aboutsummaryrefslogtreecommitdiffstats
path: root/yage/base/picopng.cpp
blob: dcc4b367fde29da8b97b0f2382f37b3db86727cd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
#include <cstdlib>
#include <vector>

namespace yage
{

/*
  decodePNG: The picoPNG function, decodes a PNG file buffer in memory, into a
  raw pixel buffer.
  out_image: output parameter, this will contain the raw pixels after decoding.
  By default the output is 32-bit RGBA color.
  The std::vector is automatically resized to the correct size.
  image_width: output_parameter, this will contain the width of the image in
  pixels.
  image_height: output_parameter, this will contain the height of the image in
  pixels.
  in_png: pointer to the buffer of the PNG file in memory. To get it from a file
  on
  disk, load it and store it in a memory buffer yourself first.
  in_size: size of the input PNG file in bytes.
  convert_to_rgba32: optional parameter, true by default.
  Set to true to get the output in RGBA 32-bit (8 bit per channel) color format
  no matter what color type the original PNG image had. This gives predictable,
  useable data from any random input PNG.
  Set to false to do no color conversion at all. The result then has the same
  data
  type as the PNG image, which can range from 1 bit to 64 bits per pixel.
  Information about the color type or palette colors are not provided. You need
  to know this information yourself to be able to use the data so this only
  works for trusted PNG files. Use LodePNG instead of picoPNG if you need this
  information.
  return: 0 if success, not 0 if some error occured.
*/
int decodePNG(std::vector<unsigned char> &out_image, unsigned long &image_width,
              unsigned long &image_height, const unsigned char *in_png,
              size_t in_size, bool convert_to_rgba32)
{
    // picoPNG version 20101224
    // Copyright (c) 2005-2010 Lode Vandevenne
    //
    // This software is provided 'as-is', without any express or implied
    // warranty. In no event will the authors be held liable for any damages
    // arising from the use of this software.
    //
    // Permission is granted to anyone to use this software for any purpose,
    // including commercial applications, and to alter it and redistribute it
    // freely, subject to the following restrictions:
    //
    //     1. The origin of this software must not be misrepresented; you must
    //     not
    //     claim that you wrote the original software. If you use this software
    //     in a product, an acknowledgment in the product documentation would be
    //     appreciated but is not required.
    //     2. Altered source versions must be plainly marked as such, and must
    //     not be
    //     misrepresented as being the original software.
    //     3. This notice may not be removed or altered from any source
    //     distribution.

    // picoPNG is a PNG decoder in one C++ function of around 500 lines. Use
    // picoPNG for
    // programs that need only 1 .cpp file. Since it's a single function, it's
    // very limited,
    // it can convert a PNG to raw pixel data either converted to 32-bit RGBA
    // color or
    // with no color conversion at all. For anything more complex, another tiny
    // library
    // is available: LodePNG (lodepng.c(pp)), which is a single source and
    // header file.
    // Apologies for the compact code style, it's to make this tiny.

    static const unsigned long LENBASE[29] = {
        3,  4,  5,  6,  7,  8,  9,  10, 11,  13,  15,  17,  19,  23, 27,
        31, 35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258};
    static const unsigned long LENEXTRA[29] = {0, 0, 0, 0, 0, 0, 0, 0, 1, 1,
                                               1, 1, 2, 2, 2, 2, 3, 3, 3, 3,
                                               4, 4, 4, 4, 5, 5, 5, 5, 0};
    static const unsigned long DISTBASE[30] = {
        1,    2,    3,    4,    5,    7,    9,    13,    17,    25,
        33,   49,   65,   97,   129,  193,  257,  385,   513,   769,
        1025, 1537, 2049, 3073, 4097, 6145, 8193, 12289, 16385, 24577};
    static const unsigned long DISTEXTRA[30] = {
        0, 0, 0, 0, 1, 1, 2, 2,  3,  3,  4,  4,  5,  5,  6,
        6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13};
    static const unsigned long CLCL[19] = {
        16, 17, 18, 0, 8,  7, 9,  6, 10, 5,
        11, 4,  12, 3, 13, 2, 14, 1, 15}; // code length code lengths
    struct Zlib // nested functions for zlib decompression
    {
        static unsigned long readBitFromStream(size_t &bitp,
                                               const unsigned char *bits)
        {
            unsigned long result = (bits[bitp >> 3] >> (bitp & 0x7)) & 1;
            bitp++;
            return result;
        }
        static unsigned long readBitsFromStream(size_t &bitp,
                                                const unsigned char *bits,
                                                size_t nbits)
        {
            unsigned long result = 0;
            for (size_t i = 0; i < nbits; i++) {
                result += (readBitFromStream(bitp, bits)) << i;
            }
            return result;
        }
        struct HuffmanTree {
            int makeFromLengths(const std::vector<unsigned long> &bitlen,
                                unsigned long maxbitlen)
            { // make tree given the lengths
                unsigned long numcodes = (unsigned long)(bitlen.size()),
                              treepos = 0, nodefilled = 0;
                std::vector<unsigned long> tree1d(numcodes),
                    blcount(maxbitlen + 1, 0), nextcode(maxbitlen + 1, 0);
                for (unsigned long bits = 0; bits < numcodes; bits++) {
                    blcount[bitlen[bits]]++; // count number of instances of
                }
                // each code length
                for (unsigned long bits = 1; bits <= maxbitlen; bits++) {
                    nextcode[bits] = (nextcode[bits - 1] + blcount[bits - 1])
                                     << 1;
                }
                for (unsigned long n = 0; n < numcodes; n++) {
                    if (bitlen[n] != 0) {
                        tree1d[n] =
                            nextcode[bitlen[n]]++; // generate all the codes
                    }
                }
                tree2d.clear();
                tree2d.resize(numcodes * 2, 32767); // 32767 here means the
                                                    // tree2d isn't filled
                                                    // there yet
                for (unsigned long n = 0; n < numcodes; n++) { // the codes
                    for (unsigned long i = 0; i < bitlen[n];
                         i++) // the bits for this code
                    {
                        unsigned long bit =
                            (tree1d[n] >> (bitlen[n] - i - 1)) & 1;
                        if (treepos > numcodes - 2) {
                            return 55;
                        }
                        if (tree2d[2 * treepos + bit] ==
                            32767) // not yet filled in
                        {
                            if (i + 1 == bitlen[n]) {
                                tree2d[2 * treepos + bit] = n;
                                treepos = 0;
                            } // last bit
                            else {
                                tree2d[2 * treepos + bit] =
                                    ++nodefilled + numcodes;
                                treepos = nodefilled;
                            } // addresses are encoded as values > numcodes
                        } else {
                            treepos = tree2d[2 * treepos + bit] -
                                      numcodes; // subtract numcodes from
                        }
                        // address to get address value
                    }
                }
                return 0;
            }
            int decode(bool &decoded, unsigned long &result, size_t &treepos,
                       unsigned long bit) const
            { // Decodes a symbol from the tree
                unsigned long numcodes = (unsigned long)tree2d.size() / 2;
                if (treepos >= numcodes) {
                    return 11; // error: you appeared outside the codetree
                }
                result = tree2d[2 * treepos + bit];
                decoded = (result < numcodes);
                treepos = decoded ? 0 : result - numcodes;
                return 0;
            }
            std::vector<unsigned long> tree2d; // 2D representation of a
                                               // huffman tree: The one
                                               // dimension is "0" or "1", the
                                               // other contains all nodes and
                                               // leaves of the tree.
        };
        struct Inflator {
            int error;
            void inflate(std::vector<unsigned char> &out,
                         const std::vector<unsigned char> &in, size_t inpos = 0)
            {
                size_t bp = 0, pos = 0; // bit pointer and byte pointer
                error = 0;
                unsigned long BFINAL = 0;
                while (!BFINAL && !error) {
                    if (bp >> 3 >= in.size()) {
                        error = 52;
                        return;
                    } // error, bit pointer will jump past memory
                    BFINAL = readBitFromStream(bp, &in[inpos]);
                    unsigned long BTYPE = readBitFromStream(bp, &in[inpos]);
                    BTYPE += 2 * readBitFromStream(bp, &in[inpos]);
                    if (BTYPE == 3) {
                        error = 20;
                        return;
                    } // error: invalid BTYPE
                    else if (BTYPE == 0) {
                        inflateNoCompression(out, &in[inpos], bp, pos,
                                             in.size());
                    } else {
                        inflateHuffmanBlock(out, &in[inpos], bp, pos, in.size(),
                                            BTYPE);
                    }
                }
                if (!error) {
                    out.resize(pos); // Only now we know the true size of out,
                }
                // resize it to that
            }
            void generateFixedTrees(HuffmanTree &tree,
                                    HuffmanTree &treeD) // get the tree of a
                                                        // deflated block with
                                                        // fixed tree
            {
                std::vector<unsigned long> bitlen(288, 8), bitlenD(32, 5);
                ;
                for (size_t i = 144; i <= 255; i++) {
                    bitlen[i] = 9;
                }
                for (size_t i = 256; i <= 279; i++) {
                    bitlen[i] = 7;
                }
                tree.makeFromLengths(bitlen, 15);
                treeD.makeFromLengths(bitlenD, 15);
            }
            HuffmanTree codetree, codetreeD,
                codelengthcodetree; // the code tree for Huffman codes, dist
                                    // codes, and code length codes
            unsigned long huffmanDecodeSymbol(const unsigned char *in,
                                              size_t &bp,
                                              const HuffmanTree &codetree,
                                              size_t inlength)
            { // decode a single symbol from given list of
                // bits with given code tree. return value
                // is the symbol
                bool decoded;
                unsigned long ct;
                for (size_t treepos = 0;;) {
                    if ((bp & 0x07) == 0 && (bp >> 3) > inlength) {
                        error = 10;
                        return 0;
                    } // error: end reached without endcode
                    error = codetree.decode(decoded, ct, treepos,
                                            readBitFromStream(bp, in));
                    if (error) {
                        return 0; // stop, an error happened
                    }
                    if (decoded) {
                        return ct;
                    }
                }
            }
            void getTreeInflateDynamic(HuffmanTree &tree, HuffmanTree &treeD,
                                       const unsigned char *in, size_t &bp,
                                       size_t inlength)
            { // get the tree of a deflated block with
                // dynamic tree, the tree itself is also
                // Huffman compressed with a known tree
                std::vector<unsigned long> bitlen(288, 0), bitlenD(32, 0);
                if (bp >> 3 >= inlength - 2) {
                    error = 49;
                    return;
                } // the bit pointer is or will go past the memory
                size_t HLIT = readBitsFromStream(bp, in, 5) +
                              257; // number of literal/length codes + 257
                size_t HDIST = readBitsFromStream(bp, in, 5) +
                               1; // number of dist codes + 1
                size_t HCLEN = readBitsFromStream(bp, in, 4) +
                               4; // number of code length codes + 4
                std::vector<unsigned long> codelengthcode(
                    19); // lengths of tree to decode the lengths of the
                         // dynamic tree
                for (size_t i = 0; i < 19; i++) {
                    codelengthcode[CLCL[i]] =
                        (i < HCLEN) ? readBitsFromStream(bp, in, 3) : 0;
                }
                error = codelengthcodetree.makeFromLengths(codelengthcode, 7);
                if (error) {
                    return;
                }
                size_t i = 0, replength;
                while (i < HLIT + HDIST) {
                    unsigned long code = huffmanDecodeSymbol(
                        in, bp, codelengthcodetree, inlength);
                    if (error) {
                        return;
                    }
                    if (code <= 15) {
                        if (i < HLIT) {
                            bitlen[i++] = code;
                        } else {
                            bitlenD[i++ - HLIT] = code;
                        }
                    }                    // a length code
                    else if (code == 16) // repeat previous
                    {
                        if (bp >> 3 >= inlength) {
                            error = 50;
                            return;
                        } // error, bit pointer jumps past memory
                        replength = 3 + readBitsFromStream(bp, in, 2);
                        unsigned long value; // set value to the previous code
                        if ((i - 1) < HLIT) {
                            value = bitlen[i - 1];
                        } else {
                            value = bitlenD[i - HLIT - 1];
                        }
                        for (size_t n = 0; n < replength;
                             n++) // repeat this value in the next lengths
                        {
                            if (i >= HLIT + HDIST) {
                                error = 13;
                                return;
                            } // error: i is larger than the amount of codes
                            if (i < HLIT) {
                                bitlen[i++] = value;
                            } else {
                                bitlenD[i++ - HLIT] = value;
                            }
                        }
                    } else if (code == 17) // repeat "0" 3-10 times
                    {
                        if (bp >> 3 >= inlength) {
                            error = 50;
                            return;
                        } // error, bit pointer jumps past memory
                        replength = 3 + readBitsFromStream(bp, in, 3);
                        for (size_t n = 0; n < replength;
                             n++) // repeat this value in the next lengths
                        {
                            if (i >= HLIT + HDIST) {
                                error = 14;
                                return;
                            } // error: i is larger than the amount of codes
                            if (i < HLIT) {
                                bitlen[i++] = 0;
                            } else {
                                bitlenD[i++ - HLIT] = 0;
                            }
                        }
                    } else if (code == 18) // repeat "0" 11-138 times
                    {
                        if (bp >> 3 >= inlength) {
                            error = 50;
                            return;
                        } // error, bit pointer jumps past memory
                        replength = 11 + readBitsFromStream(bp, in, 7);
                        for (size_t n = 0; n < replength;
                             n++) // repeat this value in the next lengths
                        {
                            if (i >= HLIT + HDIST) {
                                error = 15;
                                return;
                            } // error: i is larger than the amount of codes
                            if (i < HLIT) {
                                bitlen[i++] = 0;
                            } else {
                                bitlenD[i++ - HLIT] = 0;
                            }
                        }
                    } else {
                        error = 16;
                        return;
                    } // error: somehow an unexisting code appeared. This can
                    // never happen.
                }
                if (bitlen[256] == 0) {
                    error = 64;
                    return;
                } // the length of the end code 256 must be larger than 0
                error = tree.makeFromLengths(bitlen, 15);
                if (error) {
                    return; // now we've finally got HLIT and HDIST, so
                }
                // generate the code trees, and the function is
                // done
                error = treeD.makeFromLengths(bitlenD, 15);
                if (error) {
                    return;
                }
            }
            void inflateHuffmanBlock(std::vector<unsigned char> &out,
                                     const unsigned char *in, size_t &bp,
                                     size_t &pos, size_t inlength,
                                     unsigned long btype)
            {
                if (btype == 1) {
                    generateFixedTrees(codetree, codetreeD);
                } else if (btype == 2) {
                    getTreeInflateDynamic(codetree, codetreeD, in, bp,
                                          inlength);
                    if (error) {
                        return;
                    }
                }
                for (;;) {
                    unsigned long code =
                        huffmanDecodeSymbol(in, bp, codetree, inlength);
                    if (error) {
                        return;
                    }
                    if (code == 256) {
                        return;             // end code
                    } else if (code <= 255) // literal symbol
                    {
                        if (pos >= out.size()) {
                            out.resize((pos + 1) * 2); // reserve more room
                        }
                        out[pos++] = (unsigned char)(code);
                    } else if (code >= 257 && code <= 285) // length code
                    {
                        size_t length = LENBASE[code - 257],
                               numextrabits = LENEXTRA[code - 257];
                        if ((bp >> 3) >= inlength) {
                            error = 51;
                            return;
                        } // error, bit pointer will jump past memory
                        length += readBitsFromStream(bp, in, numextrabits);
                        unsigned long codeD =
                            huffmanDecodeSymbol(in, bp, codetreeD, inlength);
                        if (error) {
                            return;
                        }
                        if (codeD > 29) {
                            error = 18;
                            return;
                        } // error: invalid dist code (30-31 are never used)
                        unsigned long dist = DISTBASE[codeD],
                                      numextrabitsD = DISTEXTRA[codeD];
                        if ((bp >> 3) >= inlength) {
                            error = 51;
                            return;
                        } // error, bit pointer will jump past memory
                        dist += readBitsFromStream(bp, in, numextrabitsD);
                        size_t start = pos, back = start - dist; // backwards
                        if (pos + length >= out.size()) {
                            out.resize((pos + length) * 2); // reserve more
                        }
                        // room
                        for (size_t i = 0; i < length; i++) {
                            out[pos++] = out[back++];
                            if (back >= start) {
                                back = start - dist;
                            }
                        }
                    }
                }
            }
            void inflateNoCompression(std::vector<unsigned char> &out,
                                      const unsigned char *in, size_t &bp,
                                      size_t &pos, size_t inlength)
            {
                while ((bp & 0x7) != 0) {
                    bp++; // go to first boundary of byte
                }
                size_t p = bp / 8;
                if (p >= inlength - 4) {
                    error = 52;
                    return;
                } // error, bit pointer will jump past memory
                unsigned long LEN = in[p] + 256 * in[p + 1],
                              NLEN = in[p + 2] + 256 * in[p + 3];
                p += 4;
                if (LEN + NLEN != 65535) {
                    error = 21;
                    return;
                } // error: NLEN is not one's complement of LEN
                if (pos + LEN >= out.size()) {
                    out.resize(pos + LEN);
                }
                if (p + LEN > inlength) {
                    error = 23;
                    return;
                } // error: reading outside of in buffer
                for (unsigned long n = 0; n < LEN; n++) {
                    out[pos++] = in[p++]; // read LEN bytes of literal data
                }
                bp = p * 8;
            }
        };
        int
        decompress(std::vector<unsigned char> &out,
                   const std::vector<unsigned char> &in) // returns error value
        {
            Inflator inflator;
            if (in.size() < 2) {
                return 53;
            } // error, size of zlib data too small
            if ((in[0] * 256 + in[1]) % 31 != 0) {
                return 24;
            } // error: 256 * in[0] + in[1] must be a multiple of 31, the
            // FCHECK value is supposed to be made that way
            unsigned long CM = in[0] & 15, CINFO = (in[0] >> 4) & 15,
                          FDICT = (in[1] >> 5) & 1;
            if (CM != 8 || CINFO > 7) {
                return 25;
            } // error: only compression method 8: inflate with sliding window
            // of 32k is supported by the PNG spec
            if (FDICT != 0) {
                return 26;
            } // error: the specification of PNG says about the zlib stream:
            // "The additional flags shall not specify a preset dictionary."
            inflator.inflate(out, in, 2);
            return inflator
                .error; // note: adler32 checksum was skipped and ignored
        }
    };
    struct PNG // nested functions for PNG decoding
    {
        struct Info {
            unsigned long width, height, colorType, bitDepth, compressionMethod,
                filterMethod, interlaceMethod, key_r, key_g, key_b;
            bool key_defined; // is a transparent color key given?
            std::vector<unsigned char> palette;
        } info;
        int error;
        void decode(std::vector<unsigned char> &out, const unsigned char *in,
                    size_t size, bool convert_to_rgba32)
        {
            error = 0;
            if (size == 0 || in == nullptr) {
                error = 48;
                return;
            } // the given data is empty
            readPngHeader(&in[0], size);
            if (error) {
                return;
            }
            size_t pos = 33; // first byte of the first chunk after the header
            std::vector<unsigned char> idat; // the data from idat chunks
            bool IEND = false, known_type = true;
            info.key_defined = false;
            while (!IEND) // loop through the chunks, ignoring unknown chunks
                          // and stopping at IEND chunk. IDAT data is put at
                          // the start of the in buffer
            {
                if (pos + 8 >= size) {
                    error = 30;
                    return;
                } // error: size of the in buffer too small to contain next
                // chunk
                size_t chunkLength = read32bitInt(&in[pos]);
                pos += 4;
                if (chunkLength > 2147483647) {
                    error = 63;
                    return;
                }
                if (pos + chunkLength >= size) {
                    error = 35;
                    return;
                } // error: size of the in buffer too small to contain next
                // chunk
                if (in[pos + 0] == 'I' && in[pos + 1] == 'D' &&
                    in[pos + 2] == 'A' &&
                    in[pos + 3] ==
                        'T') // IDAT chunk, containing compressed image data
                {
                    idat.insert(idat.end(), &in[pos + 4],
                                &in[pos + 4 + chunkLength]);
                    pos += (4 + chunkLength);
                } else if (in[pos + 0] == 'I' && in[pos + 1] == 'E' &&
                           in[pos + 2] == 'N' && in[pos + 3] == 'D') {
                    pos += 4;
                    IEND = true;
                } else if (in[pos + 0] == 'P' && in[pos + 1] == 'L' &&
                           in[pos + 2] == 'T' &&
                           in[pos + 3] == 'E') // palette chunk (PLTE)
                {
                    pos += 4; // go after the 4 letters
                    info.palette.resize(4 * (chunkLength / 3));
                    if (info.palette.size() > (4 * 256)) {
                        error = 38;
                        return;
                    } // error: palette too big
                    for (size_t i = 0; i < info.palette.size(); i += 4) {
                        for (size_t j = 0; j < 3; j++) {
                            info.palette[i + j] = in[pos++]; // RGB
                        }
                        info.palette[i + 3] = 255; // alpha
                    }
                } else if (in[pos + 0] == 't' && in[pos + 1] == 'R' &&
                           in[pos + 2] == 'N' &&
                           in[pos + 3] ==
                               'S') // palette transparency chunk (tRNS)
                {
                    pos += 4; // go after the 4 letters
                    if (info.colorType == 3) {
                        if (4 * chunkLength > info.palette.size()) {
                            error = 39;
                            return;
                        } // error: more alpha values given than there are
                        // palette entries
                        for (size_t i = 0; i < chunkLength; i++) {
                            info.palette[4 * i + 3] = in[pos++];
                        }
                    } else if (info.colorType == 0) {
                        if (chunkLength != 2) {
                            error = 40;
                            return;
                        } // error: this chunk must be 2 bytes for greyscale
                        // image
                        info.key_defined = true;
                        info.key_r = info.key_g = info.key_b =
                            256 * in[pos] + in[pos + 1];
                        pos += 2;
                    } else if (info.colorType == 2) {
                        if (chunkLength != 6) {
                            error = 41;
                            return;
                        } // error: this chunk must be 6 bytes for RGB image
                        info.key_defined = true;
                        info.key_r = 256 * in[pos] + in[pos + 1];
                        pos += 2;
                        info.key_g = 256 * in[pos] + in[pos + 1];
                        pos += 2;
                        info.key_b = 256 * in[pos] + in[pos + 1];
                        pos += 2;
                    } else {
                        error = 42;
                        return;
                    }  // error: tRNS chunk not allowed for other color models
                } else // it's not an implemented chunk type, so ignore it:
                       // skip over the data
                {
                    if (!(in[pos + 0] & 32)) {
                        error = 69;
                        return;
                    } // error: unknown critical chunk (5th bit of first byte
                    // of chunk type is 0)
                    pos += (chunkLength + 4); // skip 4 letters and
                                              // uninterpreted data of
                                              // unimplemented chunk
                    known_type = false;
                }
                pos += 4; // step over CRC (which is ignored)
            }
            unsigned long bpp = getBpp(info);
            std::vector<unsigned char> scanlines(
                ((info.width * (info.height * bpp + 7)) / 8) +
                info.height); // now the out buffer will be filled
            Zlib zlib;        // decompress with the Zlib decompressor
            error = zlib.decompress(scanlines, idat);
            if (error) {
                return; // stop if the zlib decompressor returned an error
            }
            size_t bytewidth = (bpp + 7) / 8,
                   outlength = (info.height * info.width * bpp + 7) / 8;
            out.resize(outlength); // time to fill the out buffer
            unsigned char *out_ =
                outlength ? &out[0] : nullptr; // use a regular pointer to the
                                               // std::vector for faster code if
                                               // compiled without optimization
            if (info.interlaceMethod == 0)     // no interlace, just filter
            {
                size_t linestart = 0,
                       linelength = (info.width * bpp + 7) /
                                    8; // length in bytes of a scanline,
                                       // excluding the filtertype byte
                if (bpp >= 8) {        // byte per byte
                    for (unsigned long y = 0; y < info.height; y++) {
                        unsigned long filterType = scanlines[linestart];
                        const unsigned char *prevline =
                            (y == 0) ? nullptr
                                     : &out_[(y - 1) * info.width * bytewidth];
                        unFilterScanline(&out_[linestart - y],
                                         &scanlines[linestart + 1], prevline,
                                         bytewidth, filterType, linelength);
                        if (error) {
                            return;
                        }
                        linestart +=
                            (1 + linelength); // go to start of next scanline
                    }
                } else // less than 8 bits per pixel, so fill it up bit per bit
                {
                    std::vector<unsigned char> templine(
                        (info.width * bpp + 7) >> 3); // only used if bpp < 8
                    for (size_t y = 0, obp = 0; y < info.height; y++) {
                        unsigned long filterType = scanlines[linestart];
                        const unsigned char *prevline =
                            (y == 0) ? nullptr
                                     : &out_[(y - 1) * info.width * bytewidth];
                        unFilterScanline(&templine[0],
                                         &scanlines[linestart + 1], prevline,
                                         bytewidth, filterType, linelength);
                        if (error) {
                            return;
                        }
                        for (size_t bp = 0; bp < info.width * bpp;) {
                            setBitOfReversedStream(
                                obp, out_,
                                readBitFromReversedStream(bp, &templine[0]));
                        }
                        linestart +=
                            (1 + linelength); // go to start of next scanline
                    }
                }
            } else // interlaceMethod is 1 (Adam7)
            {
                size_t passw[7] = {(info.width + 7) / 8, (info.width + 3) / 8,
                                   (info.width + 3) / 4, (info.width + 1) / 4,
                                   (info.width + 1) / 2, (info.width + 0) / 2,
                                   (info.width + 0) / 1};
                size_t passh[7] = {(info.height + 7) / 8, (info.height + 7) / 8,
                                   (info.height + 3) / 8, (info.height + 3) / 4,
                                   (info.height + 1) / 4, (info.height + 1) / 2,
                                   (info.height + 0) / 2};
                size_t passstart[7] = {0};
                size_t pattern[28] = {0, 4, 0, 2, 0, 1, 0, 0, 0, 4,
                                      0, 2, 0, 1, 8, 8, 4, 4, 2, 2,
                                      1, 8, 8, 8, 4, 4, 2, 2}; // values for the
                                                               // adam7 passes
                for (int i = 0; i < 6; i++) {
                    passstart[i + 1] = passstart[i] +
                                       passh[i] * ((passw[i] ? 1 : 0) +
                                                   (passw[i] * bpp + 7) / 8);
                }
                std::vector<unsigned char> scanlineo((info.width * bpp + 7) /
                                                     8),
                    scanlinen((info.width * bpp + 7) /
                              8); //"old" and "new" scanline
                for (int i = 0; i < 7; i++) {
                    adam7Pass(&out_[0], &scanlinen[0], &scanlineo[0],
                              &scanlines[passstart[i]], info.width, pattern[i],
                              pattern[i + 7], pattern[i + 14], pattern[i + 21],
                              passw[i], passh[i], bpp);
                }
            }
            if (convert_to_rgba32 && (info.colorType != 6 ||
                                      info.bitDepth != 8)) // conversion needed
            {
                std::vector<unsigned char> data = out;
                error = convert(out, &data[0], info, info.width, info.height);
            }
        }
        void readPngHeader(const unsigned char *in,
                           size_t inlength) // read the information from the
                                            // header and store it in the Info
        {
            if (inlength < 29) {
                error = 27;
                return;
            } // error: the data length is smaller than the length of the
            // header
            if (in[0] != 137 || in[1] != 80 || in[2] != 78 || in[3] != 71 ||
                in[4] != 13 || in[5] != 10 || in[6] != 26 || in[7] != 10) {
                error = 28;
                return;
            } // no PNG signature
            if (in[12] != 'I' || in[13] != 'H' || in[14] != 'D' ||
                in[15] != 'R') {
                error = 29;
                return;
            } // error: it doesn't start with a IHDR chunk!
            info.width = read32bitInt(&in[16]);
            info.height = read32bitInt(&in[20]);
            info.bitDepth = in[24];
            info.colorType = in[25];
            info.compressionMethod = in[26];
            if (in[26] != 0) {
                error = 32;
                return;
            } // error: only compression method 0 is allowed in the
            // specification
            info.filterMethod = in[27];
            if (in[27] != 0) {
                error = 33;
                return;
            } // error: only filter method 0 is allowed in the specification
            info.interlaceMethod = in[28];
            if (in[28] > 1) {
                error = 34;
                return;
            } // error: only interlace methods 0 and 1 exist in the
            // specification
            error = checkColorValidity(info.colorType, info.bitDepth);
        }
        void unFilterScanline(unsigned char *recon,
                              const unsigned char *scanline,
                              const unsigned char *precon, size_t bytewidth,
                              unsigned long filterType, size_t length)
        {
            switch (filterType) {
            case 0:
                for (size_t i = 0; i < length; i++) {
                    recon[i] = scanline[i];
                }
                break;
            case 1:
                for (size_t i = 0; i < bytewidth; i++) {
                    recon[i] = scanline[i];
                }
                for (size_t i = bytewidth; i < length; i++) {
                    recon[i] = scanline[i] + recon[i - bytewidth];
                }
                break;
            case 2:
                if (precon) {
                    for (size_t i = 0; i < length; i++) {
                        recon[i] = scanline[i] + precon[i];
                    }
                } else {
                    for (size_t i = 0; i < length; i++) {
                        recon[i] = scanline[i];
                    }
                }
                break;
            case 3:
                if (precon) {
                    for (size_t i = 0; i < bytewidth; i++) {
                        recon[i] = scanline[i] + precon[i] / 2;
                    }
                    for (size_t i = bytewidth; i < length; i++) {
                        recon[i] = scanline[i] +
                                   ((recon[i - bytewidth] + precon[i]) / 2);
                    }
                } else {
                    for (size_t i = 0; i < bytewidth; i++) {
                        recon[i] = scanline[i];
                    }
                    for (size_t i = bytewidth; i < length; i++) {
                        recon[i] = scanline[i] + recon[i - bytewidth] / 2;
                    }
                }
                break;
            case 4:
                if (precon) {
                    for (size_t i = 0; i < bytewidth; i++) {
                        recon[i] =
                            scanline[i] + paethPredictor(0, precon[i], 0);
                    }
                    for (size_t i = bytewidth; i < length; i++) {
                        recon[i] =
                            scanline[i] + paethPredictor(recon[i - bytewidth],
                                                         precon[i],
                                                         precon[i - bytewidth]);
                    }
                } else {
                    for (size_t i = 0; i < bytewidth; i++) {
                        recon[i] = scanline[i];
                    }
                    for (size_t i = bytewidth; i < length; i++) {
                        recon[i] = scanline[i] +
                                   paethPredictor(recon[i - bytewidth], 0, 0);
                    }
                }
                break;
            default:
                error = 36;
                return; // error: unexisting filter type given
            }
        }
        void adam7Pass(unsigned char *out, unsigned char *linen,
                       unsigned char *lineo, const unsigned char *in,
                       unsigned long w, size_t passleft, size_t passtop,
                       size_t spacex, size_t spacey, size_t passw, size_t passh,
                       unsigned long bpp)
        { // filter and reposition the pixels
            // into the output when the image
            // is Adam7 interlaced. This
            // function can only do it after
            // the full image is already
            // decoded. The out buffer must
            // have the correct allocated
            // memory size already.
            if (passw == 0) {
                return;
            }
            size_t bytewidth = (bpp + 7) / 8,
                   linelength = 1 + ((bpp * passw + 7) / 8);
            for (unsigned long y = 0; y < passh; y++) {
                unsigned char filterType = in[y * linelength],
                              *prevline = (y == 0) ? nullptr : lineo;
                unFilterScanline(linen, &in[y * linelength + 1], prevline,
                                 bytewidth, filterType, (w * bpp + 7) / 8);
                if (error) {
                    return;
                }
                if (bpp >= 8) {
                    for (size_t i = 0; i < passw; i++) {
                        for (size_t b = 0; b < bytewidth;
                             b++) { // b = current byte of this pixel
                            out[bytewidth * w * (passtop + spacey * y) +
                                bytewidth * (passleft + spacex * i) + b] =
                                linen[bytewidth * i + b];
                        }
                    }
                } else {
                    for (size_t i = 0; i < passw; i++) {
                        size_t obp = bpp * w * (passtop + spacey * y) +
                                     bpp * (passleft + spacex * i),
                               bp = i * bpp;
                        for (size_t b = 0; b < bpp; b++) {
                            setBitOfReversedStream(
                                obp, out,
                                readBitFromReversedStream(bp, &linen[0]));
                        }
                    }
                }
                unsigned char *temp = linen;
                linen = lineo;
                lineo = temp; // swap the two buffer pointers "line old" and
                              // "line new"
            }
        }
        static unsigned long
        readBitFromReversedStream(size_t &bitp, const unsigned char *bits)
        {
            unsigned long result = (bits[bitp >> 3] >> (7 - (bitp & 0x7))) & 1;
            bitp++;
            return result;
        }
        static unsigned long
        readBitsFromReversedStream(size_t &bitp, const unsigned char *bits,
                                   unsigned long nbits)
        {
            unsigned long result = 0;
            for (size_t i = nbits - 1; i < nbits; i--) {
                result += ((readBitFromReversedStream(bitp, bits)) << i);
            }
            return result;
        }
        void setBitOfReversedStream(size_t &bitp, unsigned char *bits,
                                    unsigned long bit)
        {
            bits[bitp >> 3] |= (bit << (7 - (bitp & 0x7)));
            bitp++;
        }
        unsigned long read32bitInt(const unsigned char *buffer)
        {
            return (buffer[0] << 24) | (buffer[1] << 16) | (buffer[2] << 8) |
                   buffer[3];
        }
        int checkColorValidity(
            unsigned long colorType,
            unsigned long bd) // return type is a LodePNG error code
        {
            if ((colorType == 2 || colorType == 4 || colorType == 6)) {
                if (!(bd == 8 || bd == 16)) {
                    return 37;
                } else {
                    return 0;
                }
            } else if (colorType == 0) {
                if (!(bd == 1 || bd == 2 || bd == 4 || bd == 8 || bd == 16)) {
                    return 37;
                } else {
                    return 0;
                }
            } else if (colorType == 3) {
                if (!(bd == 1 || bd == 2 || bd == 4 || bd == 8)) {
                    return 37;
                } else {
                    return 0;
                }
            } else {
                return 31; // unexisting color type
            }
        }
        unsigned long getBpp(const Info &info)
        {
            if (info.colorType == 2) {
                return (3 * info.bitDepth);
            } else if (info.colorType >= 4) {
                return (info.colorType - 2) * info.bitDepth;
            } else {
                return info.bitDepth;
            }
        }
        int convert(std::vector<unsigned char> &out, const unsigned char *in,
                    Info &infoIn, unsigned long w, unsigned long h)
        { // converts from any color type to
            // 32-bit. return value = LodePNG error
            // code
            size_t numpixels = w * h, bp = 0;
            out.resize(numpixels * 4);
            unsigned char *out_ =
                out.empty()
                    ? nullptr
                    : &out[0]; // faster if compiled without optimization
            if (infoIn.bitDepth == 8 && infoIn.colorType == 0) { // greyscale
                for (size_t i = 0; i < numpixels; i++) {
                    out_[4 * i + 0] = out_[4 * i + 1] = out_[4 * i + 2] = in[i];
                    out_[4 * i + 3] =
                        (infoIn.key_defined && in[i] == infoIn.key_r) ? 0 : 255;
                }
            } else if (infoIn.bitDepth == 8 && infoIn.colorType == 2) { // RGB
                                                                        // color
                for (size_t i = 0; i < numpixels; i++) {
                    for (size_t c = 0; c < 3; c++) {
                        out_[4 * i + c] = in[3 * i + c];
                    }
                    out_[4 * i + 3] = (infoIn.key_defined == 1 &&
                                       in[3 * i + 0] == infoIn.key_r &&
                                       in[3 * i + 1] == infoIn.key_g &&
                                       in[3 * i + 2] == infoIn.key_b)
                                          ? 0
                                          : 255;
                }
            } else if (infoIn.bitDepth == 8 &&
                       infoIn.colorType == 3) { // indexed color (palette)
                for (size_t i = 0; i < numpixels; i++) {
                    if (4U * in[i] >= infoIn.palette.size()) {
                        return 46;
                    }
                    for (size_t c = 0; c < 4; c++) {
                        out_[4 * i + c] =
                            infoIn.palette[4 * in[i] + c]; // get rgb colors
                    }
                    // from the palette
                }
            } else if (infoIn.bitDepth == 8 &&
                       infoIn.colorType == 4) { // greyscale with alpha
                for (size_t i = 0; i < numpixels; i++) {
                    out_[4 * i + 0] = out_[4 * i + 1] = out_[4 * i + 2] =
                        in[2 * i + 0];
                    out_[4 * i + 3] = in[2 * i + 1];
                }
            } else if (infoIn.bitDepth == 8 && infoIn.colorType == 6) {
                for (size_t i = 0; i < numpixels; i++) {
                    for (size_t c = 0; c < 4; c++) {
                        out_[4 * i + c] = in[4 * i + c]; // RGB with alpha
                    }
                }
            } else if (infoIn.bitDepth == 16 &&
                       infoIn.colorType == 0) { // greyscale
                for (size_t i = 0; i < numpixels; i++) {
                    out_[4 * i + 0] = out_[4 * i + 1] = out_[4 * i + 2] =
                        in[2 * i];
                    out_[4 * i + 3] = (infoIn.key_defined &&
                                       256U * in[i] + in[i + 1] == infoIn.key_r)
                                          ? 0
                                          : 255;
                }
            } else if (infoIn.bitDepth == 16 &&
                       infoIn.colorType == 2) { // RGB color
                for (size_t i = 0; i < numpixels; i++) {
                    for (size_t c = 0; c < 3; c++) {
                        out_[4 * i + c] = in[6 * i + 2 * c];
                    }
                    out_[4 * i + 3] =
                        (infoIn.key_defined &&
                         256U * in[6 * i + 0] + in[6 * i + 1] == infoIn.key_r &&
                         256U * in[6 * i + 2] + in[6 * i + 3] == infoIn.key_g &&
                         256U * in[6 * i + 4] + in[6 * i + 5] == infoIn.key_b)
                            ? 0
                            : 255;
                }
            } else if (infoIn.bitDepth == 16 &&
                       infoIn.colorType == 4) { // greyscale with alpha
                for (size_t i = 0; i < numpixels; i++) {
                    out_[4 * i + 0] = out_[4 * i + 1] = out_[4 * i + 2] =
                        in[4 * i]; // most significant byte
                    out_[4 * i + 3] = in[4 * i + 2];
                }
            } else if (infoIn.bitDepth == 16 && infoIn.colorType == 6) {
                for (size_t i = 0; i < numpixels; i++) {
                    for (size_t c = 0; c < 4; c++) {
                        out_[4 * i + c] = in[8 * i + 2 * c]; // RGB with alpha
                    }
                }
            } else if (infoIn.bitDepth < 8 &&
                       infoIn.colorType == 0) { // greyscale
                for (size_t i = 0; i < numpixels; i++) {
                    unsigned long value =
                        (readBitsFromReversedStream(bp, in, infoIn.bitDepth) *
                         255) /
                        ((1 << infoIn.bitDepth) -
                         1); // scale value from 0 to 255
                    out_[4 * i + 0] = out_[4 * i + 1] = out_[4 * i + 2] =
                        (unsigned char)(value);
                    out_[4 * i + 3] =
                        (infoIn.key_defined && value &&
                         ((1U << infoIn.bitDepth) - 1U) == infoIn.key_r &&
                         ((1U << infoIn.bitDepth) - 1U))
                            ? 0
                            : 255;
                }
            } else if (infoIn.bitDepth < 8 &&
                       infoIn.colorType == 3) { // palette
                for (size_t i = 0; i < numpixels; i++) {
                    unsigned long value =
                        readBitsFromReversedStream(bp, in, infoIn.bitDepth);
                    if (4 * value >= infoIn.palette.size()) {
                        return 47;
                    }
                    for (size_t c = 0; c < 4; c++) {
                        out_[4 * i + c] =
                            infoIn.palette[4 * value + c]; // get rgb colors
                    }
                    // from the palette
                }
            }
            return 0;
        }
        unsigned char
        paethPredictor(short a, short b,
                       short c) // Paeth predicter, used by PNG filter type 4
        {
            short p = a + b - c, pa = p > a ? (p - a) : (a - p),
                  pb = p > b ? (p - b) : (b - p),
                  pc = p > c ? (p - c) : (c - p);
            return (unsigned char)((pa <= pb && pa <= pc) ? a
                                                          : pb <= pc ? b : c);
        }
    };
    PNG decoder;
    decoder.decode(out_image, in_png, in_size, convert_to_rgba32);
    image_width = decoder.info.width;
    image_height = decoder.info.height;
    return decoder.error;
}

} // namespace yage