aboutsummaryrefslogtreecommitdiffstats
path: root/backend/Duplicateproof.v
diff options
context:
space:
mode:
Diffstat (limited to 'backend/Duplicateproof.v')
-rw-r--r--backend/Duplicateproof.v542
1 files changed, 542 insertions, 0 deletions
diff --git a/backend/Duplicateproof.v b/backend/Duplicateproof.v
new file mode 100644
index 00000000..2f3bad2f
--- /dev/null
+++ b/backend/Duplicateproof.v
@@ -0,0 +1,542 @@
+(* *************************************************************)
+(* *)
+(* The Compcert verified compiler *)
+(* *)
+(* Sylvain Boulmé Grenoble-INP, VERIMAG *)
+(* David Monniaux CNRS, VERIMAG *)
+(* Cyril Six Kalray *)
+(* *)
+(* Copyright Kalray. Copyright VERIMAG. All rights reserved. *)
+(* This file is distributed under the terms of the INRIA *)
+(* Non-Commercial License Agreement. *)
+(* *)
+(* *************************************************************)
+
+(** Correctness proof for code duplication *)
+Require Import AST Linking Errors Globalenvs Smallstep.
+Require Import Coqlib Maps Events Values.
+Require Import Op RTL Duplicate.
+
+Module DuplicateProof (D: DuplicateOracle).
+Include Duplicate D.
+
+Local Open Scope positive_scope.
+
+(** * Definition of [match_states] (independently of the translation) *)
+
+(* est-ce plus simple de prendre dupmap: node -> node, avec un noeud hors CFG à la place de None ? *)
+Inductive match_inst (dupmap: PTree.t node): instruction -> instruction -> Prop :=
+ | match_inst_nop: forall n n',
+ dupmap!n' = (Some n) -> match_inst dupmap (Inop n) (Inop n')
+ | match_inst_op: forall n n' op lr r,
+ dupmap!n' = (Some n) -> match_inst dupmap (Iop op lr r n) (Iop op lr r n')
+ | match_inst_load: forall n n' tm m a lr r,
+ dupmap!n' = (Some n) -> match_inst dupmap (Iload tm m a lr r n) (Iload tm m a lr r n')
+ | match_inst_store: forall n n' m a lr r,
+ dupmap!n' = (Some n) -> match_inst dupmap (Istore m a lr r n) (Istore m a lr r n')
+ | match_inst_call: forall n n' s ri lr r,
+ dupmap!n' = (Some n) -> match_inst dupmap (Icall s ri lr r n) (Icall s ri lr r n')
+ | match_inst_tailcall: forall s ri lr,
+ match_inst dupmap (Itailcall s ri lr) (Itailcall s ri lr)
+ | match_inst_builtin: forall n n' ef la br,
+ dupmap!n' = (Some n) -> match_inst dupmap (Ibuiltin ef la br n) (Ibuiltin ef la br n')
+ | match_inst_cond: forall ifso ifso' ifnot ifnot' c lr i i',
+ dupmap!ifso' = (Some ifso) -> dupmap!ifnot' = (Some ifnot) ->
+ match_inst dupmap (Icond c lr ifso ifnot i) (Icond c lr ifso' ifnot' i')
+ | match_inst_revcond: forall ifso ifso' ifnot ifnot' c lr i i',
+ dupmap!ifso' = (Some ifso) -> dupmap!ifnot' = (Some ifnot) ->
+ match_inst dupmap (Icond c lr ifso ifnot i) (Icond (negate_condition c) lr ifnot' ifso' i')
+ | match_inst_jumptable: forall ln ln' r,
+ list_forall2 (fun n n' => (dupmap!n' = (Some n))) ln ln' ->
+ match_inst dupmap (Ijumptable r ln) (Ijumptable r ln')
+ | match_inst_return: forall or, match_inst dupmap (Ireturn or) (Ireturn or).
+
+Record match_function dupmap f f': Prop := {
+ dupmap_correct: forall n n', dupmap!n' = Some n ->
+ (forall i, (fn_code f)!n = Some i -> exists i', (fn_code f')!n' = Some i' /\ match_inst dupmap i i');
+ dupmap_entrypoint: dupmap!(fn_entrypoint f') = Some (fn_entrypoint f);
+ preserv_fnsig: fn_sig f = fn_sig f';
+ preserv_fnparams: fn_params f = fn_params f';
+ preserv_fnstacksize: fn_stacksize f = fn_stacksize f'
+}.
+
+Inductive match_fundef: RTL.fundef -> RTL.fundef -> Prop :=
+ | match_Internal dupmap f f': match_function dupmap f f' -> match_fundef (Internal f) (Internal f')
+ | match_External ef: match_fundef (External ef) (External ef).
+
+Inductive match_stackframes: stackframe -> stackframe -> Prop :=
+ | match_stackframe_intro
+ dupmap res f sp pc rs f' pc'
+ (TRANSF: match_function dupmap f f')
+ (DUPLIC: dupmap!pc' = Some pc):
+ match_stackframes (Stackframe res f sp pc rs) (Stackframe res f' sp pc' rs).
+
+Inductive match_states: state -> state -> Prop :=
+ | match_states_intro
+ dupmap st f sp pc rs m st' f' pc'
+ (STACKS: list_forall2 match_stackframes st st')
+ (TRANSF: match_function dupmap f f')
+ (DUPLIC: dupmap!pc' = Some pc):
+ match_states (State st f sp pc rs m) (State st' f' sp pc' rs m)
+ | match_states_call:
+ forall st st' f f' args m
+ (STACKS: list_forall2 match_stackframes st st')
+ (TRANSF: match_fundef f f'),
+ match_states (Callstate st f args m) (Callstate st' f' args m)
+ | match_states_return:
+ forall st st' v m
+ (STACKS: list_forall2 match_stackframes st st'),
+ match_states (Returnstate st v m) (Returnstate st' v m).
+
+(** * Auxiliary properties *)
+
+
+Theorem transf_function_preserves:
+ forall f f',
+ transf_function f = OK f' ->
+ fn_sig f = fn_sig f' /\ fn_params f = fn_params f' /\ fn_stacksize f = fn_stacksize f'.
+Proof.
+ intros. unfold transf_function in H. destruct (duplicate_aux _) as (tcte & mp). destruct tcte as (tc & te). monadInv H.
+ repeat (split; try reflexivity).
+Qed.
+
+
+Lemma verify_mapping_mn_rec_step:
+ forall dupmap lb b f f',
+ In b lb ->
+ verify_mapping_mn_rec dupmap f f' lb = OK tt ->
+ verify_mapping_mn dupmap f f' b = OK tt.
+Proof.
+ induction lb; intros.
+ - monadInv H0. inversion H.
+ - inversion H.
+ + subst. monadInv H0. destruct x. assumption.
+ + monadInv H0. destruct x. eapply IHlb; assumption.
+Qed.
+
+Lemma verify_is_copy_correct:
+ forall dupmap n n',
+ verify_is_copy dupmap n n' = OK tt ->
+ dupmap ! n' = Some n.
+Proof.
+ intros. unfold verify_is_copy in H. destruct (_ ! n') eqn:REVM; [|inversion H].
+ destruct (n ?= p) eqn:NP; try (inversion H; fail).
+ eapply Pos.compare_eq in NP. subst.
+ reflexivity.
+Qed.
+
+Lemma verify_is_copy_list_correct:
+ forall dupmap ln ln',
+ verify_is_copy_list dupmap ln ln' = OK tt ->
+ list_forall2 (fun n n' => dupmap ! n' = Some n) ln ln'.
+Proof.
+ induction ln.
+ - intros. destruct ln'; monadInv H. constructor.
+ - intros. destruct ln'; monadInv H. destruct x. apply verify_is_copy_correct in EQ.
+ eapply IHln in EQ0. constructor; assumption.
+Qed.
+
+Lemma verify_match_inst_correct:
+ forall dupmap i i',
+ verify_match_inst dupmap i i' = OK tt ->
+ match_inst dupmap i i'.
+Proof.
+ intros. unfold verify_match_inst in H.
+ destruct i; try (inversion H; fail).
+(* Inop *)
+ - destruct i'; try (inversion H; fail).
+ eapply verify_is_copy_correct in H.
+ constructor; eauto.
+(* Iop *)
+ - destruct i'; try (inversion H; fail). monadInv H.
+ destruct x. eapply verify_is_copy_correct in EQ.
+ destruct (eq_operation _ _); try discriminate.
+ destruct (list_eq_dec _ _ _); try discriminate.
+ destruct (Pos.eq_dec _ _); try discriminate. clear EQ0. subst.
+ constructor. assumption.
+(* Iload *)
+ - destruct i'; try (inversion H; fail). monadInv H.
+ destruct x. eapply verify_is_copy_correct in EQ.
+ destruct (trapping_mode_eq _ _); try discriminate.
+ destruct (chunk_eq _ _); try discriminate.
+ destruct (eq_addressing _ _); try discriminate.
+ destruct (list_eq_dec _ _ _); try discriminate.
+ destruct (Pos.eq_dec _ _); try discriminate. clear EQ0. subst.
+ constructor. assumption.
+(* Istore *)
+ - destruct i'; try (inversion H; fail). monadInv H.
+ destruct x. eapply verify_is_copy_correct in EQ.
+ destruct (chunk_eq _ _); try discriminate.
+ destruct (eq_addressing _ _); try discriminate.
+ destruct (list_eq_dec _ _ _); try discriminate.
+ destruct (Pos.eq_dec _ _); try discriminate. clear EQ0. subst.
+ constructor. assumption.
+(* Icall *)
+ - destruct i'; try (inversion H; fail). monadInv H.
+ destruct x. eapply verify_is_copy_correct in EQ.
+ destruct (signature_eq _ _); try discriminate.
+ destruct (product_eq _ _ _ _); try discriminate.
+ destruct (list_eq_dec _ _ _); try discriminate.
+ destruct (Pos.eq_dec _ _); try discriminate. subst.
+ constructor. assumption.
+(* Itailcall *)
+ - destruct i'; try (inversion H; fail).
+ destruct (signature_eq _ _); try discriminate.
+ destruct (product_eq _ _ _ _); try discriminate.
+ destruct (list_eq_dec _ _ _); try discriminate. subst. clear H.
+ constructor.
+(* Ibuiltin *)
+ - destruct i'; try (inversion H; fail). monadInv H.
+ destruct x. eapply verify_is_copy_correct in EQ.
+ destruct (external_function_eq _ _); try discriminate.
+ destruct (list_eq_dec _ _ _); try discriminate.
+ destruct (builtin_res_eq_pos _ _); try discriminate. subst.
+ constructor. assumption.
+(* Icond *)
+ - destruct i'; try (inversion H; fail).
+ destruct (list_eq_dec _ _ _); try discriminate. subst.
+ destruct (eq_condition _ _); try discriminate.
+ + monadInv H. destruct x. eapply verify_is_copy_correct in EQ.
+ eapply verify_is_copy_correct in EQ0.
+ subst; constructor; assumption.
+ + destruct (eq_condition _ _); try discriminate.
+ monadInv H. destruct x. eapply verify_is_copy_correct in EQ.
+ eapply verify_is_copy_correct in EQ0.
+ subst; constructor; assumption.
+(* Ijumptable *)
+ - destruct i'; try (inversion H; fail). monadInv H.
+ destruct x. eapply verify_is_copy_list_correct in EQ.
+ destruct (Pos.eq_dec _ _); try discriminate. subst.
+ constructor. assumption.
+(* Ireturn *)
+ - destruct i'; try (inversion H; fail).
+ destruct (option_eq _ _ _); try discriminate. subst. clear H.
+ constructor.
+Qed.
+
+
+Lemma verify_mapping_mn_correct mp n n' i f f' tc:
+ mp ! n' = Some n ->
+ (fn_code f) ! n = Some i ->
+ (fn_code f') = tc ->
+ verify_mapping_mn mp f f' (n', n) = OK tt ->
+ exists i',
+ tc ! n' = Some i'
+ /\ match_inst mp i i'.
+Proof.
+ unfold verify_mapping_mn; intros H H0 H1 H2. rewrite H0 in H2. clear H0. rewrite H1 in H2. clear H1.
+ destruct (tc ! n') eqn:TCN; [| inversion H2].
+ exists i0. split; auto.
+ eapply verify_match_inst_correct. assumption.
+Qed.
+
+
+Lemma verify_mapping_mn_rec_correct:
+ forall mp n n' i f f' tc,
+ mp ! n' = Some n ->
+ (fn_code f) ! n = Some i ->
+ (fn_code f') = tc ->
+ verify_mapping_mn_rec mp f f' (PTree.elements mp) = OK tt ->
+ exists i',
+ tc ! n' = Some i'
+ /\ match_inst mp i i'.
+Proof.
+ intros. exploit PTree.elements_correct. eapply H. intros IN.
+ eapply verify_mapping_mn_rec_step in H2; eauto.
+ eapply verify_mapping_mn_correct; eauto.
+Qed.
+
+Theorem transf_function_correct f f':
+ transf_function f = OK f' -> exists dupmap, match_function dupmap f f'.
+Proof.
+ unfold transf_function.
+ intros TRANSF.
+ destruct (duplicate_aux _) as (tcte & mp). destruct tcte as (tc & te).
+ monadInv TRANSF.
+ unfold verify_mapping in EQ. monadInv EQ.
+ exists mp; constructor 1; simpl; auto.
+ + (* correct *)
+ intros until n'. intros REVM i FNC.
+ unfold verify_mapping_match_nodes in EQ1. simpl in EQ1. destruct x.
+ eapply verify_mapping_mn_rec_correct; eauto.
+ simpl; eauto.
+ + (* entrypoint *)
+ intros. unfold verify_mapping_entrypoint in EQ0. simpl in EQ0.
+ eapply verify_is_copy_correct; eauto.
+ destruct x0; auto.
+Qed.
+
+Lemma transf_fundef_correct f f':
+ transf_fundef f = OK f' -> match_fundef f f'.
+Proof.
+ intros TRANSF; destruct f; simpl; monadInv TRANSF.
+ + exploit transf_function_correct; eauto.
+ intros (dupmap & MATCH_F).
+ eapply match_Internal; eauto.
+ + eapply match_External.
+Qed.
+
+(** * Preservation proof *)
+
+Definition match_prog (p tp: program) :=
+ match_program (fun _ f tf => transf_fundef f = OK tf) eq p tp.
+
+Lemma transf_program_match:
+ forall prog tprog, transf_program prog = OK tprog -> match_prog prog tprog.
+Proof.
+ intros. eapply match_transform_partial_program_contextual; eauto.
+Qed.
+
+Section PRESERVATION.
+
+Variable prog: program.
+Variable tprog: program.
+
+Hypothesis TRANSL: match_prog prog tprog.
+
+Let ge := Genv.globalenv prog.
+Let tge := Genv.globalenv tprog.
+
+Lemma symbols_preserved s: Genv.find_symbol tge s = Genv.find_symbol ge s.
+Proof.
+ rewrite <- (Genv.find_symbol_match TRANSL). reflexivity.
+Qed.
+
+(* UNUSED LEMMA ?
+Lemma senv_transitivity x y z: Senv.equiv x y -> Senv.equiv y z -> Senv.equiv x z.
+Proof.
+ unfold Senv.equiv. intuition congruence.
+Qed.
+*)
+
+Lemma senv_preserved:
+ Senv.equiv ge tge.
+Proof.
+ eapply (Genv.senv_match TRANSL).
+Qed.
+
+Lemma functions_translated:
+ forall (v: val) (f: fundef),
+ Genv.find_funct ge v = Some f ->
+ exists tf cunit, transf_fundef f = OK tf /\ Genv.find_funct tge v = Some tf /\ linkorder cunit prog.
+Proof.
+ intros. exploit (Genv.find_funct_match TRANSL); eauto.
+ intros (cu & tf & A & B & C).
+ repeat eexists; intuition eauto.
+ + unfold incl; auto.
+ + eapply linkorder_refl.
+Qed.
+
+Lemma function_ptr_translated:
+ forall v f,
+ Genv.find_funct_ptr ge v = Some f ->
+ exists tf,
+ Genv.find_funct_ptr tge v = Some tf /\ transf_fundef f = OK tf.
+Proof.
+ intros.
+ exploit (Genv.find_funct_ptr_transf_partial TRANSL); eauto.
+Qed.
+
+Lemma function_sig_translated:
+ forall f tf, transf_fundef f = OK tf -> funsig tf = funsig f.
+Proof.
+ intros. destruct f.
+ - simpl in H. monadInv H. simpl. symmetry. apply transf_function_preserves. assumption.
+ - simpl in H. monadInv H. reflexivity.
+Qed.
+
+Lemma list_nth_z_dupmap:
+ forall dupmap ln ln' (pc pc': node) val,
+ list_nth_z ln val = Some pc ->
+ list_forall2 (fun n n' => dupmap!n' = Some n) ln ln' ->
+ exists pc',
+ list_nth_z ln' val = Some pc'
+ /\ dupmap!pc' = Some pc.
+Proof.
+ induction ln; intros until val; intros LNZ LFA.
+ - inv LNZ.
+ - inv LNZ. destruct (zeq val 0) eqn:ZEQ.
+ + inv H0. destruct ln'; inv LFA.
+ simpl. exists p. split; auto.
+ + inv LFA. simpl. rewrite ZEQ. exploit IHln. 2: eapply H0. all: eauto.
+ intros (pc'1 & LNZ & REV). exists pc'1. split; auto. congruence.
+Qed.
+
+Theorem transf_initial_states:
+ forall s1, initial_state prog s1 ->
+ exists s2, initial_state tprog s2 /\ match_states s1 s2.
+Proof.
+ intros. inv H.
+ exploit function_ptr_translated; eauto. intros (tf & FIND & TRANSF).
+ eexists. split.
+ - econstructor; eauto.
+ + eapply (Genv.init_mem_transf_partial TRANSL); eauto.
+ + replace (prog_main tprog) with (prog_main prog). rewrite symbols_preserved. eauto.
+ symmetry. eapply match_program_main. eauto.
+ + destruct f.
+ * monadInv TRANSF. rewrite <- H3. symmetry; eapply transf_function_preserves. assumption.
+ * monadInv TRANSF. assumption.
+ - constructor; eauto.
+ + constructor.
+ + apply transf_fundef_correct; auto.
+Qed.
+
+Theorem transf_final_states:
+ forall s1 s2 r,
+ match_states s1 s2 -> final_state s1 r -> final_state s2 r.
+Proof.
+ intros. inv H0. inv H. inv STACKS. constructor.
+Qed.
+
+Theorem step_simulation:
+ forall s1 t s1', step ge s1 t s1' ->
+ forall s2 (MS: match_states s1 s2),
+ exists s2',
+ step tge s2 t s2'
+ /\ match_states s1' s2'.
+Proof.
+ Local Hint Resolve transf_fundef_correct: core.
+ induction 1; intros; inv MS.
+(* Inop *)
+ - eapply dupmap_correct in DUPLIC; eauto.
+ destruct DUPLIC as (i' & H2 & H3).
+ inv H3.
+ eexists. split.
+ + eapply exec_Inop; eauto.
+ + econstructor; eauto.
+(* Iop *)
+ - eapply dupmap_correct in DUPLIC; eauto.
+ destruct DUPLIC as (i' & H2 & H3). inv H3.
+ pose symbols_preserved as SYMPRES.
+ eexists. split.
+ + eapply exec_Iop; eauto. erewrite eval_operation_preserved; eauto.
+ + econstructor; eauto.
+(* Iload *)
+ - eapply dupmap_correct in DUPLIC; eauto.
+ destruct DUPLIC as (i' & H2 & H3). inv H3.
+ pose symbols_preserved as SYMPRES.
+ eexists. split.
+ + eapply exec_Iload; eauto; (* is the follow still needed?*) erewrite eval_addressing_preserved; eauto.
+ + econstructor; eauto.
+(* Iload notrap1 *)
+ - eapply dupmap_correct in DUPLIC; eauto.
+ destruct DUPLIC as (i' & H2 & H3). inv H3.
+ pose symbols_preserved as SYMPRES.
+ eexists. split.
+ + eapply exec_Iload_notrap1; eauto; erewrite eval_addressing_preserved; eauto.
+ + econstructor; eauto.
+(* Iload notrap2 *)
+ - eapply dupmap_correct in DUPLIC; eauto.
+ destruct DUPLIC as (i' & H2 & H3). inv H3.
+ pose symbols_preserved as SYMPRES.
+ eexists. split.
+ + eapply exec_Iload_notrap2; eauto; erewrite eval_addressing_preserved; eauto.
+ + econstructor; eauto.
+
+(* Istore *)
+ - eapply dupmap_correct in DUPLIC; eauto.
+ destruct DUPLIC as (i' & H2 & H3). inv H3.
+ pose symbols_preserved as SYMPRES.
+ eexists. split.
+ + eapply exec_Istore; eauto; erewrite eval_addressing_preserved; eauto.
+ + econstructor; eauto.
+(* Icall *)
+ - eapply dupmap_correct in DUPLIC; eauto.
+ destruct DUPLIC as (i' & H2 & H3). inv H3.
+ pose symbols_preserved as SYMPRES.
+ destruct ros.
+ * simpl in H0. apply functions_translated in H0.
+ destruct H0 as (tf & cunit & TFUN & GFIND & LO).
+ eexists. split.
+ + eapply exec_Icall. eassumption. simpl. eassumption.
+ apply function_sig_translated. assumption.
+ + repeat (econstructor; eauto).
+ * simpl in H0. destruct (Genv.find_symbol _ _) eqn:GFS; try discriminate.
+ apply function_ptr_translated in H0. destruct H0 as (tf & GFF & TF).
+ eexists. split.
+ + eapply exec_Icall. eassumption. simpl. rewrite symbols_preserved. rewrite GFS.
+ eassumption. apply function_sig_translated. assumption.
+ + repeat (econstructor; eauto).
+(* Itailcall *)
+ - eapply dupmap_correct in DUPLIC; eauto.
+ destruct DUPLIC as (i' & H10 & H11). inv H11.
+ pose symbols_preserved as SYMPRES.
+ destruct ros.
+ * simpl in H0. apply functions_translated in H0.
+ destruct H0 as (tf & cunit & TFUN & GFIND & LO).
+ eexists. split.
+ + eapply exec_Itailcall. eassumption. simpl. eassumption.
+ apply function_sig_translated. assumption.
+ erewrite <- preserv_fnstacksize; eauto.
+ + repeat (constructor; auto).
+ * simpl in H0. destruct (Genv.find_symbol _ _) eqn:GFS; try discriminate.
+ apply function_ptr_translated in H0. destruct H0 as (tf & GFF & TF).
+ eexists. split.
+ + eapply exec_Itailcall. eassumption. simpl. rewrite symbols_preserved. rewrite GFS.
+ eassumption. apply function_sig_translated. assumption.
+ erewrite <- preserv_fnstacksize; eauto.
+ + repeat (constructor; auto).
+(* Ibuiltin *)
+ - eapply dupmap_correct in DUPLIC; eauto.
+ destruct DUPLIC as (i' & H2 & H3). inv H3.
+ pose symbols_preserved as SYMPRES.
+ eexists. split.
+ + eapply exec_Ibuiltin; eauto. eapply eval_builtin_args_preserved; eauto.
+ eapply external_call_symbols_preserved; eauto. eapply senv_preserved.
+ + econstructor; eauto.
+(* Icond *)
+ - eapply dupmap_correct in DUPLIC; eauto.
+ destruct DUPLIC as (i' & H2 & H3). inv H3.
+ * (* match_inst_cond *)
+ pose symbols_preserved as SYMPRES.
+ eexists. split.
+ + eapply exec_Icond; eauto.
+ + econstructor; eauto. destruct b; auto.
+ * (* match_inst_revcond *)
+ pose symbols_preserved as SYMPRES.
+ eexists. split.
+ + eapply exec_Icond; eauto. rewrite eval_negate_condition. rewrite H0. simpl. eauto.
+ + econstructor; eauto. destruct b; auto.
+(* Ijumptable *)
+ - eapply dupmap_correct in DUPLIC; eauto.
+ destruct DUPLIC as (i' & H2 & H3). inv H3.
+ pose symbols_preserved as SYMPRES.
+ exploit list_nth_z_dupmap; eauto. intros (pc'1 & LNZ & REVM).
+ eexists. split.
+ + eapply exec_Ijumptable; eauto.
+ + econstructor; eauto.
+(* Ireturn *)
+ - eapply dupmap_correct in DUPLIC; eauto.
+ destruct DUPLIC as (i' & H2 & H3). inv H3.
+ pose symbols_preserved as SYMPRES.
+ eexists. split.
+ + eapply exec_Ireturn; eauto. erewrite <- preserv_fnstacksize; eauto.
+ + econstructor; eauto.
+(* exec_function_internal *)
+ - inversion TRANSF as [dupmap f0 f0' MATCHF|]; subst. eexists. split.
+ + eapply exec_function_internal. erewrite <- preserv_fnstacksize; eauto.
+ + erewrite preserv_fnparams; eauto.
+ econstructor; eauto. apply dupmap_entrypoint. assumption.
+(* exec_function_external *)
+ - inversion TRANSF as [|]; subst. eexists. split.
+ + econstructor. eapply external_call_symbols_preserved; eauto. apply senv_preserved.
+ + constructor. assumption.
+(* exec_return *)
+ - inv STACKS. destruct b1 as [res' f' sp' pc' rs']. eexists. split.
+ + constructor.
+ + inv H1. econstructor; eauto.
+Qed.
+
+Theorem transf_program_correct:
+ forward_simulation (semantics prog) (semantics tprog).
+Proof.
+ eapply forward_simulation_step with match_states.
+ - eapply senv_preserved.
+ - eapply transf_initial_states.
+ - eapply transf_final_states.
+ - eapply step_simulation.
+Qed.
+
+End PRESERVATION.
+
+End DuplicateProof.