aboutsummaryrefslogtreecommitdiffstats
path: root/MenhirLib/Interpreter.v
diff options
context:
space:
mode:
Diffstat (limited to 'MenhirLib/Interpreter.v')
-rw-r--r--MenhirLib/Interpreter.v453
1 files changed, 453 insertions, 0 deletions
diff --git a/MenhirLib/Interpreter.v b/MenhirLib/Interpreter.v
new file mode 100644
index 00000000..568597ba
--- /dev/null
+++ b/MenhirLib/Interpreter.v
@@ -0,0 +1,453 @@
+(****************************************************************************)
+(* *)
+(* Menhir *)
+(* *)
+(* Jacques-Henri Jourdan, CNRS, LRI, Université Paris Sud *)
+(* *)
+(* Copyright Inria. All rights reserved. This file is distributed under *)
+(* the terms of the GNU Lesser General Public License as published by the *)
+(* Free Software Foundation, either version 3 of the License, or (at your *)
+(* option) any later version, as described in the file LICENSE. *)
+(* *)
+(****************************************************************************)
+
+From Coq Require Import List Syntax.
+From Coq.ssr Require Import ssreflect.
+Require Automaton.
+Require Import Alphabet Grammar Validator_safe.
+
+Module Make(Import A:Automaton.T).
+Module Import ValidSafe := Validator_safe.Make A.
+
+(** A few helpers for dependent types. *)
+
+(** Decidable propositions. *)
+Class Decidable (P : Prop) := decide : {P} + {~P}.
+Arguments decide _ {_}.
+
+(** A [Comparable] type has decidable equality. *)
+Instance comparable_decidable_eq T `{ComparableLeibnizEq T} (x y : T) :
+ Decidable (x = y).
+Proof.
+ unfold Decidable.
+ destruct (compare x y) eqn:EQ; [left; apply compare_eq; intuition | ..];
+ right; intros ->; by rewrite compare_refl in EQ.
+Defined.
+
+Instance list_decidable_eq T :
+ (forall x y : T, Decidable (x = y)) ->
+ (forall l1 l2 : list T, Decidable (l1 = l2)).
+Proof. unfold Decidable. decide equality. Defined.
+
+Ltac subst_existT :=
+ repeat
+ match goal with
+ | _ => progress subst
+ | H : @existT ?A ?P ?x ?y1 = @existT ?A ?P ?x ?y2 |- _ =>
+ let DEC := fresh in
+ assert (DEC : forall u1 u2 : A, Decidable (u1 = u2)) by apply _;
+ apply Eqdep_dec.inj_pair2_eq_dec in H; [|by apply DEC];
+ clear DEC
+ end.
+
+(** The interpreter is written using dependent types. In order to
+ avoid reducing proof terms while executing the parser, we thunk all
+ the propositions behind an arrow.
+ Note that thunkP is still in Prop so that it is erased by
+ extraction.
+ *)
+Definition thunkP (P : Prop) : Prop := True -> P.
+
+(** Sometimes, we actually need a reduced proof in a program (for
+ example when using an equality to cast a value). In that case,
+ instead of reducing the proof we already have, we reprove the
+ assertion by using decidability. *)
+Definition reprove {P} `{Decidable P} (p : thunkP P) : P :=
+ match decide P with
+ | left p => p
+ | right np => False_ind _ (np (p I))
+ end.
+
+(** Combination of reprove with eq_rect. *)
+Definition cast {T : Type} (F : T -> Type) {x y : T} (eq : thunkP (x = y))
+ {DEC : unit -> Decidable (x = y)}:
+ F x -> F y :=
+ fun a => eq_rect x F a y (@reprove _ (DEC ()) eq).
+
+Lemma cast_eq T F (x : T) (eq : thunkP (x = x)) `{forall x y, Decidable (x = y)} a :
+ cast F eq a = a.
+Proof. by rewrite /cast -Eqdep_dec.eq_rect_eq_dec. Qed.
+
+(** Input buffers and operations on them. **)
+CoInductive buffer : Type :=
+ Buf_cons { buf_head : token; buf_tail : buffer }.
+
+Delimit Scope buffer_scope with buf.
+Bind Scope buffer_scope with buffer.
+
+Infix "::" := Buf_cons (at level 60, right associativity) : buffer_scope.
+
+(** Concatenation of a list and an input buffer **)
+Fixpoint app_buf (l:list token) (buf:buffer) :=
+ match l with
+ | nil => buf
+ | cons t q => (t :: app_buf q buf)%buf
+ end.
+Infix "++" := app_buf (at level 60, right associativity) : buffer_scope.
+
+Lemma app_buf_assoc (l1 l2:list token) (buf:buffer) :
+ (l1 ++ (l2 ++ buf) = (l1 ++ l2) ++ buf)%buf.
+Proof. induction l1 as [|?? IH]=>//=. rewrite IH //. Qed.
+
+(** The type of a non initial state: the type of semantic values associated
+ with the last symbol of this state. *)
+Definition noninitstate_type state :=
+ symbol_semantic_type (last_symb_of_non_init_state state).
+
+(** The stack of the automaton : it can be either nil or contains a non
+ initial state, a semantic value for the symbol associted with this state,
+ and a nested stack. **)
+Definition stack := list (sigT noninitstate_type). (* eg. list {state & state_type state} *)
+
+Section Interpreter.
+
+Hypothesis safe: safe.
+
+(* Properties of the automaton deduced from safety validation. *)
+Proposition shift_head_symbs: shift_head_symbs.
+Proof. pose proof safe; unfold ValidSafe.safe in H; intuition. Qed.
+Proposition goto_head_symbs: goto_head_symbs.
+Proof. pose proof safe; unfold ValidSafe.safe in H; intuition. Qed.
+Proposition shift_past_state: shift_past_state.
+Proof. pose proof safe; unfold ValidSafe.safe in H; intuition. Qed.
+Proposition goto_past_state: goto_past_state.
+Proof. pose proof safe; unfold ValidSafe.safe in H; intuition. Qed.
+Proposition reduce_ok: reduce_ok.
+Proof. pose proof safe; unfold ValidSafe.safe in H; intuition. Qed.
+
+Variable init : initstate.
+
+(** The top state of a stack **)
+Definition state_of_stack (stack:stack): state :=
+ match stack with
+ | [] => init
+ | existT _ s _::_ => s
+ end.
+
+(** The stack of states of an automaton stack **)
+Definition state_stack_of_stack (stack:stack) :=
+ (List.map
+ (fun cell:sigT noninitstate_type => singleton_state_pred (projT1 cell))
+ stack ++ [singleton_state_pred init])%list.
+
+(** The stack of symbols of an automaton stack **)
+Definition symb_stack_of_stack (stack:stack) :=
+ List.map
+ (fun cell:sigT noninitstate_type => last_symb_of_non_init_state (projT1 cell))
+ stack.
+
+(** The stack invariant : it basically states that the assumptions on the
+ states are true. **)
+Inductive stack_invariant: stack -> Prop :=
+ | stack_invariant_constr:
+ forall stack,
+ prefix (head_symbs_of_state (state_of_stack stack))
+ (symb_stack_of_stack stack) ->
+ prefix_pred (head_states_of_state (state_of_stack stack))
+ (state_stack_of_stack stack) ->
+ stack_invariant_next stack ->
+ stack_invariant stack
+with stack_invariant_next: stack -> Prop :=
+ | stack_invariant_next_nil:
+ stack_invariant_next []
+ | stack_invariant_next_cons:
+ forall state_cur st stack_rec,
+ stack_invariant stack_rec ->
+ stack_invariant_next (existT _ state_cur st::stack_rec).
+
+(** [pop] pops some symbols from the stack. It returns the popped semantic
+ values using [sem_popped] as an accumulator and discards the popped
+ states.**)
+Fixpoint pop (symbols_to_pop:list symbol) {A:Type} (stk:stack) :
+ thunkP (prefix symbols_to_pop (symb_stack_of_stack stk)) ->
+ forall (action:arrows_right A (map symbol_semantic_type symbols_to_pop)),
+ stack * A.
+unshelve refine
+ (match symbols_to_pop
+ return
+ (thunkP (prefix symbols_to_pop (symb_stack_of_stack stk))) ->
+ forall (action:arrows_right A (map _ symbols_to_pop)), stack * A
+ with
+ | [] => fun _ action => (stk, action)
+ | t::q => fun Hp action =>
+ match stk
+ return thunkP (prefix (t::q) (symb_stack_of_stack stk)) -> stack * A
+ with
+ | existT _ state_cur sem::stack_rec => fun Hp =>
+ let sem_conv := cast symbol_semantic_type _ sem in
+ pop q _ stack_rec _ (action sem_conv)
+ | [] => fun Hp => False_rect _ _
+ end Hp
+ end).
+Proof.
+ - simpl in Hp. clear -Hp. abstract (intros _ ; specialize (Hp I); now inversion Hp).
+ - clear -Hp. abstract (specialize (Hp I); now inversion Hp).
+ - simpl in Hp. clear -Hp. abstract (intros _ ; specialize (Hp I); now inversion Hp).
+Defined.
+
+(* Equivalent declarative specification for pop, so that we avoid
+ (part of) the dependent types nightmare. *)
+Inductive pop_spec {A:Type} :
+ forall (symbols_to_pop:list symbol) (stk : stack)
+ (action : arrows_right A (map symbol_semantic_type symbols_to_pop))
+ (stk' : stack) (sem : A),
+ Prop :=
+ | Nil_pop_spec stk sem : pop_spec [] stk sem stk sem
+ | Cons_pop_spec symbols_to_pop st stk action sem stk' res :
+ pop_spec symbols_to_pop stk (action sem) stk' res ->
+ pop_spec (last_symb_of_non_init_state st::symbols_to_pop)
+ (existT _ st sem :: stk) action stk' res.
+
+Lemma pop_spec_ok {A:Type} symbols_to_pop stk Hp action stk' res:
+ pop symbols_to_pop stk Hp action = (stk', res) <->
+ pop_spec (A:=A) symbols_to_pop stk action stk' res.
+Proof.
+ revert stk Hp action.
+ induction symbols_to_pop as [|t symbols_to_pop IH]=>stk Hp action /=.
+ - split.
+ + intros [= <- <-]. constructor.
+ + intros H. inversion H. by subst_existT.
+ - destruct stk as [|[st sem]]=>/=; [by destruct pop_subproof0|].
+ remember (pop_subproof t symbols_to_pop stk st Hp) as EQ eqn:eq. clear eq.
+ generalize EQ. revert Hp action. rewrite <-(EQ I)=>Hp action ?.
+ rewrite cast_eq. rewrite IH. split.
+ + intros. by constructor.
+ + intros H. inversion H. by subst_existT.
+Qed.
+
+
+Lemma pop_preserves_invariant symbols_to_pop stk Hp A action :
+ stack_invariant stk ->
+ stack_invariant (fst (pop symbols_to_pop stk Hp (A:=A) action)).
+Proof.
+ revert stk Hp A action. induction symbols_to_pop as [|t q IH]=>//=.
+ intros stk Hp A action Hi.
+ destruct Hi as [stack Hp' Hpp [|state st stk']].
+ - destruct pop_subproof0.
+ - now apply IH.
+Qed.
+
+Lemma pop_state_valid symbols_to_pop stk Hp A action lpred :
+ prefix_pred lpred (state_stack_of_stack stk) ->
+ let stk' := fst (pop symbols_to_pop stk Hp (A:=A) action) in
+ state_valid_after_pop (state_of_stack stk') symbols_to_pop lpred.
+Proof.
+ revert stk Hp A action lpred. induction symbols_to_pop as [|t q IH]=>/=.
+ - intros stk Hp A a lpred Hpp. destruct lpred as [|pred lpred]; constructor.
+ inversion Hpp as [|? lpred' ? pred' Himpl Hpp' eq1 eq2]; subst.
+ specialize (Himpl (state_of_stack stk)).
+ destruct (pred' (state_of_stack stk)) as [] eqn:Heqpred'=>//.
+ destruct stk as [|[]]; simpl in *.
+ + inversion eq2; subst; clear eq2.
+ unfold singleton_state_pred in Heqpred'.
+ now rewrite compare_refl in Heqpred'; discriminate.
+ + inversion eq2; subst; clear eq2.
+ unfold singleton_state_pred in Heqpred'.
+ now rewrite compare_refl in Heqpred'; discriminate.
+ - intros stk Hp A a lpred Hpp. destruct stk as [|[] stk]=>//=.
+ + destruct pop_subproof0.
+ + destruct lpred as [|pred lpred]; [by constructor|].
+ constructor. apply IH. by inversion Hpp.
+Qed.
+
+(** [step_result] represents the result of one step of the automaton : it can
+ fail, accept or progress. [Fail_sr] means that the input is incorrect.
+ [Accept_sr] means that this is the last step of the automaton, and it
+ returns the semantic value of the input word. [Progress_sr] means that
+ some progress has been made, but new steps are needed in order to accept
+ a word.
+
+ For [Accept_sr] and [Progress_sr], the result contains the new input buffer.
+
+ [Fail_sr] means that the input word is rejected by the automaton. It is
+ different to [Err] (from the error monad), which mean that the automaton is
+ bogus and has perfomed a forbidden action. **)
+Inductive step_result :=
+ | Fail_sr: step_result
+ | Accept_sr: symbol_semantic_type (NT (start_nt init)) -> buffer -> step_result
+ | Progress_sr: stack -> buffer -> step_result.
+
+(** [reduce_step] does a reduce action :
+ - pops some elements from the stack
+ - execute the action of the production
+ - follows the goto for the produced non terminal symbol **)
+Definition reduce_step stk prod (buffer : buffer)
+ (Hval : thunkP (valid_for_reduce (state_of_stack stk) prod))
+ (Hi : thunkP (stack_invariant stk))
+ : step_result.
+refine
+ ((let '(stk', sem) as ss := pop (prod_rhs_rev prod) stk _ (prod_action prod)
+ return thunkP (state_valid_after_pop (state_of_stack (fst ss)) _
+ (head_states_of_state (state_of_stack stk))) -> _
+ in fun Hval' =>
+ match goto_table (state_of_stack stk') (prod_lhs prod) as goto
+ return (thunkP (goto = None ->
+ match state_of_stack stk' with
+ | Init i => prod_lhs prod = start_nt i
+ | Ninit _ => False
+ end)) -> _
+ with
+ | Some (exist _ state_new e) => fun _ =>
+ let sem := eq_rect _ _ sem _ e in
+ Progress_sr (existT noninitstate_type state_new sem::stk') buffer
+ | None => fun Hval =>
+ let sem := cast symbol_semantic_type _ sem in
+ Accept_sr sem buffer
+ end (fun _ => _))
+ (fun _ => pop_state_valid _ _ _ _ _ _ _)).
+Proof.
+ - clear -Hi Hval.
+ abstract (intros _; destruct Hi=>//; eapply prefix_trans; [by apply Hval|eassumption]).
+ - clear -Hval.
+ abstract (intros _; f_equal; specialize (Hval I eq_refl); destruct stk' as [|[]]=>//).
+ - simpl in Hval'. clear -Hval Hval'.
+ abstract (move : Hval => /(_ I) [_ /(_ _ (Hval' I))] Hval2 Hgoto; by rewrite Hgoto in Hval2).
+ - clear -Hi. abstract by destruct Hi.
+Defined.
+
+Lemma reduce_step_stack_invariant_preserved stk prod buffer Hv Hi stk' buffer':
+ reduce_step stk prod buffer Hv Hi = Progress_sr stk' buffer' ->
+ stack_invariant stk'.
+Proof.
+ unfold reduce_step.
+ match goal with
+ | |- context [pop ?symbols_to_pop stk ?Hp ?action] =>
+ assert (Hi':=pop_preserves_invariant symbols_to_pop stk Hp _ action (Hi I));
+ generalize (pop_state_valid symbols_to_pop stk Hp _ action)
+ end.
+ destruct pop as [stk0 sem]=>/=. simpl in Hi'. intros Hv'.
+ assert (Hgoto1:=goto_head_symbs (state_of_stack stk0) (prod_lhs prod)).
+ assert (Hgoto2:=goto_past_state (state_of_stack stk0) (prod_lhs prod)).
+ match goal with | |- context [fun _ : True => ?X] => generalize X end.
+ destruct goto_table as [[state_new e]|] eqn:EQgoto=>//.
+ intros _ [= <- <-]. constructor=>/=.
+ - constructor. eapply prefix_trans. apply Hgoto1. by destruct Hi'.
+ - unfold state_stack_of_stack; simpl; constructor.
+ + intros ?. by destruct singleton_state_pred.
+ + eapply prefix_pred_trans. apply Hgoto2. by destruct Hi'.
+ - by constructor.
+Qed.
+
+(** One step of parsing. **)
+Definition step stk buffer (Hi : thunkP (stack_invariant stk)): step_result :=
+ match action_table (state_of_stack stk) as a return
+ thunkP
+ match a return Prop with
+ | Default_reduce_act prod => _
+ | Lookahead_act awt => forall t : terminal,
+ match awt t with
+ | Reduce_act p => _
+ | _ => True
+ end
+ end -> _
+ with
+ | Default_reduce_act prod => fun Hv =>
+ reduce_step stk prod buffer Hv Hi
+ | Lookahead_act awt => fun Hv =>
+ match buf_head buffer with
+ | tok =>
+ match awt (token_term tok) as a return
+ thunkP match a return Prop with Reduce_act p => _ | _ => _ end -> _
+ with
+ | Shift_act state_new e => fun _ =>
+ let sem_conv := eq_rect _ symbol_semantic_type (token_sem tok) _ e in
+ Progress_sr (existT noninitstate_type state_new sem_conv::stk)
+ (buf_tail buffer)
+ | Reduce_act prod => fun Hv =>
+ reduce_step stk prod buffer Hv Hi
+ | Fail_act => fun _ =>
+ Fail_sr
+ end (fun _ => Hv I (token_term tok))
+ end
+ end (fun _ => reduce_ok _).
+
+Lemma step_stack_invariant_preserved stk buffer Hi stk' buffer':
+ step stk buffer Hi = Progress_sr stk' buffer' ->
+ stack_invariant stk'.
+Proof.
+ unfold step.
+ generalize (reduce_ok (state_of_stack stk))=>Hred.
+ assert (Hshift1 := shift_head_symbs (state_of_stack stk)).
+ assert (Hshift2 := shift_past_state (state_of_stack stk)).
+ destruct action_table as [prod|awt]=>/=.
+ - eauto using reduce_step_stack_invariant_preserved.
+ - set (term := token_term (buf_head buffer)).
+ generalize (Hred term). clear Hred. intros Hred.
+ specialize (Hshift1 term). specialize (Hshift2 term).
+ destruct (awt term) as [state_new e|prod|]=>//.
+ + intros [= <- <-]. constructor=>/=.
+ * constructor. eapply prefix_trans. apply Hshift1. by destruct Hi.
+ * unfold state_stack_of_stack; simpl; constructor.
+ -- intros ?. by destruct singleton_state_pred.
+ -- eapply prefix_pred_trans. apply Hshift2. by destruct Hi.
+ * constructor; by apply Hi.
+ + eauto using reduce_step_stack_invariant_preserved.
+Qed.
+
+(** The parsing use a [nat] fuel parameter [log_n_steps], so that we
+ do not have to prove terminaison, which is difficult.
+
+ Note that [log_n_steps] is *not* the fuel in the conventionnal
+ sense: this parameter contains the logarithm (in base 2) of the
+ number of steps to perform. Hence, a value of, e.g., 50 will
+ usually be enough to ensure termination. *)
+Fixpoint parse_fix stk buffer (log_n_steps : nat) (Hi : thunkP (stack_invariant stk)):
+ { sr : step_result |
+ forall stk' buffer', sr = Progress_sr stk' buffer' -> stack_invariant stk' } :=
+ match log_n_steps with
+ | O => exist _ (step stk buffer Hi)
+ (step_stack_invariant_preserved _ _ Hi)
+ | S log_n_steps =>
+ match parse_fix stk buffer log_n_steps Hi with
+ | exist _ (Progress_sr stk buffer) Hi' =>
+ parse_fix stk buffer log_n_steps (fun _ => Hi' _ buffer eq_refl)
+ | sr => sr
+ end
+ end.
+
+(** The final result of a parsing is either a failure (the automaton
+ has rejected the input word), either a timeout (the automaton has
+ spent all the given [2^log_n_steps]), either a parsed semantic value
+ with a rest of the input buffer.
+
+ Note that we do not make parse_result depend on start_nt for the
+ result type, so that this inductive is extracted without the use
+ of Obj.t in OCaml. **)
+Inductive parse_result {A : Type} :=
+ | Fail_pr: parse_result
+ | Timeout_pr: parse_result
+ | Parsed_pr: A -> buffer -> parse_result.
+Global Arguments parse_result _ : clear implicits.
+
+Definition parse (buffer : buffer) (log_n_steps : nat):
+ parse_result (symbol_semantic_type (NT (start_nt init))).
+refine (match proj1_sig (parse_fix [] buffer log_n_steps _) with
+ | Fail_sr => Fail_pr
+ | Accept_sr sem buffer' => Parsed_pr sem buffer'
+ | Progress_sr _ _ => Timeout_pr
+ end).
+Proof.
+ abstract (repeat constructor; intros; by destruct singleton_state_pred).
+Defined.
+
+End Interpreter.
+
+Arguments Fail_sr {init}.
+Arguments Accept_sr {init} _ _.
+Arguments Progress_sr {init} _ _.
+
+End Make.
+
+Module Type T(A:Automaton.T).
+ Include (Make A).
+End T.