aboutsummaryrefslogtreecommitdiffstats
path: root/backend/CSE2proof.v
diff options
context:
space:
mode:
Diffstat (limited to 'backend/CSE2proof.v')
-rw-r--r--backend/CSE2proof.v1755
1 files changed, 1755 insertions, 0 deletions
diff --git a/backend/CSE2proof.v b/backend/CSE2proof.v
new file mode 100644
index 00000000..08891e1d
--- /dev/null
+++ b/backend/CSE2proof.v
@@ -0,0 +1,1755 @@
+(* *************************************************************)
+(* *)
+(* The Compcert verified compiler *)
+(* *)
+(* David Monniaux CNRS, VERIMAG *)
+(* *)
+(* Copyright VERIMAG. All rights reserved. *)
+(* This file is distributed under the terms of the INRIA *)
+(* Non-Commercial License Agreement. *)
+(* *)
+(* *************************************************************)
+
+(*
+Replace available expressions by the register containing their value.
+
+Proofs.
+
+David Monniaux, CNRS, VERIMAG
+ *)
+
+Require Import Coqlib Maps Errors Integers Floats Lattice Kildall.
+Require Import AST Linking.
+Require Import Memory Registers Op RTL Maps.
+
+Require Import Globalenvs Values.
+Require Import Linking Values Memory Globalenvs Events Smallstep.
+Require Import Registers Op RTL.
+Require Import CSE2 CSE2deps CSE2depsproof.
+Require Import Lia.
+
+Lemma args_unaffected:
+ forall rs : regset,
+ forall dst : reg,
+ forall v,
+ forall args : list reg,
+ existsb (fun y : reg => peq dst y) args = false ->
+ (rs # dst <- v ## args) = (rs ## args).
+Proof.
+ induction args; simpl; trivial.
+ destruct (peq dst a) as [EQ | NEQ]; simpl.
+ { discriminate.
+ }
+ intro EXIST.
+ f_equal.
+ {
+ apply Regmap.gso.
+ congruence.
+ }
+ apply IHargs.
+ assumption.
+Qed.
+
+Section SOUNDNESS.
+ Variable F V : Type.
+ Variable genv: Genv.t F V.
+ Variable sp : val.
+
+Section SAME_MEMORY.
+ Variable m : mem.
+
+Definition sem_sym_val sym rs (v : option val) : Prop :=
+ match sym with
+ | SMove src => v = Some (rs # src)
+ | SOp op args =>
+ v = (eval_operation genv sp op (rs ## args) m)
+ | SLoad chunk addr args =>
+ match eval_addressing genv sp addr rs##args with
+ | Some a => match Mem.loadv chunk m a with
+ | Some dat => v = Some dat
+ | None => v = None \/ v = Some Vundef
+ end
+ | None => v = None \/ v = Some Vundef
+ end
+ end.
+
+Definition sem_reg (rel : RELATION.t) (x : reg) (rs : regset) (v : val) : Prop :=
+ match rel ! x with
+ | None => True
+ | Some sym => sem_sym_val sym rs (Some (rs # x))
+ end.
+
+Definition sem_rel (rel : RELATION.t) (rs : regset) :=
+ forall x : reg, (sem_reg rel x rs (rs # x)).
+
+Definition sem_rel_b (relb : RB.t) (rs : regset) :=
+ match relb with
+ | Some rel => sem_rel rel rs
+ | None => False
+ end.
+
+Definition fmap_sem (fmap : option (PMap.t RB.t))
+ (pc : node) (rs : regset) :=
+ match fmap with
+ | None => True
+ | Some m => sem_rel_b (PMap.get pc m) rs
+ end.
+
+Lemma subst_arg_ok:
+ forall f,
+ forall pc,
+ forall rs,
+ forall arg,
+ fmap_sem (forward_map f) pc rs ->
+ rs # (subst_arg (forward_map f) pc arg) = rs # arg.
+Proof.
+ intros until arg.
+ intro SEM.
+ unfold fmap_sem in SEM.
+ destruct (forward_map f) as [map |]in *; trivial.
+ simpl.
+ unfold sem_rel_b, sem_rel, sem_reg in *.
+ destruct (map # pc).
+ 2: contradiction.
+ pose proof (SEM arg) as SEMarg.
+ simpl. unfold forward_move.
+ unfold sem_sym_val in *.
+ destruct (t ! arg); trivial.
+ destruct s; congruence.
+Qed.
+
+Lemma subst_args_ok:
+ forall f,
+ forall pc,
+ forall rs,
+ fmap_sem (forward_map f) pc rs ->
+ forall args,
+ rs ## (subst_args (forward_map f) pc args) = rs ## args.
+Proof.
+ induction args; trivial.
+ simpl.
+ f_equal.
+ apply subst_arg_ok; assumption.
+ assumption.
+Qed.
+
+Lemma kill_reg_sound :
+ forall rel : RELATION.t,
+ forall dst : reg,
+ forall rs,
+ forall v,
+ sem_rel rel rs ->
+ sem_rel (kill_reg dst rel) (rs # dst <- v).
+Proof.
+ unfold sem_rel, kill_reg, sem_reg, sem_sym_val.
+ intros until v.
+ intros REL x.
+ rewrite PTree.gfilter1.
+ destruct (Pos.eq_dec dst x).
+ {
+ subst x.
+ rewrite PTree.grs.
+ trivial.
+ }
+ rewrite PTree.gro by congruence.
+ rewrite Regmap.gso by congruence.
+ destruct (rel ! x) as [relx | ] eqn:RELx; trivial.
+ unfold kill_sym_val.
+ pose proof (REL x) as RELinstx.
+ rewrite RELx in RELinstx.
+ destruct relx eqn:SYMVAL.
+ {
+ destruct (peq dst src); simpl.
+ { reflexivity. }
+ rewrite Regmap.gso by congruence.
+ assumption.
+ }
+ { destruct existsb eqn:EXISTS; simpl.
+ { reflexivity. }
+ rewrite args_unaffected by exact EXISTS.
+ assumption.
+ }
+ { destruct existsb eqn:EXISTS; simpl.
+ { reflexivity. }
+ rewrite args_unaffected by exact EXISTS.
+ assumption.
+ }
+Qed.
+
+Lemma write_same:
+ forall rs : regset,
+ forall src dst : reg,
+ (rs # dst <- (rs # src)) # src = rs # src.
+Proof.
+ intros.
+ destruct (peq src dst).
+ {
+ subst dst.
+ apply Regmap.gss.
+ }
+ rewrite Regmap.gso by congruence.
+ reflexivity.
+Qed.
+
+Lemma move_sound :
+ forall rel : RELATION.t,
+ forall src dst : reg,
+ forall rs,
+ sem_rel rel rs ->
+ sem_rel (move src dst rel) (rs # dst <- (rs # src)).
+Proof.
+ intros until rs. intros REL x.
+ pose proof (kill_reg_sound rel dst rs (rs # src) REL x) as KILL.
+ pose proof (REL src) as RELsrc.
+ unfold move.
+ destruct (peq x dst).
+ {
+ subst x.
+ unfold sem_reg.
+ rewrite PTree.gss.
+ rewrite Regmap.gss.
+ unfold sem_reg in *.
+ simpl.
+ unfold forward_move.
+ destruct (rel ! src) as [ sv |]; simpl.
+ destruct sv eqn:SV; simpl in *.
+ {
+ destruct (peq dst src0).
+ {
+ subst src0.
+ rewrite Regmap.gss.
+ reflexivity.
+ }
+ rewrite Regmap.gso by congruence.
+ assumption.
+ }
+ all: f_equal; symmetry; apply write_same.
+ }
+ rewrite Regmap.gso by congruence.
+ unfold sem_reg.
+ rewrite PTree.gso by congruence.
+ rewrite Regmap.gso in KILL by congruence.
+ exact KILL.
+Qed.
+
+Lemma move_cases_neq:
+ forall dst rel a,
+ a <> dst ->
+ (forward_move (kill_reg dst rel) a) <> dst.
+Proof.
+ intros until a. intro NEQ.
+ unfold kill_reg, forward_move.
+ rewrite PTree.gfilter1.
+ rewrite PTree.gro by congruence.
+ destruct (rel ! a); simpl.
+ 2: congruence.
+ destruct s.
+ {
+ unfold kill_sym_val.
+ destruct peq; simpl; congruence.
+ }
+ all: simpl;
+ destruct negb; simpl; congruence.
+Qed.
+
+Lemma args_replace_dst :
+ forall rel,
+ forall args : list reg,
+ forall dst : reg,
+ forall rs : regset,
+ forall v,
+ (sem_rel rel rs) ->
+ not (In dst args) ->
+ (rs # dst <- v)
+ ## (map
+ (forward_move (kill_reg dst rel)) args) = rs ## args.
+Proof.
+ induction args; simpl.
+ 1: reflexivity.
+ intros until v.
+ intros REL NOT_IN.
+ rewrite IHargs by auto.
+ f_equal.
+ pose proof (REL a) as RELa.
+ rewrite Regmap.gso by (apply move_cases_neq; auto).
+ unfold kill_reg.
+ unfold sem_reg in RELa.
+ unfold forward_move.
+ rewrite PTree.gfilter1.
+ rewrite PTree.gro by auto.
+ destruct (rel ! a); simpl; trivial.
+ destruct s; simpl in *; destruct negb; simpl; congruence.
+Qed.
+
+Lemma oper2_sound :
+ forall rel : RELATION.t,
+ forall op : operation,
+ forall dst : reg,
+ forall args: list reg,
+ forall rs : regset,
+ forall v,
+ sem_rel rel rs ->
+ not (In dst args) ->
+ eval_operation genv sp op (rs ## args) m = Some v ->
+ sem_rel (oper2 op dst args rel) (rs # dst <- v).
+Proof.
+ intros until v.
+ intros REL NOT_IN EVAL x.
+ pose proof (kill_reg_sound rel dst rs v REL x) as KILL.
+ unfold oper2.
+ destruct (peq x dst).
+ {
+ subst x.
+ unfold sem_reg.
+ rewrite PTree.gss.
+ rewrite Regmap.gss.
+ simpl.
+ rewrite args_replace_dst by auto.
+ symmetry.
+ assumption.
+ }
+ rewrite Regmap.gso by congruence.
+ unfold sem_reg.
+ rewrite PTree.gso by congruence.
+ rewrite Regmap.gso in KILL by congruence.
+ exact KILL.
+Qed.
+
+Lemma oper1_sound :
+ forall rel : RELATION.t,
+ forall op : operation,
+ forall dst : reg,
+ forall args: list reg,
+ forall rs : regset,
+ forall v,
+ sem_rel rel rs ->
+ eval_operation genv sp op (rs ## args) m = Some v ->
+ sem_rel (oper1 op dst args rel) (rs # dst <- v).
+Proof.
+ intros until v.
+ intros REL EVAL.
+ unfold oper1.
+ destruct in_dec.
+ {
+ apply kill_reg_sound; auto.
+ }
+ apply oper2_sound; auto.
+Qed.
+
+Lemma find_op_sound :
+ forall rel : RELATION.t,
+ forall op : operation,
+ forall src : reg,
+ forall args: list reg,
+ forall rs : regset,
+ sem_rel rel rs ->
+ find_op rel op args = Some src ->
+ (eval_operation genv sp op (rs ## args) m) = Some (rs # src).
+Proof.
+ intros until rs.
+ unfold find_op.
+ rewrite PTree.fold_spec.
+ intro REL.
+ assert (
+ forall start,
+ match start with
+ | None => True
+ | Some src => eval_operation genv sp op rs ## args m = Some rs # src
+ end -> fold_left
+ (fun (a : option reg) (p : positive * sym_val) =>
+ find_op_fold op args a (fst p) (snd p)) (PTree.elements rel) start =
+ Some src ->
+ eval_operation genv sp op rs ## args m = Some rs # src) as REC.
+ {
+ unfold sem_rel, sem_reg in REL.
+ generalize (PTree.elements_complete rel).
+ generalize (PTree.elements rel).
+ induction l; simpl.
+ {
+ intros.
+ subst start.
+ assumption.
+ }
+ destruct a as [r sv]; simpl.
+ intros COMPLETE start GEN.
+ apply IHl.
+ {
+ intros.
+ apply COMPLETE.
+ right.
+ assumption.
+ }
+ unfold find_op_fold.
+ destruct start.
+ assumption.
+ destruct sv; trivial.
+ destruct eq_operation; trivial.
+ subst op0.
+ destruct eq_args; trivial.
+ subst args0.
+ simpl.
+ assert ((rel ! r) = Some (SOp op args)) as RELatr.
+ {
+ apply COMPLETE.
+ left.
+ reflexivity.
+ }
+ pose proof (REL r) as RELr.
+ rewrite RELatr in RELr.
+ simpl in RELr.
+ symmetry.
+ assumption.
+ }
+ apply REC; auto.
+Qed.
+
+
+Lemma find_load_sound :
+ forall rel : RELATION.t,
+ forall chunk : memory_chunk,
+ forall addr : addressing,
+ forall src : reg,
+ forall args: list reg,
+ forall rs : regset,
+ sem_rel rel rs ->
+ find_load rel chunk addr args = Some src ->
+ match eval_addressing genv sp addr rs##args with
+ | Some a => match Mem.loadv chunk m a with
+ | Some dat => rs#src = dat
+ | None => rs#src = Vundef
+ end
+ | None => rs#src = Vundef
+ end.
+Proof.
+ intros until rs.
+ unfold find_load.
+ rewrite PTree.fold_spec.
+ intro REL.
+ assert (
+ forall start,
+ match start with
+ | None => True
+ | Some src =>
+ match eval_addressing genv sp addr rs##args with
+ | Some a => match Mem.loadv chunk m a with
+ | Some dat => rs#src = dat
+ | None => rs#src = Vundef
+ end
+ | None => rs#src = Vundef
+ end
+ end ->
+ fold_left
+ (fun (a : option reg) (p : positive * sym_val) =>
+ find_load_fold chunk addr args a (fst p) (snd p)) (PTree.elements rel) start =
+ Some src ->
+ match eval_addressing genv sp addr rs##args with
+ | Some a => match Mem.loadv chunk m a with
+ | Some dat => rs#src = dat
+ | None => rs#src = Vundef
+ end
+ | None => rs#src = Vundef
+ end) as REC.
+
+ {
+ unfold sem_rel, sem_reg in REL.
+ generalize (PTree.elements_complete rel).
+ generalize (PTree.elements rel).
+ induction l; simpl.
+ {
+ intros.
+ subst start.
+ assumption.
+ }
+ destruct a as [r sv]; simpl.
+ intros COMPLETE start GEN.
+ apply IHl.
+ {
+ intros.
+ apply COMPLETE.
+ right.
+ assumption.
+ }
+ unfold find_load_fold.
+ destruct start.
+ assumption.
+ destruct sv; trivial.
+ destruct chunk_eq; trivial.
+ subst chunk0.
+ destruct eq_addressing; trivial.
+ subst addr0.
+ destruct eq_args; trivial.
+ subst args0.
+ simpl.
+ assert ((rel ! r) = Some (SLoad chunk addr args)) as RELatr.
+ {
+ apply COMPLETE.
+ left.
+ reflexivity.
+ }
+ pose proof (REL r) as RELr.
+ rewrite RELatr in RELr.
+ simpl in RELr.
+ destruct eval_addressing.
+ { destruct Mem.loadv.
+ congruence.
+ destruct RELr; congruence.
+ }
+ destruct RELr; congruence.
+ }
+ apply REC; auto.
+Qed.
+
+
+Lemma find_load_sound' :
+ forall rel : RELATION.t,
+ forall chunk : memory_chunk,
+ forall addr : addressing,
+ forall src : reg,
+ forall args: list reg,
+ forall rs : regset,
+ forall a,
+ forall v,
+ sem_rel rel rs ->
+ find_load rel chunk addr args = Some src ->
+ eval_addressing genv sp addr rs##args = Some a ->
+ Mem.loadv chunk m a = Some v ->
+ v = rs # src.
+Proof.
+ intros until v. intros REL FINDLOAD ADDR LOAD.
+ pose proof (find_load_sound rel chunk addr src args rs REL FINDLOAD) as Z.
+ destruct eval_addressing in *.
+ {
+ replace a with v0 in * by congruence.
+ destruct Mem.loadv in * ; congruence.
+ }
+ discriminate.
+Qed.
+
+Lemma find_load_notrap1_sound' :
+ forall rel : RELATION.t,
+ forall chunk : memory_chunk,
+ forall addr : addressing,
+ forall src : reg,
+ forall args: list reg,
+ forall rs : regset,
+ sem_rel rel rs ->
+ find_load rel chunk addr args = Some src ->
+ eval_addressing genv sp addr rs##args = None ->
+ rs # src = Vundef.
+Proof.
+ intros until rs. intros REL FINDLOAD ADDR.
+ pose proof (find_load_sound rel chunk addr src args rs REL FINDLOAD) as Z.
+ rewrite ADDR in Z.
+ assumption.
+Qed.
+
+Lemma find_load_notrap2_sound' :
+ forall rel : RELATION.t,
+ forall chunk : memory_chunk,
+ forall addr : addressing,
+ forall src : reg,
+ forall args: list reg,
+ forall rs : regset,
+ forall a,
+ sem_rel rel rs ->
+ find_load rel chunk addr args = Some src ->
+ eval_addressing genv sp addr rs##args = Some a ->
+ Mem.loadv chunk m a = None ->
+ rs # src = Vundef.
+Proof.
+ intros until a. intros REL FINDLOAD ADDR LOAD.
+ pose proof (find_load_sound rel chunk addr src args rs REL FINDLOAD) as Z.
+ rewrite ADDR in Z.
+ destruct Mem.loadv.
+ discriminate.
+ assumption.
+Qed.
+
+Lemma forward_move_map:
+ forall rel args rs,
+ sem_rel rel rs ->
+ rs ## (map (forward_move rel) args) = rs ## args.
+Proof.
+ induction args; simpl; trivial.
+ intros rs REL.
+ f_equal.
+ 2: (apply IHargs; assumption).
+ unfold forward_move, sem_rel, sem_reg, sem_sym_val in *.
+ pose proof (REL a) as RELa.
+ destruct (rel ! a); trivial.
+ destruct s; congruence.
+Qed.
+
+
+Lemma forward_move_rs:
+ forall rel arg rs,
+ sem_rel rel rs ->
+ rs # (forward_move rel arg) = rs # arg.
+Proof.
+ unfold forward_move, sem_rel, sem_reg, sem_sym_val in *.
+ intros until rs.
+ intro REL.
+ pose proof (REL arg) as RELarg.
+ destruct (rel ! arg); trivial.
+ destruct s; congruence.
+Qed.
+
+Lemma oper_sound :
+ forall rel : RELATION.t,
+ forall op : operation,
+ forall dst : reg,
+ forall args: list reg,
+ forall rs : regset,
+ forall v,
+ sem_rel rel rs ->
+ eval_operation genv sp op (rs ## args) m = Some v ->
+ sem_rel (oper op dst args rel) (rs # dst <- v).
+Proof.
+ intros until v.
+ intros REL EVAL.
+ unfold oper.
+ destruct find_op eqn:FIND.
+ {
+ assert (eval_operation genv sp op rs ## (map (forward_move rel) args) m = Some rs # r) as FIND_OP.
+ {
+ apply (find_op_sound rel); trivial.
+ }
+ rewrite forward_move_map in FIND_OP by assumption.
+ replace v with (rs # r) by congruence.
+ apply move_sound; auto.
+ }
+ apply oper1_sound; trivial.
+Qed.
+
+Lemma gen_oper_sound :
+ forall rel : RELATION.t,
+ forall op : operation,
+ forall dst : reg,
+ forall args: list reg,
+ forall rs : regset,
+ forall v,
+ sem_rel rel rs ->
+ eval_operation genv sp op (rs ## args) m = Some v ->
+ sem_rel (gen_oper op dst args rel) (rs # dst <- v).
+Proof.
+ intros until v.
+ intros REL EVAL.
+ unfold gen_oper.
+ destruct op.
+ { destruct args as [ | h0 t0].
+ apply oper_sound; auto.
+ destruct t0.
+ {
+ simpl in *.
+ replace v with (rs # h0) by congruence.
+ apply move_sound; auto.
+ }
+ apply oper_sound; auto.
+ }
+ all: apply oper_sound; auto.
+Qed.
+
+
+Lemma load2_sound :
+ forall rel : RELATION.t,
+ forall chunk : memory_chunk,
+ forall addr : addressing,
+ forall dst : reg,
+ forall args: list reg,
+ forall rs : regset,
+ forall a,
+ forall v,
+ sem_rel rel rs ->
+ not (In dst args) ->
+ eval_addressing genv sp addr (rs ## args) = Some a ->
+ Mem.loadv chunk m a = Some v ->
+ sem_rel (load2 chunk addr dst args rel) (rs # dst <- v).
+Proof.
+ intros until v.
+ intros REL NOT_IN ADDR LOAD x.
+ pose proof (kill_reg_sound rel dst rs v REL x) as KILL.
+ unfold load2.
+ destruct (peq x dst).
+ {
+ subst x.
+ unfold sem_reg.
+ rewrite PTree.gss.
+ rewrite Regmap.gss.
+ simpl.
+ rewrite args_replace_dst by auto.
+ destruct eval_addressing.
+ {
+ replace a with v0 in * by congruence.
+ destruct Mem.loadv; congruence.
+ }
+ discriminate.
+ }
+ rewrite Regmap.gso by congruence.
+ unfold sem_reg.
+ rewrite PTree.gso by congruence.
+ rewrite Regmap.gso in KILL by congruence.
+ exact KILL.
+Qed.
+
+Lemma load2_notrap1_sound :
+ forall rel : RELATION.t,
+ forall chunk : memory_chunk,
+ forall addr : addressing,
+ forall dst : reg,
+ forall args: list reg,
+ forall rs : regset,
+ sem_rel rel rs ->
+ not (In dst args) ->
+ eval_addressing genv sp addr (rs ## args) = None ->
+ sem_rel (load2 chunk addr dst args rel) (rs # dst <- Vundef).
+Proof.
+ intros until rs.
+ intros REL NOT_IN ADDR x.
+ pose proof (kill_reg_sound rel dst rs Vundef REL x) as KILL.
+ unfold load2.
+ destruct (peq x dst).
+ {
+ subst x.
+ unfold sem_reg.
+ rewrite PTree.gss.
+ rewrite Regmap.gss.
+ simpl.
+ rewrite args_replace_dst by auto.
+ rewrite ADDR.
+ right.
+ trivial.
+ }
+ rewrite Regmap.gso by congruence.
+ unfold sem_reg.
+ rewrite PTree.gso by congruence.
+ rewrite Regmap.gso in KILL by congruence.
+ exact KILL.
+Qed.
+
+Lemma load2_notrap2_sound :
+ forall rel : RELATION.t,
+ forall chunk : memory_chunk,
+ forall addr : addressing,
+ forall dst : reg,
+ forall args: list reg,
+ forall rs : regset,
+ forall a,
+ sem_rel rel rs ->
+ not (In dst args) ->
+ eval_addressing genv sp addr (rs ## args) = Some a ->
+ Mem.loadv chunk m a = None ->
+ sem_rel (load2 chunk addr dst args rel) (rs # dst <- Vundef).
+Proof.
+ intros until a.
+ intros REL NOT_IN ADDR LOAD x.
+ pose proof (kill_reg_sound rel dst rs Vundef REL x) as KILL.
+ unfold load2.
+ destruct (peq x dst).
+ {
+ subst x.
+ unfold sem_reg.
+ rewrite PTree.gss.
+ rewrite Regmap.gss.
+ simpl.
+ rewrite args_replace_dst by auto.
+ rewrite ADDR.
+ rewrite LOAD.
+ right; trivial.
+ }
+ rewrite Regmap.gso by congruence.
+ unfold sem_reg.
+ rewrite PTree.gso by congruence.
+ rewrite Regmap.gso in KILL by congruence.
+ exact KILL.
+Qed.
+
+Lemma load1_sound :
+ forall rel : RELATION.t,
+ forall chunk : memory_chunk,
+ forall addr : addressing,
+ forall dst : reg,
+ forall args: list reg,
+ forall rs : regset,
+ forall a,
+ forall v,
+ sem_rel rel rs ->
+ eval_addressing genv sp addr (rs ## args) = Some a ->
+ Mem.loadv chunk m a = Some v ->
+ sem_rel (load1 chunk addr dst args rel) (rs # dst <- v).
+Proof.
+ intros until v.
+ intros REL ADDR LOAD.
+ unfold load1.
+ destruct in_dec.
+ {
+ apply kill_reg_sound; auto.
+ }
+ apply load2_sound with (a := a); auto.
+Qed.
+
+Lemma load1_notrap1_sound :
+ forall rel : RELATION.t,
+ forall chunk : memory_chunk,
+ forall addr : addressing,
+ forall dst : reg,
+ forall args: list reg,
+ forall rs : regset,
+ sem_rel rel rs ->
+ eval_addressing genv sp addr (rs ## args) = None ->
+ sem_rel (load1 chunk addr dst args rel) (rs # dst <- Vundef).
+Proof.
+ intros until rs.
+ intros REL ADDR LOAD.
+ unfold load1.
+ destruct in_dec.
+ {
+ apply kill_reg_sound; auto.
+ }
+ apply load2_notrap1_sound; auto.
+Qed.
+
+Lemma load1_notrap2_sound :
+ forall rel : RELATION.t,
+ forall chunk : memory_chunk,
+ forall addr : addressing,
+ forall dst : reg,
+ forall args: list reg,
+ forall rs : regset,
+ forall a,
+ sem_rel rel rs ->
+ eval_addressing genv sp addr (rs ## args) = Some a ->
+ Mem.loadv chunk m a = None ->
+ sem_rel (load1 chunk addr dst args rel) (rs # dst <- Vundef).
+Proof.
+ intros until a.
+ intros REL ADDR LOAD.
+ unfold load1.
+ destruct in_dec.
+ {
+ apply kill_reg_sound; auto.
+ }
+ apply load2_notrap2_sound with (a := a); auto.
+Qed.
+
+Lemma load_sound :
+ forall rel : RELATION.t,
+ forall chunk : memory_chunk,
+ forall addr : addressing,
+ forall dst : reg,
+ forall args: list reg,
+ forall rs : regset,
+ forall a,
+ forall v,
+ sem_rel rel rs ->
+ eval_addressing genv sp addr (rs ## args) = Some a ->
+ Mem.loadv chunk m a = Some v ->
+ sem_rel (load chunk addr dst args rel) (rs # dst <- v).
+Proof.
+ intros until v.
+ intros REL ADDR LOAD.
+ unfold load.
+ destruct find_load as [src | ] eqn:FIND.
+ {
+ assert (match eval_addressing genv sp addr rs## (map (forward_move rel) args) with
+ | Some a => match Mem.loadv chunk m a with
+ | Some dat => rs#src = dat
+ | None => rs#src = Vundef
+ end
+ | None => rs#src = Vundef
+ end) as FIND_LOAD.
+ {
+ apply (find_load_sound rel); trivial.
+ }
+ rewrite forward_move_map in FIND_LOAD by assumption.
+ destruct eval_addressing in *.
+ 2: discriminate.
+ replace v0 with a in * by congruence.
+ destruct Mem.loadv in *.
+ 2: discriminate.
+ replace v with (rs # src) by congruence.
+ apply move_sound; auto.
+ }
+ apply load1_sound with (a := a); trivial.
+Qed.
+
+Lemma load_notrap1_sound :
+ forall rel : RELATION.t,
+ forall chunk : memory_chunk,
+ forall addr : addressing,
+ forall dst : reg,
+ forall args: list reg,
+ forall rs : regset,
+ sem_rel rel rs ->
+ eval_addressing genv sp addr (rs ## args) = None ->
+ sem_rel (load chunk addr dst args rel) (rs # dst <- Vundef).
+Proof.
+ intros until rs.
+ intros REL ADDR.
+ unfold load.
+ destruct find_load as [src | ] eqn:FIND.
+ {
+ assert (match eval_addressing genv sp addr rs## (map (forward_move rel) args) with
+ | Some a => match Mem.loadv chunk m a with
+ | Some dat => rs#src = dat
+ | None => rs#src = Vundef
+ end
+ | None => rs#src = Vundef
+ end) as FIND_LOAD.
+ {
+ apply (find_load_sound rel); trivial.
+ }
+ rewrite forward_move_map in FIND_LOAD by assumption.
+ destruct eval_addressing in *.
+ discriminate.
+ rewrite <- FIND_LOAD.
+ apply move_sound; auto.
+ }
+ apply load1_notrap1_sound; trivial.
+Qed.
+
+Lemma load_notrap2_sound :
+ forall rel : RELATION.t,
+ forall chunk : memory_chunk,
+ forall addr : addressing,
+ forall dst : reg,
+ forall args: list reg,
+ forall rs : regset,
+ forall a,
+ sem_rel rel rs ->
+ eval_addressing genv sp addr (rs ## args) = Some a ->
+ Mem.loadv chunk m a = None ->
+ sem_rel (load chunk addr dst args rel) (rs # dst <- Vundef).
+Proof.
+ intros until a.
+ intros REL ADDR.
+ unfold load.
+ destruct find_load as [src | ] eqn:FIND.
+ {
+ assert (match eval_addressing genv sp addr rs## (map (forward_move rel) args) with
+ | Some a => match Mem.loadv chunk m a with
+ | Some dat => rs#src = dat
+ | None => rs#src = Vundef
+ end
+ | None => rs#src = Vundef
+ end) as FIND_LOAD.
+ {
+ apply (find_load_sound rel); trivial.
+ }
+ rewrite forward_move_map in FIND_LOAD by assumption.
+ rewrite ADDR in FIND_LOAD.
+ destruct Mem.loadv; intro.
+ discriminate.
+ rewrite <- FIND_LOAD.
+ apply move_sound; auto.
+ }
+ apply load1_notrap2_sound; trivial.
+Qed.
+
+Lemma kill_reg_weaken:
+ forall res mpc rs,
+ sem_rel mpc rs ->
+ sem_rel (kill_reg res mpc) rs.
+Proof.
+ intros until rs.
+ intros REL x.
+ pose proof (REL x) as RELx.
+ unfold kill_reg, sem_reg in *.
+ rewrite PTree.gfilter1.
+ destruct (peq res x).
+ { subst x.
+ rewrite PTree.grs.
+ reflexivity.
+ }
+ rewrite PTree.gro by congruence.
+ destruct (mpc ! x) as [sv | ]; trivial.
+ destruct negb; trivial.
+Qed.
+
+Lemma top_ok:
+ forall rs, sem_rel RELATION.top rs.
+Proof.
+ unfold sem_rel, sem_reg, RELATION.top.
+ intros.
+ rewrite PTree.gempty.
+ reflexivity.
+Qed.
+
+Lemma sem_rel_ge:
+ forall r1 r2 : RELATION.t,
+ (RELATION.ge r1 r2) ->
+ forall rs : regset,
+ (sem_rel r2 rs) -> (sem_rel r1 rs).
+Proof.
+ intros r1 r2 GE rs RE x.
+ pose proof (RE x) as REx.
+ pose proof (GE x) as GEx.
+ unfold sem_reg in *.
+ destruct (r1 ! x) as [r1x | ] in *;
+ destruct (r2 ! x) as [r2x | ] in *;
+ congruence.
+Qed.
+End SAME_MEMORY.
+
+Lemma kill_mem_sound :
+ forall m m' : mem,
+ forall rel : RELATION.t,
+ forall rs,
+ sem_rel m rel rs -> sem_rel m' (kill_mem rel) rs.
+Proof.
+ unfold sem_rel, sem_reg.
+ intros until rs.
+ intros SEM x.
+ pose proof (SEM x) as SEMx.
+ unfold kill_mem.
+ rewrite PTree.gfilter1.
+ unfold kill_sym_val_mem.
+ destruct (rel ! x) as [ sv | ].
+ 2: reflexivity.
+ destruct sv; simpl in *; trivial.
+ {
+ destruct op_depends_on_memory eqn:DEPENDS; simpl; trivial.
+ rewrite SEMx.
+ apply op_depends_on_memory_correct; auto.
+ }
+Qed.
+
+Lemma kill_store_sound :
+ forall m m' : mem,
+ forall rel : RELATION.t,
+ forall chunk addr args a v rs,
+ (eval_addressing genv sp addr (rs ## args)) = Some a ->
+ (Mem.storev chunk m a v) = Some m' ->
+ sem_rel m rel rs -> sem_rel m' (kill_store chunk addr args rel) rs.
+Proof.
+ unfold sem_rel, sem_reg.
+ intros until rs.
+ intros ADDR STORE SEM x.
+ pose proof (SEM x) as SEMx.
+ unfold kill_store, kill_store1.
+ rewrite PTree.gfilter1.
+ destruct (rel ! x) as [ sv | ].
+ 2: reflexivity.
+ destruct sv; simpl in *; trivial.
+ {
+ destruct op_depends_on_memory eqn:DEPENDS; simpl; trivial.
+ rewrite SEMx.
+ apply op_depends_on_memory_correct; auto.
+ }
+ destruct may_overlap eqn:OVERLAP; simpl; trivial.
+ destruct (eval_addressing genv sp addr0 rs ## args0) eqn:ADDR0.
+ {
+ erewrite may_overlap_sound with (args := (map (forward_move rel) args)).
+ all: try eassumption.
+
+ erewrite forward_move_map by eassumption.
+ assumption.
+ }
+ intuition congruence.
+Qed.
+
+Lemma kill_builtin_res_sound:
+ forall res (m : mem) (rs : regset) vres (rel : RELATION.t)
+ (REL : sem_rel m rel rs),
+ (sem_rel m (kill_builtin_res res rel) (regmap_setres res vres rs)).
+Proof.
+ destruct res; simpl; intros; trivial.
+ apply kill_reg_sound; trivial.
+Qed.
+End SOUNDNESS.
+
+Definition match_prog (p tp: RTL.program) :=
+ match_program (fun cu f tf => tf = transf_fundef f) eq p tp.
+
+Lemma transf_program_match:
+ forall p, match_prog p (transf_program p).
+Proof.
+ intros. apply match_transform_program; auto.
+Qed.
+
+Section PRESERVATION.
+
+Variables prog tprog: program.
+Hypothesis TRANSL: match_prog prog tprog.
+Let ge := Genv.globalenv prog.
+Let tge := Genv.globalenv tprog.
+
+Lemma functions_translated:
+ forall v f,
+ Genv.find_funct ge v = Some f ->
+ Genv.find_funct tge v = Some (transf_fundef f).
+Proof (Genv.find_funct_transf TRANSL).
+
+Lemma function_ptr_translated:
+ forall v f,
+ Genv.find_funct_ptr ge v = Some f ->
+ Genv.find_funct_ptr tge v = Some (transf_fundef f).
+Proof (Genv.find_funct_ptr_transf TRANSL).
+
+Lemma symbols_preserved:
+ forall id,
+ Genv.find_symbol tge id = Genv.find_symbol ge id.
+Proof (Genv.find_symbol_transf TRANSL).
+
+Lemma senv_preserved:
+ Senv.equiv ge tge.
+Proof (Genv.senv_transf TRANSL).
+
+Lemma sig_preserved:
+ forall f, funsig (transf_fundef f) = funsig f.
+Proof.
+ destruct f; trivial.
+Qed.
+
+Lemma find_function_translated:
+ forall ros rs fd,
+ find_function ge ros rs = Some fd ->
+ find_function tge ros rs = Some (transf_fundef fd).
+Proof.
+ unfold find_function; intros. destruct ros as [r|id].
+ eapply functions_translated; eauto.
+ rewrite symbols_preserved. destruct (Genv.find_symbol ge id); try congruence.
+ eapply function_ptr_translated; eauto.
+Qed.
+
+Lemma transf_function_at:
+ forall (f : function) (pc : node) (i : instruction),
+ (fn_code f)!pc = Some i ->
+ (fn_code (transf_function f))!pc =
+ Some(transf_instr (forward_map f) pc i).
+Proof.
+ intros until i. intro CODE.
+ unfold transf_function; simpl.
+ rewrite PTree.gmap.
+ unfold option_map.
+ rewrite CODE.
+ reflexivity.
+Qed.
+
+Definition is_killed_in_map (map : PMap.t RB.t) pc res :=
+ match PMap.get pc map with
+ | None => True
+ | Some rel => exists rel', RELATION.ge rel (kill_reg res rel')
+ end.
+
+Definition is_killed_in_fmap fmap pc res :=
+ match fmap with
+ | None => True
+ | Some map => is_killed_in_map map pc res
+ end.
+
+Lemma external_call_sound:
+ forall ef (rel : RELATION.t) sp (m m' : mem) (rs : regset) vargs t vres
+ (REL : sem_rel fundef unit ge sp m rel rs)
+ (CALL : external_call ef ge vargs m t vres m'),
+ sem_rel fundef unit ge sp m' (apply_external_call ef rel) rs.
+Proof.
+ destruct ef; intros; simpl in *.
+ all: eauto using kill_mem_sound.
+ all: unfold builtin_or_external_sem in *.
+ 1, 2: destruct (Builtins.lookup_builtin_function name sg);
+ eauto using kill_mem_sound;
+ inv CALL; eauto using kill_mem_sound.
+ all: inv CALL.
+ all: eauto using kill_mem_sound.
+Qed.
+
+Definition sem_rel_b' := sem_rel_b fundef unit ge.
+Definition fmap_sem' := fmap_sem fundef unit ge.
+Definition subst_arg_ok' := subst_arg_ok fundef unit ge.
+Definition subst_args_ok' := subst_args_ok fundef unit ge.
+Definition kill_mem_sound' := kill_mem_sound fundef unit ge.
+Definition kill_store_sound' := kill_store_sound fundef unit ge.
+
+Lemma sem_rel_b_ge:
+ forall rb1 rb2 : RB.t,
+ (RB.ge rb1 rb2) ->
+ forall sp m,
+ forall rs : regset,
+ (sem_rel_b' sp m rb2 rs) -> (sem_rel_b' sp m rb1 rs).
+Proof.
+ unfold sem_rel_b', sem_rel_b.
+ destruct rb1 as [r1 | ];
+ destruct rb2 as [r2 | ]; simpl;
+ intros GE sp m rs RE; try contradiction.
+ apply sem_rel_ge with (r2 := r2); assumption.
+Qed.
+
+Lemma apply_instr'_bot :
+ forall code,
+ forall pc,
+ RB.eq (apply_instr' code pc RB.bot) RB.bot.
+Proof.
+ reflexivity.
+Qed.
+
+Inductive match_frames: RTL.stackframe -> RTL.stackframe -> Prop :=
+| match_frames_intro: forall res f sp pc rs,
+ (forall m : mem,
+ forall vres, (fmap_sem' sp m (forward_map f) pc rs # res <- vres)) ->
+ match_frames (Stackframe res f sp pc rs)
+ (Stackframe res (transf_function f) sp pc rs).
+
+Inductive match_states: RTL.state -> RTL.state -> Prop :=
+ | match_regular_states: forall stk f sp pc rs m stk'
+ (STACKS: list_forall2 match_frames stk stk'),
+ (fmap_sem' sp m (forward_map f) pc rs) ->
+ match_states (State stk f sp pc rs m)
+ (State stk' (transf_function f) sp pc rs m)
+ | match_callstates: forall stk f args m stk'
+ (STACKS: list_forall2 match_frames stk stk'),
+ match_states (Callstate stk f args m)
+ (Callstate stk' (transf_fundef f) args m)
+ | match_returnstates: forall stk v m stk'
+ (STACKS: list_forall2 match_frames stk stk'),
+ match_states (Returnstate stk v m)
+ (Returnstate stk' v m).
+
+Ltac TR_AT :=
+ match goal with
+ | [ A: (fn_code _)!_ = Some _ |- _ ] =>
+ generalize (transf_function_at _ _ _ A); intros
+ end.
+
+Lemma step_simulation:
+ forall S1 t S2, RTL.step ge S1 t S2 ->
+ forall S1', match_states S1 S1' ->
+ exists S2', RTL.step tge S1' t S2' /\ match_states S2 S2'.
+Proof.
+ induction 1; intros S1' MS; inv MS; try TR_AT.
+- (* nop *)
+ econstructor; split. eapply exec_Inop; eauto.
+ constructor; auto.
+
+ simpl in *.
+ unfold fmap_sem', fmap_sem in *.
+ destruct (forward_map _) as [map |] eqn:MAP in *; trivial.
+ apply sem_rel_b_ge with (rb2 := map # pc); trivial.
+ replace (map # pc) with (apply_instr' (fn_code f) pc (map # pc)).
+ {
+ eapply DS.fixpoint_solution with (code := fn_code f) (successors := successors_instr); try eassumption.
+ 2: apply apply_instr'_bot.
+ simpl. tauto.
+ }
+ unfold apply_instr'.
+ unfold sem_rel_b in *.
+ destruct (map # pc) in *; try contradiction.
+ rewrite H.
+ reflexivity.
+- (* op *)
+ unfold transf_instr in *.
+ destruct (if is_trivial_op op then None else find_op_in_fmap (forward_map f) pc op
+ (subst_args (forward_map f) pc args)) eqn:FIND_OP.
+ {
+ destruct (is_trivial_op op).
+ discriminate.
+ unfold find_op_in_fmap, fmap_sem', fmap_sem in *.
+ destruct (forward_map f) as [map |] eqn:MAP.
+ 2: discriminate.
+ change (@PMap.get (option RELATION.t) pc map) with (map # pc) in *.
+ destruct (map # pc) as [mpc | ] eqn:MPC.
+ 2: discriminate.
+ econstructor; split.
+ {
+ eapply exec_Iop with (v := v); eauto.
+ simpl.
+ rewrite <- subst_args_ok with (genv := ge) (f := f) (pc := pc) (sp := sp) (m := m) in H0.
+ {
+ rewrite MAP in H0.
+ rewrite find_op_sound with (rel := mpc) (src := r) in H0 by assumption.
+ assumption.
+ }
+ unfold fmap_sem. rewrite MAP. rewrite MPC. assumption.
+ }
+ constructor; eauto.
+ unfold fmap_sem', fmap_sem in *.
+ rewrite MAP.
+ apply sem_rel_b_ge with (rb2 := Some (gen_oper op res args mpc)).
+ {
+ replace (Some (gen_oper op res args mpc)) with (apply_instr' (fn_code f) pc (map # pc)).
+ {
+ eapply DS.fixpoint_solution with (code := fn_code f) (successors := successors_instr); try eassumption.
+ 2: apply apply_instr'_bot.
+ simpl. tauto.
+ }
+ unfold apply_instr'.
+ rewrite H.
+ rewrite MPC.
+ reflexivity.
+ }
+ unfold sem_rel_b', sem_rel_b.
+ apply gen_oper_sound; auto.
+ }
+ {
+ econstructor; split.
+ {
+ eapply exec_Iop with (v := v); eauto.
+ rewrite (subst_args_ok' sp m) by assumption.
+ rewrite <- H0.
+ apply eval_operation_preserved. exact symbols_preserved.
+ }
+ constructor; eauto.
+ unfold fmap_sem', fmap_sem in *.
+ unfold find_op_in_fmap, fmap_sem', fmap_sem in *.
+ destruct (forward_map f) as [map |] eqn:MAP.
+ 2: constructor.
+ change (@PMap.get (option RELATION.t) pc map) with (map # pc) in *.
+ destruct (map # pc) as [mpc | ] eqn:MPC.
+ 2: contradiction.
+
+ apply sem_rel_b_ge with (rb2 := Some (gen_oper op res args mpc)).
+ {
+ replace (Some (gen_oper op res args mpc)) with (apply_instr' (fn_code f) pc (map # pc)).
+ {
+ eapply DS.fixpoint_solution with (code := fn_code f) (successors := successors_instr); try eassumption.
+ 2: apply apply_instr'_bot.
+ simpl. tauto.
+ }
+ unfold apply_instr'.
+ rewrite H.
+ rewrite MPC.
+ reflexivity.
+ }
+ unfold sem_rel_b', sem_rel_b.
+ apply gen_oper_sound; auto.
+ }
+
+(* load *)
+- unfold transf_instr in *. inv H0.
+ + destruct find_load_in_fmap eqn:FIND_LOAD.
+ {
+ unfold find_load_in_fmap, fmap_sem', fmap_sem in *.
+ destruct (forward_map f) as [map |] eqn:MAP.
+ 2: discriminate.
+ change (@PMap.get (option RELATION.t) pc map) with (map # pc) in *.
+ destruct (map # pc) as [mpc | ] eqn:MPC.
+ 2: discriminate.
+ econstructor; split.
+ {
+ eapply exec_Iop with (v := v); eauto.
+ simpl.
+ rewrite <- subst_args_ok with (genv := ge) (f := f) (pc := pc) (sp := sp) (m := m) in EVAL.
+ {
+ f_equal.
+ symmetry.
+ rewrite MAP in EVAL.
+ eapply find_load_sound' with (genv := ge) (sp := sp) (addr := addr) (args := subst_args (Some map) pc args) (rel := mpc) (src := r) (rs := rs).
+ all: eassumption.
+ }
+ unfold fmap_sem. rewrite MAP. rewrite MPC. assumption.
+ }
+ constructor; eauto.
+ unfold fmap_sem', fmap_sem in *.
+ rewrite MAP.
+ apply sem_rel_b_ge with (rb2 := Some (load chunk addr dst args mpc)).
+ {
+ replace (Some (load chunk addr dst args mpc)) with (apply_instr' (fn_code f) pc (map # pc)).
+ {
+ eapply DS.fixpoint_solution with (code := fn_code f) (successors := successors_instr); try eassumption.
+ 2: apply apply_instr'_bot.
+ simpl. tauto.
+ }
+ unfold apply_instr'.
+ rewrite H.
+ rewrite MPC.
+ simpl.
+ reflexivity.
+ }
+ unfold sem_rel_b', sem_rel_b.
+ apply load_sound with (a := a); auto.
+ }
+ {
+ econstructor; split.
+ assert (eval_addressing tge sp addr rs ## args = Some a).
+ rewrite <- EVAL.
+ apply eval_addressing_preserved. exact symbols_preserved.
+ eapply exec_Iload; eauto. eapply has_loaded_normal; eauto.
+ rewrite (subst_args_ok' sp m); assumption.
+ constructor; auto.
+
+ simpl in *.
+ unfold fmap_sem', fmap_sem in *.
+ destruct (forward_map _) as [map |] eqn:MAP in *; trivial.
+ destruct (map # pc) as [mpc |] eqn:MPC in *; try contradiction.
+ apply sem_rel_b_ge with (rb2 := Some (load chunk addr dst args mpc)).
+ {
+ replace (Some (load chunk addr dst args mpc)) with (apply_instr' (fn_code f) pc (map # pc)).
+ {
+ eapply DS.fixpoint_solution with (code := fn_code f) (successors := successors_instr); try eassumption.
+ 2: apply apply_instr'_bot.
+ simpl. tauto.
+ }
+ unfold apply_instr'.
+ rewrite H.
+ rewrite MPC.
+ simpl.
+ reflexivity.
+ }
+ apply load_sound with (a := a); assumption.
+ }
+
+ + destruct (eval_addressing) eqn:EVAL in LOAD.
+ * specialize (LOAD v).
+ destruct find_load_in_fmap eqn:FIND_LOAD.
+ {
+ unfold find_load_in_fmap, fmap_sem', fmap_sem in *.
+ destruct (forward_map f) as [map |] eqn:MAP.
+ 2: discriminate.
+ change (@PMap.get (option RELATION.t) pc map) with (map # pc) in *.
+ destruct (map # pc) as [mpc | ] eqn:MPC.
+ 2: discriminate.
+ econstructor; split.
+ {
+ eapply exec_Iop with (v := Vundef); eauto.
+ simpl.
+ rewrite <- subst_args_ok with (genv := ge) (f := f) (pc := pc) (sp := sp) (m := m) in EVAL.
+ {
+ f_equal.
+ rewrite MAP in EVAL.
+ eapply find_load_notrap2_sound' with (genv := ge) (sp := sp) (addr := addr) (args := subst_args (Some map) pc args) (rel := mpc) (src := r) (rs := rs).
+ all: try eassumption. apply LOAD; auto.
+ }
+ unfold fmap_sem. rewrite MAP. rewrite MPC. assumption.
+ }
+ constructor; eauto.
+ unfold fmap_sem', fmap_sem in *.
+ rewrite MAP.
+ apply sem_rel_b_ge with (rb2 := Some (load chunk addr dst args mpc)).
+ {
+ replace (Some (load chunk addr dst args mpc)) with (apply_instr' (fn_code f) pc (map # pc)).
+ {
+ eapply DS.fixpoint_solution with (code := fn_code f) (successors := successors_instr); try eassumption.
+ 2: apply apply_instr'_bot.
+ simpl. tauto.
+ }
+ unfold apply_instr'.
+ rewrite H.
+ rewrite MPC.
+ simpl.
+ reflexivity.
+ }
+ unfold sem_rel_b', sem_rel_b.
+ apply load_notrap2_sound with (a := v); auto.
+ }
+ {
+ econstructor; split.
+ assert (eval_addressing tge sp addr rs ## args = Some v).
+ rewrite <- EVAL.
+ apply eval_addressing_preserved. exact symbols_preserved.
+ eapply exec_Iload; eauto. eapply has_loaded_default; eauto.
+ rewrite (subst_args_ok' sp m).
+ intros a EVAL'; rewrite H0 in EVAL'; inv EVAL'; auto.
+ assumption.
+ constructor; auto.
+
+ simpl in *.
+ unfold fmap_sem', fmap_sem in *.
+ destruct (forward_map _) as [map |] eqn:MAP in *; trivial.
+ destruct (map # pc) as [mpc |] eqn:MPC in *; try contradiction.
+ apply sem_rel_b_ge with (rb2 := Some (load chunk addr dst args mpc)).
+ {
+ replace (Some (load chunk addr dst args mpc)) with (apply_instr' (fn_code f) pc (map # pc)).
+ {
+ eapply DS.fixpoint_solution with (code := fn_code f) (successors := successors_instr); try eassumption.
+ 2: apply apply_instr'_bot.
+ simpl. tauto.
+ }
+ unfold apply_instr'.
+ rewrite H.
+ rewrite MPC.
+ simpl.
+ reflexivity.
+ }
+ apply load_notrap2_sound with (a := v); auto.
+ }
+
+ * destruct find_load_in_fmap eqn:FIND_LOAD.
+ {
+ unfold find_load_in_fmap, fmap_sem', fmap_sem in *.
+ destruct (forward_map f) as [map |] eqn:MAP.
+ 2: discriminate.
+ change (@PMap.get (option RELATION.t) pc map) with (map # pc) in *.
+ destruct (map # pc) as [mpc | ] eqn:MPC.
+ 2: discriminate.
+ econstructor; split.
+ {
+ eapply exec_Iop with (v := Vundef); eauto.
+ simpl.
+ rewrite <- subst_args_ok with (genv := ge) (f := f) (pc := pc) (sp := sp) (m := m) in EVAL.
+ {
+ f_equal.
+ rewrite MAP in EVAL.
+ eapply find_load_notrap1_sound' with (genv := ge) (sp := sp) (addr := addr) (args := subst_args (Some map) pc args) (rel := mpc) (src := r) (rs := rs).
+ all: eassumption.
+ }
+ unfold fmap_sem. rewrite MAP. rewrite MPC. assumption.
+ }
+ constructor; eauto.
+ unfold fmap_sem', fmap_sem in *.
+ rewrite MAP.
+ apply sem_rel_b_ge with (rb2 := Some (load chunk addr dst args mpc)).
+ {
+ replace (Some (load chunk addr dst args mpc)) with (apply_instr' (fn_code f) pc (map # pc)).
+ {
+ eapply DS.fixpoint_solution with (code := fn_code f) (successors := successors_instr); try eassumption.
+ 2: apply apply_instr'_bot.
+ simpl. tauto.
+ }
+ unfold apply_instr'.
+ rewrite H.
+ rewrite MPC.
+ simpl.
+ reflexivity.
+ }
+ unfold sem_rel_b', sem_rel_b.
+ apply load_notrap1_sound; auto.
+ }
+ {
+ econstructor; split.
+ assert (eval_addressing tge sp addr rs ## args = None).
+ rewrite <- EVAL.
+ apply eval_addressing_preserved. exact symbols_preserved.
+ eapply exec_Iload; eauto. eapply has_loaded_default; eauto.
+ rewrite (subst_args_ok' sp m); eauto. congruence.
+ constructor; auto.
+
+ simpl in *.
+ unfold fmap_sem', fmap_sem in *.
+ destruct (forward_map _) as [map |] eqn:MAP in *; trivial.
+ destruct (map # pc) as [mpc |] eqn:MPC in *; try contradiction.
+ apply sem_rel_b_ge with (rb2 := Some (load chunk addr dst args mpc)).
+ {
+ replace (Some (load chunk addr dst args mpc)) with (apply_instr' (fn_code f) pc (map # pc)).
+ {
+ eapply DS.fixpoint_solution with (code := fn_code f) (successors := successors_instr); try eassumption.
+ 2: apply apply_instr'_bot.
+ simpl. tauto.
+ }
+ unfold apply_instr'.
+ rewrite H.
+ rewrite MPC.
+ simpl.
+ reflexivity.
+ }
+ apply load_notrap1_sound; assumption.
+ }
+
+- (* store *)
+ econstructor. split.
+ {
+ assert (eval_addressing tge sp addr rs ## args = Some a).
+ rewrite <- H0. apply eval_addressing_preserved. exact symbols_preserved.
+ eapply exec_Istore; eauto.
+ - rewrite (subst_args_ok' sp m) by assumption.
+ eassumption.
+ - rewrite (subst_arg_ok' sp m) by assumption.
+ eassumption.
+ }
+
+ constructor; auto.
+ simpl in *.
+ unfold fmap_sem', fmap_sem in *.
+ destruct (forward_map _) as [map |] eqn:MAP in *; trivial.
+ destruct (map # pc) as [mpc |] eqn:MPC in *; try contradiction.
+ apply sem_rel_b_ge with (rb2 := Some (kill_store chunk addr args mpc)); trivial.
+ {
+ replace (Some (kill_store chunk addr args mpc)) with (apply_instr' (fn_code f) pc (map # pc)).
+ {
+ eapply DS.fixpoint_solution with (code := fn_code f) (successors := successors_instr); try eassumption.
+ 2: apply apply_instr'_bot.
+ simpl. tauto.
+ }
+ unfold apply_instr'.
+ unfold sem_rel_b in *.
+ rewrite MPC.
+ rewrite H.
+ reflexivity.
+ }
+ eapply (kill_store_sound' sp m); eassumption.
+
+(* call *)
+- econstructor; split.
+ eapply exec_Icall with (fd := transf_fundef fd); eauto.
+ eapply find_function_translated; eauto.
+ apply sig_preserved.
+ rewrite (subst_args_ok' sp m) by assumption.
+ constructor. constructor; auto.
+
+ constructor.
+ {
+ intros m' vres.
+ unfold fmap_sem', fmap_sem in *.
+ destruct (forward_map _) as [map |] eqn:MAP in *; trivial.
+ destruct (map # pc) as [mpc |] eqn:MPC in *; try contradiction.
+ apply sem_rel_b_ge with (rb2 := Some (kill_reg res (kill_mem mpc))).
+ {
+ replace (Some (kill_reg res (kill_mem mpc))) with (apply_instr' (fn_code f) pc (map # pc)).
+ {
+ eapply DS.fixpoint_solution with (code := fn_code f) (successors := successors_instr); try eassumption.
+ 2: apply apply_instr'_bot.
+ simpl. tauto.
+ }
+ unfold apply_instr'.
+ rewrite H.
+ rewrite MPC.
+ reflexivity.
+ }
+ apply kill_reg_sound.
+ apply (kill_mem_sound' sp m).
+ assumption.
+ }
+
+(* tailcall *)
+- econstructor; split.
+ eapply exec_Itailcall with (fd := transf_fundef fd); eauto.
+ eapply find_function_translated; eauto.
+ apply sig_preserved.
+ rewrite (subst_args_ok' (Vptr stk Ptrofs.zero) m) by assumption.
+ constructor. auto.
+
+(* builtin *)
+- econstructor; split.
+ eapply exec_Ibuiltin; eauto.
+ eapply eval_builtin_args_preserved with (ge1 := ge); eauto. exact symbols_preserved.
+ eapply external_call_symbols_preserved; eauto. apply senv_preserved.
+ constructor; auto.
+
+ simpl in *.
+ unfold fmap_sem', fmap_sem in *.
+ destruct (forward_map _) as [map |] eqn:MAP in *; trivial.
+ destruct (map # pc) as [mpc |] eqn:MPC in *; try contradiction.
+
+ apply sem_rel_b_ge with (rb2 := Some (kill_builtin_res res (apply_external_call ef mpc))).
+ {
+ replace (Some (kill_builtin_res res (apply_external_call ef mpc))) with (apply_instr' (fn_code f) pc (map # pc)).
+ {
+ eapply DS.fixpoint_solution with (code := fn_code f) (successors := successors_instr); try eassumption.
+ 2: apply apply_instr'_bot.
+ simpl. tauto.
+ }
+ unfold apply_instr'.
+ rewrite H.
+ rewrite MPC.
+ reflexivity.
+ }
+ apply kill_builtin_res_sound.
+ eapply external_call_sound with (m := m); eassumption.
+
+(* cond *)
+- econstructor; split.
+ eapply exec_Icond; eauto.
+ rewrite (subst_args_ok' sp m); eassumption.
+ constructor; auto.
+
+ simpl in *.
+ unfold fmap_sem', fmap_sem in *.
+ destruct (forward_map _) as [map |] eqn:MAP in *; trivial.
+ apply sem_rel_b_ge with (rb2 := map # pc); trivial.
+ replace (map # pc) with (apply_instr' (fn_code f) pc (map # pc)).
+ {
+ eapply DS.fixpoint_solution with (code := fn_code f) (successors := successors_instr); try eassumption.
+ 2: apply apply_instr'_bot.
+ simpl.
+ destruct b; tauto.
+ }
+ unfold apply_instr'.
+ unfold sem_rel_b in *.
+ destruct (map # pc) in *; try contradiction.
+ rewrite H.
+ reflexivity.
+
+(* jumptbl *)
+- econstructor; split.
+ eapply exec_Ijumptable; eauto.
+ rewrite (subst_arg_ok' sp m); eassumption.
+ constructor; auto.
+
+ simpl in *.
+ unfold fmap_sem', fmap_sem in *.
+ destruct (forward_map _) as [map |] eqn:MAP in *; trivial.
+ apply sem_rel_b_ge with (rb2 := map # pc); trivial.
+ replace (map # pc) with (apply_instr' (fn_code f) pc (map # pc)).
+ {
+ eapply DS.fixpoint_solution with (code := fn_code f) (successors := successors_instr); try eassumption.
+ 2: apply apply_instr'_bot.
+ simpl.
+ apply list_nth_z_in with (n := Int.unsigned n).
+ assumption.
+ }
+ unfold apply_instr'.
+ unfold sem_rel_b in *.
+ destruct (map # pc) in *; try contradiction.
+ rewrite H.
+ reflexivity.
+
+(* return *)
+- destruct or as [arg | ].
+ {
+ econstructor; split.
+ eapply exec_Ireturn; eauto.
+ unfold regmap_optget.
+ rewrite (subst_arg_ok' (Vptr stk Ptrofs.zero) m) by eassumption.
+ constructor; auto.
+ }
+ econstructor; split.
+ eapply exec_Ireturn; eauto.
+ constructor; auto.
+
+
+(* internal function *)
+- simpl. econstructor; split.
+ eapply exec_function_internal; eauto.
+ constructor; auto.
+
+ simpl in *.
+ unfold fmap_sem', fmap_sem in *.
+ destruct (forward_map _) as [map |] eqn:MAP in *; trivial.
+ apply sem_rel_b_ge with (rb2 := Some RELATION.top).
+ {
+ eapply DS.fixpoint_entry with (code := fn_code f) (successors := successors_instr); try eassumption.
+ }
+ apply top_ok.
+
+(* external function *)
+- econstructor; split.
+ eapply exec_function_external; eauto.
+ eapply external_call_symbols_preserved; eauto. apply senv_preserved.
+ constructor; auto.
+
+(* return *)
+- inv STACKS. inv H1.
+ econstructor; split.
+ eapply exec_return; eauto.
+ constructor; auto.
+Qed.
+
+
+Lemma transf_initial_states:
+ forall S1, RTL.initial_state prog S1 ->
+ exists S2, RTL.initial_state tprog S2 /\ match_states S1 S2.
+Proof.
+ intros. inv H. econstructor; split.
+ econstructor.
+ eapply (Genv.init_mem_transf TRANSL); eauto.
+ rewrite symbols_preserved. rewrite (match_program_main TRANSL). eauto.
+ eapply function_ptr_translated; eauto.
+ rewrite <- H3; apply sig_preserved.
+ constructor. constructor.
+Qed.
+
+Lemma transf_final_states:
+ forall S1 S2 r, match_states S1 S2 -> RTL.final_state S1 r -> RTL.final_state S2 r.
+Proof.
+ intros. inv H0. inv H. inv STACKS. constructor.
+Qed.
+
+Theorem transf_program_correct:
+ forward_simulation (RTL.semantics prog) (RTL.semantics tprog).
+Proof.
+ eapply forward_simulation_step.
+ apply senv_preserved.
+ eexact transf_initial_states.
+ eexact transf_final_states.
+ exact step_simulation.
+Qed.
+
+End PRESERVATION.