aboutsummaryrefslogtreecommitdiffstats
path: root/yage/base/picopng.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'yage/base/picopng.cpp')
-rw-r--r--yage/base/picopng.cpp1118
1 files changed, 1118 insertions, 0 deletions
diff --git a/yage/base/picopng.cpp b/yage/base/picopng.cpp
new file mode 100644
index 00000000..dcc4b367
--- /dev/null
+++ b/yage/base/picopng.cpp
@@ -0,0 +1,1118 @@
+#include <cstdlib>
+#include <vector>
+
+namespace yage
+{
+
+/*
+ decodePNG: The picoPNG function, decodes a PNG file buffer in memory, into a
+ raw pixel buffer.
+ out_image: output parameter, this will contain the raw pixels after decoding.
+ By default the output is 32-bit RGBA color.
+ The std::vector is automatically resized to the correct size.
+ image_width: output_parameter, this will contain the width of the image in
+ pixels.
+ image_height: output_parameter, this will contain the height of the image in
+ pixels.
+ in_png: pointer to the buffer of the PNG file in memory. To get it from a file
+ on
+ disk, load it and store it in a memory buffer yourself first.
+ in_size: size of the input PNG file in bytes.
+ convert_to_rgba32: optional parameter, true by default.
+ Set to true to get the output in RGBA 32-bit (8 bit per channel) color format
+ no matter what color type the original PNG image had. This gives predictable,
+ useable data from any random input PNG.
+ Set to false to do no color conversion at all. The result then has the same
+ data
+ type as the PNG image, which can range from 1 bit to 64 bits per pixel.
+ Information about the color type or palette colors are not provided. You need
+ to know this information yourself to be able to use the data so this only
+ works for trusted PNG files. Use LodePNG instead of picoPNG if you need this
+ information.
+ return: 0 if success, not 0 if some error occured.
+*/
+int decodePNG(std::vector<unsigned char> &out_image, unsigned long &image_width,
+ unsigned long &image_height, const unsigned char *in_png,
+ size_t in_size, bool convert_to_rgba32)
+{
+ // picoPNG version 20101224
+ // Copyright (c) 2005-2010 Lode Vandevenne
+ //
+ // This software is provided 'as-is', without any express or implied
+ // warranty. In no event will the authors be held liable for any damages
+ // arising from the use of this software.
+ //
+ // Permission is granted to anyone to use this software for any purpose,
+ // including commercial applications, and to alter it and redistribute it
+ // freely, subject to the following restrictions:
+ //
+ // 1. The origin of this software must not be misrepresented; you must
+ // not
+ // claim that you wrote the original software. If you use this software
+ // in a product, an acknowledgment in the product documentation would be
+ // appreciated but is not required.
+ // 2. Altered source versions must be plainly marked as such, and must
+ // not be
+ // misrepresented as being the original software.
+ // 3. This notice may not be removed or altered from any source
+ // distribution.
+
+ // picoPNG is a PNG decoder in one C++ function of around 500 lines. Use
+ // picoPNG for
+ // programs that need only 1 .cpp file. Since it's a single function, it's
+ // very limited,
+ // it can convert a PNG to raw pixel data either converted to 32-bit RGBA
+ // color or
+ // with no color conversion at all. For anything more complex, another tiny
+ // library
+ // is available: LodePNG (lodepng.c(pp)), which is a single source and
+ // header file.
+ // Apologies for the compact code style, it's to make this tiny.
+
+ static const unsigned long LENBASE[29] = {
+ 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27,
+ 31, 35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258};
+ static const unsigned long LENEXTRA[29] = {0, 0, 0, 0, 0, 0, 0, 0, 1, 1,
+ 1, 1, 2, 2, 2, 2, 3, 3, 3, 3,
+ 4, 4, 4, 4, 5, 5, 5, 5, 0};
+ static const unsigned long DISTBASE[30] = {
+ 1, 2, 3, 4, 5, 7, 9, 13, 17, 25,
+ 33, 49, 65, 97, 129, 193, 257, 385, 513, 769,
+ 1025, 1537, 2049, 3073, 4097, 6145, 8193, 12289, 16385, 24577};
+ static const unsigned long DISTEXTRA[30] = {
+ 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6,
+ 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13};
+ static const unsigned long CLCL[19] = {
+ 16, 17, 18, 0, 8, 7, 9, 6, 10, 5,
+ 11, 4, 12, 3, 13, 2, 14, 1, 15}; // code length code lengths
+ struct Zlib // nested functions for zlib decompression
+ {
+ static unsigned long readBitFromStream(size_t &bitp,
+ const unsigned char *bits)
+ {
+ unsigned long result = (bits[bitp >> 3] >> (bitp & 0x7)) & 1;
+ bitp++;
+ return result;
+ }
+ static unsigned long readBitsFromStream(size_t &bitp,
+ const unsigned char *bits,
+ size_t nbits)
+ {
+ unsigned long result = 0;
+ for (size_t i = 0; i < nbits; i++) {
+ result += (readBitFromStream(bitp, bits)) << i;
+ }
+ return result;
+ }
+ struct HuffmanTree {
+ int makeFromLengths(const std::vector<unsigned long> &bitlen,
+ unsigned long maxbitlen)
+ { // make tree given the lengths
+ unsigned long numcodes = (unsigned long)(bitlen.size()),
+ treepos = 0, nodefilled = 0;
+ std::vector<unsigned long> tree1d(numcodes),
+ blcount(maxbitlen + 1, 0), nextcode(maxbitlen + 1, 0);
+ for (unsigned long bits = 0; bits < numcodes; bits++) {
+ blcount[bitlen[bits]]++; // count number of instances of
+ }
+ // each code length
+ for (unsigned long bits = 1; bits <= maxbitlen; bits++) {
+ nextcode[bits] = (nextcode[bits - 1] + blcount[bits - 1])
+ << 1;
+ }
+ for (unsigned long n = 0; n < numcodes; n++) {
+ if (bitlen[n] != 0) {
+ tree1d[n] =
+ nextcode[bitlen[n]]++; // generate all the codes
+ }
+ }
+ tree2d.clear();
+ tree2d.resize(numcodes * 2, 32767); // 32767 here means the
+ // tree2d isn't filled
+ // there yet
+ for (unsigned long n = 0; n < numcodes; n++) { // the codes
+ for (unsigned long i = 0; i < bitlen[n];
+ i++) // the bits for this code
+ {
+ unsigned long bit =
+ (tree1d[n] >> (bitlen[n] - i - 1)) & 1;
+ if (treepos > numcodes - 2) {
+ return 55;
+ }
+ if (tree2d[2 * treepos + bit] ==
+ 32767) // not yet filled in
+ {
+ if (i + 1 == bitlen[n]) {
+ tree2d[2 * treepos + bit] = n;
+ treepos = 0;
+ } // last bit
+ else {
+ tree2d[2 * treepos + bit] =
+ ++nodefilled + numcodes;
+ treepos = nodefilled;
+ } // addresses are encoded as values > numcodes
+ } else {
+ treepos = tree2d[2 * treepos + bit] -
+ numcodes; // subtract numcodes from
+ }
+ // address to get address value
+ }
+ }
+ return 0;
+ }
+ int decode(bool &decoded, unsigned long &result, size_t &treepos,
+ unsigned long bit) const
+ { // Decodes a symbol from the tree
+ unsigned long numcodes = (unsigned long)tree2d.size() / 2;
+ if (treepos >= numcodes) {
+ return 11; // error: you appeared outside the codetree
+ }
+ result = tree2d[2 * treepos + bit];
+ decoded = (result < numcodes);
+ treepos = decoded ? 0 : result - numcodes;
+ return 0;
+ }
+ std::vector<unsigned long> tree2d; // 2D representation of a
+ // huffman tree: The one
+ // dimension is "0" or "1", the
+ // other contains all nodes and
+ // leaves of the tree.
+ };
+ struct Inflator {
+ int error;
+ void inflate(std::vector<unsigned char> &out,
+ const std::vector<unsigned char> &in, size_t inpos = 0)
+ {
+ size_t bp = 0, pos = 0; // bit pointer and byte pointer
+ error = 0;
+ unsigned long BFINAL = 0;
+ while (!BFINAL && !error) {
+ if (bp >> 3 >= in.size()) {
+ error = 52;
+ return;
+ } // error, bit pointer will jump past memory
+ BFINAL = readBitFromStream(bp, &in[inpos]);
+ unsigned long BTYPE = readBitFromStream(bp, &in[inpos]);
+ BTYPE += 2 * readBitFromStream(bp, &in[inpos]);
+ if (BTYPE == 3) {
+ error = 20;
+ return;
+ } // error: invalid BTYPE
+ else if (BTYPE == 0) {
+ inflateNoCompression(out, &in[inpos], bp, pos,
+ in.size());
+ } else {
+ inflateHuffmanBlock(out, &in[inpos], bp, pos, in.size(),
+ BTYPE);
+ }
+ }
+ if (!error) {
+ out.resize(pos); // Only now we know the true size of out,
+ }
+ // resize it to that
+ }
+ void generateFixedTrees(HuffmanTree &tree,
+ HuffmanTree &treeD) // get the tree of a
+ // deflated block with
+ // fixed tree
+ {
+ std::vector<unsigned long> bitlen(288, 8), bitlenD(32, 5);
+ ;
+ for (size_t i = 144; i <= 255; i++) {
+ bitlen[i] = 9;
+ }
+ for (size_t i = 256; i <= 279; i++) {
+ bitlen[i] = 7;
+ }
+ tree.makeFromLengths(bitlen, 15);
+ treeD.makeFromLengths(bitlenD, 15);
+ }
+ HuffmanTree codetree, codetreeD,
+ codelengthcodetree; // the code tree for Huffman codes, dist
+ // codes, and code length codes
+ unsigned long huffmanDecodeSymbol(const unsigned char *in,
+ size_t &bp,
+ const HuffmanTree &codetree,
+ size_t inlength)
+ { // decode a single symbol from given list of
+ // bits with given code tree. return value
+ // is the symbol
+ bool decoded;
+ unsigned long ct;
+ for (size_t treepos = 0;;) {
+ if ((bp & 0x07) == 0 && (bp >> 3) > inlength) {
+ error = 10;
+ return 0;
+ } // error: end reached without endcode
+ error = codetree.decode(decoded, ct, treepos,
+ readBitFromStream(bp, in));
+ if (error) {
+ return 0; // stop, an error happened
+ }
+ if (decoded) {
+ return ct;
+ }
+ }
+ }
+ void getTreeInflateDynamic(HuffmanTree &tree, HuffmanTree &treeD,
+ const unsigned char *in, size_t &bp,
+ size_t inlength)
+ { // get the tree of a deflated block with
+ // dynamic tree, the tree itself is also
+ // Huffman compressed with a known tree
+ std::vector<unsigned long> bitlen(288, 0), bitlenD(32, 0);
+ if (bp >> 3 >= inlength - 2) {
+ error = 49;
+ return;
+ } // the bit pointer is or will go past the memory
+ size_t HLIT = readBitsFromStream(bp, in, 5) +
+ 257; // number of literal/length codes + 257
+ size_t HDIST = readBitsFromStream(bp, in, 5) +
+ 1; // number of dist codes + 1
+ size_t HCLEN = readBitsFromStream(bp, in, 4) +
+ 4; // number of code length codes + 4
+ std::vector<unsigned long> codelengthcode(
+ 19); // lengths of tree to decode the lengths of the
+ // dynamic tree
+ for (size_t i = 0; i < 19; i++) {
+ codelengthcode[CLCL[i]] =
+ (i < HCLEN) ? readBitsFromStream(bp, in, 3) : 0;
+ }
+ error = codelengthcodetree.makeFromLengths(codelengthcode, 7);
+ if (error) {
+ return;
+ }
+ size_t i = 0, replength;
+ while (i < HLIT + HDIST) {
+ unsigned long code = huffmanDecodeSymbol(
+ in, bp, codelengthcodetree, inlength);
+ if (error) {
+ return;
+ }
+ if (code <= 15) {
+ if (i < HLIT) {
+ bitlen[i++] = code;
+ } else {
+ bitlenD[i++ - HLIT] = code;
+ }
+ } // a length code
+ else if (code == 16) // repeat previous
+ {
+ if (bp >> 3 >= inlength) {
+ error = 50;
+ return;
+ } // error, bit pointer jumps past memory
+ replength = 3 + readBitsFromStream(bp, in, 2);
+ unsigned long value; // set value to the previous code
+ if ((i - 1) < HLIT) {
+ value = bitlen[i - 1];
+ } else {
+ value = bitlenD[i - HLIT - 1];
+ }
+ for (size_t n = 0; n < replength;
+ n++) // repeat this value in the next lengths
+ {
+ if (i >= HLIT + HDIST) {
+ error = 13;
+ return;
+ } // error: i is larger than the amount of codes
+ if (i < HLIT) {
+ bitlen[i++] = value;
+ } else {
+ bitlenD[i++ - HLIT] = value;
+ }
+ }
+ } else if (code == 17) // repeat "0" 3-10 times
+ {
+ if (bp >> 3 >= inlength) {
+ error = 50;
+ return;
+ } // error, bit pointer jumps past memory
+ replength = 3 + readBitsFromStream(bp, in, 3);
+ for (size_t n = 0; n < replength;
+ n++) // repeat this value in the next lengths
+ {
+ if (i >= HLIT + HDIST) {
+ error = 14;
+ return;
+ } // error: i is larger than the amount of codes
+ if (i < HLIT) {
+ bitlen[i++] = 0;
+ } else {
+ bitlenD[i++ - HLIT] = 0;
+ }
+ }
+ } else if (code == 18) // repeat "0" 11-138 times
+ {
+ if (bp >> 3 >= inlength) {
+ error = 50;
+ return;
+ } // error, bit pointer jumps past memory
+ replength = 11 + readBitsFromStream(bp, in, 7);
+ for (size_t n = 0; n < replength;
+ n++) // repeat this value in the next lengths
+ {
+ if (i >= HLIT + HDIST) {
+ error = 15;
+ return;
+ } // error: i is larger than the amount of codes
+ if (i < HLIT) {
+ bitlen[i++] = 0;
+ } else {
+ bitlenD[i++ - HLIT] = 0;
+ }
+ }
+ } else {
+ error = 16;
+ return;
+ } // error: somehow an unexisting code appeared. This can
+ // never happen.
+ }
+ if (bitlen[256] == 0) {
+ error = 64;
+ return;
+ } // the length of the end code 256 must be larger than 0
+ error = tree.makeFromLengths(bitlen, 15);
+ if (error) {
+ return; // now we've finally got HLIT and HDIST, so
+ }
+ // generate the code trees, and the function is
+ // done
+ error = treeD.makeFromLengths(bitlenD, 15);
+ if (error) {
+ return;
+ }
+ }
+ void inflateHuffmanBlock(std::vector<unsigned char> &out,
+ const unsigned char *in, size_t &bp,
+ size_t &pos, size_t inlength,
+ unsigned long btype)
+ {
+ if (btype == 1) {
+ generateFixedTrees(codetree, codetreeD);
+ } else if (btype == 2) {
+ getTreeInflateDynamic(codetree, codetreeD, in, bp,
+ inlength);
+ if (error) {
+ return;
+ }
+ }
+ for (;;) {
+ unsigned long code =
+ huffmanDecodeSymbol(in, bp, codetree, inlength);
+ if (error) {
+ return;
+ }
+ if (code == 256) {
+ return; // end code
+ } else if (code <= 255) // literal symbol
+ {
+ if (pos >= out.size()) {
+ out.resize((pos + 1) * 2); // reserve more room
+ }
+ out[pos++] = (unsigned char)(code);
+ } else if (code >= 257 && code <= 285) // length code
+ {
+ size_t length = LENBASE[code - 257],
+ numextrabits = LENEXTRA[code - 257];
+ if ((bp >> 3) >= inlength) {
+ error = 51;
+ return;
+ } // error, bit pointer will jump past memory
+ length += readBitsFromStream(bp, in, numextrabits);
+ unsigned long codeD =
+ huffmanDecodeSymbol(in, bp, codetreeD, inlength);
+ if (error) {
+ return;
+ }
+ if (codeD > 29) {
+ error = 18;
+ return;
+ } // error: invalid dist code (30-31 are never used)
+ unsigned long dist = DISTBASE[codeD],
+ numextrabitsD = DISTEXTRA[codeD];
+ if ((bp >> 3) >= inlength) {
+ error = 51;
+ return;
+ } // error, bit pointer will jump past memory
+ dist += readBitsFromStream(bp, in, numextrabitsD);
+ size_t start = pos, back = start - dist; // backwards
+ if (pos + length >= out.size()) {
+ out.resize((pos + length) * 2); // reserve more
+ }
+ // room
+ for (size_t i = 0; i < length; i++) {
+ out[pos++] = out[back++];
+ if (back >= start) {
+ back = start - dist;
+ }
+ }
+ }
+ }
+ }
+ void inflateNoCompression(std::vector<unsigned char> &out,
+ const unsigned char *in, size_t &bp,
+ size_t &pos, size_t inlength)
+ {
+ while ((bp & 0x7) != 0) {
+ bp++; // go to first boundary of byte
+ }
+ size_t p = bp / 8;
+ if (p >= inlength - 4) {
+ error = 52;
+ return;
+ } // error, bit pointer will jump past memory
+ unsigned long LEN = in[p] + 256 * in[p + 1],
+ NLEN = in[p + 2] + 256 * in[p + 3];
+ p += 4;
+ if (LEN + NLEN != 65535) {
+ error = 21;
+ return;
+ } // error: NLEN is not one's complement of LEN
+ if (pos + LEN >= out.size()) {
+ out.resize(pos + LEN);
+ }
+ if (p + LEN > inlength) {
+ error = 23;
+ return;
+ } // error: reading outside of in buffer
+ for (unsigned long n = 0; n < LEN; n++) {
+ out[pos++] = in[p++]; // read LEN bytes of literal data
+ }
+ bp = p * 8;
+ }
+ };
+ int
+ decompress(std::vector<unsigned char> &out,
+ const std::vector<unsigned char> &in) // returns error value
+ {
+ Inflator inflator;
+ if (in.size() < 2) {
+ return 53;
+ } // error, size of zlib data too small
+ if ((in[0] * 256 + in[1]) % 31 != 0) {
+ return 24;
+ } // error: 256 * in[0] + in[1] must be a multiple of 31, the
+ // FCHECK value is supposed to be made that way
+ unsigned long CM = in[0] & 15, CINFO = (in[0] >> 4) & 15,
+ FDICT = (in[1] >> 5) & 1;
+ if (CM != 8 || CINFO > 7) {
+ return 25;
+ } // error: only compression method 8: inflate with sliding window
+ // of 32k is supported by the PNG spec
+ if (FDICT != 0) {
+ return 26;
+ } // error: the specification of PNG says about the zlib stream:
+ // "The additional flags shall not specify a preset dictionary."
+ inflator.inflate(out, in, 2);
+ return inflator
+ .error; // note: adler32 checksum was skipped and ignored
+ }
+ };
+ struct PNG // nested functions for PNG decoding
+ {
+ struct Info {
+ unsigned long width, height, colorType, bitDepth, compressionMethod,
+ filterMethod, interlaceMethod, key_r, key_g, key_b;
+ bool key_defined; // is a transparent color key given?
+ std::vector<unsigned char> palette;
+ } info;
+ int error;
+ void decode(std::vector<unsigned char> &out, const unsigned char *in,
+ size_t size, bool convert_to_rgba32)
+ {
+ error = 0;
+ if (size == 0 || in == nullptr) {
+ error = 48;
+ return;
+ } // the given data is empty
+ readPngHeader(&in[0], size);
+ if (error) {
+ return;
+ }
+ size_t pos = 33; // first byte of the first chunk after the header
+ std::vector<unsigned char> idat; // the data from idat chunks
+ bool IEND = false, known_type = true;
+ info.key_defined = false;
+ while (!IEND) // loop through the chunks, ignoring unknown chunks
+ // and stopping at IEND chunk. IDAT data is put at
+ // the start of the in buffer
+ {
+ if (pos + 8 >= size) {
+ error = 30;
+ return;
+ } // error: size of the in buffer too small to contain next
+ // chunk
+ size_t chunkLength = read32bitInt(&in[pos]);
+ pos += 4;
+ if (chunkLength > 2147483647) {
+ error = 63;
+ return;
+ }
+ if (pos + chunkLength >= size) {
+ error = 35;
+ return;
+ } // error: size of the in buffer too small to contain next
+ // chunk
+ if (in[pos + 0] == 'I' && in[pos + 1] == 'D' &&
+ in[pos + 2] == 'A' &&
+ in[pos + 3] ==
+ 'T') // IDAT chunk, containing compressed image data
+ {
+ idat.insert(idat.end(), &in[pos + 4],
+ &in[pos + 4 + chunkLength]);
+ pos += (4 + chunkLength);
+ } else if (in[pos + 0] == 'I' && in[pos + 1] == 'E' &&
+ in[pos + 2] == 'N' && in[pos + 3] == 'D') {
+ pos += 4;
+ IEND = true;
+ } else if (in[pos + 0] == 'P' && in[pos + 1] == 'L' &&
+ in[pos + 2] == 'T' &&
+ in[pos + 3] == 'E') // palette chunk (PLTE)
+ {
+ pos += 4; // go after the 4 letters
+ info.palette.resize(4 * (chunkLength / 3));
+ if (info.palette.size() > (4 * 256)) {
+ error = 38;
+ return;
+ } // error: palette too big
+ for (size_t i = 0; i < info.palette.size(); i += 4) {
+ for (size_t j = 0; j < 3; j++) {
+ info.palette[i + j] = in[pos++]; // RGB
+ }
+ info.palette[i + 3] = 255; // alpha
+ }
+ } else if (in[pos + 0] == 't' && in[pos + 1] == 'R' &&
+ in[pos + 2] == 'N' &&
+ in[pos + 3] ==
+ 'S') // palette transparency chunk (tRNS)
+ {
+ pos += 4; // go after the 4 letters
+ if (info.colorType == 3) {
+ if (4 * chunkLength > info.palette.size()) {
+ error = 39;
+ return;
+ } // error: more alpha values given than there are
+ // palette entries
+ for (size_t i = 0; i < chunkLength; i++) {
+ info.palette[4 * i + 3] = in[pos++];
+ }
+ } else if (info.colorType == 0) {
+ if (chunkLength != 2) {
+ error = 40;
+ return;
+ } // error: this chunk must be 2 bytes for greyscale
+ // image
+ info.key_defined = true;
+ info.key_r = info.key_g = info.key_b =
+ 256 * in[pos] + in[pos + 1];
+ pos += 2;
+ } else if (info.colorType == 2) {
+ if (chunkLength != 6) {
+ error = 41;
+ return;
+ } // error: this chunk must be 6 bytes for RGB image
+ info.key_defined = true;
+ info.key_r = 256 * in[pos] + in[pos + 1];
+ pos += 2;
+ info.key_g = 256 * in[pos] + in[pos + 1];
+ pos += 2;
+ info.key_b = 256 * in[pos] + in[pos + 1];
+ pos += 2;
+ } else {
+ error = 42;
+ return;
+ } // error: tRNS chunk not allowed for other color models
+ } else // it's not an implemented chunk type, so ignore it:
+ // skip over the data
+ {
+ if (!(in[pos + 0] & 32)) {
+ error = 69;
+ return;
+ } // error: unknown critical chunk (5th bit of first byte
+ // of chunk type is 0)
+ pos += (chunkLength + 4); // skip 4 letters and
+ // uninterpreted data of
+ // unimplemented chunk
+ known_type = false;
+ }
+ pos += 4; // step over CRC (which is ignored)
+ }
+ unsigned long bpp = getBpp(info);
+ std::vector<unsigned char> scanlines(
+ ((info.width * (info.height * bpp + 7)) / 8) +
+ info.height); // now the out buffer will be filled
+ Zlib zlib; // decompress with the Zlib decompressor
+ error = zlib.decompress(scanlines, idat);
+ if (error) {
+ return; // stop if the zlib decompressor returned an error
+ }
+ size_t bytewidth = (bpp + 7) / 8,
+ outlength = (info.height * info.width * bpp + 7) / 8;
+ out.resize(outlength); // time to fill the out buffer
+ unsigned char *out_ =
+ outlength ? &out[0] : nullptr; // use a regular pointer to the
+ // std::vector for faster code if
+ // compiled without optimization
+ if (info.interlaceMethod == 0) // no interlace, just filter
+ {
+ size_t linestart = 0,
+ linelength = (info.width * bpp + 7) /
+ 8; // length in bytes of a scanline,
+ // excluding the filtertype byte
+ if (bpp >= 8) { // byte per byte
+ for (unsigned long y = 0; y < info.height; y++) {
+ unsigned long filterType = scanlines[linestart];
+ const unsigned char *prevline =
+ (y == 0) ? nullptr
+ : &out_[(y - 1) * info.width * bytewidth];
+ unFilterScanline(&out_[linestart - y],
+ &scanlines[linestart + 1], prevline,
+ bytewidth, filterType, linelength);
+ if (error) {
+ return;
+ }
+ linestart +=
+ (1 + linelength); // go to start of next scanline
+ }
+ } else // less than 8 bits per pixel, so fill it up bit per bit
+ {
+ std::vector<unsigned char> templine(
+ (info.width * bpp + 7) >> 3); // only used if bpp < 8
+ for (size_t y = 0, obp = 0; y < info.height; y++) {
+ unsigned long filterType = scanlines[linestart];
+ const unsigned char *prevline =
+ (y == 0) ? nullptr
+ : &out_[(y - 1) * info.width * bytewidth];
+ unFilterScanline(&templine[0],
+ &scanlines[linestart + 1], prevline,
+ bytewidth, filterType, linelength);
+ if (error) {
+ return;
+ }
+ for (size_t bp = 0; bp < info.width * bpp;) {
+ setBitOfReversedStream(
+ obp, out_,
+ readBitFromReversedStream(bp, &templine[0]));
+ }
+ linestart +=
+ (1 + linelength); // go to start of next scanline
+ }
+ }
+ } else // interlaceMethod is 1 (Adam7)
+ {
+ size_t passw[7] = {(info.width + 7) / 8, (info.width + 3) / 8,
+ (info.width + 3) / 4, (info.width + 1) / 4,
+ (info.width + 1) / 2, (info.width + 0) / 2,
+ (info.width + 0) / 1};
+ size_t passh[7] = {(info.height + 7) / 8, (info.height + 7) / 8,
+ (info.height + 3) / 8, (info.height + 3) / 4,
+ (info.height + 1) / 4, (info.height + 1) / 2,
+ (info.height + 0) / 2};
+ size_t passstart[7] = {0};
+ size_t pattern[28] = {0, 4, 0, 2, 0, 1, 0, 0, 0, 4,
+ 0, 2, 0, 1, 8, 8, 4, 4, 2, 2,
+ 1, 8, 8, 8, 4, 4, 2, 2}; // values for the
+ // adam7 passes
+ for (int i = 0; i < 6; i++) {
+ passstart[i + 1] = passstart[i] +
+ passh[i] * ((passw[i] ? 1 : 0) +
+ (passw[i] * bpp + 7) / 8);
+ }
+ std::vector<unsigned char> scanlineo((info.width * bpp + 7) /
+ 8),
+ scanlinen((info.width * bpp + 7) /
+ 8); //"old" and "new" scanline
+ for (int i = 0; i < 7; i++) {
+ adam7Pass(&out_[0], &scanlinen[0], &scanlineo[0],
+ &scanlines[passstart[i]], info.width, pattern[i],
+ pattern[i + 7], pattern[i + 14], pattern[i + 21],
+ passw[i], passh[i], bpp);
+ }
+ }
+ if (convert_to_rgba32 && (info.colorType != 6 ||
+ info.bitDepth != 8)) // conversion needed
+ {
+ std::vector<unsigned char> data = out;
+ error = convert(out, &data[0], info, info.width, info.height);
+ }
+ }
+ void readPngHeader(const unsigned char *in,
+ size_t inlength) // read the information from the
+ // header and store it in the Info
+ {
+ if (inlength < 29) {
+ error = 27;
+ return;
+ } // error: the data length is smaller than the length of the
+ // header
+ if (in[0] != 137 || in[1] != 80 || in[2] != 78 || in[3] != 71 ||
+ in[4] != 13 || in[5] != 10 || in[6] != 26 || in[7] != 10) {
+ error = 28;
+ return;
+ } // no PNG signature
+ if (in[12] != 'I' || in[13] != 'H' || in[14] != 'D' ||
+ in[15] != 'R') {
+ error = 29;
+ return;
+ } // error: it doesn't start with a IHDR chunk!
+ info.width = read32bitInt(&in[16]);
+ info.height = read32bitInt(&in[20]);
+ info.bitDepth = in[24];
+ info.colorType = in[25];
+ info.compressionMethod = in[26];
+ if (in[26] != 0) {
+ error = 32;
+ return;
+ } // error: only compression method 0 is allowed in the
+ // specification
+ info.filterMethod = in[27];
+ if (in[27] != 0) {
+ error = 33;
+ return;
+ } // error: only filter method 0 is allowed in the specification
+ info.interlaceMethod = in[28];
+ if (in[28] > 1) {
+ error = 34;
+ return;
+ } // error: only interlace methods 0 and 1 exist in the
+ // specification
+ error = checkColorValidity(info.colorType, info.bitDepth);
+ }
+ void unFilterScanline(unsigned char *recon,
+ const unsigned char *scanline,
+ const unsigned char *precon, size_t bytewidth,
+ unsigned long filterType, size_t length)
+ {
+ switch (filterType) {
+ case 0:
+ for (size_t i = 0; i < length; i++) {
+ recon[i] = scanline[i];
+ }
+ break;
+ case 1:
+ for (size_t i = 0; i < bytewidth; i++) {
+ recon[i] = scanline[i];
+ }
+ for (size_t i = bytewidth; i < length; i++) {
+ recon[i] = scanline[i] + recon[i - bytewidth];
+ }
+ break;
+ case 2:
+ if (precon) {
+ for (size_t i = 0; i < length; i++) {
+ recon[i] = scanline[i] + precon[i];
+ }
+ } else {
+ for (size_t i = 0; i < length; i++) {
+ recon[i] = scanline[i];
+ }
+ }
+ break;
+ case 3:
+ if (precon) {
+ for (size_t i = 0; i < bytewidth; i++) {
+ recon[i] = scanline[i] + precon[i] / 2;
+ }
+ for (size_t i = bytewidth; i < length; i++) {
+ recon[i] = scanline[i] +
+ ((recon[i - bytewidth] + precon[i]) / 2);
+ }
+ } else {
+ for (size_t i = 0; i < bytewidth; i++) {
+ recon[i] = scanline[i];
+ }
+ for (size_t i = bytewidth; i < length; i++) {
+ recon[i] = scanline[i] + recon[i - bytewidth] / 2;
+ }
+ }
+ break;
+ case 4:
+ if (precon) {
+ for (size_t i = 0; i < bytewidth; i++) {
+ recon[i] =
+ scanline[i] + paethPredictor(0, precon[i], 0);
+ }
+ for (size_t i = bytewidth; i < length; i++) {
+ recon[i] =
+ scanline[i] + paethPredictor(recon[i - bytewidth],
+ precon[i],
+ precon[i - bytewidth]);
+ }
+ } else {
+ for (size_t i = 0; i < bytewidth; i++) {
+ recon[i] = scanline[i];
+ }
+ for (size_t i = bytewidth; i < length; i++) {
+ recon[i] = scanline[i] +
+ paethPredictor(recon[i - bytewidth], 0, 0);
+ }
+ }
+ break;
+ default:
+ error = 36;
+ return; // error: unexisting filter type given
+ }
+ }
+ void adam7Pass(unsigned char *out, unsigned char *linen,
+ unsigned char *lineo, const unsigned char *in,
+ unsigned long w, size_t passleft, size_t passtop,
+ size_t spacex, size_t spacey, size_t passw, size_t passh,
+ unsigned long bpp)
+ { // filter and reposition the pixels
+ // into the output when the image
+ // is Adam7 interlaced. This
+ // function can only do it after
+ // the full image is already
+ // decoded. The out buffer must
+ // have the correct allocated
+ // memory size already.
+ if (passw == 0) {
+ return;
+ }
+ size_t bytewidth = (bpp + 7) / 8,
+ linelength = 1 + ((bpp * passw + 7) / 8);
+ for (unsigned long y = 0; y < passh; y++) {
+ unsigned char filterType = in[y * linelength],
+ *prevline = (y == 0) ? nullptr : lineo;
+ unFilterScanline(linen, &in[y * linelength + 1], prevline,
+ bytewidth, filterType, (w * bpp + 7) / 8);
+ if (error) {
+ return;
+ }
+ if (bpp >= 8) {
+ for (size_t i = 0; i < passw; i++) {
+ for (size_t b = 0; b < bytewidth;
+ b++) { // b = current byte of this pixel
+ out[bytewidth * w * (passtop + spacey * y) +
+ bytewidth * (passleft + spacex * i) + b] =
+ linen[bytewidth * i + b];
+ }
+ }
+ } else {
+ for (size_t i = 0; i < passw; i++) {
+ size_t obp = bpp * w * (passtop + spacey * y) +
+ bpp * (passleft + spacex * i),
+ bp = i * bpp;
+ for (size_t b = 0; b < bpp; b++) {
+ setBitOfReversedStream(
+ obp, out,
+ readBitFromReversedStream(bp, &linen[0]));
+ }
+ }
+ }
+ unsigned char *temp = linen;
+ linen = lineo;
+ lineo = temp; // swap the two buffer pointers "line old" and
+ // "line new"
+ }
+ }
+ static unsigned long
+ readBitFromReversedStream(size_t &bitp, const unsigned char *bits)
+ {
+ unsigned long result = (bits[bitp >> 3] >> (7 - (bitp & 0x7))) & 1;
+ bitp++;
+ return result;
+ }
+ static unsigned long
+ readBitsFromReversedStream(size_t &bitp, const unsigned char *bits,
+ unsigned long nbits)
+ {
+ unsigned long result = 0;
+ for (size_t i = nbits - 1; i < nbits; i--) {
+ result += ((readBitFromReversedStream(bitp, bits)) << i);
+ }
+ return result;
+ }
+ void setBitOfReversedStream(size_t &bitp, unsigned char *bits,
+ unsigned long bit)
+ {
+ bits[bitp >> 3] |= (bit << (7 - (bitp & 0x7)));
+ bitp++;
+ }
+ unsigned long read32bitInt(const unsigned char *buffer)
+ {
+ return (buffer[0] << 24) | (buffer[1] << 16) | (buffer[2] << 8) |
+ buffer[3];
+ }
+ int checkColorValidity(
+ unsigned long colorType,
+ unsigned long bd) // return type is a LodePNG error code
+ {
+ if ((colorType == 2 || colorType == 4 || colorType == 6)) {
+ if (!(bd == 8 || bd == 16)) {
+ return 37;
+ } else {
+ return 0;
+ }
+ } else if (colorType == 0) {
+ if (!(bd == 1 || bd == 2 || bd == 4 || bd == 8 || bd == 16)) {
+ return 37;
+ } else {
+ return 0;
+ }
+ } else if (colorType == 3) {
+ if (!(bd == 1 || bd == 2 || bd == 4 || bd == 8)) {
+ return 37;
+ } else {
+ return 0;
+ }
+ } else {
+ return 31; // unexisting color type
+ }
+ }
+ unsigned long getBpp(const Info &info)
+ {
+ if (info.colorType == 2) {
+ return (3 * info.bitDepth);
+ } else if (info.colorType >= 4) {
+ return (info.colorType - 2) * info.bitDepth;
+ } else {
+ return info.bitDepth;
+ }
+ }
+ int convert(std::vector<unsigned char> &out, const unsigned char *in,
+ Info &infoIn, unsigned long w, unsigned long h)
+ { // converts from any color type to
+ // 32-bit. return value = LodePNG error
+ // code
+ size_t numpixels = w * h, bp = 0;
+ out.resize(numpixels * 4);
+ unsigned char *out_ =
+ out.empty()
+ ? nullptr
+ : &out[0]; // faster if compiled without optimization
+ if (infoIn.bitDepth == 8 && infoIn.colorType == 0) { // greyscale
+ for (size_t i = 0; i < numpixels; i++) {
+ out_[4 * i + 0] = out_[4 * i + 1] = out_[4 * i + 2] = in[i];
+ out_[4 * i + 3] =
+ (infoIn.key_defined && in[i] == infoIn.key_r) ? 0 : 255;
+ }
+ } else if (infoIn.bitDepth == 8 && infoIn.colorType == 2) { // RGB
+ // color
+ for (size_t i = 0; i < numpixels; i++) {
+ for (size_t c = 0; c < 3; c++) {
+ out_[4 * i + c] = in[3 * i + c];
+ }
+ out_[4 * i + 3] = (infoIn.key_defined == 1 &&
+ in[3 * i + 0] == infoIn.key_r &&
+ in[3 * i + 1] == infoIn.key_g &&
+ in[3 * i + 2] == infoIn.key_b)
+ ? 0
+ : 255;
+ }
+ } else if (infoIn.bitDepth == 8 &&
+ infoIn.colorType == 3) { // indexed color (palette)
+ for (size_t i = 0; i < numpixels; i++) {
+ if (4U * in[i] >= infoIn.palette.size()) {
+ return 46;
+ }
+ for (size_t c = 0; c < 4; c++) {
+ out_[4 * i + c] =
+ infoIn.palette[4 * in[i] + c]; // get rgb colors
+ }
+ // from the palette
+ }
+ } else if (infoIn.bitDepth == 8 &&
+ infoIn.colorType == 4) { // greyscale with alpha
+ for (size_t i = 0; i < numpixels; i++) {
+ out_[4 * i + 0] = out_[4 * i + 1] = out_[4 * i + 2] =
+ in[2 * i + 0];
+ out_[4 * i + 3] = in[2 * i + 1];
+ }
+ } else if (infoIn.bitDepth == 8 && infoIn.colorType == 6) {
+ for (size_t i = 0; i < numpixels; i++) {
+ for (size_t c = 0; c < 4; c++) {
+ out_[4 * i + c] = in[4 * i + c]; // RGB with alpha
+ }
+ }
+ } else if (infoIn.bitDepth == 16 &&
+ infoIn.colorType == 0) { // greyscale
+ for (size_t i = 0; i < numpixels; i++) {
+ out_[4 * i + 0] = out_[4 * i + 1] = out_[4 * i + 2] =
+ in[2 * i];
+ out_[4 * i + 3] = (infoIn.key_defined &&
+ 256U * in[i] + in[i + 1] == infoIn.key_r)
+ ? 0
+ : 255;
+ }
+ } else if (infoIn.bitDepth == 16 &&
+ infoIn.colorType == 2) { // RGB color
+ for (size_t i = 0; i < numpixels; i++) {
+ for (size_t c = 0; c < 3; c++) {
+ out_[4 * i + c] = in[6 * i + 2 * c];
+ }
+ out_[4 * i + 3] =
+ (infoIn.key_defined &&
+ 256U * in[6 * i + 0] + in[6 * i + 1] == infoIn.key_r &&
+ 256U * in[6 * i + 2] + in[6 * i + 3] == infoIn.key_g &&
+ 256U * in[6 * i + 4] + in[6 * i + 5] == infoIn.key_b)
+ ? 0
+ : 255;
+ }
+ } else if (infoIn.bitDepth == 16 &&
+ infoIn.colorType == 4) { // greyscale with alpha
+ for (size_t i = 0; i < numpixels; i++) {
+ out_[4 * i + 0] = out_[4 * i + 1] = out_[4 * i + 2] =
+ in[4 * i]; // most significant byte
+ out_[4 * i + 3] = in[4 * i + 2];
+ }
+ } else if (infoIn.bitDepth == 16 && infoIn.colorType == 6) {
+ for (size_t i = 0; i < numpixels; i++) {
+ for (size_t c = 0; c < 4; c++) {
+ out_[4 * i + c] = in[8 * i + 2 * c]; // RGB with alpha
+ }
+ }
+ } else if (infoIn.bitDepth < 8 &&
+ infoIn.colorType == 0) { // greyscale
+ for (size_t i = 0; i < numpixels; i++) {
+ unsigned long value =
+ (readBitsFromReversedStream(bp, in, infoIn.bitDepth) *
+ 255) /
+ ((1 << infoIn.bitDepth) -
+ 1); // scale value from 0 to 255
+ out_[4 * i + 0] = out_[4 * i + 1] = out_[4 * i + 2] =
+ (unsigned char)(value);
+ out_[4 * i + 3] =
+ (infoIn.key_defined && value &&
+ ((1U << infoIn.bitDepth) - 1U) == infoIn.key_r &&
+ ((1U << infoIn.bitDepth) - 1U))
+ ? 0
+ : 255;
+ }
+ } else if (infoIn.bitDepth < 8 &&
+ infoIn.colorType == 3) { // palette
+ for (size_t i = 0; i < numpixels; i++) {
+ unsigned long value =
+ readBitsFromReversedStream(bp, in, infoIn.bitDepth);
+ if (4 * value >= infoIn.palette.size()) {
+ return 47;
+ }
+ for (size_t c = 0; c < 4; c++) {
+ out_[4 * i + c] =
+ infoIn.palette[4 * value + c]; // get rgb colors
+ }
+ // from the palette
+ }
+ }
+ return 0;
+ }
+ unsigned char
+ paethPredictor(short a, short b,
+ short c) // Paeth predicter, used by PNG filter type 4
+ {
+ short p = a + b - c, pa = p > a ? (p - a) : (a - p),
+ pb = p > b ? (p - b) : (b - p),
+ pc = p > c ? (p - c) : (c - p);
+ return (unsigned char)((pa <= pb && pa <= pc) ? a
+ : pb <= pc ? b : c);
+ }
+ };
+ PNG decoder;
+ decoder.decode(out_image, in_png, in_size, convert_to_rgba32);
+ image_width = decoder.info.width;
+ image_height = decoder.info.height;
+ return decoder.error;
+}
+
+} // namespace yage