on your network, thereby speeding up library characterization
processing by allowing the tasks to run in parallel. Use the Farm window to assign local and
remote hosts to the Farm and specify the task load for each host. After hosts are added as shown
in Figure 3-13 on page 92. The Library Farm window displays the list of hosts and the status of
each task, such as “idle,” “passed” or “failed.”

The Farm can also work in conjunction with other load balancing software on your network,
such as Load Sharing Facility (LSF) software. Refer to “Set Farm Options” on page 33 for
detailed information about configuring the Remote Shell Command option.

Note
You should verify that the .cshrc sources all scripts required to enable the RTL synthesis
tool and Catapult C Synthesis, so rsh is able to just start running the tools. Make sure to
check the number of RTL synthesis tool licenses available or the Farm may consume
more than are available.

Enabling and Configuring Library Farm Options
The factory default settings have the Farm disabled and the Farm window hidden. To make the
window visible, select the “View > Farm” menu item. To enable the Farm, right-click in the
Farm window and choose “Enable Farm” from the popup menu.

If you want the Farm to be enabled by default, modify the Farm option settings. Refer to the
section “Set Farm Options” on page 33 for more information.

Library Characterization
Using the Library Farm

Catapult C Library Builder User’s and Reference Manual, 2011a 91
October 2011

Configuring Library Farm to Use the Load Sharing Facility (LSF)
software

To configure Library Farm to work with LSF, modify the Remote Shell Command setting on the
Farm options page and set to an appropriate LSF command line. The format of the command
line will include LSF command switches and Catapult internal variables as arguments. For
information about these internal variables, refer to “Set Farm Options” on page 33. You can
also set the Remote Shell Command option by using the “options set” command as shown in
the examples below.

Note
You must add dummy “hosts” to the Library Farm in order to specify the number of jobs
to submit to LSF. Any name may be used, except “localhost,” which is a reserved
name. For example, you might add a host named “LSF” and a task limit of 5. That would
imply that five LSF jobs may be submitted concurrently. You may adjust the number of
tasks while Library Builder is characterizing.

Example 1: This example shows how the LSF bsub command line can be specified to run on a
local machine:

options set Farm RshCommand {bsub -o %OUTPUTFILE% -q long
-R "select[rh30_32b==1]" -L /bin/csh -K %COMMAND% -file %COMMANDFILE%}

• The -o %OUTPUTFILE% option specifies that upon completion of the job the standard
output should be placed in the file named by %OUTPUTFILE% on the local host.

• The -q long option specifies the queue name for the job. The queue is named “long” in
this example.

• The -R "select[rh30_32b==1]" option specifies the resource requirements of the job.

• The -L /bin/csh option starts a login shell and configures the environment with the
user’s login scripts. This only matters if you are launching between different OS
platforms. The -L <arg> option may be omitted if you are using the same OS for the
submitted job.

• The -K option specifies that the bsub command should not return until the job is
completed.

• The %COMMAND% option specifies the Catapult C Synthesis command to be invoked

Note
When the Library Builder is configured to use dedicated licenses for characterization
tasks instead of Catapult C Synthesis licenses, you must use the %COMMAND% variable in
the Remote Shell Command field. Do not enter a literal invocation command line. The
variable automatically supplies special command line flags that are required for the new
license.

Catapult C Library Builder User’s and Reference Manual, 2011a92

Library Characterization
Using the Library Farm

October 2011

• The -file %COMMANDFILE% option is the Catapult C Synthesis command line option to
supply a script file.

Example 2: This example shows how to specify the LSF command to run from remote LSF
“gate” machine:

options set Farm RshCommand {rsh %HOSTNAME% "cd %CWD%; bsub -o
%OUTPUTFILE%
-q long -R \"select[rh30_32b==1]\" -L /bin/csh -K %COMMAND% -file
%COMMANDFILE%"}

In this example the entire bsub command is passed as an argument to an rsh command. The
rsh command takes two arguments, the name of the host machine (%HOSTNAME%) and the
command string to be executed by rsh. Notice that the second argument is enclosed in double
quotes and any nested quotes within it (such as -R \"select[rh30_32b==1]\") must be
escaped with a backslash.

Setting Up Library Farm Hosts
The initial Farm window is empty. Right-click in the blank area on the Farm window and choose
Add a Host from the pop-up menu to open the Add a Host dialog box, as shown in Figure 3-13.
Enter the name of the host computer and specify the number of tasks for that host, then click
OK.

The host name “localhost” is a reserved name for the local machine. Jobs sent to localhost are
run on the local machine without any network requirements. This can be useful for
multiprocessor machines where you would like to run additional characterization tasks.

Figure 3-13. Library Farm Window

Library Characterization
Using the Library Farm

Catapult C Library Builder User’s and Reference Manual, 2011a 93
October 2011

Host Menu: Right-click on a host name to open its pop-up menu. The menu allows you to add
another task, remove the host, or see properties associated with the host.

• If you select Add another Task, a new task is added to the list in the Farm window. The
pass/fail values are zero and the status is set to idle.

• If you select Remove, the host is removed from the Farm list.

• If you select Properties, the Farm Properties dialog box opens, with which you can
change the number of tasks for that host. Use the scroll-arrows, or type the desired
number of tasks and click OK or Cancel.

Task Menu: Right-click on a task to open its pop-up menu. The menu allows you to remove the
selected task or view its properties.

Catapult C Library Builder User’s and Reference Manual, 2011a94

Library Characterization
Using the Library Farm

October 2011

Catapult C Library Builder User’s and Reference Manual, 2011a 95
October 2011

Chapter 4
Creating Custom Operators and Interfaces

Introduction . 95

Creating the Custom Operator C++ Function . 96

Creating a Library for the Custom Operators . 96

Importing Custom Operators from C++ and HDL . 97

Editing Libraries . 105

Verifying the Custom Operator RTL and Custom C++ Function 127

Introduction
Catapult C Synthesis provides the user with built-in interface libraries that support simple
protocols such as wire interface, two-way handshake, and memory interfaces. Similarly the base
libraries for both ASIC and FPGA provide all of the operators required to schedule an
algorithm. Although this combination of interfaces and base operators is usually sufficient,
there are instances when a designer may wish to leverage some custom operator IP (MAC,
Mult-Add, Wallace-tree multiplier, etc.) or interface (AMBA, APB, Avalon, PCIx, etc.).
Library Builder allows user to integrate existing RTL IP into the Catapult design flow.

Catapult C Library Builder User’s and Reference Manual, 2011a96

Creating Custom Operators and Interfaces
Creating the Custom Operator C++ Function

October 2011

Creating the Custom Operator C++ Function
Catapult base libraries contain built-in operators that allow a C++ algorithm to be synthesized to
RTL. These library operators correspond to the *, +, -, etc. operations in the C++ code. Custom
operators are different in that they map an entire C++ function to a block of RTL. This can lead
to huge performance gains in both ASIC and FPGA technologies when mapping to design ware
or DSP blocks.

Custom operators require a corresponding C++ function call. This C++ function MUST have
the same functionality as the operator RTL. Otherwise this will cause a simulation failure when
verifying the C++ design against the RTL design.

A special pragma is used to indicate that the C++ function should be directly replaced with the
custom operator RTL implementation.

#pragma map_to_operator "<operator name>"
<C++ function>

For example:

#include <ac_int.h>
#pragma map_to_operator "mul_pipe"
ac_int<16> mul_pipe(ac_int<8> a, ac_int<8> b){
 return a*b;
}

#pragma design top
void mul_pipe_test(ac_int<8> a, ac_int<8> b, ac_int<16> &c){
 c = mul_pipe(a,b);
}

The function arguments must match operator ports and the only allowed output is the function
return value. The operator name MUST match the operator name defined in the library.

Creating a Library for the Custom Operators
The first step in creating custom interfaces or operators is to create a blank ASIC or FPGA
library. This can be done either in the Library Builder GUI or from the command line using
“flow” commands.

Creating an ASIC Blank Library
Usage:

flow run /DesignCompiler/library add blank \
-libname <lib file name> \
-libtitle <UI lib title> \
-vendor <ASIC Vendor> \
-technology <Process technology> \

Creating Custom Operators and Interfaces
Importing Custom Operators from C++ and HDL

Catapult C Library Builder User’s and Reference Manual, 2011a 97
October 2011

-link_library <Path to *.db> \
-target_library <Path to *.db> \
-selected <true/false>

Example:

flow run /DesignCompiler/library add blank \
-libname example \
-libtitle example \
-vendor {LSI Logic} \
-technology lcbg11p \
-link_library lcbg11_wc.db \
-target_library lcbg11p_wc.db \
-selected true

Creating an FPGA Blank Library
Usage:

flow run /Precision/library add blank \
-libname <lib file name> \
-libtitle <UI lib title> \
-manufacturer <Vendor name> \
-family <Device family> \
-part <Device package> \
-speed <Device speed grade> \
-selected <true,false>

Example:

flow run /Precision/library add blank \
-libname example \
-libtitle example \
-manufacturer Altera \
-family {Stratix II} \
-part * \
-speed 3 \
-selected true

Importing Custom Operators from C++ and HDL
Library builder provides the “library import” command that can read in custom operators from
C++ source code, and their corresponding modules from RTL netlists. The command parses
C++ code to extract the interface of the operator (port names, port directions and bitwidths) and
automatically annotate that data in the “Operator” section of the library. It parses the RTL
netlist to extract the module port names, port directions, and generics or parameters, then
annotates that information in the “Mods” section of the library.

The user must edit the library after importing to specify the bindings between operator and the
module, as well as provide additional information such as latency and throughput information,

Catapult C Library Builder User’s and Reference Manual, 2011a98

Creating Custom Operators and Interfaces
Importing Custom Operators from C++ and HDL

October 2011

area, characterization/parameter ranges, etc.. Refer to “Editing Libraries” on page 105 for more
information.

The import command has the following usage:

library import ?<switches>? ?<files>?

<switches> Valid switches: (Optional)
-module <string> Name of module to import
-operator <string> Name of operator to import
-vhdl Import VHDL netlist
-vhdl_libmap <name> <path>

VHDL library mapping (Required)
-property_map <propname> <propval>

Adds the property propname, propval to
the All bindings for all imported mods
(Required)

-port_default <portname> <default>
Adds the default value 'default' to the
named port (Required)

-non_char_param <parameter>
Makes the named parameter an HDL generic only (not
a characterization param)

-input_register <portname>
Adds the INPUT_REGISTER flag to the named
port (must be an input port)(Required)

-char_range <param> <range_str>
Adds the named range to the CHAR_RANGE of
the named parameter (Required)

-add_variable <varname,> <value>
Adds the named variable / value to the VARS
the named parameter (Required)

-vhdl_option <string>
Option to pass to VHDL parser

-verilog Import Verilog netlist
-verilog_option <string>

Option to pass to Verilog parser
-get_tops List top level modules
-libname <string> Name of library to import to
-mod_type <ram|rom|inport|outport|inoutport|userop|userop_withstate>

Module type
ram ram
rom rom
inport inport
outport outport
inoutport inoutport
userop userop
userop_withstate userop_withstate

<files> files to import (Optional)

Importing Operators from C++ Functions
Use the “-library <string>” switch to specify a target library to annotate. Use the “-operator
<string>” switch to specify the name of the custom operator function in the C++ file. The
complete import flow is as follows:

Creating Custom Operators and Interfaces
Importing Custom Operators from C++ and HDL

Catapult C Library Builder User’s and Reference Manual, 2011a 99
October 2011

1. Create a library or import into an existing library.

2. Import the custom operator function by using the “library import” command.
NOTE: The operator must be imported before any modules that would be bound to that
operator.

3. Import the corresponding HDL module.

4. Manually set up the pin bindings between the module and the operator.

5. Save the library

Custom operator functions must adhere to the following conditions in order to import properly:

• Return only one value

• Return value cannot be a struct

The following example illustrates the operator import flow. Consider the custom operator
function defined in the file MAC8X8.cpp shown below:

#include “ac_int.h”

ac_int<32> MAC8X8(ac_int<8> a, ac_int<8> b) {
 return 0;
}

The following script creates a new library named MY_LIB, imports the operator and
corresponding VHDL module named MAC8X8, and then sets the pin bindings and other
properties.

Create the library
flow run /Precision/library add blank -libname MY_LIB -libtitle MY_LIB \

-manufacturer Altera -family {Stratix II} -part * -speed *

Import the operator
library import -libname MY_LIB -operator MAC8X8 MAC8X8.cpp

Import the module
library import -module MAC8X8 -vhdl -vhdl_libmap work work \

-vhdl_libmap altera_mf altera_mf -libname MY_LIB \
-mod_type userop_withstate MAC8X8.vhd

Add all the bindings and props manually
library add /LIBS/MY_LIB/OPERATORS/MAC8X8/PARAMETERS/opid \

-- -MIN {} -MAX {}
library add /LIBS/MY_LIB/MODS/MAC8X8/BINDINGS/1:MAC8X8/PROPERTY_MAPPING
\

-- -opid opid
library add /LIBS/MY_LIB/MODS/MAC8X8/BINDINGS/1:MAC8X8/PROPERTY_MAPPING
\

-- -SeqDelay 1
library add /LIBS/MY_LIB/MODS/MAC8X8/BINDINGS/1:MAC8X8/PIN_MAPPING/aclr0
\

-- -PINASSOC_TYPE SIGNAL -SIGNAL {[A_RST]} -PHASE 1

Catapult C Library Builder User’s and Reference Manual, 2011a100

Creating Custom Operators and Interfaces
Importing Custom Operators from C++ and HDL

October 2011

library add /LIBS/MY_LIB/MODS/MAC8X8/BINDINGS/1:MAC8X8/PIN_MAPPING/clock0
\

-- -PINASSOC_TYPE SIGNAL -SIGNAL {[CLOCK]} -PHASE 1
library add /LIBS/MY_LIB/MODS/MAC8X8/BINDINGS/1:MAC8X8/PIN_MAPPING/dataa
\

-- -PINASSOC_TYPE OPERATOR_PIN -OPERATOR_PIN a
library add /LIBS/MY_LIB/MODS/MAC8X8/BINDINGS/1:MAC8X8/PIN_MAPPING/datab
\

-- -PINASSOC_TYPE OPERATOR_PIN -OPERATOR_PIN b
library add /LIBS/MY_LIB/MODS/MAC8X8/BINDINGS/1:MAC8X8/PIN_MAPPING/result
\

-- -PINASSOC_TYPE OPERATOR_PIN -OPERATOR_PIN MAC8X8_out
library set /LIBS/MY_LIB/MODS/MAC8X8/PORTS/dataa \

-- -INPUT_REGISTER true -SIGNED 1
library set /LIBS/MY_LIB/MODS/MAC8X8/PORTS/datab \

-- -INPUT_REGISTER true -SIGNED 1

library save /LIBS/MY_LIB -filename MAC8X8.lib

Figure 4-1. Library with Imported Operator

Creating Custom Operators and Interfaces
Importing Custom Operators from C++ and HDL

Catapult C Library Builder User’s and Reference Manual, 2011a 101
October 2011

Importing Netlists
The module type can be divided into three categories, interface, operator, and memories, as
listed in Table 4-1.

Handling Memories
Library Builder needs to know the number of read/write ports on memories since data is
expected to be concatenated onto a single RTL port. This is also true for the address and control.
To see an example of how memories need to be structured for Catapult look at the install tree
$MGC_HOME/pkgs/siflibs to see the built-in VHDL and Verilog models.

The special parameter no_of_<module_name>_<port suffix> is required by Library Builder
to indicate the number of read/write ports. This must also be declared as a generic/parameter on
the RTL. Library builder will look for these generics when importing the memory RTL. The
port_suffix and order of the generics tells library builder whether the memory is single-port
or multi-port.

The parameters and generics for the different flavors of memories are as follows:

• Singleport/dualport

o no_of_<module name>_readwrite_port

o Generic's range controls max number of ports. For example, a range of 1 to 1 is
singleport, 1 to 2 is dual port, and so on.

• RAM with Separate Read/Write Ports

o Library builder expects the generics/parameters in the following order

i. no_of_<module name>_read_port

ii. no_of_<module name>_write_port

Table 4-1. Categories of Module Types

Module type Category

ram Memory

rom

inport Interface

outport

inoutport

userop Operator

userop_withstate

Catapult C Library Builder User’s and Reference Manual, 2011a102

Creating Custom Operators and Interfaces
Importing Custom Operators from C++ and HDL

October 2011

• ROM

o no_of_<module name>_read_port

Example - Importing a Singleport Ram

This ram uses a package called “ram_singleport_pkg” that is expected to be in the library
“mgc_hls.”

Entity:

library ieee;
USE ieee.std_logic_1164.all ;
USE ieee.std_logic_arith.all ;
USE ieee.std_logic_unsigned.all ;
LIBRARY mgc_hls;
USE mgc_hls.ram_singleport_pkg.all;

 entity singleport_ram_rst is
 generic (
 words : integer range 2 to 1000 := 2;
 width : integer range 2 to 1000 := 2;
 addr_width : integer range 2 to 1000 := 2;
 a_reset_active : integer range 0 to 1;
 s_reset_active : integer range 0 to 1;
 enable_active : integer range 0 to 1 := 1;
 clock_edge : integer range 0 to 1 := 1;
 no_of_singleport_readwrite_port : integer range 1 to 1 := 1
);
 port (
 data_in : in std_logic_vector(width - 1 downto 0) ;
 addr : in std_logic_vector(addr_width - 1 downto 0) ;
 we : in std_logic;
 data_out : out std_logic_vector(width - 1 downto 0);
 clk : in std_logic;
 a_rst : in std_logic;
 s_rst : in std_logic;
 en : in std_logic
);
 end singleport_ram_rst ;

Import Script:

#Create the Library
flow run /DesignCompiler/library add blank -libname example \
 -libtitle example -vendor LSI -technology lcbg11p \
 -link_library lsi_lgbg11p_wc.db -target_library lsi_lgbg11p_wc.db

#Import the Netlist
library import -module singleport_ram_rst -vhdl -mod_type ram \
 -vhdl_libmap mgc_hls mgc_hls -libname example \
 -port_default we 0 -port_default a_rst {1.0 - a_reset_active} \
 -port_default s_rst {1.0 - s_reset_active} -input_register data_in \
 -input_register addr -input_register we \
 ram_singleport_fpga.vhd

Creating Custom Operators and Interfaces
Importing Custom Operators from C++ and HDL

Catapult C Library Builder User’s and Reference Manual, 2011a 103
October 2011

Example - Importing an Input Interface

This interface is an input slave interface. There is no package or library mapping so the default
work library is used.

Entity:

library IEEE;
use IEEE.std_logic_1164.all;
use ieee.numeric_std.all;

entity fsl_slave is
 generic (
 C_DWIDTH : integer := 32
);
 port (
 -- Slave FSL Signals
 FSL_S_Read : out std_logic;
 FSL_S_Data : in std_logic_vector(0 to C_DWIDTH-1);
 FSL_S_Exists : in std_logic;
 --Catapult side signals
 data_out : out std_logic_vector(C_DWIDTH- 1 downto 0);
 fsl_rdy : out std_logic;
 fsl_rd : in std_logic

);
end fsl_slave;

Import Script:

#Create the Library
flow run /Precision/library add blank \
 -libname fsl_slave \
 -libtitle fsl_slave \
 -manufacturer Xilinx \
 -family * \
 -part * \
 -speed 3 \
 -selected true

#Import the Netlist
library import -module fsl_slave -vhdl -mod_type inport \
 -libname fsl_slave fsl_slave.vhd

Example - Importing a user operation

Entity:

LIBRARY IEEE ;
USE IEEE.std_logic_1164.ALL ;
USE IEEE.std_logic_arith.ALL ;
USE IEEE.std_logic_signed.ALL ;

use work.example_pkg.all;

ENTITY MAC IS

Catapult C Library Builder User’s and Reference Manual, 2011a104

Creating Custom Operators and Interfaces
Importing Custom Operators from C++ and HDL

October 2011

GENERIC(width: natural range 1 to 100:= 2;
 ph_arst : natural := 1);
PORT (
 clk : IN STD_LOGIC ;
 rst : IN STD_LOGIC ;
 a : IN STD_LOGIC_VECTOR(width-1 DOWNTO 0) ;
 b : IN STD_LOGIC_VECTOR(width-1 DOWNTO 0) ;
 c : OUT STD_LOGIC_VECTOR(width*2-1 DOWNTO 0)
) ;
END MAC ;

Import Script:

#Create the Library
flow run /DesignCompiler/library add blank \
 -libname MAC -libtitle MAC -vendor LSI -technology lcbg11p \
 -link_library lsi_lgbg11p_wc.db -target_library lsi_lgbg11p_wc.db

#Import the Netlist
library import -module MAC -vhdl -mod_type userop_withstate \
 -libname MAC MAC.vhd

Netlist Dependencies
Library builder will create the required netlist dependencies when the RTL netlist is imported. It
is assumed that the RTL netlist will be stored in the same directory as the Catapult library.
Library builder creates a netlist dependency using the $LIBPATH variable which is set to point
to the library (Figure 4-2).

Creating Custom Operators and Interfaces
Editing Libraries

Catapult C Library Builder User’s and Reference Manual, 2011a 105
October 2011

Figure 4-2. Dependencies Imported from Netlist

If the user wants the RTL in some other location, the netlist dependency must be edited in
library builder.

Editing Libraries
After Library Builder has successfully imported the RTL netlist you must edit the library to
provide additional information in order to build a valid library. This information consists of

Catapult C Library Builder User’s and Reference Manual, 2011a106

Creating Custom Operators and Interfaces
Editing Libraries

October 2011

things like latency and throughput behavior, parameter ranges, and so on. To edit the library,
right-click on the library and select edit.

Modules
Modules tell Catapult about how to hook-up the RTL block. The module consists of the
following:

• Parameters

• Ports

• Bindings

• Pin Associations

• Property Mappings

Parameters
Module parameters typically correspond to the generics/parameters on the RTL. However the
import command will add an additional parameter for interfaces, memories, and operators with
state. For memories, a parameter called “ram_id” is added. For interfaces, a parameter called
“rscid” is added. For custom operators with state, a parameter called “opid” is added. The user
does not need to modify these parameters. For all other parameters the min/max range and
min/max characterization range must be set. The min/max range tells Catapult the allowable

Creating Custom Operators and Interfaces
Editing Libraries

Catapult C Library Builder User’s and Reference Manual, 2011a 107
October 2011

range of the parameter. This controls things like how wide can a port be set on an interface, or
how many words can a memory have. If the RTL generic/parameter has a range set on it, the
import command will annotate this information for the min/max and characterization ranges. If
the range is not specified in the RTL the user must set it manually. For example:

ENTITY MAC IS
GENERIC(width: natural range 1 to 100:= 2;
 ph_arst : natural := 1);
PORT (
 clk : IN STD_LOGIC ;
 rst : IN STD_LOGIC ;
 a : IN STD_LOGIC_VECTOR(width-1 DOWNTO 0) ;
 b : IN STD_LOGIC_VECTOR(width-1 DOWNTO 0) ;
 c : OUT STD_LOGIC_VECTOR(width*2-1 DOWNTO 0)
) ;
END MAC ;

Figure 4-3. Parameters Imported from Netlist

Parameters can be set manually by double-clicking on the parameter or selecting edit.

Catapult C Library Builder User’s and Reference Manual, 2011a108

Creating Custom Operators and Interfaces
Editing Libraries

October 2011

Figure 4-4. Parameters Set Manually

Ports
Ports correspond to the ports on the RTL. Most of the port information is added during the RTL
import, but there are some fields that must be set by the user.

• Input Register Setting

Catapult requires that either the outputs of the core process (RTL) that it generates or the
inputs of the interface/operator RTL IP are registered. If input register is set to true on
the module port, then Catapult does not put a register on the corresponding output of the
core process. This is illustrated in Figure 4-5.

Figure 4-5. Input Register Setting

Creating Custom Operators and Interfaces
Editing Libraries

Catapult C Library Builder User’s and Reference Manual, 2011a 109
October 2011

There are cases where you may wish to set input register to false even though the
interface/operator RTL has input registers. If you require that the data and control inputs
to the interface/operator RTL should be driven for multiple clock cycles, set the input
register to false. This is only done for multi-cycle interface/operators.

Figure 4-6. Effects of Input Register Setting

• Sign Bit

The port sign bit indicates that the port is signed or unsigned (1 == signed,
0 == unsigned). Catapult will sign extend inputs and outputs of signed ports. Single bit
ports should leave the sign bit unassigned. Setting the sign bit on a single bit port results
in std_logic_vector(0 downto 0).

• Default Value

The default value port setting indicates what value should be driven on an
interface/operator input port when the interface/operator is not being read/written. This
setting is used for ports like memory write enables, resets, and so on.

Figure 4-7. Port Settings Overview

Catapult C Library Builder User’s and Reference Manual, 2011a110

Creating Custom Operators and Interfaces
Editing Libraries

October 2011

Bindings
Bindings tell Catapult how to connect to the RTL interface/operator. They also allow timing and
area information to be specified. There are usually at least two bindings for every
interface/operator, the “All” binding, and the operator binding. Operator bindings typically
consist of read_port/write_port bindings for interfaces, read_ram/write_ram bindings for
memories, built-in operators (add, mul, etc.), and user-defined for custom operators. The “All”
binding is typically used to set area and timing information. This is done via a “property
mapping.” Property mappings allow module parameters to be set, or to map operator parameters
to module parameters. The following can be specified on the All binding:

• Area

o Area of the module.

o Can be specified as an equation.

• Delay

o Combinatorial delay, or clock-to-out time of sequential components.

• SeqDelay

o Sequential delay. Indicates the number of clock cycles required to complete the
operation. For example:

• SeqDelay = Number of Component Regs - (input_reg==true)?1:0

• For components with input_reg == true, SeqDelay = 0. That means that Data
available after first clock edge.

o No sequential delay means the component is combinatorial.

Figure 4-8. Effect of Input Register on SeqDelay

• InitDelay

o Indicates how much a component can be pipelined. For example, InitDelay = 2
means that the component can be pipelined downto II=2, but not II=1.

• Always

o Design rule. Used to compute equations.

Area, Delay, SeqDelay, and InitDelay property mappings are case sensitive. They can be set
from the command line (example below) or from the GUI (Figure 4-9).

Creating Custom Operators and Interfaces
Editing Libraries

Catapult C Library Builder User’s and Reference Manual, 2011a 111
October 2011

library add \
/LIBS/<library_name>/MODS/<module_name>/BINDINGS/all/PROPERTY_MAPPING

\
-- -Area width*20 -Delay 1.2 -SeqDelay 1 -InitDelay 1

Figure 4-9. Using the GUI to Set Properties

Pin Associations
Pin associations are used to connect operator ports to RTL ports and to tell Catapult how to bind
the RTL component when netlisting the final VHDL or Verilog output. The pin associations are
set on the operator binding. Table 4-2 describes the pin association types.

Table 4-2. Pin Associations

Pin Description

Unbound Left unconnected

OPERATOR_PIN Binds to port on operator

CLOCK Clock from Catapult C process.

ENABLE Clock enable from Catapult C process.

S_RST Synchronous reset from Catapult C process

A_RST Asynchronous reset from Catapult C process.

Catapult C Library Builder User’s and Reference Manual, 2011a112

Creating Custom Operators and Interfaces
Editing Libraries

October 2011

When the RTL netlist is imported, the appropriate binding is automatically added based on the
module type setting. If the module type is set to “userop” the operator ports must be defined
before the pin associations can be made. If the inport, outport, ram, or rom module type is set,
the operator binding is added and you must specify the pin associations. Table 4-2 describes the
pins on each operator.

Using the fsl_slave example shown below, use the following steps to add the pin associations.

library IEEE;
use IEEE.std_logic_1164.all;
use ieee.numeric_std.all;

entity fsl_slave is
 generic (
 C_DWIDTH : integer := 32
);
 port (
 -- Slave FSL Signals
 FSL_S_Read : out std_logic;
 FSL_S_Data : in std_logic_vector(0 to C_DWIDTH-1);
 FSL_S_Exists : in std_logic;
 --Catapult side signals

[EXTERNAL] Connects the port of a bound internal or interface
resource to an external port. Interface resources with
EXTERNAL bindings must be bound.

DIRECT Connects the port of a bound internal resource to an
external port. DIRECT bindings are removed for
interface resources.

GLOBAL Connects the port of bound internal resources to a
single external port when the internal port names are
the same. GLOBAL bindings are removed for interface
resources.

CONSTANT Drives a constant value to the component port.

WAITON Used for handshaking. The Catapult C process will
wait for the component port to be driven high.

Table 4-3. Operator Pin Bindings

Binding Data Port Address

read_port D n/a

write_port D n/a

read_ram D I

write_ram D I

Table 4-2. Pin Associations

Pin Description

Creating Custom Operators and Interfaces
Editing Libraries

Catapult C Library Builder User’s and Reference Manual, 2011a 113
October 2011

 data_out : out std_logic_vector(C_DWIDTH- 1 downto 0);
 fsl_rdy : out std_logic;
 fsl_rd : in std_logic

);
end fsl_slave;

1. Connect the operator data port:

Catapult C Library Builder User’s and Reference Manual, 2011a114

Creating Custom Operators and Interfaces
Editing Libraries

October 2011

2. Add a handshake:

Creating Custom Operators and Interfaces
Editing Libraries

Catapult C Library Builder User’s and Reference Manual, 2011a 115
October 2011

3. Drive a constant value to the component:

Catapult C Library Builder User’s and Reference Manual, 2011a116

Creating Custom Operators and Interfaces
Editing Libraries

October 2011

4. Connect all of the external ports:

Property Mappings
Property mappings allow operator parameters to be mapped to Module parameters which in turn
may correspond to generics on the RTL. This allows an operator to control things like RTL port
width, number of words in a memory, and so on. The built-in interface and memory operators
have the following parameters. The “library import” command automatically maps the
necessary operator parameters to their respective module parameters (such as width, id, etc.). If
you are creating a library component manually, and that component uses built-in operators such

Creating Custom Operators and Interfaces
Editing Libraries

Catapult C Library Builder User’s and Reference Manual, 2011a 117
October 2011

as read_port or write_port, you must manually map the operator parameters to the module
parameter in the bindings.

For the fsl_slave example on page 112, C_DWIDTH is used to set the RTL port width. Thus we
want to create a property mapping between the “width” parameter of the read_port operator and
C_DWIDTH

Table 4-4. Property Mapping

Param read_port write_port read_ram write_ram
Custom
operator Comment

width X X X X Set based on
interface or
memory width arch
constraint

size X X Set based on
number of array
elements

ramid X X Set for each ram
instance

id X X Set for each
interface instance

opid X Set for operators
with state

Catapult C Library Builder User’s and Reference Manual, 2011a118

Creating Custom Operators and Interfaces
Editing Libraries

October 2011

Creating RAM without a Reset
By default, the Library Builder provides reset pin associations on the module RAM bindings.
To create a RAM without a reset, set the following properties on the ALL bindings to
unconditionally suppress the asynchronous and synchronous reset pin association types:

• no_s_reset = 1

• no_a_reset = 1

The property value can also be set to the name of a module parameter (width, en_active). When
the value of the specified parameter equals 1, the reset is suppressed.

You must modify the RTL model before simulation.
The library add command can also be used to suppress the reset on a RAM.

For more information on pin associations and setting properties, see the following topics:

• “Pin Associations” on page 111

• “Property Mappings” on page 116

Programmable Reset Polarity and Multiple Resets
Catapult can support both asynchronous and synchronous resets with either active high or active
low polarity. Using a reset that is not described in the module causes Catapult C Synthesis to
display an error when trying to bind the component. The error message in the transcript is
similar to the following:

Warning: Couldn’t find library component for operator ‘mul_pipe(8)’ - no
available component (SIF-4)
Error: incomplete component selection

Resets and control signals can be parameterized to set the desired polarity. This requires a
special function to test the reset polarity.

FUNCTION active(lval: std_logic; ph: INTEGER RANGE 0 TO 1) RETURN BOOLEAN;

END example_pkg;

PACKAGE BODY example_pkg IS

 FUNCTION active(lval: std_logic; ph: INTEGER RANGE 0 TO 1) RETURN
BOOLEAN IS
 BEGIN
 CASE lval IS
 WHEN ‘0’ | ‘L’ =>
 RETURN ph = 0;
 WHEN ‘1’ | ‘H’ =>
 RETURN ph = 1;
 WHEN OTHERS =>

Creating Custom Operators and Interfaces
Editing Libraries

Catapult C Library Builder User’s and Reference Manual, 2011a 119
October 2011

 RETURN true;
 END CASE;
 END active;

END example_pkg;

The reset polarity can then be passed to the RTL as a generic/parameter and the “special”
function can be used to generate reset for the correct polarity. This same methodology can be
used to handle clock enable polarity as well.

LIBRARY IEEE ;
USE IEEE.std_logic_1164.ALL ;
USE IEEE.std_logic_arith.ALL ;
USE IEEE.std_logic_signed.ALL ;
library work;
use work.example_pkg.all;

ENTITY mul_pipe IS
GENERIC(width: natural := 2;
 ph_arst : natural := 1);
PORT (
 clk : IN STD_LOGIC ;
 rst : IN STD_LOGIC ;
 a : IN STD_LOGIC_VECTOR(width-1 DOWNTO 0) ;
 b : IN STD_LOGIC_VECTOR(width-1 DOWNTO 0) ;
 c : OUT STD_LOGIC_VECTOR(width*2-1 DOWNTO 0)
) ;
END mul_pipe ;

ARCHITECTURE rtl OF mul_pipe IS

SIGNAL tmp : STD_LOGIC_VECTOR(width*2-1 DOWNTO 0) ;

BEGIN

PROCESS (clk)
 BEGIN
IF active(rst,ph_arst)then
 c <= (others => ‘0’);
ELSIF(clk’EVENT AND clk = ‘1’) THEN
 c <= a * b;
 END IF ;
END PROCESS;

END rtl;

The library must also be modified to handle programmable reset polarity. The following steps
must be taken:

• Add ph_arst parameter to module parameter

• Set the rst port default opposite the phase

Catapult C Library Builder User’s and Reference Manual, 2011a120

Creating Custom Operators and Interfaces
Editing Libraries

October 2011

• Use ph_arst to set the polarity on the binding

Manually Defining Custom Operators
The custom operator is created during the netlist import. But if the “library import” command
was not used to import the operator port and parameter information from the custom C++
function, the user must edit the library to add that information. Consider the following pipelined
multiplier RTL example that we wish to map to directly from a C++ function:

ENTITY mul_pipe IS
GENERIC(width: natural := 2;
 ph_arst : natural := 1);
PORT (

Creating Custom Operators and Interfaces
Editing Libraries

Catapult C Library Builder User’s and Reference Manual, 2011a 121
October 2011

 clk : IN STD_LOGIC ;
 rst : IN STD_LOGIC ;
 a : IN STD_LOGIC_VECTOR(width-1 DOWNTO 0) ;
 b : IN STD_LOGIC_VECTOR(width-1 DOWNTO 0) ;
 c : OUT STD_LOGIC_VECTOR(width*2-1 DOWNTO 0)
) ;
END mul_pipe ;

ARCHITECTURE rtl OF mul_pipe IS

SIGNAL tmp : STD_LOGIC_VECTOR(width*2-1 DOWNTO 0) ;

BEGIN

PROCESS (clk)
 BEGIN
IF active(rst,ph_arst)then
 c <= (others => '0');
ELSIF(clk'EVENT AND clk = '1') THEN
 c <= a * b;
 END IF ;
END PROCESS;

END rtl;

We first create the library and import the netlist with the module type set to user operation.

flow run /DesignCompiler/library add blank -libname mul_pipe -libtitle
mul_pipe -vendor LSI -technology lcbg11p -link_library lsi_lgbg11p_wc.db
-target_library lsi_lgbg11p_wc.db

library import -module mul_pipe -vhdl -mod_type userop -libname mul_pipe
mul_pipe.vhd

After import the Module, bindings, and operator are created automatically, but the user must
add the operator parameters and ports. Since the RTL port widths are parameterizable, we want
to make the operator port widths parameterizable as well. Looking at the RTL we can see that

Catapult C Library Builder User’s and Reference Manual, 2011a122

Creating Custom Operators and Interfaces
Editing Libraries

October 2011

the input and output ports are all parameterized based on a single generic. So we need to create
a parameter for the operator:

We then create the operator ports. The operator ports will correspond to the “data” ports on the
RTL. In this example the RTL data ports are inputs “a” and “b” and output “c”.

Creating Custom Operators and Interfaces
Editing Libraries

Catapult C Library Builder User’s and Reference Manual, 2011a 123
October 2011

After adding the operator ports, we can now add all of the pin associations on the operator
binding as shown in the previous section.

Catapult C Library Builder User’s and Reference Manual, 2011a124

Creating Custom Operators and Interfaces
Editing Libraries

October 2011

Since the operator port widths are parameterized, we need to add a property mapping from the
operator parameter (“opWidth”) to the module parameter (“width”):

Creating Custom Operators with State
Operators with state are required when the operator has storage, such as multiply and
accumulate, RAM with byte enable. Operators with state require a unique operator ID for each
unique instance of the operator so that the operator is not shared. The operator ID is set as a
parameter on the module and as a template parameter on the C++ function. Template functions
are used to create unique instances of the C++ function.

Creating Custom Operators and Interfaces
Editing Libraries

Catapult C Library Builder User’s and Reference Manual, 2011a 125
October 2011

These are required since a C++ function with state (e.g.) static variables is not unique unless its
template parameter is unique.

Figure 4-10. Operator with State (MAC)

The RTL for the MAC shown above is:

ENTITY MAC IS
GENERIC(width: natural range 1 to 100:= 2;
 ph_arst : natural := 1);
PORT (
 clk : IN STD_LOGIC ;
 rst : IN STD_LOGIC ;
 a : IN STD_LOGIC_VECTOR(width-1 DOWNTO 0) ;
 b : IN STD_LOGIC_VECTOR(width-1 DOWNTO 0) ;
 c : OUT STD_LOGIC_VECTOR(width*2-1 DOWNTO 0)
) ;
END MAC ;

ARCHITECTURE rtl OF MAC IS
SIGNAL prod : STD_LOGIC_VECTOR(width*2-1 DOWNTO 0) ;
SIGNAL acc : STD_LOGIC_VECTOR(width*2-1 DOWNTO 0) ;
BEGIN

PROCESS (clk)
BEGIN
 IF active(rst,ph_arst)then
 prod <= (others => ‘0’);
 acc <= (others => ‘0’);
 ELSIF(clk’EVENT AND clk = ‘1’) THEN
 prod <= a * b;
 acc <= acc + prod;
 END IF ;
END PROCESS;
c <= acc;
END rtl;

Creating the library and importing the netlist for custom operators with state:

#Create the Library
flow run /DesignCompiler/library add blank \
 -libname MAC -libtitle MAC -vendor LSI -technology lcbg11p \
 -link_library lsi_lgbg11p_wc.db -target_library lsi_lgbg11p_wc.db

#Import the Netlist
library import -module MAC -vhdl -mod_type userop_withstate \
 -libname MAC MAC.vhd

reg
reg

Catapult C Library Builder User’s and Reference Manual, 2011a126

Creating Custom Operators and Interfaces
Editing Libraries

October 2011

Once the import has finished the module and operator must be edited in the same fashion
describe for custom operators without state. In other words the operator parameters and ports
must be added and the module binding pin associations and property mappings must be added.
When the module and operator are created during library import a parameter called “opid” is
automatically added to the module and the operator. The “Operator has State” bit is also set
automatically.

Once the library is created a C++ template function must also be created that matches the
functionality of the custom operator RTL. The custom C++ function must have a template
parameter called “opid”. This must also be the first parameter listed if there are multiple
template parameters.

typedef ac_int<18> inType;
typedef ac_int<36> outType;
#pragma map_to_operator "MAC"
template<int opid>
outType MAC(inType a, inType b){
 static outType acc;
 acc += a*b;
 return acc;
}
#pragma design top
void MAC_test(inType a, inType b, inType c, inType d,outType &e, outType
&f){
 e = MAC<1>(a,b);
 f = MAC<2>(c,d);
}

Creating Custom Operators and Interfaces
Verifying the Custom Operator RTL and Custom C++ Function

Catapult C Library Builder User’s and Reference Manual, 2011a 127
October 2011

As seen above, the opid template parameter can be used to create unique instances of the C++
function, and hence unique instances of the custom operator will be used when synthesizing the
design.

Verifying the Custom Operator RTL and Custom
C++ Function

The custom operator RTL and corresponding C++ function must be verified against one
another. They MUST be functionally equivalent for this flow to work properly. The Catapult
SCVerify automated verification flow can be used to verify that the custom operator RTL and
C++ function are functionally equivalent. To do this a C++ test bench is required to test the top-
level design which instantiates the custom operator.

Using Custom Interfaces with SCVerify
Custom interfaces will not automatically work with the SCVerify automated verification flow.
A SystemC transactor must be created by the user which allows the custom RTL module to be
connected to the C++ verification environment. The transactor consists of two parts:

1. The abstract transactor class that pulls C++ typed values from the input FIFOs and
performs type conversion from the C++ type into the bit-vector representation. There
can be many transactors in the design - one for each formal argument in the original C++
function interface

2. The transactor resource which has the physical connection ports that are hooked up by
the SCVerify generated wrappers.

Catapult provides transactors for inputs, outputs and bi-directional arguments. Catapult also
provides implementations of transactor resources for each of the standard interface synthesis
components such as mgc_in_wire_en and mgc_out_stdreg_wait. Because this flow requires
manual creation of the SystemC transactor resources, the built-in transactor resource files can
be used as a starting point for creating custom transactor resources. These can be found in

Catapult C Library Builder User’s and Reference Manual, 2011a128

Creating Custom Operators and Interfaces
Verifying the Custom Operator RTL and Custom C++ Function

October 2011

$MGC_HOME/pkgs/siflibs. There are also a number of custom interface examples in the
Catapult toolkits that can be used as a starting point for creating other custom interfaces.

Transactor resource variables
In addition to creating the library, module, adding property mappings and pin associations, the
user must add specific variables to the library module so that the SCVerify verification flow
knows where the transactor resource is and how to hook it up. The following three variables are
required:

• scverify_trans_rsc_class

Specifies the name of the transaction resource class

• scverify_trans_rsc_tmpl

Specifies the list of transactor resource class template parameters. These typically match
the generics on the RTL module. The template parameter “streamcnt” is required for
wire type interfaces. It must be the first parameter in the parameter list. This parameter
tells the transactor resource file if the interface has been steamed. Streamcnt == 1
indicates that there is no streaming. streamcnt > 1 indicates the number of elements to be
transferred.

• scverify_trans_rsc_hdr

Specifies the name and location of the transactor resource header file

The built-in interfaces and transactor resource files can be used as examples for creating user
defined interfaces and transactor resources. We can look at the mgc_inwire_wait component to
understand the basic structure of the transactor resource file.

Figure 4-11 shows the mgc_in_wire_wait transactor resource class. The class is templatized
with the template parameters “streamcnt” and “width”. The transactor resource instantiates the
bass class transactor.

Figure 4-11. mgc_in_wire_wait Transactor Resource

Creating Custom Operators and Interfaces
Verifying the Custom Operator RTL and Custom C++ Function

Catapult C Library Builder User’s and Reference Manual, 2011a 129
October 2011

Looking in the body of the transactor resource, in Figure 4-12, we see that the signals and ports
must correspond to the ports on the RTL. Note that a clock must be defined in the transactor
resource even if the RTL block does not contain a clock. The mgc_in_wire_wait transactor
resource has sensitivity to the clock, _lz enable signal, and can control the _vz wait signal.

Figure 4-12. mgc_in_wire_wait Transactor Resource Body

The testbench stimulus is pushed onto a FIFO for each interface every time the function is
called. The number of rows of data in the FIFO is based on whether the interface has been
streamed. For non-streamed interfaces (streamcnt==1) there is a single row. The
at_active_clock method shown below shows that the row ptr into the FIFO is advanced when
_lz (enable) is sampled high.

Catapult C Library Builder User’s and Reference Manual, 2011a130

Creating Custom Operators and Interfaces
Verifying the Custom Operator RTL and Custom C++ Function

October 2011

Figure 4-13. mgc_in_wire_wait Transactor Resource at_active_clk Method

Next the update_z method shown below illustrates how the transactor resource drives data to
the RTL block. This method tests to see if read data is being requested (e.g. _lz ==1). When _lz
is sampled high the current row of data in the FIFO is read and then written into temporary
storage (DRV). This data is then driven out to the RTL block.

Figure 4-14. mgc_in_wire_wait Transactor Resource update_z Method

Creating Custom Operators and Interfaces
Verifying the Custom Operator RTL and Custom C++ Function

Catapult C Library Builder User’s and Reference Manual, 2011a 131
October 2011

Lastly the drive_v_signals method is used to control the _vz (wait) signal. For the built-in
interfaces _vz is usually set to high. However this is where the user can customize the behavior
to delay the handshake.

Figure 4-15. mgc_in_wire_wait Transactor Resource drive_v_signals Method

An example of creating the transactor resource files is shown below. It is based on the FSL
interface example described earlier in this document. This interface example has the same
behavior as the mgc_in_wire_wait component. The transactor resource header file was simply
copied from $MGC_HOME/pkgs/siflibs and then edited.

Step 1 - Create the library component
Creating the FSL interface library component was covered in the earlier sections. The entity
declaration is shown below:

entity fsl_slave is
 generic (
 C_DWIDTH : integer := 32
);
 port (
 -- Slave FSL Signals
 FSL_S_Read : out std_logic;
 FSL_S_Data : in std_logic_vector(0 to C_DWIDTH-1);
 FSL_S_Exists : in std_logic;
 --Catapult side signals
 data_out : out std_logic_vector(C_DWIDTH- 1 downto 0);
 fsl_rdy : out std_logic;
 fsl_rd : in std_logic
);
end fsl_slave;

The FSL protocol has the following timing:

Catapult C Library Builder User’s and Reference Manual, 2011a132

Creating Custom Operators and Interfaces
Verifying the Custom Operator RTL and Custom C++ Function

October 2011

Figure 4-16. FSL Timing

Step2 - Copy the mgc_in_wire_wait transactor resource
The mgc_in_wire_wait transactor resource is in the mgc_ioport_trans.h file located in
$MGC_HOME/pkgs/siflibs.

Step3 - Modify the transactor resource class
The mgc_in_wire_wait transactor resource file was copied and edited. First the transactor
resource class name was changed and the template parameters were defined:

template<int streamcnt
 //EDITED BY USER
 //ADD REQUIRED TEMPLATE PARAMETERS
 , int C_DWIDTH>

class //EDITED BY USER
 //ADD TRANSACTOR RESOURCE NAME
 fsl_slave_trans_rsc
 : public mc_wire_trans_rsc_base<T,streamcnt>
{

Step 4 - Modify the signals and constructor ports.
Next the transactor resource signals and constructor port names were changed to match the FSL
RTL ports. Also a clock signal was added which is required:

//EDITED BY USER
 //REPLACE WITH RTL PORT NAMES
 sc_in<bool> clk;
 sc_in< sc_logic > arst;
 sc_in< sc_logic > srst;
 port_type FSL_S_Data;
 sc_in<sc_dt::sc_logic> FSL_S_Read;
 sc_out<sc_dt::sc_logic> FSL_S_Exists;

Creating Custom Operators and Interfaces
Verifying the Custom Operator RTL and Custom C++ Function

Catapult C Library Builder User’s and Reference Manual, 2011a 133
October 2011

 SC_HAS_PROCESS(fsl_slave_trans_rsc);
 fsl_slave_trans_rsc(const sc_module_name& name, bool phase)
 : base(name,phase)
 , clk("clk")
 , FSL_S_Data(" FSL_S_Data")
 , FSL_S_Read("FSL_S_Read")
 , FSL_S_Exists("FSL_S_Exists")

Step 5 - Modify the update_z sensitivity
The update method was then modified to make it sensitive to the FSL_S_Read signal which is
the equivalent to the mgc_in_wire_wait _lz signal:

//------------------------------------
 //EDITED BY USER
 //MAKE METHOD SENSATIVE TO ANY READ/WRITE STROBES FROM RTL
 //CHANGE lz to RTL PORT NAME
 SC_METHOD(update_z);
 this->sensitive << FSL_S_Read << this->_value_changed;
 this->dont_initialize();

Step6 - Modify the at_active_clk function
The at_active_clk function was changed to make it test FSL_S_Read:

void at_active_clk() {
 //EDITED BY USER
 //ADVANCE TO NEXT DATA WHEN READ CONDITION FROM RTL IS TRUE
 //CHANGE lz to RTL PORT NAME
 if (FSL_S_Read.read() == SC_LOGIC_1) {
 this->incr_current_in_row(); // value is being read right now,

// so advance index

Step7 - Modify the update_z function
The update_z function was edited to test the FSL_S_Read strobe to drive the testbench data:

void update_z() {
 //EDITED BY USER
 //WRITE READ DATA TO RTL PORT WHEN READ CONDITION IS TRUE
 //CHANGE lz to RTL PORT NAME
 if (FSL_S_Read.read() == SC_LOGIC_1) {
 const int row = this->get_current_in_row();
 this->write_row(DRV, this->read_row(row));
 if (this->is_combinational())
 this->initiate_driving_value_adjustments(row, row, COLS - 1, 0);
 //CHANGE z to RTL PORT NAME
 FSL_S_Data = this->read_row(DRV);
 } else {
 const static data_type zv('Z');
 //CHANGE z to RTL PORT NAME
 FSL_S_Data = zv;
 }

Catapult C Library Builder User’s and Reference Manual, 2011a134

Creating Custom Operators and Interfaces
Verifying the Custom Operator RTL and Custom C++ Function

October 2011

 }

Step8- Modify the drv_v_signals function
The drive_v_signals function was edited to drive the FSL_S_Exists port when valid data is
available:

void drive_v_signals()
 {
 //EDITED BY USER
 //SET WAITON SIGNAL TRUE
 //CHANGE vz to RTL PORT NAME
 if (this->_wait_cycles_cntr == 0) {
 FSL_S_Exists = SC_LOGIC_1;
 } else {
 //CHANGE vz to RTL PORT NAME
 FSL_S_Exists = SC_LOGIC_0;
 if (this->_wait_cycles_cntr != -1) this->_wait_cycles_cntr--;
 }
 }

Step9 - Edit the library to add the transactor resource variables
library add /LIBS/fsl_slave/MODS/fsl_slave/VARS/scverify_trans_rsc_class
--

-VALUE fsl_slave_trans_rsc
library add /LIBS/fsl_slave/MODS/fsl_slave/VARS/scverify_trans_rsc_tmpl -
-
-VALUE "streamcnt C_DWIDTH"
library add /LIBS/fsl_slave/MODS/fsl_slave/VARS/scverify_trans_rsc_hdr --
-VALUE {$LIBPATH/fsl_slave_trans_rsc.h}

Catapult C Library Builder User’s and Reference Manual, 2011a 135
October 2011

Chapter 5
Commands

Library Builder provides a shell command line interface that allows you to enter commands
interactively and use scripts for batch processing. For more information, see the following
topics:

• “General Command Syntax” on page 135.

• “Using Tcl Commands in Scripts” on page 143.

• “Command Reference” on page 145

General Command Syntax
The command line interface is based on the Tcl language and accepts all standard Tcl
commands. Standard Tcl provides the foundation for the command syntax, including variable
assignment, handling of lists and arrays, sorting, string manipulation, arithmetic operations,
(if/case/foreach/while) statements, and procedures. Table 5-1 describes the basic Tcl syntax
rules.

Table 5-1. Basic Tcl Syntax

Syntax Description

command arg1 ... argN A command string consists of a command name followed by
zero or more arguments. White space delimits each element.

$my_variable The dollar sign ($) substitutes the value of a variable. In this
example, the variable name is “my_variable”.

[library get] Square brackets are used to execute a nested command. For
example, if you want to pass the result of one command as
an argument to another, use this syntax. In this example, the
nested command is “library get”, which is used to obtain
information about a currently loaded library.

“some stuff” Double quotation marks group words as a single argument
to a command. Dollar signs and square brackets are
interpreted inside double quotation marks.

{some stuff} Curly braces also group words into a single argument, but
elements within the braces are not interpreted.

Catapult C Library Builder User’s and Reference Manual, 2011a136

Commands
General Command Syntax

October 2011

Note
The following reference help files about the Tcl language are available in the Catapult
software tree:

UNIX man pages: $MGC_HOME/pkgs/tcl_msg/man
Windows help files: $MGC_HOME/pkgs/tcl_msg/doc

Catapult commands typically have the form “<object> <operator>”, where <object> is the
command name and <operator> is the action to be performed. The operator is first argument.
Some examples are:

Some commands can operate on a set of objects. In these cases, the initial argument(s) specify
the target object. For example:

Documentation Conventions for Catapult Commands
For clarity when referring to Catapult commands by name, the documentation uses a composite
name consisting of the object and operator components of the command string. For example the
documentation might refer to the “library add” command or the “flow package option add”
command. Similarly, the command reference pages use the composite form of the command
names.

\ The backslash (\) is used to quote special characters. For
example, \n generates a newline. The backslash also is used
to “turn off” the special meanings of the dollar sign,
quotation marks, square brackets, and curly braces.

Table 5-2.

Object Operators

library add, get, set, rename, ...

flow get, run

Table 5-3.

Object Operators

flow get, run

flow package provide, require, present, forget,
option, names, versions, script,
vcompare, vsatisfies

flow package option add, get, remove, set

Table 5-1. Basic Tcl Syntax (cont.)

Syntax Description

Commands
General Command Syntax

Catapult C Library Builder User’s and Reference Manual, 2011a 137
October 2011

Command Reference Page Format
Each command reference page begins on a new page and is organized into the following
sections:

• Command name and a short description of the what the command does.

• Syntax section that shows the proper usage of all of the command arguments and
switches. For example:

library get ?<path>? ?<switches>? ?<args>?
Get info from the library database

<path> Hierarchical database path (Optional)
<switches> Valid switches: (Optional)

-- End <switches> parsing
-recurse <string> Everything under
-return <value|path|pathvalue|leaf|leafvalue|advanced|none>

Return data format
value just matching values
path just matching paths
pathvalue path and value combination for array set
leaf just matching leaves
leafvalue leaf and value combination for array set
advanced hierarchical list structure
none no return value

-checkpath <bool> Error on path not found
-match <exact|glob> Path match type

exact exact paths only
glob glob paths

-info <bool> Return object info
<args> Database subpath and value combinations

Table 5-4 describes the meaning of the special characters used to express command line
syntax.

• Arguments section that describes each command argument. Note that there is a group of
command switches that are common to many Catapult commands. Those switches are
documented separately in the section “Common Command Switches” on page 141,
rather than repeating the information throughout the command reference pages. A link
to that section is provided from each command reference page that uses those switches.

• Description section that describes the purpose and usage of the command.

• Examples section that provides one or more examples to illustrate how the command is
used.

Table 5-4. Documentation Conventions for Command Syntax

Symbol Description

< > Fields to be completed with your values.

?< >? Optional argument.

| The “or” symbol. Indicates mutually exclusive arguments.

Catapult C Library Builder User’s and Reference Manual, 2011a138

Commands
General Command Syntax

October 2011

• Related Commands section that provides links to other command reference pages
related to the current command.

Command Interface to the SIF Database
Every Catapult session has a SIF (synthesis internal format) database that stores the state of the
application and the loaded libraries. Data values are stored as key and value pairs, and the keys
are organized hierarchically. Data values are accessed by specifying the database path to their
corresponding keys. In general, key names and hierarchical node names are in all uppercase
letters. One notable exception is the key name name that appears in many places throughout the
database.

The diagram in Figure 5-1 is a simplified representation of the SIF database hierarchy. It shows
only the primary nodes of interest with respect to the set of Catapult C Library Builder
commands that interface with the database. Those commands are listed in Table 5-5 on
page 139.

Figure 5-1. Hierarchy of Objects in the SIF Database

The SIF database structure is not static. When a new Catapult session is started, the database is
populated with the minimum set of key/value pairs (default settings) required by the system.
Catapult dynamically creates, removes and modifies key/value pairs throughout the session.

Path and Sub-Path Argument Syntax Rules
The Catapult commands listed in Table 5-5 interact with the SIF database. These commands
accept database path and sub-path arguments in order to access specific keys in the database.

FLOWS

Application

TEMPLATESLIBS

<lib_1> <lib_n>

LIBRARY

Commands
General Command Syntax

Catapult C Library Builder User’s and Reference Manual, 2011a 139
October 2011

Many of the switches described in the section “Common Command Switches” on page 141 can
be used to control and refine how the path and sub-path arguments are evaluated by Catapult.

The root of the path argument is the node in the SIF hierarchy corresponding to the command
name. In other words, the path argument for the “application” command is rooted at the
“Application” node in the hierarchy. Similarly, the path for the “library” command is rooted at
the “Application/LIBRARY” node.

Note
The set of key/value pairs in the database changes dynamically throughout the session as
you work on the design. Use a “get” command to check for the existence of a key/value
before attempting to modify or remove it.

Using Wildcard Characters in Path Arguments

Wildcard characters can be used in <path> and <sub-path> arguments. Wildcard expansion is
enabled by the “-match glob” switch (see also “-match” on page 142). The following wildcard
reserved characters are supported:

• ‘*’ : Asterisk matches one and only one level.

Example:

library get /LIBS/*/name -match glob
#
STDOPS mgc_ioport mgc_hierarchy my_base_asic_lib

• “...” : Ellipsis matches all sub-levels.

Example:

library get /LIBS/mgc_lcbg11p_beh_dc/.../VERSION -match glob
-return pathvalue

In this example, the ellipsis wildcard expands the search to include the entire sub-tree
below the /LIBS/mgc_lcbg11p_beh_dc node. The return values are found at the
following paths:

/LIBS/mgc_lcbg11p_beh_dc/VERSION 2006a.72

Table 5-5. Commands That Take Database Path Arguments

Command Name Operators Path Root

application get / (Root of SIF)

flow get /FLOWS

flow package option add, get, set, remove /FLOWS

library add, get, set, rename,
remove

/LIBRARY

Catapult C Library Builder User’s and Reference Manual, 2011a140

Commands
General Command Syntax

October 2011

/LIBS/mgc_lcbg11p_beh_dc/FLOWS/DesignCompiler/VERSION {}

The ellipsis is not valid at the root level. For example “/.../INTERFACE” is invalid.

Using Sub-Path Arguments

Commands that take database path arguments also accept optional sub-path arguments. Sub-
paths make it possible to specify multiple variations of the path argument in a single command.
The general form of the command line is shown below.

command_name <sif_path> ?<switches>? <sub-path_1> ... <sub-path_n>

The <sif_path> argument is a partial database path that is common to all of the target objects.
A set of unique paths are formed by appending each sub-path to the partial path. In the
following example the sub-paths “name” and “VERSION” are appended to the partial path
“/FLOWPKGS/ModelSim” to form two complete paths. The “-return pathvalue” switch is
used in this example so that the resulting paths are displayed in the return value.

library get /LIBS/mgc_lcbg11p_beh_dc -return pathvalue VERSION name
/LIBS/mgc_lcbg11p_beh_dc/name mgc_lcbg11p_beh_dc

/LIBS/mgc_lcbg11p_beh_dc/VERSION 2006a.72

Error Messages Caused by Invalid Paths

If an invalid path or sub-path is specified, the command is not executed and an error message is
displayed for each invalid path. For example, the following command specifies two sub-paths,
but one is invalid. The command exits and returns a path error for the invalid one.

library get /LIBS/mgc_lcbg11p_beh_dc -return pathvalue VERSION X_name
Error: library get: Unknown path '/LIBS/mgc_lcbg11p_beh_dc/X_name'

The error can be suppressed by including the “-checkpath false” switch in the command
line. In this case, the valid file name is returned.

library get /LIBS/mgc_lcbg11p_beh_dc -return pathvalue -checkpath false
VERSION X_name

/LIBS/mgc_lcbg11p_beh_dc/VERSION 2006a.72

You can use the tcl catch command to catch the return value and then parse the results to
determine which parts of the command passed. For example:

if ([catch {library get /LIBS/mgc_lcbg11p_beh_dc -return pathvalue VERSION
X_name} msg]) {

// parse $msg for errors
...

}

Commands
General Command Syntax

Catapult C Library Builder User’s and Reference Manual, 2011a 141
October 2011

Common Command Switches
The command switches described in this section are common to most of the Catapult
commands. The switches qualify how the database is searched and how the returned data is
displayed. The same command switch may be set several times on the same line. If the same
switch is used, the last switch on the line will take precedence.

The following switches are described in this section:

-return
-checkpath
-match
-info
-recurse
-- (switch)
-help
--help

-return
The -return switch filters and formats the data returned by the command.

-return <value|path|pathvalue|leaf|leafvalue|advanced|none>

Arguments:

• value
Return only the data values stored at the database paths that match the search paths. For
example:

library get /LIBS/mgc_lcb*/MODS/*and/name -match glob -return value
mgc_and mgc_nand

• path
Return only the database paths that match the search paths. For example:

library get /LIBS/mgc_lcb*/MODS/*and/name -match glob -return path
/LIBS/mgc_lcbg11p_beh_dc/MODS/mgc_and/name
/LIBS/mgc_lcbg11p_beh_dc/MODS/mgc_nand/name

• pathvalue
Return the database paths and the data values. For example:

library get /LIBS/mgc_lcb*/MODS/*and/name -match glob
-return pathvalue

/LIBS/mgc_lcbg11p_beh_dc/MODS/mgc_and/name mgc_and
/LIBS/mgc_lcbg11p_beh_dc/MODS/mgc_nand/name mgc_nand

• leaf
Return only the leaf names of the database paths that match the search paths. For
example:

library get /LIBS/mgc_lcb*/MODS/*and/name -match glob -return leaf

Catapult C Library Builder User’s and Reference Manual, 2011a142

Commands
General Command Syntax

October 2011

name name

• leafvalue
Return the leaf names and the data values. For example:

library get /LIBS/mgc_lcb*/MODS/*and/name -match glob
-return leafvalue

name mgc_and name mgc_nand

• advanced
Return a hierarchical representation of the database paths and the data values. Each level
of hierarchy is enclosed in braces, and sub-levels are nested. For example:

library get /LIBS/mgc_lcb*/MODS/*and/name -match glob
-return advanced

LIBS {mgc_lcbg11p_beh_dc {MODS {mgc_and {name mgc_and} mgc_nand
{name mgc_nand}}}}

• none
Return nothing. Use this argument to suppress transcripting of the return value.

-checkpath
The -checkpath switch enables/disables error checking of paths.

-checkpath <true|false>

If the -checkpath switch is set to true, then the command will issue an error if any of the paths
in the command line, including paths generated by globs, do not match an existing path.

-match
The -match switch can use glob or exact matching rules.

-match <glob|exact>

The following TCL rules are used with the -match switch. If the -match switch is set to glob,
then the TCL glob rules are used to resolve the path argument. If set to exact, then the TCL
exact rules are used to resolve the path argument. Refer to “Using Wildcard Characters in Path
Arguments” on page 139 for more information about the glob option.

-info
If the -info switch is true, then the type information on each non-value node will be included in
the return value if the return value includes the specified value.

-info <true|false>

Commands
Using Tcl Commands in Scripts

Catapult C Library Builder User’s and Reference Manual, 2011a 143
October 2011

-recurse
If the -recurse switch is true, then Catapult will perform a recursive path search.

-recurse <true|false|+<depth>>

Valid values for enabling full recursion are case insensitive and include: ‘1’, “yes”, or “true”
(‘y’ and ‘t’ are sufficient). To disable it, use any other string or no string at all.

You can also limit the depth of recursion by specifying the number of levels to search. The
argument format is “+<n>”, where the plus character is required and <n> is any whole number.

-recurse +3

Note that “+1” and “1” do not mean the same thing. Without the plus character, “1” evaluates to
“true”.

-- (switch)
The -- switch disables switch parsing for the rest of the line. You can set this switch so that you
can access data objects that have names that conflict with reserved words (i.e. switches) and
reserved characters.

-help
The -help switch displays help information about the commands.

--help
The --help switch displays recursive help for hierarchical commands.

Using Tcl Commands in Scripts
You can create a basic Tcl command script by first performing the desired command steps
interactively in the GUI, and then use File > Save Session Commands... to capture the
commands in a Tcl file. After you create the Tcl script, you can use one of the following
methods to source the script from within a Library Builder session:

• Interactive Command Line

• GUI

• Command Line Invocation Argument

• Tcl Startup Script

Catapult C Library Builder User’s and Reference Manual, 2011a144

Commands
Using Tcl Commands in Scripts

October 2011

Interactive Command Line
Type the following syntax to source your Tcl script:

source <my_tcl_script>

or type the following command to execute your Tcl script:

dofile {<path>/run1.tcl}

Note
Pathnames that Contain Spaces
Microsoft Windows operating systems allow pathnames to contain spaces. Therefore it is
a good practice to enclose pathnames in curly braces ({ }) on Windows.

The dofile command is similar to the source command in that they both execute the Tcl
commands contained in a specified file. An additional feature of the dofile command is that it
also sends a message to the standard output device each time a Tcl command is executed. This
is a useful feature that you can use to help debug the Tcl script.

All UNIX/Linux commands and many DOS commands are accessible from the Catapult
command line shell as long as the command can be found in your search path (PATH
environment variable). Another helpful Tcl feature is history tracking. Type the command
“history” to view your previous commands. Any previous command can be re-executed
typing “!<history_number>” or “!<beginning_of_cmd>”. You simply type “!!” to re-execute
the last command.

GUI
On the menu bar select File > Run Script. Use the file navigator to locate, select and execute
your script. Your script file runs in the Catapult Command/Transcript window.

Command Line Invocation Argument
When invoking Library Builder from a shell window, use the “-file” argument to source your
script:

% catapult -product library_builder -shell -file <my_tcl_script>

Commands
Command Reference

Catapult C Library Builder User’s and Reference Manual, 2011a 145
October 2011

Tcl Startup Script
Create a Tcl startup script named either “catapult.tcl” or “.catapult.tcl” and place it in
one of the Catapult search directories identified below. During invocation, Library Builder
reads and executes commands in the first startup file it finds. The search algorithm is as follows:

This is a good way to automatically define frequently used Tcl procedures. And because this file
is in your home directory, you can update your Catapult software tree without overwriting this
file.

Note
Adding project or design related commands (such as “flow package require”) to the
startup script will cause errors because the script is parsed on invocation before any
project or designs are loaded.

Command Reference
Table 5-6 summarizes the commands available in Library Builder and links to the associated
command reference page.

Table 5-6. Alphabetical Command Summary

Command Description

application get Gets information from the Library Builder databases.

application exit Closes the Library Builder session and returns an exit
code.

application report Generates a report of the Catapult licenses in use by
Library Builder.

catapult -product
library_builder

The shell-level command that invokes the Catapult C
Library Builder tool.

dofile Execute the specified Tcl script and print a message as
each command in the script is executed.

flow get Queries flow database information.

flow package names Returns the names of all flow packages that are available
to Catapult.

UNIX/Linux

1 $HOME/catapult.tcl
2 $HOME/.catapult.tcl

Windows

1 %USERPROFILE%\catapult.tcl
2 %USERPROFILE%\.catapult.tcl
3 %HOME%\catapult.tcl
4 %HOME%\.catapult.tcl
5 c:\catapult.tcl
6 c:\.catapult.tcl

Catapult C Library Builder User’s and Reference Manual, 2011a146

Commands
Command Reference

October 2011

flow package option add Creates a new option for a flow package.

flow package option get Returns the value of the specified flow package option.

flow package option
remove

Deletes the specified flow package option.

flow package option set Sets the value of the specified option.

flow package provide Registers a flow package name and compatible version(s).

flow package require Loads the specified flow package.

flow package script Returns the file system path to the flow package file.

flow package vcompare Compares two version numbers and determines which one
is newer.

flow package versions Returns a list of all available versions of the specified flow
package.

flow package vsatisfies Compares two version strings and determines whether they
are compatible.

flow run Executes a flow procedure.

help command Gets help on command syntax and usage.

help message Gets help on system message codes.

library add Creates new objects in the library database.

library characterize Characterize a library or component.

library get Get data from the library database.

library import Import components into a library from HDL files.

library load Load the specified library file(s).

library rename Renames objects in the library database.

library remove Remove objects from the library database.

library report Generates a report about characterization data in the
specified libraries or library element.

library save Save one or more libraries to the file system.

library save_commands
(Deprecated)

Saves the characterization command data of the specified
library.

library set Configure objects in the library database.

logfile Controls the logfile options for the Library Builder session.

options defaults Resets all flow options to default settings

Table 5-6. Alphabetical Command Summary (cont.)

Command Description

Commands
Command Reference

Catapult C Library Builder User’s and Reference Manual, 2011a 147
October 2011

options exists Checks whether an option exists in the database.

options get Returns the value of the specified option.

options load Loads saved option settings.

options save Save the in-memory options to the Catapult registry or an
alternate file.

options set Sets the value of an option in the database.

quit Exits Library Builder.

set_working_dir Set the working directory to the specified pathname.

utility farm add Adds hosts to the library farm host database.

utility farm get Returns information about a specified host or the host
database in the Library Farm.

utility farm release Releases an allocated host.

utility farm remove Deletes hosts from the Library Farm host database.

utility farm reserve Reserves a host from the host database.

utility farm reset Resets hosts in the Library Farm host database to an idle
state.

utility farm set Configures the Library Farm host database and allocated
hosts.

Table 5-6. Alphabetical Command Summary (cont.)

Command Description

Catapult C Library Builder User’s and Reference Manual, 2011a148

Commands
application get

October 2011

application get
Gets information from the Library Builder databases.

Syntax

application get ?<path>? ?<switches>? ?<args>?

<path> Hierarchical database path (Optional)
<switches> Valid switches: (Optional)

-- End <switches> parsing
-recurse <string> Everything under
-return <value|path|pathvalue|leaf|leafvalue|advanced|none>

Return data format
value just matching values
path just matching paths
pathvalue path and value combination for array set
leaf just matching leaves
leafvalue leaf and value combination for array set
advanced hierarchical list structure
none no return value

-checkpath <bool> Error on path not found
-match <exact|glob> Path match type

exact exact paths only
glob glob paths

-info <bool> Return object info
<args> Database subpaths (Optional)

Arguments

• <path>s

Path into the Catapult SIF database. For detailed information about specifying database
paths, refer to “Command Interface to the SIF Database” on page 138.

• <switches>

Use these switches control how the database is searched and how the returned data is
displayed. These switches are common to all commands that take database path arguments.
For detailed descriptions of the switches, refer to the section, “Common Command
Switches” on page 141.

• <args> s

Sub-path(s) into the Catapult SIF database. Sub-paths are relative to the <path> argument.
For detailed information about specifying database sub-paths, refer to “Using Sub-Path
Arguments” on page 140.

Description

This command is used to get information from the library database or to get system information.

Commands
application get

Catapult C Library Builder User’s and Reference Manual, 2011a 149
October 2011

Examples

Example 1:

The following example queries the system database for the company name. The switch
“-return pathvalue” causes the command to return both the database path that was queried
and the value stored at that path.

application get /SYSTEM/COMPANY_NAME_VERBOSE -return pathvalue

The return value is:

/SYSTEM/COMPANY_NAME_VERBOSE {Calypto Design Systems Corporation}

Example 2:

This example queries for all of the path nodes under the SYSTEM node. The “-match glob”
switch is required in order to evaluate and expand the ‘*’ wildcard. The “-return” switch in
this case is set to “path” so that only the database paths are returned and not the values stored
there.

application get /SYSTEM/* -match glob -return path

The return value is:

/SYSTEM/PRODUCTS /SYSTEM/COMPANY_NAME /SYSTEM/COMPANY_NAME_VERBOSE
/SYSTEM/COMPANY_LOCATION /SYSTEM/DET_VERSION /SYSTEM/SHORT_VERSION
/SYSTEM/BUILD_NUMBER /SYSTEM/RELEASE_DATE /SYSTEM/RELEASE_VERSION
/SYSTEM/RELEASE_TYPE /SYSTEM/RELEASE_COPYRIGHT
/SYSTEM/APPLICATION_SYN_PROJECT_EXT /SYSTEM/APPLICATION_LB_PROJECT_EXT
/SYSTEM/EMAIL_SUPPORT /SYSTEM/EMAIL_LICENSE /SYSTEM/WEBPAGE
/SYSTEM/DATE_CURRENT /SYSTEM/DATE_START /SYSTEM/PW_NAME /SYSTEM/PW_PASSWD
/SYSTEM/PW_UID /SYSTEM/PW_GID /SYSTEM/PW_GECOS /SYSTEM/PW_DIR
/SYSTEM/PW_SHELL /SYSTEM/UNAME_NODENAME /SYSTEM/UNAME_SYSNAME
/SYSTEM/UNAME_VERSION /SYSTEM/UNAME_RELEASE /SYSTEM/UNAME_MACHINE
/SYSTEM/SYS_PID /SYSTEM/ENV_HOME /SYSTEM/ENV_MGC_HOME
/SYSTEM/ENV_MODEL_TECH /SYSTEM/ENV_STACK_SIZE
/SYSTEM/ENV_LIMIT_LICENSE_PID /SYSTEM/ENV_VCO /SYSTEM/ENV_APPVAR
/SYSTEM/ENV_APPHOME /SYSTEM/ENV_APP_INI /SYSTEM/ENV_KEEP_TMPS
/SYSTEM/INI_DEBUG /SYSTEM/INI_LANGUAGE /SYSTEM/INI_CACHE_DIR
/SYSTEM/INI_TCLSH_CMD /SYSTEM/ENV_TMPDIR /SYSTEM/APPLICATION_NAME
/SYSTEM/APPLICATION_SHORT /SYSTEM/APPLICATION_TITLE
/SYSTEM/APPLICATION_TITLE_SHORT /SYSTEM/APPLICATION_SUBTYPE
/SYSTEM/APPLICATION_PROJECT_EXT /SYSTEM/APPLICATION_SPLASH
/SYSTEM/APPLICATION_EXECUTABLE /SYSTEM/BANNER

Related Commands

application exit
application report

Catapult C Library Builder User’s and Reference Manual, 2011a150

Commands
application exit

October 2011

application exit
Closes the Library Builder session and returns an exit code.

Syntax

application exit ?<code>?

Arguments

• <code>

An integer value that specifies the status of the application upon exit. The set of valid values
is platform dependent, but typically a ‘0’ (zero) means a normal status and any other number
represents an error status.

Description

This command immediately terminates the Library Builder session. Any unsaved work will
be lost. The exit code, if specified, is passed to the operating system shell from with the
application was invoked.

Example

The example below closes the Library Builder session and returns a status code of ‘2’ to the
operating system.

application exit 2

Related Commands

application get
application report

Commands
application report

Catapult C Library Builder User’s and Reference Manual, 2011a 151
October 2011

application report
Generates a report of the Catapult licenses in use by Library Builder.

Syntax

application report ?<options>?

<options> Report options (Optional)
-filename <string> Write report to file
-transcript <bool> Send report to transcript
-window <bool> View report in a window
-license <bool> Inlcude license in report

Arguments

• -filename <string>

Write the report to the specified file path. The path is relative to the current working
directory for the Catapult session.

• - transcript <bool>

Send the report to the session transcript, which is also captured in the session log file. This is
the default option when the application is running in “shell” mode.

• -window <bool>

Open the report in a document window in the Catapult session. This is the default option in
the graphical user interface.

• -license <bool>

Include license information in the report.

Description

This command generates a license report and sends it to the specified output display or file.

Example

This example writes the report to file “LBreport.txt” in the current working directory.

application report -license true -filename LBreport.txt

Related Commands

application get
application exit

Catapult C Library Builder User’s and Reference Manual, 2011a152

Commands
catapult -product library_builder

October 2011

catapult -product library_builder
The shell-level command that invokes the Catapult C Library Builder tool.

Syntax

catapult -product library_builder ?<switches>? ?<project>?

<switches> Valid switches: (Optional)
-shell Start the application in shell mode
-product <library_builder|setup>

Start the specified product
Library Bulder [lb]
Setup Wizard [sw]

-file <file> Source the specified Tcl command file after invoking
-logfile <file> Create and open a log file at the specified pathname
-version Display the release version banner and exit
-mgls_license_file <string>

Specify license file location
-license <string> Specify license checkout preference (Multiple)

<project> Project file to open (Optional)

Arguments

• -shell

Use shell command line user interface instead of the graphical user interface.

• -product <library_builder | setup>

The “library_builder” argument launches the Library Builder application. The more
concise form “-library_builder” can be used instead of “-product library_builder.”

The “setup” argument launches the Catapult Setup Wizard that is used for configuring the
Catapult software installation. For more information, refer to “Using the Catapult Setup
Wizard” in the Catapult C Synthesis Installation Guide.

• -file <Tcl_script_pathname>

Source the specified Tcl command file after invoking.

• -logfile <file>

Create and open a log file at the specified path.

• -version

Display the release version banner and exit.

• -mgls_license_file <string>

Specify the path to a license file containing the Catapult C Library Builder licenses. This
switch overrides the MGLS_LICENSE_FILE environment variable. Refer to the “Licensing
Mentor Graphics Software“ for information about the MGLS_LICENSE_FILE variable.

• -license <string>

This switch gives priority to the specified Catapult composite license when Catapult
requests a license from the license server. If the specified license is not available, but a

Commands
catapult -product library_builder

Catapult C Library Builder User’s and Reference Manual, 2011a 153
October 2011

different valid license is available, the alternate will be checked out and Catapult will
display a warning message stating that an alternate license is being used.

Use multiple instances of the -license switch to specify a prioritized list of target licenses.
The order of priority is the order in which the switches appear on the command line. The
first valid license found is checked out.

If the -license switch is not used, the first valid composite found in the license file will be
checked out. For a line-by-line description of a license file, refer to the FLEXnet Licensing
End User Guide.

From within a Catapult session, you can use the following command to see a list of the
license features Catapult currently has checked out:

application report -license true

• <project>

Optionally specify a Catapult library file (.lib) to be loaded at invocation.

Description

This command invokes Catapult C Library Builder from a Shell command line. For Windows
users, the option switches can be added to the “Target” field of the Windows Shortcut.

Examples

Example 1

This example opens the Library Builder session window and loads the specified library:

catapult -product library_builder /my_libs/ram_register-file.lib

Example 2

This example opens the Library Builder in shell mode and then “sources” the specified Tcl
script.

catapult -product library_builder -shell
-file /my_libs/do_ram_register_lib.tcl

Catapult C Library Builder User’s and Reference Manual, 2011a154

Commands
dofile

October 2011

dofile
Execute the specified Tcl script and print a message as each command in the script is executed.

Syntax

dofile ?options? <filename>
-verbose -- Transcript commands and return values
-quiet -- Do not transcript commands or return values
-noerrors -- Continue processing commands even if error occurs

Arguments

• <filename>

This required argument specifies the pathname of a Tcl file to be executed. If only the leaf
name is specified, Catapult looks in the current working directory for the file.

• -verbose

During execution of the Tcl file, display commands being executed and their return values
in the transcript. Enabled by default.

• -quiet

Do not display commands or return values in the transcript.

• -noerrors

Continue processing commands even if an error occurs.

Description

The dofile command is an extension of the Tcl source command. In addition to executing a
Tcl file, the dofile command sends a message to the standard output device as each command
executes. This is very helpful when debugging a Tcl script.

Example

dofile run1.tcl

Commands
flow get

Catapult C Library Builder User’s and Reference Manual, 2011a 155
October 2011

flow get
Queries flow database information.

Syntax

flow get ?<path>? ?<switches>? ?<args>?

<path> Hierarchical database path (Optional)
<switches> Valid switches: (Optional)

-- End <switches> parsing
-recurse <string> Everything under
-return <value|path|pathvalue|leaf|leafvalue|advanced|none>

Return data format
value just matching values
path just matching paths
pathvalue path and value combination for array set
leaf just matching leaves
leafvalue leaf and value combination for array set
advanced hierarchical list structure
none no return value

-checkpath <bool> Error on path not found
-match <exact|glob> Path match type

exact exact paths only
glob glob paths

-info <bool> Return object info
<args> Database subpaths (Optional)

Arguments

• <path>

A hierarchical path into the SIF database. The root node of <path> is /FLOWS. For more
information, refer to “Command Interface to the SIF Database” on page 138.

• Common Switches

Command switches listed in the “Syntax” section above that are not described on this
command reference page are common to many of the Catapult commands. Many of these
switches control how the database is searched and how the returned data is displayed. For
information about those switches, refer to the section, “Common Command Switches” on
page 141.

• <args>

One or more arguments specifying database sub-paths to flows. Sub-paths are relative to the
<path> argument. For detailed information about specifying database sub-paths, refer to
“Using Sub-Path Arguments” on page 140.

Description

The “flow get” command queries the Catapult database for information about currently loaded
flow packages. Refer to the section “Flow Customization” in the Catapult C Synthesis User’s
and Reference Manual for information about how flows operate in Catapult and how to create
custom flow packages.

Catapult C Library Builder User’s and Reference Manual, 2011a156

Commands
flow get

October 2011

Examples

Example 1:

This example returns the SIF database paths for all of the flows currently loaded:

flow get /* -match glob -return pathvalue

The return value will be similar to the following:

/Scanner {} /DesignCompiler {} /Precision {}

Example 2:

This example gets the version number and option settings of the Precision flow package. The
<path> argument supplies a partial path that is common to both of the target data paths. The
sub-path arguments “-VERSION” and “-OPTIONS” provided the remaining portions of the paths.
The “-recurse” switch is enabled in order to traverse the OPTIONS sub-tree.

flow get /Precision -recurse true -return pathvalue -VERSION -OPTIONS

The return value shown below has been reformatted for clarity:

/Precision/VERSION 2006a.101
/Precision/OPTIONS {

FOLDERNAME {
name FOLDERNAME
type string
DESCRIPTION {Output File Folder Name}
DEFAULT Precision VALUE Precision}

}

Related Commands

flow package names
flow package option add
flow package option get
flow package option remove
flow package option set
flow package provide

flow package require
flow package script
flow package vcompare
flow package versions
flow package vsatisfies
flow run

Commands
flow package names

Catapult C Library Builder User’s and Reference Manual, 2011a 157
October 2011

flow package names
Returns the names of all flow packages that are available to Catapult.

Syntax

flow package names

Arguments

None

Description

The “flow package names” command returns a list of the flow packages in the flow index.
When initializing a new project, Catapult scans all of the flow files (.flo) in the search path and
constructs an index of the flow packages it finds. The flows are not loaded at this time, but the
index enables Catapult to load them dynamically when they are required. Refer to the section
“Flow Customization” in the Catapult C Synthesis User’s and Reference Manual for
information about how flows operate in Catapult and how to create custom flow packages.

Example

flow package names

Returns a list similar to the following:

ArtisanMemories DesignCompiler GIDEL HDL_Tcl Make ModelSim NCSim Netlist
OSCI PowerPlay PowerTheater Precision Report SCVerify SLEC Scanner
Schedule Schematic XPower

Related Commands

flow get
flow package option add
flow package option get
flow package option remove
flow package option set
flow package provide

flow package require
flow package script
flow package vcompare
flow package versions
flow package vsatisfies
flow run

Catapult C Library Builder User’s and Reference Manual, 2011a158

Commands
flow package option add

October 2011

flow package option add
Creates a new option for a flow package.

Syntax

flow package option add <path> ?<switches>?

<path> Hierarchical database path (Required)
<switches> Valid switches: (Optional)

-default <value> default value of option
-description <string> description of option
-type <type> option type

Arguments

• <path>

Hierarchical database path of the new option in the SIF database. The path is rooted at the
FLOWS node in the database and has the form /<package_name>/<option_name>. Only
the <option_name> portion is required when this command is called from within a flow
package script. When called from the command line, the whole path is required, including
the leading forward slash.

For more information about the SIF database, refer to “Command Interface to the SIF
Database” on page 138.

• -default <value>

Initializes the new option to the specified default value. If the “-default” switch is omitted,
no default value is assigned and the option is not initialized.

• -description <string>

Prompt string that appears next to the input field on the options dialog page. If the
“-description” switch is omitted, the default description text is the value of the <path>
argument.

• -type <value>

Defines the data type of the new option. Valid types are “string,” “bool,” “integer,”
“double,” “inputfile,” “outputfile,” and “directory.”

Description

The “flow package option add” command creates a new option in the database for the
specified flow package. The new option is also added to the Flows page of the options dialog
(Tools > Set Options... > Flows > package_name). If this command is implemented in a flow
script, it is only executed during the flow-indexing process, which is initiated by calling flow
package require. Refer to the section “Flow Customization” in the Catapult C Synthesis User’s
and Reference Manual for information about how flows operate in Catapult and how to create
custom flow packages.

Commands
flow package option add

Catapult C Library Builder User’s and Reference Manual, 2011a 159
October 2011

Example

The example below creates and initializes a new option named ReportFile in the flow
package MyFlowPackage. The option is initialized to my_flow.rpt, its default value. In the
GUI, the new option appears on the options page for the specified flow package, and the
description text appears next to the ReportFile option field.

flow package option add /MyFlowPackage/ReportFile -default “my_flow.rpt”
-description “Output Report Filename”

Related Commands

flow get
flow package names
flow package option get
flow package option remove
flow package option set
flow package provide

flow package require
flow package script
flow package vcompare
flow package versions
flow package vsatisfies
flow run

Catapult C Library Builder User’s and Reference Manual, 2011a160

Commands
flow package option get

October 2011

flow package option get
Returns the value of the specified flow package option.

Syntax

flow package option get <path> ?-nocomplain?

<path> Hierarchical database path (Required)
<switches> Valid switches: (Optional)

-nocomplain Do not error if package or option is not defined

Arguments

• <path>

A pseudo path into the SIF database that has the form /<package_name>/<option_name>.
The pseudo path is a shorthand form of the true database path to flow option values:
/<package_name>/OPTIONS/<option_name>/VALUE.

The path is rooted at the FLOWS node in the database. The leading forward slash is
required.

• -nocomplain

Disable error reporting. If the command encounters an error, no error message is reported
and the command does not terminate.

Description

The “flow package option get” command returns the current value of the specified flow
package option. This command is the preferred method of accessing flow option settings
because is takes a simplified form of the <path> argument, as compared to the “flow get”
command.

An error status is returned if the option value is not defined or if <path> is not valid.

Example

The example below returns the value of the option FOLDERNAME in package Precision. Error
reporting is disabled by the -nocomplain switch. The return value is “Precision“.

flow package option get /Precision/FOLDERNAME -nocomplain
Precision

Related Commands

flow get
flow package names
flow package option add
flow package option remove
flow package option set
flow package provide

flow package require
flow package script
flow package vcompare
flow package versions
flow package vsatisfies
flow run

Commands
flow package option remove

Catapult C Library Builder User’s and Reference Manual, 2011a 161
October 2011

flow package option remove
Deletes the specified flow package option.

Syntax

flow package option remove <path> ?-nocomplain?

<path> Hierarchical database path (Required)
<switches> Valid switches: (Optional)

-nocomplain Do not error if package or option is not defined

Arguments

• <path>

A pseudo path into the SIF database that has the form /<package_name>/<option_name>.
The pseudo path is a shorthand form of the true database path to flow option values:
/<package_name>/OPTIONS/<option_name>/VALUE.

The path is rooted at the FLOWS node in the database. The leading forward slash is
required.

• -nocomplain

Disable error reporting. If the command returns an error, no error message is reported and
the script does not terminate.

Description

The “flow package option remove” command deletes the option from the SIF database.
However, it is not deleted from the Flows options dialog in the GUI.

This command can be used in flow package scripts only if it is in global context (not inside a
procedure), and it is valid only in the flow-indexing safe interpreter (Refer to the section “Safe
Interpreters” in the Catapult C Synthesis User’s and Reference Manual). This command can
also be called from the command line.

Example

The example below deletes the option ReportFile in package MyflowPackage. Error reporting
is disabled by the -nocomplain switch.

flow package option remove /MyflowPackage/ReportFile -nocomplain

Related Commands

flow get
flow package names
flow package option add
flow package option get
flow package option set
flow package provide

flow package require
flow package script
flow package vcompare
flow package versions
flow package vsatisfies
flow run

Catapult C Library Builder User’s and Reference Manual, 2011a162

Commands
flow package option set

October 2011

flow package option set
Sets the value of the specified option.

Syntax

flow package option set <path> <value>

<path> Hierarchical database path (Required)
<value> value of option (Required)

Arguments

• <path>

A pseudo path into the SIF database that has the form /<package_name>/<option_name>.
The pseudo path is a shorthand form of the true database path to flow option values:
/<package_name>/OPTIONS/<option_name>/VALUE.

The path is rooted at the FLOWS node in the database. The leading forward slash is
required.

• <value>

String value assigned to the flow package option.

Description

The “flow package option set” command assigns a string value to the specified flow
package option. This command can be used in flow package scripts only if it is in global context
(not inside a procedure), and it is valid only in the flow-indexing safe interpreter (Refer to the
section “Safe Interpreters” in the Catapult C Synthesis User’s and Reference Manual)). This
command can also be called from the command line.

Example

The example below assigns the value project.rpt to option ReportFile in package
MyflowPackage.

flow package option set /MyflowPackage/ReportFile “project.rpt”

Related Commands

flow get
flow package names
flow package option add
flow package option get
flow package option remove
flow package provide

flow package require
flow package script
flow package vcompare
flow package versions
flow package vsatisfies
flow run

Commands
flow package provide

Catapult C Library Builder User’s and Reference Manual, 2011a 163
October 2011

flow package provide
Registers a flow package name and compatible version(s).

Syntax

flow package provide <path> <package> ?<switches>?

<path> path (Required)
<package> package name (Required)
<switches> Valid switches: (Optional)

-require <package ?version ?exact??>
require additional flow package

-description <string> flow package description
-hidden <bool> set hidden flag

Arguments

• <path>

The file system path to a flow package file (*.flo). This argument is only required if the
“flow package provide” command is called from the Catapult command line. Typically
the command is called from within a flow package file. In that context this argument
superfluous.

• <package>

The name of the flow package. This is the name by which the package will be indexed and
referenced in the Catapult system database.

• -require <package ?version ?exact??>

Require an additional flow package. If the current flow package depends on another flow
package, the option will “require” the other package if it is not already loaded. Optionally
specify the version label for the dependent flow package. Refer to “flow package require”
on page 165.

For more information about flow package versioning, refer to the section “Flow
Customization” in the Catapult C Synthesis User’s and Reference Manual.

• -description <string>

A string describing the flow package. This string is stored in the SIF database.

• -hidden <bool>

Enable this switch to hide the flow in the Catapult GUI. Default value is ‘0’ (false).

Description

The “flow package provide” command registers a package name and version(s) in the
Catapult system database. Each time a new project is created, Catapult locates all flow package
files in the Flows Search Path, then generates an index of flow packages based on the “flow
package provide” command in each file. For more information about how flow packages are
loaded, refer to the section “Flow Customization” in the Catapult C Synthesis User’s and
Reference Manual.

Catapult C Library Builder User’s and Reference Manual, 2011a164

Commands
flow package provide

October 2011

Example

The example below adds the package My_Reports to the flow package index, and declares that
it is compatible with scripts written for the listed versions.

flow package provide My_Reports -description “Generates custom reports”
v2.4 v2.5 v3.0

Related Commands

flow get
flow package names
flow package option add
flow package option get
flow package option remove
flow package option set

flow package require
flow package script
flow package vcompare
flow package versions
flow package vsatisfies
flow run

Commands
flow package require

Catapult C Library Builder User’s and Reference Manual, 2011a 165
October 2011

flow package require
Loads the specified flow package.

Syntax

flow package require ?<switches>? <package> ?<version>?

<switches> Valid switches: (Optional)
-exact versions must exactly match
-source loads the package source into the current package

<package> package name (Required)
<version> Version (Optional)

Arguments

• <package>

Name of a flow package that exists in the Catapult index. Use the flow package names
command to get a list of all indexed flow packages.

• -exact

The “-exact” switch must be used in conjunction with the <version> argument. It forces
Catapult to use the exact <version> specified. If the switch is omitted, Catapult will load
the latest compatible version of the package. flow package names

• -source

When the flow package require command is called form inside of a flow package file, the
“-source” switch causes the required package to be loaded into the current package. Thus,
flow from the required package and the current package will run in the same Tcl interpreter.

• <version>

Specifies the version of the flow package to load. Use the flow package versions command
to get a list of available versions for the package. If no version is specified, the latest version
will be loaded. For more information about flow package versioning, refer to the section
“Flow Customization” in the Catapult C Synthesis User’s and Reference Manual.

Description

The “flow package require” command makes the flows in the named package available in
the session. Packages must be required before their flows can be run. If the specified package is
already available, no change is made.

A flow package can access flows from a another flow package in two ways:

1. flow package require <package_name>

flow run <package_name>/<flow_name>

2. flow package require <package_name> -source <flow_name>

In the first method, the required package remains external to the current package and you must
use the flow run command to invoke its flows. Furthermore, its flows are run in a separate Tcl
interpreter. In the second method, the required package in inlined into the current package, and

Catapult C Library Builder User’s and Reference Manual, 2011a166

Commands
flow package require

October 2011

flows from both packages share the same Tcl interpreter. Be aware that sharing the same
interpreter can lead to errors caused by conflicting names of global variables or processes.

Flow code is not loaded into the tool, but is read from the file system each time it is run. For
more information about how flow packages are loaded, refer to the section “Flow
Customization” in the Catapult C Synthesis User’s and Reference Manual. To get a list of
available flow packages, use the flow package names command.

Example

The example below loads flow package My_Report, version “v3.0”.

flow package require -exact My_Reports v3.0

Related Commands

flow get
flow package names
flow package option add
flow package option get
flow package option remove
flow package option set

flow package provide
flow package script
flow package vcompare
flow package versions
flow package vsatisfies
flow run

Commands
flow package script

Catapult C Library Builder User’s and Reference Manual, 2011a 167
October 2011

flow package script
Returns the file system path to the flow package file.

Syntax

flow package script <package> <version>

<package> package name (Required)
<version> package version (Required)

Arguments

• <package>

The name of a flow package that is currently in the package index. To get a list of all
indexed packages use flow package names.

• <version>

Specifies the version of the flow package to query. Use the flow package versions command
to get a list of available versions for the package. For more information about flow package
versioning, refer to the section “Flow Customization” in the Catapult C Synthesis User’s
and Reference Manual.

Description

The “flow package script” command returns the full file system path to the flow package
file for the specified package name.

Example

flow package script Precision 2006a.101

Returns the following path:

/Catapult/mgc_home/pkgs/sif/userware/En_na/flows/app_psr.flo

Related Commands

flow get
flow package names
flow package option add
flow package option get
flow package option remove
flow package option set

flow package provide
flow package require
flow package vcompare
flow package versions
flow package vsatisfies
flow run

Catapult C Library Builder User’s and Reference Manual, 2011a168

Commands
flow package vcompare

October 2011

flow package vcompare
Compares two version numbers and determines which one is newer.

Syntax

flow package vcompare ?<switches>? <version1> <version2>

<switches> Valid switches: (Optional)
-nocomplain Do not error if either version is invalid

<version1> version for comparison (Required)
<version2> version for comparison (Required)

Arguments

• <version1> and <version2>

Flow package versions to be compared. Use the flow package versions command to get a
list of available versions for the package.

• -nocomplain

Do not report an error if either <version> argument is invalid.

Description

The “flow package vcompare” command compares the ordinal value of <version1> to
<version2> and returns a status as follows:

For more information about flow package versioning, refer to the section “Flow Customization”
in the Catapult C Synthesis User’s and Reference Manual.

Example

The example below compares the version strings “2007a.12” and “2007a.15” and returns the
status “-1” that indicates string 2 (2007a.15) is the more recent version.

flow package vcompare 2007a.12 2007a.15
-1

Table 5-7.

Status Description

-1 <version1> is older (lower ordinal value)

0 <version1> and <version2> are equivalent

1 <version1> is newer (higher ordinal value)

Commands
flow package vcompare

Catapult C Library Builder User’s and Reference Manual, 2011a 169
October 2011

Related Commands

flow get
flow package names
flow package option add
flow package option get
flow package option remove
flow package option set

flow package provide
flow package require
flow package script
flow package versions
flow package vsatisfies
flow run

Catapult C Library Builder User’s and Reference Manual, 2011a170

Commands
flow package versions

October 2011

flow package versions
Returns a list of all available versions of the specified flow package.

Syntax

flow package versions <package>

<package> package name (Required)

Arguments

• <package>

Required argumnet that specifies the name of a flow package currently in the package index.
To get a list of all indexed packages use flow package names.

Description

The “flow package versions” command returns the list of all versions of the specified flow
package. For more information about flow package versioning, refer to the section “Flow
Customization” in the Catapult C Synthesis User’s and Reference Manual.

Example

The example below returns the list of versions for the Precision flow package

flow package version Precision
2006a1.18 2006a.101 2005c.151 2005c.128 2005b.110 2005c.99 2005b.91
2005c.79 2005a.69 2005a.56 2004a.75 2004b.67 2004c.45

Related Commands

flow get
flow package names
flow package option add
flow package option get
flow package option remove
flow package option set

flow package provide
flow package require
flow package script
flow package vcompare
flow package vsatisfies
flow run

Commands
flow package vsatisfies

Catapult C Library Builder User’s and Reference Manual, 2011a 171
October 2011

flow package vsatisfies
Compares two version strings and determines whether they are compatible.

Syntax

flow package vsatisfies ?<switches>? <version1> <version2>

<switches> Valid switches: (Optional)
-exact versions must be equivalent

<version1> version for comparison (Required)
<version2> version for comparison (Required)

Arguments

• -exact

Specifies that both versions must be equivalent.

• <version1> and <version2>

Flow package versions to be compared. Use the flow package versions command to get a
list of available versions for the package. For more information about flow package
versioning, refer to the section “Flow Customization” in the Catapult C Synthesis User’s
and Reference Manual.

Description

The “flow package vsatisfies” command compares the ordinal value of <version1> to
<version2>. If <version1> is lower, it is not compatible with <version2> and the return status
is ‘0’. If <version1> is greater than, or equal to <version2>, the versions are compatible and the
return status is ‘1’.

Example

This example compares two versions of the Precision flow package to demonstrate their ordinal
relationship and compatibility. First, version1 is compared to version2. Then the order is
reversed and version2 is compared to version1.

flow package vsatisfies 2005c.151 2005c.128
1
flow package vsatisfies 2005c.128 2005c.151
0

In the first case, version “2005c.151” is compatible with version “2005c.128“. The second
case, however, shows that the reverse is not true.

Related Commands

flow get
flow package names
flow package option add
flow package option get
flow package option remove
flow package option set

flow package provide
flow package require
flow package script
flow package vcompare
flow package versions
flow run

Catapult C Library Builder User’s and Reference Manual, 2011a172

Commands
flow run

October 2011

flow run
Executes a flow procedure.

Syntax

flow run <flow>

<flow> flow name (Required)

Arguments

• <flow>

Hierarchical database path to the flow procedure. The path is rooted at the flo node in the
database and has the form /<package_name>/<flow_name>. The leading forward slash is
required. The /<package_name> portion can be omitted if <flow_name> is in the same
package with the “flow run” command.

Description

The “flow run” command launches the specified flow procedure. This command is mainly
used for running the “library add” flows provided with the Library Builder. For details about
how to use this command with those flows, refer to “Creating a New Library” on page 51.

Example

The following command runs the “library add” flow in the “DesignCompiler” flow package.
The flow arguments specify the library template type “base” (Base ASIC Library) and its
required initial values. (Line breaks have been added to improve readability)

flow run /DesignCompiler/library add base \
-libname my_lib \
-libtitle my_lib \
-vendor Sample \
-technology 180nm \
-link_library sample_180nm.db \
-target_library sample_180nm.db

Related Commands

flow get
flow package names
flow package option add
flow package option get
flow package option remove
flow package option set

flow package provide
flow package require
flow package script
flow package vcompare
flow package versions
flow package vsatisfies

Commands
help command

Catapult C Library Builder User’s and Reference Manual, 2011a 173
October 2011

help command
Gets help on command syntax and usage.

Syntax

help command ?<args>?

<args> <pattern> | <command> <args> ... (Optional)

Arguments

• <args>

This argument specifies a Library Builder command name for which help information is
returned. The “<pattern> | <command>” field represents the first word in the command
name and can be expressed as a literal string or a wildcard glob expression using the asterisk
(‘*’) character. The “<args> ...” field represents any additional words in the command
name. For information about Tcl command syntax with respect to Catapult command
names, refer to “General Command Syntax” on page 135.

Description

The help command returns help on the syntax and usage of Library Builder commands. If
no command name is specified, a list of command names is returned.

Note
Note, help about command usage is also accessible by invoking the command with the
“-help” switch. For example, “library -help” or “library add -help”. The
“--help” (double dash) option displays recursive help for hierarchical commands.

Examples

Example 1:

This example returns only the list of command names because <args> is omitted.

help command

User commands:
application
flow
help
library
logfile
options
set_working_dir
utility
view

Example 2:

This example returns the syntax for all of the “view” command operators (schedule, schematic,
file and source):

Usage: view <type> View or edit design files

Catapult C Library Builder User’s and Reference Manual, 2011a174

Commands
help command

October 2011

<type> Operation for <object> (Required)
--
file <filepath> ?<switches>?
Any file type
<filepath> Relative or absolute file path (Required)
<switches> Valid switches: (Optional)
-filetype <string>
file type
-branch <string>
name
--
library Edit library

Related Commands

help message

Commands
help message

Catapult C Library Builder User’s and Reference Manual, 2011a 175
October 2011

help message
Gets help on system message codes.

Syntax

help message <id> ?<switches>?

<id> message identifier (Required)
<switches> Valid switches: (Optional)

-description return message long description
-hasdescription return true if message has long description
-minseverity return message minimum severity
-severity return message severity

Arguments

• <id>

Each system message has a unique identifier associated with it, which is displayed in the
transcript window at the end of the short description. The identifiers are composed of two
elements, a text label that indicates type of operation that was being performed when the
message was generated, and an integer to uniquely identify each message associated with a
label. Some examples are:

ASSERT-1
CIN-6
LOOP-4
PRJ-1

• -description | -hasdescription | -minseverity | -severity

One of these four optional switches can be used to specify the type of information that is
returned. If none is specified, “-description” is the default.

Description

The “help message” command returns help information about Catapult system message codes
(IDs). Catapult displays a brief form of system messages (error, warning and info) in the
transcript window. At the end of the brief message is a message ID that, in many cases,
corresponds to a longer, more detailed description of the message. The “-hasdescription”
switch tells you whether or not a long description is available. Use the “-description” switch
to get the long description. (In the GUI you can simply double-click on the ID to the view the
long description.)

The “-severity” and “-minseverity” return the present severity setting and the minimum
severity setting of the message. The severity level (“error”, “Warning” or “Information”) of a
message is user-configurable. For more information about Catapult system message IDs and
severity classifications, refer to “Set Messages Options” on page 27.

Catapult C Library Builder User’s and Reference Manual, 2011a176

Commands
help message

October 2011

Examples

Example 1:

This example first shows the how the short form of the “LOOP-4” message would appear in the
transcript window. Following that, the “help message” command is used to get the long
description.

Short form of message:

fir_filter.cpp(26): Loop
'/fir_filter/fir_filter_proc/fir_filter_main/SHIFT' is left rolled.
(LOOP-4)

Get the long form of the message:

help message LOOP-4 -description
The loop listed in this message is not being unrolled. This could be
because the UNROLL directive is set to "no" for this loop. Or it could be
because the UNROLL directive is set to "yes" but the number of iterations
is not known.

Example 2:

This example calls the “help message” command twice to the get severity information about
the “LOOP-4” message.

Current severity:

help message ASSERT-1 -severity
error

Minimum severity:

help message ASSERT-1 -minseverity
warning

Related Commands

help command

Commands
library add

Catapult C Library Builder User’s and Reference Manual, 2011a 177
October 2011

library add
Creates new objects in the library database.

Syntax

library add ?<path>? ?<switches>? ?<args>?

<path> Hierarchical database path (Optional)
<switches> Valid switches: (Optional)

-- End <switches> parsing
-return <value|path|pathvalue|leaf|leafvalue|advanced|none>

Return data format
value just matching values
path just matching paths
pathvalue path and value combination for array set
leaf just matching leaves
leafvalue leaf and value combination for array set
advanced hierarchical list structure
none no return value

-checkpath <bool> Error on path not found
-match <exact|glob> Path match type

exact exact paths only
glob glob paths

-info <bool> Return object info
-no_a_rst <value> Suppress asynchronous RAM reset
-no_s_rst <value> Suppress synchronous RAM reset

<args> Database subpaths (Optional)

Arguments

• <path>

A hierarchical path into the SIF database. The root node of <path> is /LIBRARY. For more
information, refer to “Command Interface to the SIF Database” on page 138.

• Common Switches

Command switches listed in the “Syntax” section above that are not described on this
command reference page are common to many of the Catapult commands. Many of these
switches control how the database is searched and how returned data displays. For more
information, see “Common Command Switches” on page 141.

• -no_a_rst

Creates a property on the binding to suppress the asynchronous reset on a RAM interface.
The propery value can be set to one of the following values:

1 — unconditionally suppresses the reset.

Name of a module parameter (width, en_active) — suppresses the reset when the
value of the specified parameter is 1.

The RTL model must be modified before simulation.

Catapult C Library Builder User’s and Reference Manual, 2011a178

Commands
library add

October 2011

• -no_s_rst

Creates a property on the binding to suppress the synchronous reset on a RAM interface.
The property value can be set to one of the following values:

1 — unconditionally suppresses the reset.

Name of a module parameter (width, en_active) — suppresses the reset when the
value of the specified parameter is 1.

The RTL model must be modified before simulation.

• <args>

Sub-path(s) into the Catapult SIF database. Sub-paths are relative to the <path> argument.
For detailed information about specifying database sub-paths, refer to “Using Sub-Path
Arguments” on page 140.

Description

Library add creates new objects in the library database.

Example

Example 1:

The following example uses the “library add” command to create a new variable (my_var) in
a library (my_lib), and assigns it the value “hello”. The “library get” commands are
included to show how the database is changed by the add command.

library get /LIBS/my_lib/VARS/my_var/* -match glob -return pathvalue
Error: library get: Unknown path '/LIBS/my_lib/VARS/my_var'

library add /LIBS/my_lib/VARS/my_var -VALUE “hello”

library get /LIBS/my_lib/VARS/my_var/* -match glob -return pathvalue
/LIBS/my_lib/VARS/my_var/name my_var
/LIBS/my_lib/VARS/my_var/type void
/LIBS/my_lib/VARS/my_var/VALUE hello
/LIBS/my_lib/VARS/my_var/REQUIRED 1
/LIBS/my_lib/VARS/my_var/DEFINED_VALUE 1

Example 2:

The following example removes the reset ports/parameters from an existing RAM library object
and sets the necessary property on the object to tell Catapule that no reset is needed:

set lib ram_sample-065nm-dualport_beh_dc
set lp "/LIBS/$lib/MODS"
library load ${lib}.lib

#remove the synchronous reset port
library remove $lp/RAM_separateRW/PORTS/s_rst --
#Remove parameter that defines active phase of the synchronous reset
library remove $lp/RAM_separateRW/PARAMETERS/s_reset_active --
#Remove generic related to port
library remove $lp/RAM_separateRW/NETLIST/GENERICS/VALUE -- -4

Commands
library add

Catapult C Library Builder User’s and Reference Manual, 2011a 179
October 2011

#Set property on the RAM to tell Catapult a sync reset is not needed
library add $lp/RAM_separateRW/BINDINGS/all/PROPERTY_MAPPING -- -no_s_rst
1

#remove the asynchronous reset port
library remove $lp/RAM_separateRW/PORTS/a_rst --
#Remove parameter that defines active phase of the asynchronous reset
library remove $lp/RAM_separateRW/PARAMETERS/a_reset_active --
#Remove generic related to port
library remove $lp/RAM_separateRW/NETLIST/GENERICS/VALUE -- -4
#Set property on the RAM to tell Catapult an async reset is not needed
library add $lp/RAM_separateRW/BINDINGS/all/PROPERTY_MAPPING -- -no_a_rst
1

library save /LIBS/ram_sample-065nm-dualport_beh_dc -filename ram_sample-
065nm-dualport_beh_dc.lib

Related Commands

library edit
library characterize
library get
library import
library load

library rename
library remove
library report
library save
library save_commands (Deprecated)
library set

Catapult C Library Builder User’s and Reference Manual, 2011a180

Commands
library characterize

October 2011

library characterize
Characterize a library or component.

Syntax

library characterize ?<args>?
<args> path(s) (Optional)

Arguments

• <args>

Hierarchical path(s) into the SIF database. A path can specify an entire library, a module
(MOD) or a qualified module (QMOD). The root node of <path> is /LIBRARY. For more
information, refer to “Command Interface to the SIF Database” on page 138.

Description

This command is used to characterize one or more qualified library modules. Specifying a
module will characterize all qualified modules it contains. Similarly, specifying the entire
library will characterize all modules in the library.

Examples

Example 1:

This example characterizes the entire library.

library characterize /LIBS/my_lib

Example 2:

This example characterizes the all qualified modules under the “mgc_not” module.

library characterize /LIBS/my_lib/MODS/mgc_not

Example 3:

This example characterizes the qualified module “mgc_not(4)” under the “mgc_not” module.

library characterize /LIBS/my_lib/MODS/mgc_add/QMODS/mgc_not(4)

Related Commands

library add
library edit
library get
library import
library load

library rename
library remove
library report
library save
library save_commands (Deprecated)
library set

Commands
library edit

Catapult C Library Builder User’s and Reference Manual, 2011a 181
October 2011

library edit
Open a library in the Library Editor window.

Syntax

library edit <lib_path>

Arguments

• <path>

This required argument specifies the database path to a library that has been loaded.
However, only the library name is required since all libraries share the same path
(/LIBS/<lib_name>). For more information about the SIF database, refer to “Command
Interface to the SIF Database” on page 138.

Description

This command opens the Library Editor window and loads the specified library.

Examples

The following example shows the two equivalent forms for specifying the target library.

library edit /LIBS/my_lib

library edit my_lib

Related Commands

library add
library characterize
library get
library import
library load

library rename
library remove
library report
library save
library save_commands (Deprecated)
library set

Catapult C Library Builder User’s and Reference Manual, 2011a182

Commands
library get

October 2011

library get
Get data from the library database.

Syntax

library get ?<path>? ?<switches>? ?<args>?

<path> Hierarchical database path (Optional)
<switches> Valid switches: (Optional)

-- End <switches> parsing
-recurse <string> Everything under
-return <value|path|pathvalue|leaf|leafvalue|advanced|none>

Return data format
value just matching values
path just matching paths
pathvalue path and value combination for array set
leaf just matching leaves
leafvalue leaf and value combination for array set
advanced hierarchical list structure
none no return value

-checkpath <bool> Error on path not found
-match <exact|glob> Path match type

exact exact paths only
glob glob paths

-info <bool> Return object info
<args> Database subpaths (Optional)

Arguments

• <path>s

A hierarchical path into the SIF database. The root node of <path> is /LIBRARY. For more
information, refer to “Command Interface to the SIF Database” on page 138.

• Common Switches

Command switches listed in the “Syntax” section above that are not described on this
command reference page are common to many of the Catapult commands. Many of these
switches control how the database is searched and how the returned data is displayed. For
information about those switches, refer to the section, “Common Command Switches” on
page 141.

• <args>

Sub-path(s) into the Catapult SIF database. Sub-paths are relative to the <path> argument.
For detailed information about specifying database sub-paths, refer to “Using Sub-Path
Arguments” on page 140.

Description

This command queries the Catapult SIF database for information about the specified library.
Data for each library is stored in a separate sub-tree in the database. All libraries in the database
have the same general hierarchical structure. Figure 5-2 is a simplified representation of a
library sub-tree. It shows only the nodes that may be of interest to the user.

Commands
library get

Catapult C Library Builder User’s and Reference Manual, 2011a 183
October 2011

Figure 5-2. Nodes of Interest in the Library Database Hierarchy

The actual set of nodes in any particular library is unique because of the dynamic nature of the
SIF database. When a library is first created, the database is populated with the minimum set of
nodes to represent the library. As you work on the library, Catapult adds/removes nodes
accordingly.

Examples

Example 1:

The following example gets the names of all libraries in the database. The asterisk (*) wildcard
in the <path> argument is used to match all nodes (libraries) under the LIBS node. The “-match
glob“ switch is required when wildcard expressions are used. The <path> resolves to the
“name” key in each library. The “-return value” switch filters the query results to exclude all
but the data values for the target key.

library get /LIBS/*/name -match glob -return value
STDOPS mgc_ioport mgc_hierarchy my_asic_lib

Example 2:

This example get the characterization status for all modules whose names end with “or”. The
<path> argument specifies the target module nodes, and the two sub-path arguments specify the

/LIBS/<library>

VARS

Key/value pair
Hierarchical node

name

TEMPLATENAME

TYPE VERSIONMODS

<mod_0> <mod_n>

<mod_1>

name

status

<qmod_0>

QMODS

RUNTIME_SECS

OPERATORS

PATHNAME

DATASETS

<qmod_n><qmod_x>

Catapult C Library Builder User’s and Reference Manual, 2011a184

Commands
library get

October 2011

target keys (“name” and “STATUS”) in each module. The “-return leafvalue” filters the
results to include the leaf node of the path (database key in this case) and the value at that node.

library get /LIBS/my_asic_lib/MODS/*or -match glob -return leafvalue
-- -name -STATUS

name mgc_or STATUS PENDING name mgc_nor STATUS PENDING name mgc_xor
STATUS PENDING name mgc_xnor STATUS PENDING

The command matched four modules, mgc_or, mgc_nor, mgc_xor and mgc_xnor. Each has
“PENDING” status.

Example 3:

This example returns the “technology” and “vendor” settings for the library. The “-return
pathvalue” switch shows you the fully resolved database path for each target node.

library get /LIBS/my_asic_lib/VARS -return pathvalue technology/VALUE
vendor/VALUE

/LIBS/my_asic_lib/VARS/vendor/VALUE {LSI Logic}
/LIBS/my_asic_lib/VARS/technology/VALUE sample-130nm

Related Commands

library add
library characterize
library edit
library import
library load

library rename
library remove
library report
library save
library save_commands (Deprecated)
library set

Commands
library import

Catapult C Library Builder User’s and Reference Manual, 2011a 185
October 2011

library import
Import components into a library from HDL files.

Syntax

library import ?<switches>? ?<files>?

<switches> Valid switches: (Optional)
-module <string> Name of module to import
-operator <string> Name of operator to import
-vhdl Import VHDL netlist
-vhdl_libmap <name> <path>

VHDL library mapping (Required)
-property_map <propname> <propval>

Adds the property propname, propval to
the All bindings for all imported mods
(Required)

-port_default <portname> <default>
Adds the default value 'default' to the
named port (Required)

-non_char_param <parameter>
Makes the named parameter an HDL generic only (not
a characterization param)

-input_register <portname>
Adds the INPUT_REGISTER flag to the named
port (must be an input port)(Required)

-char_range <param> <range_str>
Adds the named range to the CHAR_RANGE of
the named parameter (Required)

-add_variable <varname,> <value>
Adds the named variable / value to the VARS
the named parameter (Required)

-vhdl_option <string>Passes <string> as an option to the VHDL parser to
specify the VHDL language version, either '-87' or
'-93'(default). Example: -vhdl_option -87

-verilog Import Verilog netlist
-verilog_option <string>

Passes <string> as an option to the Verilog parser
to specify the Verilog language version, either
'-2001' or '-95'(default).
Example: -verilog _option -2001

-get_tops List top level modules
-libname <string> Name of library to import to
-mod_type <ram|rom|inport|outport|inoutport|userop|userop_withstate>

Module type
ram ram
rom rom
inport inport
outport outport
inoutport inoutport
userop userop
userop_withstate userop_withstate

<files> files to import (Optional)

Catapult C Library Builder User’s and Reference Manual, 2011a186

Commands
library import

October 2011

Description

The library import command creates a component library from an HDL/C++ input file.
Some editing of the imported components may be necessary. The VHDL parser used by the
library import command infers many pre-defined VHDL attributes to improve the
mapping process and require less editing of the output library. For more information, see
“Pre-defined VHDL attributes” on page 186.

Pre-defined VHDL attributes

This library import command can create fully defined library modules from properly
written VHDL IP source files. This eliminates the need to interactively add properties to the
new library after it is created.

The predefined VHDL attributes used by the library import command are described in
the following sections:

• BINDINGS Attribute

• PINASSOC Attribute

• PORT_DEFAULT Attribute

• PROP_MAP_Always and PROP_MAP_Area Attributes

• PROP_MAP_<property_name> Attributes

• CHAR_RANGE Attribute

• INPUT_REGISTER Attribute

• NON_CHAR_PARAM Attribute

• VAR_<variable_name> Attribute

BINDINGS Attribute

This attribute marks the operator bindings used by the imported IP. The string is a comma-
separated list of operator names and is applied to the ENTITY. The standard operator bindings
are read_port, write_port, read_ram, write_ram and read_rom.

Examples:

attribute BINDINGS : string;

attribute BINDINGS of i2s_input_wait_es : entity is "read_port";

PINASSOC Attribute

This attribute defines the PINASSOC types/values for the port bindings. It is applied to an
ENTITY PORT. The string is a comma-separated list of specifications of the form:

"<oper_name>:<pinassoc_type>:<pinassoc_value>:<phase>"

where:

Commands
library import

Catapult C Library Builder User’s and Reference Manual, 2011a 187
October 2011

<oper_name>: Names one of the port bindings from the BINDINGS attribute. The asterisk
character (“*”) can be used to create the PINASSOC for this port for all of
the port bindings.

<pinassoc_type> : Can be one of the following values: SIGNAL, CONSTANT or
WAITON.

<pinassoc_value>: Can be one of the following values: [CLOCK], [A_RST], [S_RST],
[ENABLE], [EXTERNAL], [DIRECT] or [GLOBAL].

<phase>: Specifies whether the signal is active high (“1”) or active low (“0”). Can also
be an expression using generics that resolves to 1 or 0.

Examples:

attribute PINASSOC : string;

attribute PINASSOC of SysClk : signal is "*:SIGNAL:[CLOCK]:";

attribute PINASSOC of a_rst : signal is "*:SIGNAL:[A_RST]:arst_active";

attribute PINASSOC of i2s_sclk : signal is "*:SIGNAL:[GLOBAL]:";

attribute PINASSOC of i2s_ws : signal is "*:SIGNAL:[GLOBAL]:";

attribute PINASSOC of sdin : signal is "*:SIGNAL:[EXTERNAL]:";

attribute PINASSOC of pdin : signal is "read_port:OPERATOR_PIN:D:";

attribute PINASSOC of pdin_req : signal is "*:CONSTANT:1:";

attribute PINASSOC of pdin_ack : signal is "*:WAITON::";

PORT_DEFAULT Attribute

This attribute defines the default value for Catapult to drive onto the port. The string is any
expression. This attribute is applied to ENTITY PORTS.

Examples:

attribute PORT_DEFAULT : string;

attribute PORT_DEFAULT of a_rst : signal is "1 - arst_active";

attribute PORT_DEFAULT of pdin_req : signal is "0";

PROP_MAP_Always and PROP_MAP_Area Attributes

These attributes define the values for certain fixed PROPERTY_MAPPINGS that apply only to
the "all" BINDING in the library. These attributes are applied to the ENTITY.

Examples:

attribute PROP_MAP_Always : string;

Catapult C Library Builder User’s and Reference Manual, 2011a188

Commands
library import

October 2011

attribute PROP_MAP_Always of i2s_input_wait_es :
entity is "bits_per_frame >= 2^bits(width/2)";

attribute PROP_MAP_Area : string;

attribute PROP_MAP_Area of i2s_input_wait_es : entity is "interpolate(1)";

PROP_MAP_<property_name> Attributes

These attributes define the values for certain fixed PROPERTY_MAPPINGS, (such as “Delay”,
“SeqDelay”, InitDelay”, “Count”) that can be applied to the specified operator binding(s).
These attributes are applied to the ENTITY. The string is a comma-separated list of the form:

"<oper_name>:<expression>"

where:

<oper_name>: Names one of the operator bindings from the BINDINGS attribute. The
asterisk character (“*”) can be used to create the PROPERTY_MAPPING
for all of the operator bindings for the module.

<expression> : Can be any expression.

Examples:

attribute PROP_MAP_Delay : string;

attribute PROP_MAP_Delay of i2s_input_wait_es :
entity is "*:interpolate(1)";

attribute PROP_MAP_SeqDelay : string;

attribute PROP_MAP_SeqDelay of i2s_input_wait_es :
entity is "read_port:0";

attribute PROP_MAP_InitDelay : string;

attribute PROP_MAP_InitDelay of i2s_input_wait_es :
entity is "read_port:1";

CHAR_RANGE Attribute

This attribute defines the characterization range for the generic to which it is applied.

Examples:

attribute CHAR_RANGE : string;

attribute CHAR_RANGE of bits_per_frame : constant is "16,32";

attribute CHAR_RANGE of width : constant is "40,64";

attribute CHAR_RANGE of arst_active : constant is "0";

Commands
library import

Catapult C Library Builder User’s and Reference Manual, 2011a 189
October 2011

INPUT_REGISTER Attribute

This attribute defines whether the input port should have INPUT_REGISTER = true. It is
applied to an ENTITY_PORT.

Examples:

attribute INPUT_REGISTER : boolean;

attribute INPUT_REGISTER of i2s_sclk : signal is true;

NON_CHAR_PARAM Attribute

This attribute indicates whether the generic to which it is applied should only be a generic and
not a characterization parameter.

Example:

attribute NON_CHAR_PARAM : boolean;

VAR_<variable_name> Attribute

This attribute will cause a variable (<variable_name>) to be added to the library module with
the value specified. This atrtribute applies to the ENTITY.

Examples:

attribute VAR_trans_rsc_class : string;

attribute VAR_trans_rsc_class of i2s_input_wait_es :
entity is "i2s_input_write_es_trans_rsc_class";

Examples

Refer to “Importing Netlists” on page 101.

Related Commands

library add
library characterize
library edit
library get
library load

library rename
library remove
library report
library save
library save_commands (Deprecated)
library set

Catapult C Library Builder User’s and Reference Manual, 2011a190

Commands
library load

October 2011

library load
Load the specified library file(s).

Syntax

library load ?<switches>? ?<args>?

<switches> Valid switches: (Optional)
-libname <string> library name to load from file
-recover attempt to restore characterization backup library
-quiet supress output

<args> library filename(s) (Optional)

Arguments

• -libname <string>

The name of a library contained in the library file being loaded. If the library file contains
more than one library, use this option to selectively load an individual library.

• -recover

When this option is used, Catapult:

a. Loads the specified library file and gather all of the libraries within the file.

b. For each library in the file, Catapult looks for a matching “*.wlib” file. A “.wlib”
file is a backup file of a library that was auto-saved by Catapult.

i. If a matching “.wlib” file is found and its file modification time is newer than
the library file, Catapult will attempt to load from the “.wlib” file.

ii. If the “.wlib” library is loaded successfully it will replace the one loaded from
the library file.

The -recover option may generate any of the following warning messages:

The following message means the characterization working directory does not exists or the
*.wlib file is not in the directory.

[LIB-89] Unable to locate backup library

The following two messages mean that the loaded library is newer (by file modification
time) and that the backup library was not loaded.

[LIB-90] Ignoring backup library '%1!s!', file modification time is
equal to the original library

[LIB-91] Ignoring backup library '%1!s!', file modification time is
older than the original library

The following message means the backup library failed to load for some reason.

[LIB-92] Ignoring backup library '%1!s!', library appears to be
corrupted

Commands
library load

Catapult C Library Builder User’s and Reference Manual, 2011a 191
October 2011

If a library was restored, the following comment will be shown.

[LIB-93] Restored backup library '%1!s!'
%1!s! will be the relative path to the *.wlib from the .lib .

• -quiet

This option suppresses all comments that would normally be sent to the transcript window
by the “library load” command. By default, the command transcripts information about
the libraries being loaded.

• <args>

The filename or pathname of the library file(s) to be loaded. If only a filename is specified,
Catapult first searches the “Library Search Path” for the file, and then searches the current
working directory. Refer to “Set Component Library Options” on page 31 for information
about setting the “Library Search Path” value.

Description

Use this command to load existing libraries into Library Builder.

Example

This example loads two library files. The path to file “../libs/my_lib_1” is relative to the
current directory. The other file, my_lib_2.lib, does not have a path qualifier because is either
located in the current working directory or in a directory that is included in the tool’s Library
Search Path.

library load ../libs/my_lib_1.lib my_lib_2.lib
Reading component library '../my_lib_1.lib'... (LIB-49)
Reading component library 'my_lib_2.lib'... (LIB-49)

Related Commands

library add
library characterize
library edit
library get
library import

library rename
library remove
library report
library save
library save_commands (Deprecated)
library set

Catapult C Library Builder User’s and Reference Manual, 2011a192

Commands
library rename

October 2011

library rename
Renames objects in the library database.

Syntax

library rename ?<path>? ?<switches>? ?<args>?

<path> Hierarchical database path (Optional)
<switches> Valid switches: (Optional)

-- End <switches> parsing
-recurse <string> Everything under
-return <value|path|pathvalue|leaf|leafvalue|advanced|none>

Return data format
value just matching values
path just matching paths
pathvalue path and value combination for array set
leaf just matching leaves
leafvalue leaf and value combination for array set
advanced hierarchical list structure
none no return value

-checkpath <bool> Error on path not found
-match <exact|glob> Path match type

exact exact paths only
glob glob paths

-info <bool> Return object info
<args> Database subpaths (Optional)

Arguments

• <path>

A hierarchical path into the SIF database. The root node of <path> is /LIBRARY. For more
information, refer to “Command Interface to the SIF Database” on page 138.

• Common Switches

Command switches listed in the “Syntax” section above that are not described on this
command reference page are common to many of the Catapult commands. Many of these
switches control how the database is searched and how the returned data is displayed. For
information about those switches, refer to the section, “Common Command Switches” on
page 141.

• <args>

Sub-path(s) into the Catapult SIF database. Sub-paths are relative to the <path> argument.
For detailed information about specifying database sub-paths, refer to “Using Sub-Path
Arguments” on page 140.

Description

Use this command to rename objects in the library database. Only the following types of objects
can be renamed: libraries, modules, operators and ports. Attempting to rename other types of
objects will generate an error.

Commands
library rename

Catapult C Library Builder User’s and Reference Manual, 2011a 193
October 2011

Example

This example changes the name of a module.

library rename /LIBS/my_lib/MODS/my_mux_test /LIBS/my_lib/MODS/my_mux

Related Commands

library add
library characterize
library edit
library get
library import

library load
library remove
library report
library save
library save_commands (Deprecated)
library set

Catapult C Library Builder User’s and Reference Manual, 2011a194

Commands
library remove

October 2011

library remove
Remove objects from the library database.

Syntax

library remove ?<path>? ?<switches>? ?<args>?

<path> Hierarchical database path (Optional)
<switches> Valid switches: (Optional)

-- End <switches> parsing
-return <value|path|pathvalue|leaf|leafvalue|advanced|none>

Return data format
value just matching values
path just matching paths
pathvalue path and value combination for array set
leaf just matching leaves
leafvalue leaf and value combination for array set
advanced hierarchical list structure
none no return value

-checkpath <bool> Error on path not found
-match <exact|glob> Path match type

exact exact paths only
glob glob paths

-info <bool> Return object info
<args> Database subpaths (Optional)

Arguments

• <path>

A hierarchical path into the SIF database. The root node of <path> is /LIBRARY. For more
information, refer to “Command Interface to the SIF Database” on page 138.

• Common Switches

Command switches listed in the “Syntax” section above that are not described on this
command reference page are common to many of the Catapult commands. Many of these
switches control how the database is searched and how the returned data is displayed. For
information about those switches, refer to the section, “Common Command Switches” on
page 141.

• <args>

Sub-path(s) into the Catapult SIF database. Sub-paths are relative to the <path> argument.
For detailed information about specifying database sub-paths, refer to “Using Sub-Path
Arguments” on page 140.

Description

Use this command to remove objects from the library database. It can remove an entire library
or specific objects within a library.

Commands
library remove

Catapult C Library Builder User’s and Reference Manual, 2011a 195
October 2011

Example

Example 1:

This example removes an entire library from the database.

library remove /LIBS/my_lib

Example 2:

This example removes all modules that have the “test_” prefix. The “-return pathvalue”
switch is used to see what object were found.

library remove /LIBS/my_asic_lib/MODS/test_* -match glob -return pathvalue
/LIBS/my_asic_lib/MODS/test_add {} /LIBS/my_asic_lib/MODS/test_mux {}

Related Commands

library add
library characterize
library edit
library get
library import

library load
library rename
library report
library save
library save_commands (Deprecated)
library set

Catapult C Library Builder User’s and Reference Manual, 2011a196

Commands
library report

October 2011

library report
Generates a report about characterization data in the specified libraries or library element.

Syntax

library report libpath ?...? ?options?

libpath ?...? Hierarchical database path(s)
?options? Valid options

-compare <string> Compare against reference library
-status <bool> Generate library status report
-summary <bool> Generate library summary report
-filename <string> Saves report to filename
-fullname Adds reference library name to component name

Arguments

• libpath ?...?

Hierarchical path(s) into the SIF database. A path to the root node of a library or specific
modules in a library. The wildcard character “*” can be used to create glob expressions. The
root node of <path> is /LIBRARY. For more information, refer to “Command Interface to the
SIF Database” on page 138.

• -compare <string>

Generates a comparison report that compares libpath against a reference library. The
<string> argument specifies the database path of the reference library. It must resolve to
the top-level node of the reference library and not individual modules within it.

• -status <bool>

When set to “true,” the command reports only characterization pass/fail status and run times
for the modules in libpath.

• -summary <bool>

When set to “true,” the command reports all characterization data and statistics for the
modules in libpath.

• -filename <string>

Write the report to the specified file. If Library Builder is running in GUI mode, the report
file will also be displayed in a DesignPad window.

• -fullname

Prefix the library name to the component names in the report.

Description

Use this command get the characterization status for one or more libraries, or for individual
components within the libraries. Use the “-compare” option to compare the characterization
information with that of a reference library. The report is automatically displayed in a
DesignPad window in the Library Builder GUI.

Commands
library report

Catapult C Library Builder User’s and Reference Manual, 2011a 197
October 2011

Example

Example 1:

This example generates a summary report of all components in the my_lib library.

library report /LIBS/my_lib -summary true

Example 2:

This example compares the characterization data of the mgc_add module in the my_lib library
against the same module in the reference library my_ref_lib.

library report /LIBS/my_lib/MODS/mgc_and -compare /LIBS/my_ref_lib

Related Commands

library add
library characterize
library edit
library get
library import

library load
library rename
library remove
library save
library save_commands (Deprecated)
library set

Catapult C Library Builder User’s and Reference Manual, 2011a198

Commands
library save

October 2011

library save
Save one or more libraries to the file system.

Syntax

library save ?<paths>? ?<switches>?

<paths> database paths (Optional)
<switches> Valid switches: (Optional)

-filename <file> save libraries to file
-quiet supress output

Arguments

• <paths>

Hierarchical path(s) into the SIF database. The root node of <path> is /LIBRARY. For more
information, refer to “Command Interface to the SIF Database” on page 138.

• -filename <file>

The name of the file in which the library (or libraries) will be saved. If the specified
filename does not exit, it will be created. If the filename does exist, the file will be
overwritten.

Description

This command allows you to save library edits and characterization data to disk. Use the
“-filename” switch to save the library under a new filename or combing multiple libraries in a
single file. If the “-filename” switch is omitted, the library is saved to <library_name>.lib. If
multiple library paths are specified and the “-filename” switch is omitted, each library is saved
in a separate file.

Example

Example 1:

This example saves the specified libraries to their default filenames.

library save /LIBS/my_asic_lib /LIBS/my_test_asic_lib
#
Writing component library 'my_asic_lib' (license:
LIBRARY_BUILDER=catapultlbasic)... (LIB-51)
Component library written to 'my_asic_lib.lib' (LIB-52)
Writing component library 'my_test_asic_lib' (license:
C=catapultlibasic, LIBRARY_BUILDER=catapultlbasic)... (LIB-51)
Component library written to 'my_test_asic_lib.lib' (LIB-52)

Example 2:

This example saves two libraries in a single file.

library save /LIBS/my_asic_lib /LIBS/my_test_asic_lib
-filename my_comb_libs.lib

#
Writing component library 'my_asic_lib' (license:
LIBRARY_BUILDER=catapultlbasic)... (LIB-51)

Commands
library save

Catapult C Library Builder User’s and Reference Manual, 2011a 199
October 2011

Writing component library 'my_test_asic_lib' (license:
C=catapultlibasic, LIBRARY_BUILDER=catapultlbasic)... (LIB-51)
Component libraries written to 'my_comb_libs.lib' (LIB-53)

Related Commands

library add
library characterize
library edit
library get
library import

library load
library rename
library remove
library report
library save_commands (Deprecated)
library set

Catapult C Library Builder User’s and Reference Manual, 2011a200

Commands
library save_commands (Deprecated)

October 2011

library save_commands (Deprecated)
Saves the characterization command data of the specified library.

Syntax

library save_commands <path> ... ?<options>?
-filename -- Filename to write commands

Arguments

• <path>s

A hierarchical path into the SIF database. The root node of <path> is /LIBRARY. For more
information, refer to “Command Interface to the SIF Database” on page 138.

• -filename

The name of the file in which the library (or libraries) will be saved.

Description

This command is deprecated and should be avoided. The library save_commands writes out
the “characterization data” values in the form of “library add” commands. The file can be run
to restore the initial setup for a new library and the data point area/delay values.

Example

library save_commands /LIBS/my_asic_lib
-filename “/Catapult/Libs/my_asic_lib.tcl”

The above example saves the characterization data in the Tcl file my_asic_lib.tcl. The
contents of the output file is similar to the following:

library add /LIBS/my_asic_lib -TEMPLATENAME mgc_tmpl_beh_dc -DATASETS
{100% 75% 50% 0%}
library add /LIBS/my_asic_lib -WORKING_DIR
{/Catapult/LibraryBuilder/my_asic_lib.char}
library add /LIBS/my_asic_lib/VARS/ui_libtitle -VALUE my_asic_lib
library add /LIBS/my_asic_lib/VARS/vendor -VALUE {LSI Logic}
library add /LIBS/my_asic_lib/VARS/technology -VALUE sample-130nm
...

Related Commands

library add
library characterize
library edit
library get
library import

library load
library rename
library remove
library report
library save
library set

Commands
library set

Catapult C Library Builder User’s and Reference Manual, 2011a 201
October 2011

library set
Configure objects in the library database.

Syntax

library set ?<path>? ?<switches>? ?<args>?

<path> Hierarchical database path (Optional)
<switches> Valid switches: (Optional)

-- End <switches> parsing
-return <value|path|pathvalue|leaf|leafvalue|advanced|none>

Return data format
value just matching values
path just matching paths
pathvalue path and value combination for array set
leaf just matching leaves
leafvalue leaf and value combination for array set
advanced hierarchical list structure
none no return value

-checkpath <bool> Error on path not found
-match <exact|glob> Path match type

exact exact paths only
glob glob paths

-info <bool> Return object info
<args> Database subpath and value combinations (Optional)

Arguments

• <path>

A hierarchical path into the SIF database. The root node of <path> is /LIBRARY. For more
information, refer to “Command Interface to the SIF Database” on page 138.

• Common Switches

Command switches listed in the “Syntax” section above that are not described on this
command reference page are common to many of the Catapult commands. Many of these
switches control how the database is searched and how the returned data is displayed. For
information about those switches, refer to the section, “Common Command Switches” on
page 141.

• <args>

Sub-path(s) to data objects the Catapult SIF database, and data values to be assigned. Sub-
paths are relative to the <path> argument. For detailed information about specifying
database sub-paths, refer to “Using Sub-Path Arguments” on page 140.

For each sub-path specified, the next argument is assumed to be the data value for the object
at the sub-path. If the sub-path is a wildcard expression, the data value is assigned to all
matching data objects.

Catapult C Library Builder User’s and Reference Manual, 2011a202

Commands
library set

October 2011

Description

This command modifies the value setting(s) in the specified library data object(s). This
command cannot add or delete data object. For information about the general structure of the
library database, refer to the description of the library get command on page page 182.

Examples

This example changes the value of the “technology” variable to “sample-130nm“:

library set /LIBS/my_asic_lib/VARS/technology/VALUE sample-130nm
/LIBS/my_asic_lib/VARS/technology/VALUE sample-130nm

This example assigns the value “init_val” to all objects under the “VARS” node that start with
“TEST_”. The “-match glob” switch is required when wildcard expressions are used.

library set /LIBS/my_asic_lib/VARS/TEST_*/VALUE -match glob init_val
/LIBS/my_asic_lib/VARS/TEST_a/VALUE init_val
/LIBS/my_asic_lib/VARS/TEST_b/VALUE init_val
/LIBS/my_asic_lib/VARS/TEST_c/VALUE init_val

This example combines examples 1 and 2 above into single command by using sub-path and
value pairs in the <args> field.

library set /LIBS/my_asic_lib/VARS -match glob -- TEST_*/VALUE init_val
technology/VALUE sample_130nm

/LIBS/my_asic_lib/VARS/technology/VALUE sample_130nm
/LIBS/my_asic_lib/VARS/TEST_3/VALUE init_val
/LIBS/my_asic_lib/VARS/TEST_a/VALUE init_val
/LIBS/my_asic_lib/VARS/TEST_b/VALUE init_val
/LIBS/my_asic_lib/VARS/TEST_c/VALUE init_val

Related Commands

library add
library characterize
library edit
library get
library import

library load
library rename
library remove
library report
library save
library save_commands (Deprecated)

Commands
logfile

Catapult C Library Builder User’s and Reference Manual, 2011a 203
October 2011

logfile
Controls the logfile options for the Library Builder session.

Syntax

open <name [-project]>
close [-project]
move [-enable] [-disable] [<filename>]
name
save_commands <filename>

Arguments

• open <name [-project]>

If no name is specified in a file, the temporary directory will be opened.

• -project

Opens/Closes a project logfile (the default is a session logfile).

• close [-project]

Stops logging commands.

• move

Moves the session logfile.

• -enable

Causes the session logfile to be moved to the project directory when created.

• -disable

Causes a session logfile not to be moved.

• <filename>

Name of the file or directory to which the session logfile should be moved.

• name

Return current logfile name.

• save_commands <filename>

Saves commands from the active session logfile to the filename specified.

Description

Use this command to control various logfile options in the Library Builder session.

Example

logfile -move /Catapult_2/lcbg11p.lib

Catapult C Library Builder User’s and Reference Manual, 2011a204

Commands
options defaults

October 2011

options defaults
Resets all flow options to default settings

Syntax

options defaults ?<switches>?

<switches> Valid switches: (Optional)
-clean restore to predefined options

Arguments

• -clean

Removes all flow options from the project. Flows must be reloaded in order to re-establish
the options in the project.

Description

The “options defaults” command resets the default option values for all flows loaded in the
session. This command does not update the flow option values saved in the Catapult C Library
Builder Registry. If old option settings were saved previously, you may want to save the options
again after resetting them.

Because flow options are saved in the registry, they can become out of synch with the flow if a
new version of the flow is loaded and that new version has changed its default options. Use the
“-clean” switch to purge all obsolete and conflicting options, the reload the flow to re-
synchronize the flow options, and finally save the new options to the registry.

Example

The following example reverts all loaded flow settings to the factory defaults:

options defaults

The following example synchronizes an older version of flow settings with a new version:

options defaults -clean

Related Commands

options exists
options get
options load

options save
options set

Commands
options exists

Catapult C Library Builder User’s and Reference Manual, 2011a 205
October 2011

options exists
Checks whether an option exists in the database.

Syntax

options exists <name>

<name> option name (Required)
<switches> Valid switches: (Optional)

-default has a default value

Argument

• <name>

The name of an option in the project database. This argument has the form:

<section>/<option>

The <section> portion is a section name found in the Catapult Library Builder Options
window or the Catapult initialization file (see “Setting Library Builder Options” on page 24
and “The Catapult Initialization File” on page 48). The <option> portion is the target option
name in that section.

In the case of hierarchical sections (“Flows”), this argument has the form:

<section>/<sub-section>/<option>

• -default

Reports whether or not a factory default value is defined for the specified option. The
current value of the option is not evaluated, only the existence of its factory default.

Description

The “options exists” command reports whether or not an option (or its default value) exists
in the database. The command returns either ‘1’ (true) or ‘0’ (false).

Example

This example checks for the existence of the “Path” option in the “Precision” flow. The
return value is true.

options exist /Flows/Precision/Path
1

Related Commands

options defaults
options get
options load

options save
options set

Catapult C Library Builder User’s and Reference Manual, 2011a206

Commands
options get

October 2011

options get
Returns the value of the specified option.

Syntax

options get <name> ?<switches>?

<name> option name (Required)
<switches> Valid switches: (Optional)

-all all options
-default default value
-hidden ?<bool>? hidden options

Arguments

• <name>

The name of an option in the project database. This argument has the form:

<section>/<option>

The <section> portion is a section name found in the Catapult Library Builder Options
window or the Catapult initialization file (see “Setting Library Builder Options” on page 24
and “The Catapult Initialization File” on page 48). The <option> portion is the target option
name in that section.

In the case of hierarchical sections (“ProjectInit” and “Flows”), this argument has the form:

<section>/<sub-section>/<option>
• -all

Performs a recursive search and returns a list of all option names in the specified section and
its sub-sections. Option values are not returned.

• -default

Returns the factory default value of the specified option.

• -hidden ?<bool>?

This switch includes hidden option names in the return value. Option values are not
returned. The <bool> argument is true by default. Set <bool> to false to explicitly exclude
hidden options from the return value.

Description

The “options get” command returns the value of an option in the in-memory database. If the
<name> argument is omitted, the command returns a list of valid section names. If only a section
name is specified, a list of valid option names is returned.

Examples

Example 1

In this example the <name> argument is omitted and the command returns the list of valid
section names that can be used.

Commands
options get

Catapult C Library Builder User’s and Reference Manual, 2011a 207
October 2011

options get

General Message ComponentLibs CatapultC Farm TextEditor Flows

Example 2:

This example provides only a section name (“Farm”) in order to get a list of valid option names
in that section.

options get Farm

EnableFarm HostDatabasePath MaxParallelTasks
SuspendHostOnInvocationFailure SuspendHostOnFailure RshCommand

Example 3:

This example illustrates the use of the “-default” switch. The first command returns the
current value of the “/Farm/HostDatabasePath” option. The second command returns the
factory default value.

options get Farm/HostDatabasePath
/lib_builder/my_host_db_path

options get Farm/HostDatabasePath -default
./hostdb

Example 4:

The three commands in this example demonstrate the difference between the “-all” switch and
the “-hidden” switch. The first command is the default case in which neither switch is used. It
simply returns the visible set of sub-section names under the “Flows” section.

options get Flows
FlowSearchPath DesignCompiler Precision

In the second command the “-hidden” switch exposes all of the sub-section names.

options get Flows -hidden
FlowSearchPath DesignCompiler Precision Enable-DesignCompiler Enable-
Precision

Finally, the “-all” switch in the third command returns every sub-section as well as every
option name under each sub-section. Each value in the list is a complete hierarchical path.

options get Flows -all
FlowSearchPath DesignCompiler DesignCompiler/SearchPath
DesignCompiler/Path DesignCompiler/Flags DesignCompiler/RunBatch
DesignCompiler/ShellType DesignCompiler/ShellExe
DesignCompiler/FOLDERNAME Precision Precision/Path Precision/Flags
Precision/addio Precision/retiming Precision/run_pnr
Precision/Frontend2004 Precision/Exe Precision/FOLDERNAME Enable-
DesignCompiler Enable-Precision

Related Commands

options defaults
options exists
options load

options save
options set

Catapult C Library Builder User’s and Reference Manual, 2011a208

Commands
options load

October 2011

options load
Loads saved option settings.

Syntax

options load ?<switches>?

<switches> Valid switches: (Optional)
-file <string> name of file to load
-registry <string> registry location to load
-quiet suppress messages

Arguments

• -file <string>

A pathname to an options file. Use this switch to load option settings from the specified file
instead of the default location. If only the leaf name is specified, Catapult looks for the file
in the current working directory.

• -registry <string>

(For Windows operating systems only) A Windows registry path where the Catapult option
settings are stored. The standard location for Catapult options is as follows, where
<version> is the Catapult version number.

{HKEY_CURRENT_USER\Software\Mentor Graphics\Catapult Synthesis\<version>}

• -quiet

Suppress informational messages returned by the command. Does not suppress error or
warning messages.

Description

The “options load” command loads initialization options from the default location unless the
“-file” or “-registry” switch is used to specify an alternate location. The default location is
determined during invocation of the Catapult session. Catapult searches for an initialization file
in the following search order:

1. A catapult.ini file in the current working directory

2. A catapult.ini file in the user’s HOME directory

3. The Catapult registry (see “Catapult C Library Builder Registry” on page 48)

The first one found becomes the default location for the duration of the catapult session, or until
a different location is configured by using “options save” command with the “-default”
switch.

Commands
options load

Catapult C Library Builder User’s and Reference Manual, 2011a 209
October 2011

Examples

Example 1:

This example simply loads option settings from the default location, which is the Catapult
registry in this case.

options load
Loading options from '$HOME/.catapult/2007a.ixl.reg'.

Example 2:

This example loads option settings from the file named “opt_settings.ini” in the current
working directory.

options load -file opt_settings.ini

Example 3:

This example is the same as above, but specifies the full path to the file.

options load -file /jdoe/opt_settings.ini

Related Commands

options defaults
options exists
options get

options save
options set

Catapult C Library Builder User’s and Reference Manual, 2011a210

Commands
options save

October 2011

options save
Save the in-memory options to the Catapult registry or an alternate file.

Syntax

options save ?<switches>?

<switches> Valid switches: (Optional)
-default <load message> <save message>

configures the default load and save location
-file <string> name of file to save
-registry <string> name of registry key
-section <string> starting section name
-hidden ?<bool>? option is hidden
-quiet suppress messages

Arguments

• -default <load message> <save message>

Configures default settings for the “options load” and “options save” commands. It sets
the default location where Library Builder option settings are stored, and sets the message
strings that are displayed by the “options load” and “options save” commands. The
location setting is specified by either the “-file” or “-registry” switches, one of which
must be used in conjunction with this switch.

When this switch is used, the “options save” command does not save options settings. It
only configures the default settings. The new settings remain in effect for the duration of the
current Library Builder session. New Library Builder sessions are always initialized to the
system default settings.

• -file <string>

A pathname to a file in which the option settings will be saved. Use this switch to save
option settings to a file other than the default location. If only the leaf name of the file is
specified, then the file is saved to the current working directory. If the file exists, it is
overwritten. Otherwise, the file is created.

Use the filename “catapult.ini” in either the project directory or in the $HOME directory
in order to have Catapult automatically load the options at during invocation. Refer to
“Restoring Options” on page 48 for more information.

• -registry <string>

(For Windows operating systems only) A Windows registry path where the Catapult option
settings will be stored. A hierarchy of keys and values is created below the specified
location in the registry. The standard location for Catapult options is as follows, where
<version> is the Catapult version number.

{HKEY_CURRENT_USER\Software\Mentor Graphics\Catapult Synthesis\<version>}

Commands
options save

Catapult C Library Builder User’s and Reference Manual, 2011a 211
October 2011

• -section <string>

Saves only those options stored in the specified section of the file or registry. Section names
correspond to the names in the Catapult C Synthesis Options window. This switch must be
used in conjunction with the “-file” or “-registry” switch. When saving to existing file,
the entire contents of the file are overwritten and only the specified section is saved. Saving
to the Windows registry overwrites only the specified section.

• -hidden ?<bool>?

This switch includes hidden options in the save operation. The <bool> argument is true by
default. Set <bool> to false to explicitly exclude hidden options.

• -quiet

Suppress informational messages returned by the command. Does not suppress error or
warning messages.

Description

This command saves the in-memory option settings to default location, unless the “-file” or
“-registry” switch is used to specify an alternate location. The system default location is
determined during invocation of the Catapult session. Refer to the section “Restoring Options”
on page 48 for more information.

When “-file” or “-registry” is used in conjunction with the “-default” switch, the
specified path becomes the default location used by the “options load” and “options save”
commands. In addition, the default return string can be changed by using the “-default”
switch. Refer to the “-default” switch above for more details.

Note
Enable the “General/SaveSettings” option to have Library Builder automatically save the
options database when exiting.

Examples

Example 1:

This example saves the options to a Catapult initialization file in the user’s HOME directory.

options save -file /user/johnd/catapult.ini

Example 2:

This example uses the “-default” switch to configure the default location and messages for the
“options load” and “options save” commands.

options save -default "Loading options from file: opt_settings.ini"
"Saving options to file: opt_settings.ini" -file “/jdoe/opt_settings.ini”

As a result, the “options load” and “options save” commands now read/write the options in
the file “/jdoe/opt_settings.ini” by default. And the commands return the specified
message strings as demonstrated in the following command calls:

options load

Catapult C Library Builder User’s and Reference Manual, 2011a212

Commands
options save

October 2011

Loading options from file: opt_settings.ini

options save
Saving options to file: opt_settings.ini

Related Commands

options defaults
options exists
options get

options load
options set

Commands
options set

Catapult C Library Builder User’s and Reference Manual, 2011a 213
October 2011

options set
Sets the value of an option in the database.

Syntax

options set <name> <value> ?<switches>?

<name> option name (Required)
<value> option value (Required)

Arguments

• <name>

The name of an option in the project database. This argument has the form:

<section>/<option>

or

<section> <option>

The <section> portion is a section name found in the Catapult Library Builder Options
window or the Catapult initialization file (see “Setting Library Builder Options” on page 24
and “The Catapult Initialization File” on page 48). The <option> portion is the target option
name in that section.

In the case of hierarchical sections (“Flows”), this argument has the form:

<section>/<sub-section>/<option>

or

<section>/<sub-section> <option>

Use the “options get” command to get a list of option names in the database.

• <value>

The new value(s) to be assigned to the option. Lists and strings containing spaces must be
enclosed in double quotes or braces.

Description

The “options set” command modifies the value of an option in the database. If the command
succeeds, the new value is returned as a comment. Otherwise, an error message is returned. The
modified values are valid for the duration of the Library Builder session. To preserve the values
for future sessions, use the “options save” command. For information about setting options from
the Library Builder GUI, refer to “Setting Library Builder Options” on page 24.

Example 1

The following example shows the different forms of the <name> argument.

options set General/NetlistFormat Verilog
Verilog

Catapult C Library Builder User’s and Reference Manual, 2011a214

Commands
options set

October 2011

options set General NetlistFormat Verilog
Verilog

options set Flows/Precision/FOLDERNAME my_precision_folder
my_precision_folder

options set Flows/Precision FOLDERNAME my_precision_folder
my_precision_folder

Example 2

The following example specifies a list of values. The first string in the list is enclosed in double
quotes because it contains a space. The entire list is enclosed in braces.

options set ComponentLibs/TemplateSearchPath
{{$MGC_HOME/pkgs/siflibs/templates} /catapult/my_templates}

{$MGC_HOME/pkgs/siflibs/templates} /catapult/my_templates

Related Commands

options defaults
options exists
options get

options load
options save

Commands
quit

Catapult C Library Builder User’s and Reference Manual, 2011a 215
October 2011

quit
Exits Library Builder.

Syntax

quit [-force] [-code]

Arguments

• -force

Optional switch that forces Library Builder to terminate the current process and exit
immediately without saving changes. By default, Library Builder finishes the current
process before quitting.

• -code

Optional switch that specifies an application code that Library Builder returns to the shell on
exit.

Description

Exits Library Builder.

Example

quit

Catapult C Library Builder User’s and Reference Manual, 2011a216

Commands
set_working_dir

October 2011

set_working_dir
Specifies the working directory.

Syntax

set_working_dir <directory_pathname>

Arguments

• directory_pathname

Required option that specifies a pathname to an existing directory.

Description

Specifies the working directory that all library sub-directories and files are written to. By
default, the working directory is the the directory where Library Builder is invoked from.

Example

set_working_dir E:/designs/mydesigns

Related Commands

library load library save_commands (Deprecated)

Commands
utility farm add

Catapult C Library Builder User’s and Reference Manual, 2011a 217
October 2011

utility farm add
Adds hosts to the Library Farm host database.

Syntax

utility farm add <switches>

<switches> Valid switches (Required)
-name <string> Name of host to add
-comment <string> Additional host information
-group <string> Host group identifier
-count <int> Number of tasks that can run on the host

Arguments

• -name <hostname>

Required switch and string that specifies the name of a host to add.

• -comment <addl_host_info>

Optional switch and string that specifies comment information to append to the added host.

• -group <host_group_name>

Optional switch and string that specifies the name of a host group to associate the new host
with. This option allows you to operate on a group of hosts.

• -count <int>

Optional switch and integer that specifies how many tasks to run on the new host. The
number of tasks are incremented by the specified value. Default is 1.

Description

Use this command to add a host to the Library Farm host database.

Examples

The following example adds a host foo to the host group group1 and sets it to run five tasks:

utility farm add -name foo -group group1 -count 4

Related Commands

utility farm get
utility farm release
utility farm remove

utility farm reserve
utility farm reset
utility farm set

Catapult C Library Builder User’s and Reference Manual, 2011a218

Commands
utility farm get

October 2011

utility farm get
Returns information about a specified host or the host database in the Library Farm.

Syntax

utility farm get ?<args>? ?<switch>? <args>

<args> Valid args (Optional)
directory Directory name
state > State of host
database Database info

<switch> Valid switches (Optional)
-hostkey <string> Hostkey

<args> Valid args (Required)
hostname Host name
hostinfo Host information
comment Comment information
group Host group name

Arguments

• directory

Optional argument that returns the directory location of the host database.

• state

Optional argument that returns the state of the host database, either enabled or disabled.

• database

Optional argument that reports the host database information, including all the hosts.

• -hostkey <hostkey>

Optional switch and string that specifies the hostkey of a host to report on. The hostkey is
automatically assigned to a host when it is allocated with the -reserve option.

• hostname

Required argument that returns the name of the host associated with as specified hostkey.

• hostinfo

Required argument that returns information on the host associated with the specified
hostkey.

• comment

Required argument that returns comment information for the host associated with the
specified hostkey.

• group

Required argument that returns the group name for the host associated with the specified
hostkey.

Commands
utility farm get

Catapult C Library Builder User’s and Reference Manual, 2011a 219
October 2011

Description

This command reports on the Library Farm host database. You can query the entire database or
a host within the database. If no switches are used, utility farm get displays the host database
information.

Examples

The following example shows the results of a host database query:

utility farm get database
stage40a##task_1 {status idle hostname stage40a group {} comment
task_1}

The following example returns the name of a host associated with the host2 hostkey:

utility farm get -hostkey host2 hostname
foo

Related Commands

utility farm add
utility farm release
utility farm remove

utility farm reserve
utility farm reset
utility farm set

Catapult C Library Builder User’s and Reference Manual, 2011a220

Commands
utility farm release

October 2011

utility farm release
Releases an allocated host.

Syntax

utility farm release <hostkey>

Arguments

• hostkey

Required string that specifies the hostkey for the host to release. Multiple space-separated
hostkeys can be specified. A hostkey is automatically assigned and returned when a host is
allocated with the -reserve switch.

Description

This command releases one or more hosts in the Library Farm host database from being
allocated. A host is allocated with the -reserve option. If no host is specified all hosts are
released.

Examples

The following example releases host1 and host2:

utility farm release host1 host2

Related Commands

utility farm add
utility farm get
utility farm remove

utility farm reserve
utility farm reset
utility farm set

Commands
utility farm remove

Catapult C Library Builder User’s and Reference Manual, 2011a 221
October 2011

utility farm remove
Deletes hosts from the Library Farm host database.

Syntax

utility farm remove ?<switches>?

<switches> Valid switches (Optional)
-name <string> host name
-comment <string> Host comment information
-group <string> Host group name

Arguments

• -name <hostname>

Optional switch and string that deletes the specified host.

• -comment <addl_host_info>

Optional switch and string that deletes a host associated with the specified comment
information.

• -group <host_group>

Optional switch and string that deletes a specified host group.

Description

Use this command to remove one or more hosts from the Library Farm host database. If no
hosts are specified, all hosts are deleted from the host database.

Examples

The following example deletes the host named foo from the host database:

utility farm remove -name foo

Related Commands

utility farm add
utility farm get
utility farm release

utility farm reserve
utility farm reset
utility farm set

Catapult C Library Builder User’s and Reference Manual, 2011a222

Commands
utility farm reserve

October 2011

utility farm reserve
Reserves a host from the host database.

Syntax

utility farm reserve

Arguments

None

Description

This command reserves a host in the Library Farm host database and returns a hostkey identifier
for it. If no hosts are available, an error displays. Once a host is reserved, you can use the
hostkey and the utility farm commands to assign tasks to the reserved host.

Examples

The following example reserves a host and returns the host1 hostkey:

utility farm reserve
host1

Related Commands

utility farm add
utility farm get
utility farm remove

utility farm reset
utility farm set
utility farm release

Commands
utility farm reset

Catapult C Library Builder User’s and Reference Manual, 2011a 223
October 2011

utility farm reset
Resets hosts in the Library Farm host database to an idle state.

Syntax

utility farm reset ?<switches>?

<switches> Valid switches (Optional)
-name <string> Host name
-comment <string> Host comment information
-group <string> Host group name

Arguments

• -name <hostname>

Optional switch and string that specifies the name of a host to reset.

• -comment <addl_host_info>

Optional switch and string that specifies comment information to identify the host to reset.

• -group <host_group>

Optional switch and string that specifies a host group to reset.

Description

Use this command to reset one or more hosts in the Library Farm host database. If no host is
specified all hosts are reset.

Examples

The following example resets the host named foo:

utility farm reset -name foo

Related Commands

utility farm add
utility farm get
utility farm release

utility farm remove
utility farm reserve
utility farm set

Catapult C Library Builder User’s and Reference Manual, 2011a224

Commands
utility farm set

October 2011

utility farm set
Configures the Library Farm host database and allocated hosts.

Syntax

utility farm set ?<switches>? <args>

<switches> Valid switches (Optional)
-directory <string> host database directory
-state <enabled|disabled> Enables/disables the database
-hostkey <string> Specifies a hostkey
-information <string> information associated with a hostkey
-append_information <name> <description>Appends information to a

hostkey
<name> Name value (Required)
<description> Description value (Required)

-status <string> Sets the status of a hostkey

Arguments

• -directory <dir_path>

Switch and string that sets a directory for the host database.

• -state <enabled/disabled>

Switch and argument pair that enables or disables the host database.

• -hostkey <hostkey>

Switch and string that specifies a hostkey of an allocated host to configure. The hostkey is
automatically assigned to a host when it is allocated with the -reserve option. Use utility
farm get with the hostkey to retrieve additional host information.

• -append_information <name> <description>

Switch and double string pair that appends information to the host associated with the
specified hostkey. Information includes:

o Name

o Description

• -information <hostinfo>

Switch and string that adds information to the host associated with the specified a hostkey.

• -status <string>

Switch and string that sets the status of a specified hostkey.

Description

This command sets values the Library Farm host database. You can set values for the entire
database or an allocated host within the database.

Commands
utility farm set

Catapult C Library Builder User’s and Reference Manual, 2011a 225
October 2011

Examples

The following example sets a host database directory path to F:dbs2:

utility farm set -directory F:/dbs2

The following example sets the hostname##task_N hostkey to the idle status:

utility farm set -hostkey hostname##task_N -status idle

Related Commands

utility farm add
utility farm get
utility farm release

utility farm remove
utility farm reserve
utility farm reset

Catapult C Library Builder User’s and Reference Manual, 2011a226

Commands
utility farm set

October 2011

227

A B F GDC E H I J K L M N O P Q R S T U V XW Y Z

Catapult C Library Builder User’s and Reference Manual, 2011a
October 2011

-- Switch, 143

— A —
application exit command, 150
application get command, 148
application report command, 151

— B —
Blank Library template

Multi-point characterization, 76

— C —
Catapult

compiler options, 35, 37
Catapult C Library Builder

messages, 27
Windows Shortcut, 13

Catapult C Synthesis, 31
catapult.ini, 48

Saving and restoring, 47
Characterization

Characterize a Library, 75
Multi-point data sets, 76
Resetting the data before another

characterization, 83
-checkpath Switch, 142
Command input window, 15
Command Line Shell, 144
Commands

application exit, 150
application get, 148
application report, 151
catapult -library_builder, 152
dofile, 154
flow get, 155
flow package names, 157
flow package option add, 158
flow package option get, 160
flow package option remove, 161
flow package option set, 162
flow package provide, 163

flow package require, 165
flow package script, 167
flow package vcompare, 168
flow package versions, 170
flow package vsatisfies, 171
flow run, 172
general command syntax, 135
help, 173
library add, 177
library characterize, 180
library edit, 181
library get, 182
library import, 185
library load, 190
library remove, 194
library rename, 192
library report, 196
library save, 198
library save_commands, 200
library set, 201
logfile, 203
options defaults, 204
options exists, 205
options get, 206
options load, 208
options save, 210
options set, 213
quit, 215
set_working_dir, 216
Summary, 145

Compiler
setting options, 35
view settings, 37

Component library
default options, 31

— D —
default options, 31
dofile command, 154

Index

228
October 2011

Catapult C Library Builder User’s and Reference Manual, 2011a

A B F GDC E H I J K L M N O P Q R S T U V XW Y Z

— E —
Error Messages

configuration options, 27

— F —
Farm

default options, 33
Files

.catapult.tcl, 145
flow commands

flow get, 155
flow package names, 157
flow package option add, 158
flow package option get, 160
flow package option remove, 161
flow package option set, 162
flow package provide, 163
flow package require, 165
flow package script, 167
flow package vcompare, 168
flow package versions, 170
flow package vsatisfies, 171
flow run, 172

— G —
General command syntax, 135

— H —
Help, 23

help command, 173
help message, 175
--help switch, 143
-help switch, 143

history tracking, 144

— I —
Import libraries, 185
-info Switch, 142
Input compiler options, 35

— L —
Libraries

Characterize, 75
Queue for multi-day run, 81
RAM templates, 51, 68

Library

Reviewing library characterization passes,
81

Troubleshooting Failures, 88
library add command, 177
Library Builder

catapult.ini file, 47
Initialization file, 47, 48
Licenses, 12
Main Menu, 13
Overview, 11
registry, 48
Saving and restoring, 48
Saving and restoring options, 47
set default options, 24
set working directory, 51
View Options, 14

Library Characterization
command, 180
Multi-point data sets, 76
Passes, 81
Reset Data before another

Characterization, 83
library characterize command, 180
Library Components

Multi-point characterization, 76
library edit command, 181
Library Farm, 90

Enable, 90
Introduction, 11
Setting up hosts, 92

library get command, 182
library import command, 185
library load command, 190
library remove command, 194
library rename command, 192
library report command, 196
library save command, 198
library save_commands, 200
library set command, 201
License report, 151

— M —
-match Switch, 141, 142
Memory Templates, 51, 68
Messages

Naming Conventions, 30

229Catapult C Library Builder User’s and Reference Manual, 2011a
October 2011

A B F GDC E H I J K L M N O P Q R S T U V XW Y Z

setting severity levels, 27
Multi-Point Characterization, 76

— O —
Options

Catapult C Synthesis defaults, 31
component library, 31
general settings, 24
input compiler, 35
library farm, 33
saving, 47
system messages, 27
text editor, 37

options commands
defaults, 204
exists, 205
get, 206
load, 208
save, 210
set, 213

— P —
Path and Sub-path Commands, 139
Path and Sub-Path Search Rules, 138
Path and Sub-Path Switches, 141

— Q —
Queue Libraries for Multi-day Run, 81
quit command, 215

— R —
RAM

Editing components information, 69
Editing formula information, 70
Editing input registers, 72
Editing RAM timing, 71
Editing the library name, 68

RAM Libraries
Templates, 51, 68

-recurse Switch, 143
-return Switch, 141

— S —
Script

automatically running a TCL script, 145
Tcl commands, 143

set_working_dir command, 216

Startup file
.catapult.tcl file, 145

System messages
help, 175

System Registry, 48

— T —
Tcl

language, 135
Tcl script

command line with path, 144
Interactive Command Line Shell, 143
LOG file, 143
run script, 144

Template Libaries
RAM, 51, 68

Text editor
default options, 37

Transcript
of characterization, 87

Transcript messages, 16
Transcript window, 15
Troubleshooting, 88

— U —
User interface

command input window, 15
transcript window, 15

— W —
Warning Messages

configuration options, 27
Working Directory, 51

230
October 2011

Catapult C Library Builder User’s and Reference Manual, 2011a

A B F GDC E H I J K L M N O P Q R S T U V XW Y Z

Third-Party Information

This section provides information on third-party software that may be included in the Catapult® family of products, including
any additional license terms.

• This software application may include GCC 4.2.2 third-party software. GCC 4.2.2 is distributed under the terms of the
General Public License version 2 and is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND,
either express or implied. See the license for the specific language governing rights and limitations under the license.
You can view a copy of the license at: <install_directory>/Mgc_home/shared/legal/gnu_gpl_2.0.pdf. To obtain a copy of
the source code to the files licensed under the GNU GPL v2, send a request to request_sourcecode@calypto.com. This
offer shall only be available for three years from the date Calypto Design Systems first distributed GNU GPL v2 covered
source code.

• This software application may include gdb version 7.0 third-party software. gdb version 7.0 is distributed under the terms
of the GNU General Public License version 2.0 and version 3.0 and is distributed on an "AS IS" basis, WITHOUT
WARRANTY OF ANY KIND, either express or implied. See the license for the specific language governing rights and
l i m i t a t i o n s u n d e r t h e l i c e n s e . Y o u c a n v i e w a c o p y o f t h e l i c e n s e a t :
< y o u r _ M e n t o r _ G r a p h i c s _ d o c u m e n t a t i o n _ d i r e c t o r y > / l e g a l / g n u _ g p l _ 2 . 0 . p d f a n d
<your_Mentor_Graphics_documentation_directory>/legal/gnu_gpl_3.0.pdf. Portions of this software may be subject to
the GNU Free Documentation License version 1.1. You can view a copy of the GNU Free Documentation License
version 1.1 at: <your_Mentor_Graphics_documentation_directory>/legal/gnu_free_doc_1.1.pdf. Portions of this software
may be subject to the GNU Free Documentation License version 1.2. You can view a copy of the GNU Free
Documentation License version 1.2 at: <your_Mentor_Graphics_documentation_directory>/legal/gnu_free_doc_1.2.pdf.
Portions of this software may be subject to the GNU Library General Public License version 2.0. You can view a copy of
the GNU Library General Public License version 2.0 at: <your_Mentor_Graphics_documentation_directory>/legal/
gnu_l ibrary_gpl_2 .0 .pdf . To obta in a copy of the gdb vers ion 7 .0 source code, send a request to
request_sourcecode@calypto.com. This offer shall only be available for three years from the date Calypto Design
Systems first distributed gdb version 7.0. gdb version 7.0 may be subject to the following copyrights:

© 1987 Regents of the University of California.
All rights reserved.

Redistribution and use in source and binary forms are permitted provided that the above copyright notice and this
paragraph are duplicated in all such forms and that any documentation, advertising materials, and other materials related
to such distribution and use acknowledge that the software was developed by the University of California, Berkeley. The
name of the University may not be used to endorse or promote products derived from this software without specific prior
written permission.

THIS SOFTWARE IS PROVIDED ` ` AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS
FOR A PARTICULAR PURPOSE.

© 1983, 1990 Regents of the University of California.
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following
conditions are met:
1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution.
3. [rescinded 22 July 1999]
4. Neither the name of the University nor the names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ` ` AS IS'' AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS

INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

© 1993,1991,1990,1989,1988,1987 Carnegie Mellon University
All Rights Reserved.

Permission to use, copy, modify and distribute this software and its documentation is hereby granted, provided that both
the copyright notice and this permission notice appear in all copies of the software, derivative works or modified versions,
and any portions thereof, and that both notices appear in supporting documentation.

CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" CONDITION. CARNEGIE
MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR ANY DAMAGES WHATSOEVER RESULTING
FROM THE USE OF THIS SOFTWARE.

Carnegie Mellon requests users of this software to return to

Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
School of Computer Science
Carnegie Mellon University
Pittsburgh PA 15213-3890

any improvements or extensions that they make and grant Carnegie Mellon the rights to redistribute these changes.

• This software application may include Tcl version 8.5.8 third-party software, which is distributed on an "AS IS" basis,
WITHOUT WARRANTY OF ANY KIND, either express or implied. Tcl version 8.5.8 may be subject to the following
copyrights:

© 1988, 1993, 1994 The Regents of the University of California All rights reserved.
All Rights Reserved

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following
conditions are met:
1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution.
3. All advertising materials mentioning features or use of this software must display the following acknowledgement:
This product includes software developed by the University of California, Berkeley and its contributors.
4. Neither the name of the University nor the names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ` ` AS IS'' AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

• This software application may include Tcl Readline third-party software that may be subject to the following copyright:

© 1998 - 2000, Johannes Zellner johannes@zellner.org All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following
conditions are met:

* Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.
* Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following

disclaimer in the documentation and/or other materials provided with the distribution.
* Neither the name of Johannes Zellner nor the names of contributors to this software may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ` ` AS IS'' AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

• This software application may include Tk version 8.5.8 third-party software, which is distributed on an "AS IS" basis,
WITHOUT WARRANTY OF ANY KIND, either express or implied. Tk version 8.5.8 may be subject to the following
copyrights:

© David Koblas
Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appear in all copies and that both that copyright notice and this
permission notice appear in supporting documentation. This software is provided "as is" without express or implied
warranty.

© 1998 Hutchison Avenue Software Corporation
http://www.hasc.com
info@hasc.com

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appear in all copies and that both that copyright notice and this
permission notice appear in supporting documentation. This software is provided "AS IS." The Hutchison Avenue
Software Corporation disclaims all warranties, either express or implied, including but not limited to implied warranties
of merchantability and fitness for a particular purpose, with respect to this code and accompanying documentation.

© 1985, 1986, 1987, 1989, 1991 by the Massachusetts Institute of Technology

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appear in all copies and that both that copyright notice and this
permission notice appear in supporting documentation, and that the name of M.I.T. not be used in advertising or publicity
pertaining to distribution of the software without specific, written prior permission. M.I.T. makes no representations about
the suitability of this software for any purpose. It is provided "as is" without express or implied warranty.

© 1987 by Digital Equipment Corporation, Maynard, Massachusetts, and the Massachusetts Institute of Technology,
Cambridge, Massachusetts

All Rights Reserved

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appear in all copies and that both that copyright notice and this
permission notice appear in supporting documentation, and that the names of Digital or MIT not be used in advertising or
publicity pertaining to distribution of the software without specific, written prior permission.

DIGITAL DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING ALL IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO EVENT SHALL DIGITAL BE LIABLE FOR
ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER
RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

• This software application may include TKtreectrl version 2.2.8 third-party software, which is distributed on an "AS IS"
basis, WITHOUT WARRANTY OF ANY KIND, either express or implied TKtreectrl version 2.2.8 may be subject to the
following copyrights:

This software is copyrighted by Tim Baker and other parties. The following terms apply to all files associated with the
software unless explicitly disclaimed in individual files.

The authors hereby grant permission to use, copy, modify, distribute, and license this software and its documentation for
any purpose, provided that existing copyright notices are retained in all copies and that this notice is included verbatim in
any distributions. No written agreement, license, or royalty fee is required for any of the authorized uses. Modifications to
this software may be copyrighted by their authors and need not follow the licensing terms described here, provided that
the new terms are clearly indicated on the first page of each file where they apply.

IN NO EVENT SHALL THE AUTHORS OR DISTRIBUTORS BE LIABLE TO ANY PARTY FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OF THIS
SOFTWARE, ITS DOCUMENTATION, OR ANY DERIVATIVES THEREOF, EVEN IF THE AUTHORS HAVE
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

THE AUTHORS AND DISTRIBUTORS SPECIFICALLY DISCLAIM ANY WARRANTIES, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, AND NON-INFRINGEMENT. THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, AND THE
AUTHORS AND DISTRIBUTORS HAVE NO OBLIGATION TO PROVIDE MAINTENANCE, SUPPORT,
UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

• This software application may include gmake version 3.81 third-party software. Gmake version 3.81 is distributed under
the terms of the General Public License version 2.0 and is distributed on an "AS IS" basis, WITHOUT WARRANTY OF
ANY KIND, either express or implied. See the license for the specific language governing rights and limitations under
the license. You can view a copy of the license at: <install_directory>/Mgc_home/shared/legal/gnu_gpl_2.0.pdf.
Portions of this software may be subject to the GNU Free Documentation License version 1.2. You can view a copy of
t h e G N U F r e e D o cu m e n t a t i o n L i c e n s e v e r s i o n 1 . 2 a t :
<install_directory>/Mgc_home/shared/legal/gnu_free_doc_1.2.pdf. Portions of this software may be subject to the
Library General Public License version 2.0. You can view a copy of the Library General Public License version 2.0 at:
<install_directory>/Mgc_home/shared/legal/gnu_library_gpl_2.0.pdf. To obtain a copy of the source code to gmake
version 3.81, send a request to request_sourcecode@calypto.com. This offer shall only be available for three years from
the date Calypto Design Systems first distributed gmake version 3.81.

• This software application may include SystemC third-party software.

©2001 Dr. John Maddock. All rights reserved.
Permission to use, copy, modify, distribute and sell this software and its documentation for any purpose is hereby granted
without fee, provided that the above copyright notice appear in all copies and that both that copyright notice and this
permission notice appear in supporting documentation. Dr. John Maddock makes no representations about the suitability
of this software for any purpose. It is provided "as is" without express or implied warranty.

©1994 Hewlett-Packard Company. All rights reserved.
Permission to use, copy, modify, distribute and sell this software and its documentation for any purpose is hereby granted
without fee, provided that the above copyright notice appear in all copies and that both that copyright notice and this
permission notice appear in supporting documentation. Hewlett-Packard Company makes no representations about the
suitability of this software for any purpose. It is provided "as is" without express or implied warranty.

©1996 Silicon Graphics Computer Systems, Inc. All rights reserved.
Permission to use, copy, modify, distribute and sell this software and its documentation for any purpose is hereby granted
without fee, provided that the above copyright notice appear in all copies and that both that copyright notice and this
permission notice appear in supporting documentation. Silicon Graphics makes no representations about the suitability of
this software for any purpose. It is provided "as is" without express or implied warranty.

• This software may include Info-Zip Unzip third-party software.

Copyright (c) 1990-2005 Info-ZIP. All rights reserved.

For the purposes of this copyright and license, "Info-ZIP" is defined as the following set of individuals:
Mark Adler, John Bush, Karl Davis, Harald Denker, Jean-Michel Dubois, Jean-loup Gailly, Hunter Goatley, Ed Gordon,
Ian Gorman, Chris Herborth,Dirk Haase, Greg Hartwig, Robert Heath, Jonathan Hudson, Paul Kienitz, David
Kirschbaum, Johnny Lee, Onno van der Linden, Igor Mandrichenko, Steve P. Miller, Sergio Monesi, Keith Owens,
George Petrov, Greg Roelofs, Kai Uwe Rommel, Steve Salisbury, Dave Smith, Steven M. Schweda, Christian Spieler,
Cosmin Truta, Antoine Verheijen, Paul von Behren, Rich Wales, Mike White

This software is provided "as is," without warranty of any kind, express or implied. In no event shall Info-ZIP or its
contributors be held liable for any direct, indirect, incidental, special or consequential damages arising out of the use of or
inability to use this software.

• This software application may include CUDD third-party software that may be subject to the following copyrights:

© 1995-2004, Regents of the University of Colorado. All rights reserved.
© 1985 by Digital Equipment Corporation, Maynard, MA. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following
conditions are met:

Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution.

Neither the name of the University of Colorado nor the names of its contributors may be used to endorse or promote
products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

The information in this software is subject to change without notice and should not be construed as a commitment by
Digital Equipment Corporation.

no responsibility for the use or reliability of its software on equipment which is not supplied by Digital.

Redistribution and use in source and binary forms are permitted provided that the above copyright notice and this
paragraph are duplicated in all such forms and that any documentation, advertising materials, and other materials related
to such distribution and use acknowledge that the software was developed by Digital Equipment Corporation. The name
of Digital Equipment Corporation may not be used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED ` ` AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS
FOR A PARTICULAR PURPOSE.

Do not take internally. In case of accidental ingestion, contact your physician immediately.

• This software application may include getline third-party software that is distributed by Chris Thewalt and my be subject
to the following copyrights

©1991, 1992, 1993 by Chris Thewalt (thewalt@ce.berkeley.edu)

• This software application may include Mersenne Twister third-party software. Mersenne Twister is distributed under the
t e r m s o f t h e M e r s en n e T w i s t e r L i c en se A g r e e me n t . Y o u c an v i e w t h e c o m p l e t e l i c e n s e a t :
<install_directory>/Mgc_home/shared/legal/mersenne_twister.pdf.

Software distributed under the License is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND,
either express or implied. See the License for the specific language governing rights and limitations under the License.

• This software application may include SystemC version 2.2 third-party software. To obtain a copy of the SystemC source
code, send a request to request_sourcecode@calypto.com. SystemC software is distributed under the SystemC Open
Source License Agreement (Download, Use and Contribution License Agreement Version 3.0) and is distributed on an

"AS IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License for the specific
language governing rights and limitations under the License. You can view a copy of the l icense at:
<install_directory>/Mgc_home/shared/legal/systemc_open_source_3.0.pdf. Portions of this software are subject to the
Boost License v.1.0. You can view a copy of the license at: <install_directory>/Mgc_home/shared/legal/boost_1.0.pdf.
SystemC version 2.2 may be subject to the following copyrights:

Copyright (c) 1994 Hewlett-Packard Company

Permission to use, copy, modify, distribute and sell this software and its documentation for any purpose is hereby
granted without fee, provided that the above copyright notice appear in all copies and that both that copyright notice
and this permission notice appear in supporting documentation. Hewlett-Packard Company makes no representations
about the suitability of this software for any purpose. It is provided "as is" without express or implied warranty.

Copyright (c) 1996 Silicon Graphics Computer Systems, Inc.

Permission to use, copy, modify, distribute and sell this software and its documentation for any purpose is hereby
granted without fee, provided that the above copyright notice appear in all copies and that both that copyright notice
and this permission notice appear in supporting documentation. Silicon Graphics makes no representations about the
suitability of this software for any purpose. It is provided "as is" without express or implied warranty.

Copyright 1991 by the Massachusetts Institute of Technology

Permission to use, copy, modify, distribute, and sell this software and its documentation for any purpose is hereby
granted without fee, provided that the above copyright notice appear in all copies and that both that copyright notice
and this permission notice appear in supporting documentation, and that the name of M.I.T. not be used in advertising
or publicity pertaining to distribution of the software without specific, written prior permission. M.I.T. makes no
representations about the suitability of this software for any purpose. It is provided "as is" without express or implied
warranty.

Calling this script install-sh is preferred over install.sh, to prevent ` make' implicit rules from creating a file called
install from it when there is no Makefile.

This script is compatible with the BSD install script, but was written from scratch. It can only install one file at a
time, a restriction shared with many OS's install programs.

Copyright (c) 1993 by David Keppel

Permission to use, copy, modify and distribute this software and its documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice and this notice appear in all copies. This software is
provided as a proof-of-concept and for demonstration purposes; there is no representation about the suitability of this
software for any purpose.

• This software application may include libxml2 version 2.6.31 third-party software, which is distributed on an "AS IS"
basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. libxml2 version 2.6.31 may be subject to the
following copyrights:

Copyright (C) 1998-2003 Daniel Veillard. All Rights Reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
documentation files (the "Software"), to deal in the Software without restriction, including without limitation the
rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit
persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE DANIEL VEILLARD BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of Daniel Veillard shall not be used in advertising or otherwise to
promote the sale, use or other dealings in this Software without prior written authorization from him.

Copyright (C) 2000 Bjorn Reese and Daniel Veillard.

Permission to use, copy, modify, and distribute this software for any purpose with or without fee is hereby granted,
provided that the above copyright notice and this permission notice appear in all copies.

THIS SOFTWARE IS PROVIDED ` ` AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND
FITNESS FOR A PARTICULAR PURPOSE. THE AUTHORS AND CONTRIBUTORS ACCEPT NO
RESPONSIBILITY IN ANY CONCEIVABLE MANNER.

© 1991 by the Massachusetts Institute of Technology

Permission to use, copy, modify, distribute, and sell this software and its documentation for any purpose is hereby
granted without fee, provided that the above copyright notice appear in all copies and that both that copyright notice
and this permission notice appear in supporting documentation, and that the name of M.I.T. not be used in advertising
or publicity pertaining to distribution of the software without specific, written prior permission. M.I.T. makes no
representations about the suitability of this software for any purpose. It is provided "as is" without express or implied
warranty.

© 2000 Gary Pennington and Daniel Veillard.

Permission to use, copy, modify, and distribute this software for any purpose with or without fee is hereby granted,
provided that the above copyright notice and this permission notice appear in all copies.

THIS SOFTWARE IS PROVIDED ` ` AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIEDWARRANTIES,
INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OFMERCHANTIBILITY AND
FITNESS FOR A PARTICULAR PURPOSE. THE AUTHORS AND CONTRIBUTORS ACCEPT NO
RESPONSIBILITY IN ANY CONCEIVABLE MANNER.

© 1998, 2000, 2001 Bjorn Reese and Daniel Stenberg.

Permission to use, copy, modify, and distribute this software for any purpose with or without fee is hereby granted,
provided that the above copyright notice and this permission notice appear in all copies.

THIS SOFTWARE IS PROVIDED ` ` AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND
FITNESS FOR A PARTICULAR PURPOSE. THE AUTHORS AND CONTRIBUTORS ACCEPT NO
RESPONSIBILITY IN ANY CONCEIVABLE MANNER.

© 2001 Bjorn Reese <breese@users.sourceforge.net>

Permission to use, copy, modify, and distribute this software for any purpose with or without fee is hereby granted,
provided that the above copyright notice and this permission notice appear in all copies.

THIS SOFTWARE IS PROVIDED ` ` AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND
FITNESS FOR A PARTICULAR PURPOSE. THE AUTHORS AND CONTRIBUTORS ACCEPT NO
RESPONSIBILITY IN ANY CONCEIVABLE MANNER.

• This software application may include TLM version 2.0 third-party software. TLM version 2.0 is distributed under the
terms of the SystemC Open Source License Agreement v3.0 and is distributed on an "AS IS" basis, WITHOUT
WARRANTY OF ANY KIND, either express or implied. See the license for the specific language governing rights and
l i m i t a t i o n s u n d e r t h e l i c e n s e . Y o u c a n v i e w a c o p y o f t h e l i c e n s e a t :
<install_directory>/Mgc_home/shared/legal/systemc_open_source_3.0.pdf. To obtain a copy of the TLM version 2.0
source code, send a request to request_sourcecode@calypto.com.

• This software application may include tbcload version 1.7 third-party software, which is distributed on an "AS IS" basis,
WITHOUT WARRANTY OF ANY KIND, either express or implied.

• This software application may include portions of Boost Spirit version 1.8.5 third-party software. Boost Spirit version
1.8.5 is distributed under the terms of the Boost Software License version 1.0 and is distributed on an "AS IS" basis,
WITHOUT WARRANTY OF ANY KIND, either express or implied. See the license for the specific language governing
r i g h t s a n d l i m i t a t i o n s u n d e r t h e l i c e n s e . Y o u c a n v i e w a c o p y o f t h e l i c e n s e a t :
<install_directory>/Mgc_home/shared/legal/boost_1.0.pdf. Boost Spirit version 1.8.5 may be subject to the following
copyrights:

© 1996, 1997 Silicon Graphics Computer Systems, Inc.

Permission to use, copy, modify, distribute and sell this software and its documentation for any purpose is hereby granted
without fee, provided that the above copyright notice appear in all copies and that both that copyright notice and this
permission notice appear in supporting documentation. Silicon Graphics makes no representations about the suitability of
this software for any purpose. It is provided "as is" without express or implied warranty.

© 1994 Hewlett-Packard Company

Permission to use, copy, modify, distribute and sell this software and its documentation for any purpose is hereby granted
without fee, provided that the above copyright notice appear in all copies and that both that copyright notice and this
permission notice appear in supporting documentation. Hewlett-Packard Company makes no representations about the
suitability of this software for any purpose. It is provided "as is" without express or implied warranty .

	Table of Contents
	List of Figures
	List of Tables
	Chapter 1 Introduction
	Library Builder Overview
	Catapult C Library Builder Licenses

	Invoking the Graphical User Interface
	Features of the User Interface
	Library Builder Main Window
	The Task Bar Window
	The Command Input and Transcript Window
	Transcript Area
	Viewing the Long Description
	Filtering Buttons and Drop Down Menus

	The Library Explorer Window
	The Library Editor Window
	The Farm Window
	Getting Help

	Setting Library Builder Options
	Set General Options
	Set Messages Options
	Message Classifications and Conventions
	Naming Convention for Messages

	Set Component Library Options
	Set Catapult C Synthesis Options
	Set Farm Options
	Set Input Compiler Options
	View Compiler Settings
	Set Text Editor Options
	Set Flows Options
	Set Precision Flow Options
	Set Design Compiler Flow Options
	Set RTL Compiler Flow Options
	Set TalusDesign Flow Options
	Saving and Restoring Session Options
	Saving Options
	Restoring Options
	Catapult C Library Builder Registry
	The Catapult Initialization File

	Chapter 2 Creating and Editing Libraries
	Setting the Working Directory
	Creating a New Library
	Cadence RTL Compiler Options
	The Settings Tab
	The Advanced Tab
	The Library Options Tab
	The Flow Options Tab

	Magma Talus Design Options
	The Settings Tab
	The Advanced Tab
	The Flow Options Tab

	Precision RTL Synthesis Options
	The Settings Tab
	The Advanced Tab
	The Flow Options Tab

	Synopsys Design Compiler Options
	The Settings Tab
	The Advanced Tab
	The Library Options Tab
	The Flow Options Tab

	Editing RAM Library Properties
	Editing the RAM Library Variables
	Editing RAM Components Parameters
	Editing RAM Formula Information
	Editing RAM Timing
	Editing RAM Ports

	Saving Libraries

	Chapter 3 Library Characterization
	Multi-Point Characterization
	Characterizing Libraries or Components
	Queuing Multiple Libraries for Multi-day Run

	Library Characterization Results
	Delay Characterization Properties
	Resetting the Data Before Another Characterization
	Plotting the Characterization Data
	Adding/Removing QMODs
	Viewing the Characterization Transcript

	Troubleshooting Library Failures
	Using the Library Farm
	Enabling and Configuring Library Farm Options
	Configuring Library Farm to Use the Load Sharing Facility (LSF) software

	Setting Up Library Farm Hosts

	Chapter 4 Creating Custom Operators and Interfaces
	Introduction
	Creating the Custom Operator C++ Function
	Creating a Library for the Custom Operators
	Creating an ASIC Blank Library
	Creating an FPGA Blank Library

	Importing Custom Operators from C++ and HDL
	Importing Operators from C++ Functions
	Importing Netlists
	Handling Memories
	Netlist Dependencies

	Editing Libraries
	Modules
	Parameters
	Ports
	Bindings
	Pin Associations
	Property Mappings

	Creating RAM without a Reset
	Programmable Reset Polarity and Multiple Resets
	Manually Defining Custom Operators
	Creating Custom Operators with State

	Verifying the Custom Operator RTL and Custom C++ Function
	Using Custom Interfaces with SCVerify
	Transactor resource variables
	Step 1 - Create the library component
	Step2 - Copy the mgc_in_wire_wait transactor resource
	Step3 - Modify the transactor resource class
	Step 4 - Modify the signals and constructor ports.
	Step 5 - Modify the update_z sensitivity
	Step6 - Modify the at_active_clk function
	Step7 - Modify the update_z function
	Step8- Modify the drv_v_signals function
	Step9 - Edit the library to add the transactor resource variables

	Chapter 5 Commands
	General Command Syntax
	Documentation Conventions for Catapult Commands
	Command Reference Page Format

	Command Interface to the SIF Database
	Path and Sub-Path Argument Syntax Rules
	Using Wildcard Characters in Path Arguments
	Using Sub-Path Arguments
	Error Messages Caused by Invalid Paths

	Common Command Switches
	-return
	-checkpath
	-match
	-info
	-recurse
	-- (switch)
	-help
	--help

	Using Tcl Commands in Scripts
	Interactive Command Line
	GUI
	Command Line Invocation Argument
	Tcl Startup Script

	Command Reference
	application get
	application exit
	application report
	catapult -product library_builder
	dofile
	flow get
	flow package names
	flow package option add
	flow package option get
	flow package option remove
	flow package option set
	flow package provide
	flow package require
	flow package script
	flow package vcompare
	flow package versions
	flow package vsatisfies
	flow run
	help command
	help message
	library add
	library characterize
	library edit
	library get
	library import
	library load
	library rename
	library remove
	library report
	library save
	library save_commands (Deprecated)
	library set
	logfile
	options defaults
	options exists
	options get
	options load
	options save
	options set
	quit
	set_working_dir
	utility farm add
	utility farm get
	utility farm release
	utility farm remove
	utility farm reserve
	utility farm reset
	utility farm set

	Index
	Third-Party Information

