aboutsummaryrefslogtreecommitdiffstats
path: root/aarch64/Asmgenproof.v
diff options
context:
space:
mode:
Diffstat (limited to 'aarch64/Asmgenproof.v')
-rw-r--r--aarch64/Asmgenproof.v1029
1 files changed, 0 insertions, 1029 deletions
diff --git a/aarch64/Asmgenproof.v b/aarch64/Asmgenproof.v
deleted file mode 100644
index dc0bc509..00000000
--- a/aarch64/Asmgenproof.v
+++ /dev/null
@@ -1,1029 +0,0 @@
-(* *********************************************************************)
-(* *)
-(* The Compcert verified compiler *)
-(* *)
-(* Xavier Leroy, Collège de France and INRIA Paris *)
-(* *)
-(* Copyright Institut National de Recherche en Informatique et en *)
-(* Automatique. All rights reserved. This file is distributed *)
-(* under the terms of the INRIA Non-Commercial License Agreement. *)
-(* *)
-(* *********************************************************************)
-
-(** Correctness proof for AArch64 code generation. *)
-
-Require Import Coqlib Errors.
-Require Import Integers Floats AST Linking.
-Require Import Values Memory Events Globalenvs Smallstep.
-Require Import Op Locations Mach Conventions Asm.
-Require Import Asmgen Asmgenproof0 Asmgenproof1.
-
-Definition match_prog (p: Mach.program) (tp: Asm.program) :=
- match_program (fun _ f tf => transf_fundef f = OK tf) eq p tp.
-
-Lemma transf_program_match:
- forall p tp, transf_program p = OK tp -> match_prog p tp.
-Proof.
- intros. eapply match_transform_partial_program; eauto.
-Qed.
-
-Section PRESERVATION.
-
-Variable prog: Mach.program.
-Variable tprog: Asm.program.
-Hypothesis TRANSF: match_prog prog tprog.
-Let ge := Genv.globalenv prog.
-Let tge := Genv.globalenv tprog.
-
-Lemma symbols_preserved:
- forall (s: ident), Genv.find_symbol tge s = Genv.find_symbol ge s.
-Proof (Genv.find_symbol_match TRANSF).
-
-Lemma senv_preserved:
- Senv.equiv ge tge.
-Proof (Genv.senv_match TRANSF).
-
-Lemma functions_translated:
- forall b f,
- Genv.find_funct_ptr ge b = Some f ->
- exists tf,
- Genv.find_funct_ptr tge b = Some tf /\ transf_fundef f = OK tf.
-Proof (Genv.find_funct_ptr_transf_partial TRANSF).
-
-Lemma functions_transl:
- forall fb f tf,
- Genv.find_funct_ptr ge fb = Some (Internal f) ->
- transf_function f = OK tf ->
- Genv.find_funct_ptr tge fb = Some (Internal tf).
-Proof.
- intros. exploit functions_translated; eauto. intros [tf' [A B]].
- monadInv B. rewrite H0 in EQ; inv EQ; auto.
-Qed.
-
-(** * Properties of control flow *)
-
-Lemma transf_function_no_overflow:
- forall f tf,
- transf_function f = OK tf -> list_length_z tf.(fn_code) <= Ptrofs.max_unsigned.
-Proof.
- intros. monadInv H. destruct (zlt Ptrofs.max_unsigned (list_length_z x.(fn_code))); inv EQ0.
- lia.
-Qed.
-
-Lemma exec_straight_exec:
- forall fb f c ep tf tc c' rs m rs' m',
- transl_code_at_pc ge (rs PC) fb f c ep tf tc ->
- exec_straight tge tf tc rs m c' rs' m' ->
- plus step tge (State rs m) E0 (State rs' m').
-Proof.
- intros. inv H.
- eapply exec_straight_steps_1; eauto.
- eapply transf_function_no_overflow; eauto.
- eapply functions_transl; eauto.
-Qed.
-
-Lemma exec_straight_at:
- forall fb f c ep tf tc c' ep' tc' rs m rs' m',
- transl_code_at_pc ge (rs PC) fb f c ep tf tc ->
- transl_code f c' ep' = OK tc' ->
- exec_straight tge tf tc rs m tc' rs' m' ->
- transl_code_at_pc ge (rs' PC) fb f c' ep' tf tc'.
-Proof.
- intros. inv H.
- exploit exec_straight_steps_2; eauto.
- eapply transf_function_no_overflow; eauto.
- eapply functions_transl; eauto.
- intros [ofs' [PC' CT']].
- rewrite PC'. constructor; auto.
-Qed.
-
-(** The following lemmas show that the translation from Mach to Asm
- preserves labels, in the sense that the following diagram commutes:
-<<
- translation
- Mach code ------------------------ Asm instr sequence
- | |
- | Mach.find_label lbl find_label lbl |
- | |
- v v
- Mach code tail ------------------- Asm instr seq tail
- translation
->>
- The proof demands many boring lemmas showing that Asm constructor
- functions do not introduce new labels.
-*)
-
-Section TRANSL_LABEL.
-
-Remark loadimm_z_label: forall sz rd l k, tail_nolabel k (loadimm_z sz rd l k).
-Proof.
- intros; destruct l as [ | [n1 p1] l]; simpl; TailNoLabel.
- induction l as [ | [n p] l]; simpl; TailNoLabel.
-Qed.
-
-Remark loadimm_n_label: forall sz rd l k, tail_nolabel k (loadimm_n sz rd l k).
-Proof.
- intros; destruct l as [ | [n1 p1] l]; simpl; TailNoLabel.
- induction l as [ | [n p] l]; simpl; TailNoLabel.
-Qed.
-
-Remark loadimm_label: forall sz rd n k, tail_nolabel k (loadimm sz rd n k).
-Proof.
- unfold loadimm; intros. destruct Nat.leb; [apply loadimm_z_label|apply loadimm_n_label].
-Qed.
-Hint Resolve loadimm_label: labels.
-
-Remark loadimm32_label: forall r n k, tail_nolabel k (loadimm32 r n k).
-Proof.
- unfold loadimm32; intros. destruct (is_logical_imm32 n); TailNoLabel.
-Qed.
-Hint Resolve loadimm32_label: labels.
-
-Remark loadimm64_label: forall r n k, tail_nolabel k (loadimm64 r n k).
-Proof.
- unfold loadimm64; intros. destruct (is_logical_imm64 n); TailNoLabel.
-Qed.
-Hint Resolve loadimm64_label: labels.
-
-Remark addimm_aux: forall insn rd r1 n k,
- (forall rd r1 n, nolabel (insn rd r1 n)) ->
- tail_nolabel k (addimm_aux insn rd r1 n k).
-Proof.
- unfold addimm_aux; intros.
- destruct Z.eqb. TailNoLabel. destruct Z.eqb; TailNoLabel.
-Qed.
-
-Remark addimm32_label: forall rd r1 n k, tail_nolabel k (addimm32 rd r1 n k).
-Proof.
- unfold addimm32; intros.
- destruct Int.eq. apply addimm_aux; intros; red; auto.
- destruct Int.eq. apply addimm_aux; intros; red; auto.
- destruct Int.lt; eapply tail_nolabel_trans; TailNoLabel.
-Qed.
-Hint Resolve addimm32_label: labels.
-
-Remark addimm64_label: forall rd r1 n k, tail_nolabel k (addimm64 rd r1 n k).
-Proof.
- unfold addimm64; intros.
- destruct Int64.eq. apply addimm_aux; intros; red; auto.
- destruct Int64.eq. apply addimm_aux; intros; red; auto.
- destruct Int64.lt; eapply tail_nolabel_trans; TailNoLabel.
-Qed.
-Hint Resolve addimm64_label: labels.
-
-Remark logicalimm32_label: forall insn1 insn2 rd r1 n k,
- (forall rd r1 n, nolabel (insn1 rd r1 n)) ->
- (forall rd r1 r2 s, nolabel (insn2 rd r1 r2 s)) ->
- tail_nolabel k (logicalimm32 insn1 insn2 rd r1 n k).
-Proof.
- unfold logicalimm32; intros.
- destruct (is_logical_imm32 n). TailNoLabel. eapply tail_nolabel_trans; TailNoLabel.
-Qed.
-
-Remark logicalimm64_label: forall insn1 insn2 rd r1 n k,
- (forall rd r1 n, nolabel (insn1 rd r1 n)) ->
- (forall rd r1 r2 s, nolabel (insn2 rd r1 r2 s)) ->
- tail_nolabel k (logicalimm64 insn1 insn2 rd r1 n k).
-Proof.
- unfold logicalimm64; intros.
- destruct (is_logical_imm64 n). TailNoLabel. eapply tail_nolabel_trans; TailNoLabel.
-Qed.
-
-Remark move_extended_label: forall rd r1 ex a k, tail_nolabel k (move_extended rd r1 ex a k).
-Proof.
- unfold move_extended, move_extended_base; intros. destruct Int.eq, ex; TailNoLabel.
-Qed.
-Hint Resolve move_extended_label: labels.
-
-Remark arith_extended_label: forall insnX insnS rd r1 r2 ex a k,
- (forall rd r1 r2 x, nolabel (insnX rd r1 r2 x)) ->
- (forall rd r1 r2 s, nolabel (insnS rd r1 r2 s)) ->
- tail_nolabel k (arith_extended insnX insnS rd r1 r2 ex a k).
-Proof.
- unfold arith_extended; intros. destruct Int.ltu.
- TailNoLabel.
- destruct ex; simpl; TailNoLabel.
-Qed.
-
-Remark loadsymbol_label: forall r id ofs k, tail_nolabel k (loadsymbol r id ofs k).
-Proof.
- intros; unfold loadsymbol.
- destruct (SelectOp.symbol_is_relocatable id); TailNoLabel. destruct Ptrofs.eq; TailNoLabel.
-Qed.
-Hint Resolve loadsymbol_label: labels.
-
-Remark transl_cond_label: forall cond args k c,
- transl_cond cond args k = OK c -> tail_nolabel k c.
-Proof.
- unfold transl_cond; intros; destruct cond; TailNoLabel.
-- destruct is_arith_imm32; TailNoLabel. destruct is_arith_imm32; TailNoLabel. eapply tail_nolabel_trans; TailNoLabel.
-- destruct is_arith_imm32; TailNoLabel. destruct is_arith_imm32; TailNoLabel. eapply tail_nolabel_trans; TailNoLabel.
-- destruct is_logical_imm32; TailNoLabel. eapply tail_nolabel_trans; TailNoLabel.
-- destruct is_logical_imm32; TailNoLabel. eapply tail_nolabel_trans; TailNoLabel.
-- destruct is_arith_imm64; TailNoLabel. destruct is_arith_imm64; TailNoLabel. eapply tail_nolabel_trans; TailNoLabel.
-- destruct is_arith_imm64; TailNoLabel. destruct is_arith_imm64; TailNoLabel. eapply tail_nolabel_trans; TailNoLabel.
-- destruct is_logical_imm64; TailNoLabel. eapply tail_nolabel_trans; TailNoLabel.
-- destruct is_logical_imm64; TailNoLabel. eapply tail_nolabel_trans; TailNoLabel.
-Qed.
-
-Remark transl_cond_branch_default_label: forall cond args lbl k c,
- transl_cond_branch_default cond args lbl k = OK c -> tail_nolabel k c.
-Proof.
- unfold transl_cond_branch_default; intros.
- eapply tail_nolabel_trans; [eapply transl_cond_label;eauto|TailNoLabel].
-Qed.
-Hint Resolve transl_cond_branch_default_label: labels.
-
-Remark transl_cond_branch_label: forall cond args lbl k c,
- transl_cond_branch cond args lbl k = OK c -> tail_nolabel k c.
-Proof.
- unfold transl_cond_branch; intros; destruct args; TailNoLabel; destruct cond; TailNoLabel.
-- destruct c0; TailNoLabel.
-- destruct c0; TailNoLabel.
-- destruct (Int.is_power2 n); TailNoLabel.
-- destruct (Int.is_power2 n); TailNoLabel.
-- destruct c0; TailNoLabel.
-- destruct c0; TailNoLabel.
-- destruct (Int64.is_power2' n); TailNoLabel.
-- destruct (Int64.is_power2' n); TailNoLabel.
-Qed.
-
-Remark transl_op_label:
- forall op args r k c,
- transl_op op args r k = OK c -> tail_nolabel k c.
-Proof.
- unfold transl_op; intros; destruct op; TailNoLabel.
-- destruct (preg_of r); try discriminate; destruct (preg_of m); inv H; TailNoLabel.
-- destruct (Float.eq_dec n Float.zero); TailNoLabel.
-- destruct (Float32.eq_dec n Float32.zero); TailNoLabel.
-- apply logicalimm32_label; unfold nolabel; auto.
-- apply logicalimm32_label; unfold nolabel; auto.
-- apply logicalimm32_label; unfold nolabel; auto.
-- unfold shrx32. destruct Int.eq; TailNoLabel.
-- apply arith_extended_label; unfold nolabel; auto.
-- apply arith_extended_label; unfold nolabel; auto.
-- apply logicalimm64_label; unfold nolabel; auto.
-- apply logicalimm64_label; unfold nolabel; auto.
-- apply logicalimm64_label; unfold nolabel; auto.
-- unfold shrx64. destruct Int.eq; TailNoLabel.
-- eapply tail_nolabel_trans. eapply transl_cond_label; eauto. TailNoLabel.
-- destruct (preg_of r); try discriminate; TailNoLabel;
- (eapply tail_nolabel_trans; [eapply transl_cond_label; eauto | TailNoLabel]).
-Qed.
-
-Remark transl_addressing_label:
- forall sz addr args insn k c,
- transl_addressing sz addr args insn k = OK c ->
- (forall ad, nolabel (insn ad)) ->
- tail_nolabel k c.
-Proof.
- unfold transl_addressing; intros; destruct addr; TailNoLabel;
- eapply tail_nolabel_trans; TailNoLabel.
- eapply tail_nolabel_trans. apply arith_extended_label; unfold nolabel; auto. TailNoLabel.
-Qed.
-
-Remark transl_load_label:
- forall chunk addr args dst k c,
- transl_load chunk addr args dst k = OK c -> tail_nolabel k c.
-Proof.
- unfold transl_load; intros; destruct chunk; TailNoLabel; eapply transl_addressing_label; eauto; unfold nolabel; auto.
-Qed.
-
-Remark transl_store_label:
- forall chunk addr args src k c,
- transl_store chunk addr args src k = OK c -> tail_nolabel k c.
-Proof.
- unfold transl_store; intros; destruct chunk; TailNoLabel; eapply transl_addressing_label; eauto; unfold nolabel; auto.
-Qed.
-
-Remark indexed_memory_access_label:
- forall insn sz base ofs k,
- (forall ad, nolabel (insn ad)) ->
- tail_nolabel k (indexed_memory_access insn sz base ofs k).
-Proof.
- unfold indexed_memory_access; intros. destruct offset_representable.
- TailNoLabel.
- eapply tail_nolabel_trans; TailNoLabel.
-Qed.
-
-Remark loadind_label:
- forall base ofs ty dst k c,
- loadind base ofs ty dst k = OK c -> tail_nolabel k c.
-Proof.
- unfold loadind; intros.
- destruct ty, (preg_of dst); inv H; apply indexed_memory_access_label; intros; exact I.
-Qed.
-
-Remark storeind_label:
- forall src base ofs ty k c,
- storeind src base ofs ty k = OK c -> tail_nolabel k c.
-Proof.
- unfold storeind; intros.
- destruct ty, (preg_of src); inv H; apply indexed_memory_access_label; intros; exact I.
-Qed.
-
-Remark loadptr_label:
- forall base ofs dst k, tail_nolabel k (loadptr base ofs dst k).
-Proof.
- intros. apply indexed_memory_access_label. unfold nolabel; auto.
-Qed.
-
-Remark storeptr_label:
- forall src base ofs k, tail_nolabel k (storeptr src base ofs k).
-Proof.
- intros. apply indexed_memory_access_label. unfold nolabel; auto.
-Qed.
-
-Remark make_epilogue_label:
- forall f k, tail_nolabel k (make_epilogue f k).
-Proof.
- unfold make_epilogue; intros. eapply tail_nolabel_trans. apply loadptr_label. TailNoLabel.
-Qed.
-
-Lemma transl_instr_label:
- forall f i ep k c,
- transl_instr f i ep k = OK c ->
- match i with Mlabel lbl => c = Plabel lbl :: k | _ => tail_nolabel k c end.
-Proof.
- unfold transl_instr; intros; destruct i; TailNoLabel.
-- eapply loadind_label; eauto.
-- eapply storeind_label; eauto.
-- destruct ep. eapply loadind_label; eauto.
- eapply tail_nolabel_trans. apply loadptr_label. eapply loadind_label; eauto.
-- eapply transl_op_label; eauto.
-- eapply transl_load_label; eauto.
-- eapply transl_store_label; eauto.
-- destruct s0; monadInv H; TailNoLabel.
-- destruct s0; monadInv H; (eapply tail_nolabel_trans; [eapply make_epilogue_label|TailNoLabel]).
-- eapply transl_cond_branch_label; eauto.
-- eapply tail_nolabel_trans; [eapply make_epilogue_label|TailNoLabel].
-Qed.
-
-Lemma transl_instr_label':
- forall lbl f i ep k c,
- transl_instr f i ep k = OK c ->
- find_label lbl c = if Mach.is_label lbl i then Some k else find_label lbl k.
-Proof.
- intros. exploit transl_instr_label; eauto.
- destruct i; try (intros [A B]; apply B).
- intros. subst c. simpl. auto.
-Qed.
-
-Lemma transl_code_label:
- forall lbl f c ep tc,
- transl_code f c ep = OK tc ->
- match Mach.find_label lbl c with
- | None => find_label lbl tc = None
- | Some c' => exists tc', find_label lbl tc = Some tc' /\ transl_code f c' false = OK tc'
- end.
-Proof.
- induction c; simpl; intros.
- inv H. auto.
- monadInv H. rewrite (transl_instr_label' lbl _ _ _ _ _ EQ0).
- generalize (Mach.is_label_correct lbl a).
- destruct (Mach.is_label lbl a); intros.
- subst a. simpl in EQ. exists x; auto.
- eapply IHc; eauto.
-Qed.
-
-Lemma transl_find_label:
- forall lbl f tf,
- transf_function f = OK tf ->
- match Mach.find_label lbl f.(Mach.fn_code) with
- | None => find_label lbl tf.(fn_code) = None
- | Some c => exists tc, find_label lbl tf.(fn_code) = Some tc /\ transl_code f c false = OK tc
- end.
-Proof.
- intros. monadInv H. destruct (zlt Ptrofs.max_unsigned (list_length_z x.(fn_code))); inv EQ0.
- monadInv EQ. rewrite transl_code'_transl_code in EQ0. unfold fn_code.
- simpl. destruct (storeptr_label X30 XSP (fn_retaddr_ofs f) x) as [A B]; rewrite B.
- eapply transl_code_label; eauto.
-Qed.
-
-End TRANSL_LABEL.
-
-(** A valid branch in a piece of Mach code translates to a valid ``go to''
- transition in the generated Asm code. *)
-
-Lemma find_label_goto_label:
- forall f tf lbl rs m c' b ofs,
- Genv.find_funct_ptr ge b = Some (Internal f) ->
- transf_function f = OK tf ->
- rs PC = Vptr b ofs ->
- Mach.find_label lbl f.(Mach.fn_code) = Some c' ->
- exists tc', exists rs',
- goto_label tf lbl rs m = Next rs' m
- /\ transl_code_at_pc ge (rs' PC) b f c' false tf tc'
- /\ forall r, r <> PC -> rs'#r = rs#r.
-Proof.
- intros. exploit (transl_find_label lbl f tf); eauto. rewrite H2.
- intros [tc [A B]].
- exploit label_pos_code_tail; eauto. instantiate (1 := 0).
- intros [pos' [P [Q R]]].
- exists tc; exists (rs#PC <- (Vptr b (Ptrofs.repr pos'))).
- split. unfold goto_label. rewrite P. rewrite H1. auto.
- split. rewrite Pregmap.gss. constructor; auto.
- rewrite Ptrofs.unsigned_repr. replace (pos' - 0) with pos' in Q.
- auto. lia.
- generalize (transf_function_no_overflow _ _ H0). lia.
- intros. apply Pregmap.gso; auto.
-Qed.
-
-(** Existence of return addresses *)
-
-Lemma return_address_exists:
- forall f sg ros c, is_tail (Mcall sg ros :: c) f.(Mach.fn_code) ->
- exists ra, return_address_offset f c ra.
-Proof.
- intros. eapply Asmgenproof0.return_address_exists; eauto.
-- intros. exploit transl_instr_label; eauto.
- destruct i; try (intros [A B]; apply A). intros. subst c0. repeat constructor.
-- intros. monadInv H0.
- destruct (zlt Ptrofs.max_unsigned (list_length_z x.(fn_code))); inv EQ0. monadInv EQ.
- rewrite transl_code'_transl_code in EQ0.
- exists x; exists true; split; auto. unfold fn_code.
- constructor. apply (storeptr_label X30 XSP (fn_retaddr_ofs f0) x).
-- exact transf_function_no_overflow.
-Qed.
-
-(** * Proof of semantic preservation *)
-
-(** Semantic preservation is proved using simulation diagrams
- of the following form.
-<<
- st1 --------------- st2
- | |
- t| *|t
- | |
- v v
- st1'--------------- st2'
->>
- The invariant is the [match_states] predicate below, which includes:
-- The Asm code pointed by the PC register is the translation of
- the current Mach code sequence.
-- Mach register values and Asm register values agree.
-*)
-
-Inductive match_states: Mach.state -> Asm.state -> Prop :=
- | match_states_intro:
- forall s fb sp c ep ms m m' rs f tf tc
- (STACKS: match_stack ge s)
- (FIND: Genv.find_funct_ptr ge fb = Some (Internal f))
- (MEXT: Mem.extends m m')
- (AT: transl_code_at_pc ge (rs PC) fb f c ep tf tc)
- (AG: agree ms sp rs)
- (DXP: ep = true -> rs#X29 = parent_sp s),
- match_states (Mach.State s fb sp c ms m)
- (Asm.State rs m')
- | match_states_call:
- forall s fb ms m m' rs
- (STACKS: match_stack ge s)
- (MEXT: Mem.extends m m')
- (AG: agree ms (parent_sp s) rs)
- (ATPC: rs PC = Vptr fb Ptrofs.zero)
- (ATLR: rs RA = parent_ra s),
- match_states (Mach.Callstate s fb ms m)
- (Asm.State rs m')
- | match_states_return:
- forall s ms m m' rs
- (STACKS: match_stack ge s)
- (MEXT: Mem.extends m m')
- (AG: agree ms (parent_sp s) rs)
- (ATPC: rs PC = parent_ra s),
- match_states (Mach.Returnstate s ms m)
- (Asm.State rs m').
-
-Lemma exec_straight_steps:
- forall s fb f rs1 i c ep tf tc m1' m2 m2' sp ms2,
- match_stack ge s ->
- Mem.extends m2 m2' ->
- Genv.find_funct_ptr ge fb = Some (Internal f) ->
- transl_code_at_pc ge (rs1 PC) fb f (i :: c) ep tf tc ->
- (forall k c (TR: transl_instr f i ep k = OK c),
- exists rs2,
- exec_straight tge tf c rs1 m1' k rs2 m2'
- /\ agree ms2 sp rs2
- /\ (it1_is_parent ep i = true -> rs2#X29 = parent_sp s)) ->
- exists st',
- plus step tge (State rs1 m1') E0 st' /\
- match_states (Mach.State s fb sp c ms2 m2) st'.
-Proof.
- intros. inversion H2. subst. monadInv H7.
- exploit H3; eauto. intros [rs2 [A [B C]]].
- exists (State rs2 m2'); split.
- eapply exec_straight_exec; eauto.
- econstructor; eauto. eapply exec_straight_at; eauto.
-Qed.
-
-Lemma exec_straight_steps_goto:
- forall s fb f rs1 i c ep tf tc m1' m2 m2' sp ms2 lbl c',
- match_stack ge s ->
- Mem.extends m2 m2' ->
- Genv.find_funct_ptr ge fb = Some (Internal f) ->
- Mach.find_label lbl f.(Mach.fn_code) = Some c' ->
- transl_code_at_pc ge (rs1 PC) fb f (i :: c) ep tf tc ->
- it1_is_parent ep i = false ->
- (forall k c (TR: transl_instr f i ep k = OK c),
- exists jmp, exists k', exists rs2,
- exec_straight tge tf c rs1 m1' (jmp :: k') rs2 m2'
- /\ agree ms2 sp rs2
- /\ exec_instr tge tf jmp rs2 m2' = goto_label tf lbl rs2 m2') ->
- exists st',
- plus step tge (State rs1 m1') E0 st' /\
- match_states (Mach.State s fb sp c' ms2 m2) st'.
-Proof.
- intros. inversion H3. subst. monadInv H9.
- exploit H5; eauto. intros [jmp [k' [rs2 [A [B C]]]]].
- generalize (functions_transl _ _ _ H7 H8); intro FN.
- generalize (transf_function_no_overflow _ _ H8); intro NOOV.
- exploit exec_straight_steps_2; eauto.
- intros [ofs' [PC2 CT2]].
- exploit find_label_goto_label; eauto.
- intros [tc' [rs3 [GOTO [AT' OTH]]]].
- exists (State rs3 m2'); split.
- eapply plus_right'.
- eapply exec_straight_steps_1; eauto.
- econstructor; eauto.
- eapply find_instr_tail. eauto.
- rewrite C. eexact GOTO.
- traceEq.
- econstructor; eauto.
- apply agree_exten with rs2; auto with asmgen.
- congruence.
-Qed.
-
-Lemma exec_straight_opt_steps_goto:
- forall s fb f rs1 i c ep tf tc m1' m2 m2' sp ms2 lbl c',
- match_stack ge s ->
- Mem.extends m2 m2' ->
- Genv.find_funct_ptr ge fb = Some (Internal f) ->
- Mach.find_label lbl f.(Mach.fn_code) = Some c' ->
- transl_code_at_pc ge (rs1 PC) fb f (i :: c) ep tf tc ->
- it1_is_parent ep i = false ->
- (forall k c (TR: transl_instr f i ep k = OK c),
- exists jmp, exists k', exists rs2,
- exec_straight_opt tge tf c rs1 m1' (jmp :: k') rs2 m2'
- /\ agree ms2 sp rs2
- /\ exec_instr tge tf jmp rs2 m2' = goto_label tf lbl rs2 m2') ->
- exists st',
- plus step tge (State rs1 m1') E0 st' /\
- match_states (Mach.State s fb sp c' ms2 m2) st'.
-Proof.
- intros. inversion H3. subst. monadInv H9.
- exploit H5; eauto. intros [jmp [k' [rs2 [A [B C]]]]].
- generalize (functions_transl _ _ _ H7 H8); intro FN.
- generalize (transf_function_no_overflow _ _ H8); intro NOOV.
- inv A.
-- exploit find_label_goto_label; eauto.
- intros [tc' [rs3 [GOTO [AT' OTH]]]].
- exists (State rs3 m2'); split.
- apply plus_one. econstructor; eauto.
- eapply find_instr_tail. eauto.
- rewrite C. eexact GOTO.
- econstructor; eauto.
- apply agree_exten with rs2; auto with asmgen.
- congruence.
-- exploit exec_straight_steps_2; eauto.
- intros [ofs' [PC2 CT2]].
- exploit find_label_goto_label; eauto.
- intros [tc' [rs3 [GOTO [AT' OTH]]]].
- exists (State rs3 m2'); split.
- eapply plus_right'.
- eapply exec_straight_steps_1; eauto.
- econstructor; eauto.
- eapply find_instr_tail. eauto.
- rewrite C. eexact GOTO.
- traceEq.
- econstructor; eauto.
- apply agree_exten with rs2; auto with asmgen.
- congruence.
-Qed.
-
-(** We need to show that, in the simulation diagram, we cannot
- take infinitely many Mach transitions that correspond to zero
- transitions on the Asm side. Actually, all Mach transitions
- correspond to at least one Asm transition, except the
- transition from [Machsem.Returnstate] to [Machsem.State].
- So, the following integer measure will suffice to rule out
- the unwanted behaviour. *)
-
-Definition measure (s: Mach.state) : nat :=
- match s with
- | Mach.State _ _ _ _ _ _ => 0%nat
- | Mach.Callstate _ _ _ _ => 0%nat
- | Mach.Returnstate _ _ _ => 1%nat
- end.
-
-Remark preg_of_not_X29: forall r, negb (mreg_eq r R29) = true -> IR X29 <> preg_of r.
-Proof.
- intros. change (IR X29) with (preg_of R29). red; intros.
- exploit preg_of_injective; eauto. intros; subst r; discriminate.
-Qed.
-
-Lemma sp_val': forall ms sp rs, agree ms sp rs -> sp = rs XSP.
-Proof.
- intros. eapply sp_val; eauto.
-Qed.
-
-(** This is the simulation diagram. We prove it by case analysis on the Mach transition. *)
-
-Theorem step_simulation:
- forall S1 t S2, Mach.step return_address_offset ge S1 t S2 ->
- forall S1' (MS: match_states S1 S1'),
- (exists S2', plus step tge S1' t S2' /\ match_states S2 S2')
- \/ (measure S2 < measure S1 /\ t = E0 /\ match_states S2 S1')%nat.
-Proof.
- induction 1; intros; inv MS.
-
-- (* Mlabel *)
- left; eapply exec_straight_steps; eauto; intros.
- monadInv TR. econstructor; split. apply exec_straight_one. simpl; eauto. auto.
- split. apply agree_nextinstr; auto. simpl; congruence.
-
-- (* Mgetstack *)
- unfold load_stack in H.
- exploit Mem.loadv_extends; eauto. intros [v' [A B]].
- rewrite (sp_val _ _ _ AG) in A.
- left; eapply exec_straight_steps; eauto. intros. simpl in TR.
- exploit loadind_correct; eauto with asmgen. intros [rs' [P [Q R]]].
- exists rs'; split. eauto.
- split. eapply agree_set_mreg; eauto with asmgen. congruence.
- simpl; congruence.
-
-- (* Msetstack *)
- unfold store_stack in H.
- assert (Val.lessdef (rs src) (rs0 (preg_of src))) by (eapply preg_val; eauto).
- exploit Mem.storev_extends; eauto. intros [m2' [A B]].
- left; eapply exec_straight_steps; eauto.
- rewrite (sp_val _ _ _ AG) in A. intros. simpl in TR.
- exploit storeind_correct; eauto with asmgen. intros [rs' [P Q]].
- exists rs'; split. eauto.
- split. eapply agree_undef_regs; eauto with asmgen.
- simpl; intros. rewrite Q; auto with asmgen.
-
-- (* Mgetparam *)
- assert (f0 = f) by congruence; subst f0.
- unfold load_stack in *.
- exploit Mem.loadv_extends. eauto. eexact H0. auto.
- intros [parent' [A B]]. rewrite (sp_val' _ _ _ AG) in A.
- exploit lessdef_parent_sp; eauto. clear B; intros B; subst parent'.
- exploit Mem.loadv_extends. eauto. eexact H1. auto.
- intros [v' [C D]].
-Opaque loadind.
- left; eapply exec_straight_steps; eauto; intros. monadInv TR.
- destruct ep.
-(* X30 contains parent *)
- exploit loadind_correct. eexact EQ.
- instantiate (2 := rs0). simpl; rewrite DXP; eauto. simpl; congruence.
- intros [rs1 [P [Q R]]].
- exists rs1; split. eauto.
- split. eapply agree_set_mreg. eapply agree_set_mreg; eauto. congruence. auto with asmgen.
- simpl; intros. rewrite R; auto with asmgen.
- apply preg_of_not_X29; auto.
-(* X30 does not contain parent *)
- exploit loadptr_correct. eexact A. simpl; congruence. intros [rs1 [P [Q R]]].
- exploit loadind_correct. eexact EQ. instantiate (2 := rs1). simpl; rewrite Q. eauto. simpl; congruence.
- intros [rs2 [S [T U]]].
- exists rs2; split. eapply exec_straight_trans; eauto.
- split. eapply agree_set_mreg. eapply agree_set_mreg. eauto. eauto.
- instantiate (1 := rs1#X29 <- (rs2#X29)). intros.
- rewrite Pregmap.gso; auto with asmgen.
- congruence.
- intros. unfold Pregmap.set. destruct (PregEq.eq r' X29). congruence. auto with asmgen.
- simpl; intros. rewrite U; auto with asmgen.
- apply preg_of_not_X29; auto.
-
-- (* Mop *)
- assert (eval_operation tge sp op (map rs args) m = Some v).
- { rewrite <- H. apply eval_operation_preserved. exact symbols_preserved. }
- exploit eval_operation_lessdef. eapply preg_vals; eauto. eauto. eexact H0.
- intros [v' [A B]]. rewrite (sp_val _ _ _ AG) in A.
- left; eapply exec_straight_steps; eauto; intros. simpl in TR.
- exploit transl_op_correct; eauto. intros [rs2 [P [Q R]]].
- exists rs2; split. eauto. split.
- apply agree_set_undef_mreg with rs0; auto.
- apply Val.lessdef_trans with v'; auto.
- simpl; intros. InvBooleans.
- rewrite R; auto. apply preg_of_not_X29; auto.
-Local Transparent destroyed_by_op.
- destruct op; try exact I; simpl; congruence.
-
-- (* Mload *)
- assert (Op.eval_addressing tge sp addr (map rs args) = Some a).
- { rewrite <- H. apply eval_addressing_preserved. exact symbols_preserved. }
- exploit eval_addressing_lessdef. eapply preg_vals; eauto. eexact H1.
- intros [a' [A B]]. rewrite (sp_val _ _ _ AG) in A.
- exploit Mem.loadv_extends; eauto. intros [v' [C D]].
- left; eapply exec_straight_steps; eauto; intros. simpl in TR.
- exploit transl_load_correct; eauto. intros [rs2 [P [Q R]]].
- exists rs2; split. eauto.
- split. eapply agree_set_undef_mreg; eauto. congruence.
- simpl; congruence.
-
-- (* Mstore *)
- assert (Op.eval_addressing tge sp addr (map rs args) = Some a).
- { rewrite <- H. apply eval_addressing_preserved. exact symbols_preserved. }
- exploit eval_addressing_lessdef. eapply preg_vals; eauto. eexact H1.
- intros [a' [A B]]. rewrite (sp_val _ _ _ AG) in A.
- assert (Val.lessdef (rs src) (rs0 (preg_of src))) by (eapply preg_val; eauto).
- exploit Mem.storev_extends; eauto. intros [m2' [C D]].
- left; eapply exec_straight_steps; eauto.
- intros. simpl in TR. exploit transl_store_correct; eauto. intros [rs2 [P Q]].
- exists rs2; split. eauto.
- split. eapply agree_undef_regs; eauto with asmgen.
- simpl; congruence.
-
-- (* Mcall *)
- assert (f0 = f) by congruence. subst f0.
- inv AT.
- assert (NOOV: list_length_z tf.(fn_code) <= Ptrofs.max_unsigned).
- { eapply transf_function_no_overflow; eauto. }
- destruct ros as [rf|fid]; simpl in H; monadInv H5.
-+ (* Indirect call *)
- assert (rs rf = Vptr f' Ptrofs.zero).
- { destruct (rs rf); try discriminate.
- revert H; predSpec Ptrofs.eq Ptrofs.eq_spec i Ptrofs.zero; intros; congruence. }
- assert (rs0 x0 = Vptr f' Ptrofs.zero).
- { exploit ireg_val; eauto. rewrite H5; intros LD; inv LD; auto. }
- generalize (code_tail_next_int _ _ _ _ NOOV H6). intro CT1.
- assert (TCA: transl_code_at_pc ge (Vptr fb (Ptrofs.add ofs Ptrofs.one)) fb f c false tf x).
- { econstructor; eauto. }
- exploit return_address_offset_correct; eauto. intros; subst ra.
- left; econstructor; split.
- apply plus_one. eapply exec_step_internal. Simpl. rewrite <- H2; simpl; eauto.
- eapply functions_transl; eauto. eapply find_instr_tail; eauto.
- simpl. eauto.
- econstructor; eauto.
- econstructor; eauto.
- eapply agree_sp_def; eauto.
- simpl. eapply agree_exten; eauto. intros. Simpl.
- Simpl. rewrite <- H2. auto.
-+ (* Direct call *)
- generalize (code_tail_next_int _ _ _ _ NOOV H6). intro CT1.
- assert (TCA: transl_code_at_pc ge (Vptr fb (Ptrofs.add ofs Ptrofs.one)) fb f c false tf x).
- econstructor; eauto.
- exploit return_address_offset_correct; eauto. intros; subst ra.
- left; econstructor; split.
- apply plus_one. eapply exec_step_internal. eauto.
- eapply functions_transl; eauto. eapply find_instr_tail; eauto.
- simpl. unfold Genv.symbol_address. rewrite symbols_preserved. rewrite H. eauto.
- econstructor; eauto.
- econstructor; eauto.
- eapply agree_sp_def; eauto.
- simpl. eapply agree_exten; eauto. intros. Simpl.
- Simpl. rewrite <- H2. auto.
-
-- (* Mtailcall *)
- assert (f0 = f) by congruence. subst f0.
- inversion AT; subst.
- assert (NOOV: list_length_z tf.(fn_code) <= Ptrofs.max_unsigned).
- { eapply transf_function_no_overflow; eauto. }
- exploit Mem.loadv_extends. eauto. eexact H1. auto. simpl. intros [parent' [A B]].
- destruct ros as [rf|fid]; simpl in H; monadInv H7.
-+ (* Indirect call *)
- assert (rs rf = Vptr f' Ptrofs.zero).
- { destruct (rs rf); try discriminate.
- revert H; predSpec Ptrofs.eq Ptrofs.eq_spec i Ptrofs.zero; intros; congruence. }
- assert (rs0 x0 = Vptr f' Ptrofs.zero).
- { exploit ireg_val; eauto. rewrite H7; intros LD; inv LD; auto. }
- exploit make_epilogue_correct; eauto. intros (rs1 & m1 & U & V & W & X & Y & Z).
- exploit exec_straight_steps_2; eauto using functions_transl.
- intros (ofs' & P & Q).
- left; econstructor; split.
- (* execution *)
- eapply plus_right'. eapply exec_straight_exec; eauto.
- econstructor. eexact P. eapply functions_transl; eauto. eapply find_instr_tail. eexact Q.
- simpl. reflexivity.
- traceEq.
- (* match states *)
- econstructor; eauto.
- apply agree_set_other; auto with asmgen.
- Simpl. rewrite Z by (rewrite <- (ireg_of_eq _ _ EQ1); eauto with asmgen). assumption.
-+ (* Direct call *)
- exploit make_epilogue_correct; eauto. intros (rs1 & m1 & U & V & W & X & Y & Z).
- exploit exec_straight_steps_2; eauto using functions_transl.
- intros (ofs' & P & Q).
- left; econstructor; split.
- (* execution *)
- eapply plus_right'. eapply exec_straight_exec; eauto.
- econstructor. eexact P. eapply functions_transl; eauto. eapply find_instr_tail. eexact Q.
- simpl. reflexivity.
- traceEq.
- (* match states *)
- econstructor; eauto.
- apply agree_set_other; auto with asmgen.
- Simpl. unfold Genv.symbol_address. rewrite symbols_preserved. rewrite H. auto.
-
-- (* Mbuiltin *)
- inv AT. monadInv H4.
- exploit functions_transl; eauto. intro FN.
- generalize (transf_function_no_overflow _ _ H3); intro NOOV.
- exploit builtin_args_match; eauto. intros [vargs' [P Q]].
- exploit external_call_mem_extends; eauto.
- intros [vres' [m2' [A [B [C D]]]]].
- left. econstructor; split. apply plus_one.
- eapply exec_step_builtin. eauto. eauto.
- eapply find_instr_tail; eauto.
- erewrite <- sp_val by eauto.
- eapply eval_builtin_args_preserved with (ge1 := ge); eauto. exact symbols_preserved.
- eapply external_call_symbols_preserved; eauto. apply senv_preserved.
- eauto.
- econstructor; eauto.
- instantiate (2 := tf); instantiate (1 := x).
- unfold nextinstr. rewrite Pregmap.gss.
- rewrite set_res_other. rewrite undef_regs_other.
- rewrite <- H1. simpl. econstructor; eauto.
- eapply code_tail_next_int; eauto.
- simpl; intros. destruct H4. congruence. destruct H4. congruence.
- exploit list_in_map_inv; eauto. intros (mr & U & V). subst.
- auto with asmgen.
- auto with asmgen.
- apply agree_nextinstr. eapply agree_set_res; auto.
- eapply agree_undef_regs; eauto. intros.
- simpl. rewrite undef_regs_other_2; auto. Simpl.
- congruence.
-
-- (* Mgoto *)
- assert (f0 = f) by congruence. subst f0.
- inv AT. monadInv H4.
- exploit find_label_goto_label; eauto. intros [tc' [rs' [GOTO [AT2 INV]]]].
- left; exists (State rs' m'); split.
- apply plus_one. econstructor; eauto.
- eapply functions_transl; eauto.
- eapply find_instr_tail; eauto.
- simpl; eauto.
- econstructor; eauto.
- eapply agree_exten; eauto with asmgen.
- congruence.
-
-- (* Mcond true *)
- assert (f0 = f) by congruence. subst f0.
- exploit eval_condition_lessdef. eapply preg_vals; eauto. eauto. eauto. intros EC.
- left; eapply exec_straight_opt_steps_goto; eauto.
- intros. simpl in TR.
- exploit transl_cond_branch_correct; eauto. intros (rs' & jmp & A & B & C).
- exists jmp; exists k; exists rs'.
- split. eexact A.
- split. apply agree_exten with rs0; auto with asmgen.
- exact B.
-
-- (* Mcond false *)
- exploit eval_condition_lessdef. eapply preg_vals; eauto. eauto. eauto. intros EC.
- left; eapply exec_straight_steps; eauto. intros. simpl in TR.
- exploit transl_cond_branch_correct; eauto. intros (rs' & jmp & A & B & C).
- econstructor; split.
- eapply exec_straight_opt_right. eexact A. apply exec_straight_one. eexact B. auto.
- split. apply agree_exten with rs0; auto. intros. Simpl.
- simpl; congruence.
-
-- (* Mjumptable *)
- assert (f0 = f) by congruence. subst f0.
- inv AT. monadInv H6.
- exploit functions_transl; eauto. intro FN.
- generalize (transf_function_no_overflow _ _ H5); intro NOOV.
- exploit find_label_goto_label. eauto. eauto.
- instantiate (2 := rs0#X16 <- Vundef).
- Simpl. eauto.
- eauto.
- intros [tc' [rs' [A [B C]]]].
- exploit ireg_val; eauto. rewrite H. intros LD; inv LD.
- left; econstructor; split.
- apply plus_one. econstructor; eauto.
- eapply find_instr_tail; eauto.
- simpl. Simpl. rewrite <- H9. unfold Mach.label in H0; unfold label; rewrite H0. eexact A.
- econstructor; eauto.
- eapply agree_undef_regs; eauto.
- simpl. intros. rewrite C; auto with asmgen. Simpl.
- congruence.
-
-- (* Mreturn *)
- assert (f0 = f) by congruence. subst f0.
- inversion AT; subst. simpl in H6; monadInv H6.
- assert (NOOV: list_length_z tf.(fn_code) <= Ptrofs.max_unsigned).
- eapply transf_function_no_overflow; eauto.
- exploit make_epilogue_correct; eauto. intros (rs1 & m1 & U & V & W & X & Y & Z).
- exploit exec_straight_steps_2; eauto using functions_transl.
- intros (ofs' & P & Q).
- left; econstructor; split.
- (* execution *)
- eapply plus_right'. eapply exec_straight_exec; eauto.
- econstructor. eexact P. eapply functions_transl; eauto. eapply find_instr_tail. eexact Q.
- simpl. reflexivity.
- traceEq.
- (* match states *)
- econstructor; eauto.
- apply agree_set_other; auto with asmgen.
-
-- (* internal function *)
-
- exploit functions_translated; eauto. intros [tf [A B]]. monadInv B.
- generalize EQ; intros EQ'. monadInv EQ'.
- destruct (zlt Ptrofs.max_unsigned (list_length_z x0.(fn_code))); inversion EQ1. clear EQ1. subst x0.
- unfold store_stack in *.
- exploit Mem.alloc_extends. eauto. eauto. apply Z.le_refl. apply Z.le_refl.
- intros [m1' [C D]].
- exploit Mem.storev_extends. eexact D. eexact H1. eauto. eauto.
- intros [m2' [F G]].
- simpl chunk_of_type in F.
- exploit Mem.storev_extends. eexact G. eexact H2. eauto. eauto.
- intros [m3' [P Q]].
- change (chunk_of_type Tptr) with Mint64 in *.
- (* Execution of function prologue *)
- monadInv EQ0. rewrite transl_code'_transl_code in EQ1.
- set (tfbody := Pallocframe (fn_stacksize f) (fn_link_ofs f) ::
- storeptr RA XSP (fn_retaddr_ofs f) x0) in *.
- set (tf := {| fn_sig := Mach.fn_sig f; fn_code := tfbody |}) in *.
- set (rs2 := nextinstr (rs0#X29 <- (parent_sp s) #SP <- sp #X16 <- Vundef)).
- exploit (storeptr_correct tge tf XSP (fn_retaddr_ofs f) RA x0 m2' m3' rs2).
- simpl preg_of_iregsp. change (rs2 X30) with (rs0 X30). rewrite ATLR.
- change (rs2 X2) with sp. eexact P.
- simpl; congruence. congruence.
- intros (rs3 & U & V).
- assert (EXEC_PROLOGUE:
- exec_straight tge tf
- tf.(fn_code) rs0 m'
- x0 rs3 m3').
- { change (fn_code tf) with tfbody; unfold tfbody.
- apply exec_straight_step with rs2 m2'.
- unfold exec_instr. rewrite C. fold sp.
- rewrite <- (sp_val _ _ _ AG). rewrite F. reflexivity.
- reflexivity.
- eexact U. }
- exploit exec_straight_steps_2; eauto using functions_transl. lia. constructor.
- intros (ofs' & X & Y).
- left; exists (State rs3 m3'); split.
- eapply exec_straight_steps_1; eauto. lia. constructor.
- econstructor; eauto.
- rewrite X; econstructor; eauto.
- apply agree_exten with rs2; eauto with asmgen.
- unfold rs2.
- apply agree_nextinstr. apply agree_set_other; auto with asmgen.
- apply agree_change_sp with (parent_sp s).
- apply agree_undef_regs with rs0. auto.
-Local Transparent destroyed_at_function_entry. simpl.
- simpl; intros; Simpl.
- unfold sp; congruence.
- intros. rewrite V by auto with asmgen. reflexivity.
-
-- (* external function *)
- exploit functions_translated; eauto.
- intros [tf [A B]]. simpl in B. inv B.
- exploit extcall_arguments_match; eauto.
- intros [args' [C D]].
- exploit external_call_mem_extends; eauto.
- intros [res' [m2' [P [Q [R S]]]]].
- left; econstructor; split.
- apply plus_one. eapply exec_step_external; eauto.
- eapply external_call_symbols_preserved; eauto. apply senv_preserved.
- econstructor; eauto.
- unfold loc_external_result. apply agree_set_other; auto. apply agree_set_pair; auto.
- apply agree_undef_caller_save_regs; auto.
-
-- (* return *)
- inv STACKS. simpl in *.
- right. split. lia. split. auto.
- rewrite <- ATPC in H5.
- econstructor; eauto. congruence.
-Qed.
-
-Lemma transf_initial_states:
- forall st1, Mach.initial_state prog st1 ->
- exists st2, Asm.initial_state tprog st2 /\ match_states st1 st2.
-Proof.
- intros. inversion H. unfold ge0 in *.
- econstructor; split.
- econstructor.
- eapply (Genv.init_mem_transf_partial TRANSF); eauto.
- replace (Genv.symbol_address (Genv.globalenv tprog) (prog_main tprog) Ptrofs.zero)
- with (Vptr fb Ptrofs.zero).
- econstructor; eauto.
- constructor.
- apply Mem.extends_refl.
- split. auto. simpl. unfold Vnullptr; destruct Archi.ptr64; congruence.
- intros. rewrite Regmap.gi. auto.
- unfold Genv.symbol_address.
- rewrite (match_program_main TRANSF).
- rewrite symbols_preserved.
- unfold ge; rewrite H1. auto.
-Qed.
-
-Lemma transf_final_states:
- forall st1 st2 r,
- match_states st1 st2 -> Mach.final_state st1 r -> Asm.final_state st2 r.
-Proof.
- intros. inv H0. inv H. constructor. assumption.
- compute in H1. inv H1.
- generalize (preg_val _ _ _ R0 AG). rewrite H2. intros LD; inv LD. auto.
-Qed.
-
-Theorem transf_program_correct:
- forward_simulation (Mach.semantics return_address_offset prog) (Asm.semantics tprog).
-Proof.
- eapply forward_simulation_star with (measure := measure).
- apply senv_preserved.
- eexact transf_initial_states.
- eexact transf_final_states.
- exact step_simulation.
-Qed.
-
-End PRESERVATION.