aboutsummaryrefslogtreecommitdiffstats
path: root/backend
diff options
context:
space:
mode:
Diffstat (limited to 'backend')
-rw-r--r--backend/CSE2.v115
-rw-r--r--backend/CSE3.v93
-rw-r--r--backend/CSE3analysis.v403
-rw-r--r--backend/CSE3analysisaux.ml97
-rw-r--r--backend/CSE3analysisproof.v926
-rw-r--r--backend/CSE3proof.v875
-rw-r--r--backend/FirstNop.v18
-rw-r--r--backend/FirstNopproof.v274
8 files changed, 2687 insertions, 114 deletions
diff --git a/backend/CSE2.v b/backend/CSE2.v
index d5444e3b..efa70b40 100644
--- a/backend/CSE2.v
+++ b/backend/CSE2.v
@@ -29,7 +29,7 @@ Proof.
decide equality.
Defined.
-Module RELATION.
+Module RELATION <: SEMILATTICE_WITHOUT_BOTTOM.
Definition t := (PTree.t sym_val).
Definition eq (r1 r2 : t) :=
@@ -138,119 +138,6 @@ Qed.
End RELATION.
-Module Type SEMILATTICE_WITHOUT_BOTTOM.
-
- Parameter t: Type.
- Parameter eq: t -> t -> Prop.
- Axiom eq_refl: forall x, eq x x.
- Axiom eq_sym: forall x y, eq x y -> eq y x.
- Axiom eq_trans: forall x y z, eq x y -> eq y z -> eq x z.
- Parameter beq: t -> t -> bool.
- Axiom beq_correct: forall x y, beq x y = true -> eq x y.
- Parameter ge: t -> t -> Prop.
- Axiom ge_refl: forall x y, eq x y -> ge x y.
- Axiom ge_trans: forall x y z, ge x y -> ge y z -> ge x z.
- Parameter lub: t -> t -> t.
- Axiom ge_lub_left: forall x y, ge (lub x y) x.
- Axiom ge_lub_right: forall x y, ge (lub x y) y.
-
-End SEMILATTICE_WITHOUT_BOTTOM.
-
-Module ADD_BOTTOM(L : SEMILATTICE_WITHOUT_BOTTOM).
- Definition t := option L.t.
- Definition eq (a b : t) :=
- match a, b with
- | None, None => True
- | Some x, Some y => L.eq x y
- | Some _, None | None, Some _ => False
- end.
-
- Lemma eq_refl: forall x, eq x x.
- Proof.
- unfold eq; destruct x; trivial.
- apply L.eq_refl.
- Qed.
-
- Lemma eq_sym: forall x y, eq x y -> eq y x.
- Proof.
- unfold eq; destruct x; destruct y; trivial.
- apply L.eq_sym.
- Qed.
-
- Lemma eq_trans: forall x y z, eq x y -> eq y z -> eq x z.
- Proof.
- unfold eq; destruct x; destruct y; destruct z; trivial.
- - apply L.eq_trans.
- - contradiction.
- Qed.
-
- Definition beq (x y : t) :=
- match x, y with
- | None, None => true
- | Some x, Some y => L.beq x y
- | Some _, None | None, Some _ => false
- end.
-
- Lemma beq_correct: forall x y, beq x y = true -> eq x y.
- Proof.
- unfold beq, eq.
- destruct x; destruct y; trivial; try congruence.
- apply L.beq_correct.
- Qed.
-
- Definition ge (x y : t) :=
- match x, y with
- | None, Some _ => False
- | _, None => True
- | Some a, Some b => L.ge a b
- end.
-
- Lemma ge_refl: forall x y, eq x y -> ge x y.
- Proof.
- unfold eq, ge.
- destruct x; destruct y; trivial.
- apply L.ge_refl.
- Qed.
-
- Lemma ge_trans: forall x y z, ge x y -> ge y z -> ge x z.
- Proof.
- unfold ge.
- destruct x; destruct y; destruct z; trivial; try contradiction.
- apply L.ge_trans.
- Qed.
-
- Definition bot: t := None.
- Lemma ge_bot: forall x, ge x bot.
- Proof.
- unfold ge, bot.
- destruct x; trivial.
- Qed.
-
- Definition lub (a b : t) :=
- match a, b with
- | None, _ => b
- | _, None => a
- | (Some x), (Some y) => Some (L.lub x y)
- end.
-
- Lemma ge_lub_left: forall x y, ge (lub x y) x.
- Proof.
- unfold ge, lub.
- destruct x; destruct y; trivial.
- - apply L.ge_lub_left.
- - apply L.ge_refl.
- apply L.eq_refl.
- Qed.
-
- Lemma ge_lub_right: forall x y, ge (lub x y) y.
- Proof.
- unfold ge, lub.
- destruct x; destruct y; trivial.
- - apply L.ge_lub_right.
- - apply L.ge_refl.
- apply L.eq_refl.
- Qed.
-End ADD_BOTTOM.
Module RB := ADD_BOTTOM(RELATION).
Module DS := Dataflow_Solver(RB)(NodeSetForward).
diff --git a/backend/CSE3.v b/backend/CSE3.v
new file mode 100644
index 00000000..d0dc3aef
--- /dev/null
+++ b/backend/CSE3.v
@@ -0,0 +1,93 @@
+Require Import Coqlib Maps Errors Integers Floats Lattice Kildall.
+Require Import AST Linking.
+Require Import Memory Registers Op RTL Maps CSE2deps.
+Require Import CSE3analysis HashedSet.
+Require Import RTLtyping.
+
+Local Open Scope error_monad_scope.
+
+Axiom preanalysis : typing_env -> RTL.function -> invariants * analysis_hints.
+
+Section REWRITE.
+ Context {ctx : eq_context}.
+
+Definition find_op_in_fmap fmap pc op args :=
+ match PMap.get pc fmap with
+ | Some rel => rhs_find (ctx:=ctx) pc (SOp op) args rel
+ | None => None
+ end.
+
+Definition find_load_in_fmap fmap pc chunk addr args :=
+ match PMap.get pc fmap with
+ | Some rel => rhs_find (ctx:=ctx) pc (SLoad chunk addr) args rel
+ | None => None
+ end.
+
+Definition forward_move_b (rb : RB.t) (x : reg) :=
+ match rb with
+ | None => x
+ | Some rel => forward_move (ctx := ctx) rel x
+ end.
+
+Definition subst_arg (fmap : PMap.t RB.t) (pc : node) (x : reg) : reg :=
+ forward_move_b (PMap.get pc fmap) x.
+
+Definition forward_move_l_b (rb : RB.t) (xl : list reg) :=
+ match rb with
+ | None => xl
+ | Some rel => forward_move_l (ctx := ctx) rel xl
+ end.
+
+Definition subst_args fmap pc xl :=
+ forward_move_l_b (PMap.get pc fmap) xl.
+
+Definition transf_instr (fmap : PMap.t RB.t)
+ (pc: node) (instr: instruction) :=
+ match instr with
+ | Iop op args dst s =>
+ let args' := subst_args fmap pc args in
+ match (if is_trivial_op op then None else find_op_in_fmap fmap pc op args') with
+ | None => Iop op args' dst s
+ | Some src => Iop Omove (src::nil) dst s
+ end
+ | Iload trap chunk addr args dst s =>
+ let args' := subst_args fmap pc args in
+ match find_load_in_fmap fmap pc chunk addr args' with
+ | None => Iload trap chunk addr args' dst s
+ | Some src => Iop Omove (src::nil) dst s
+ end
+ | Istore chunk addr args src s =>
+ Istore chunk addr (subst_args fmap pc args) src s
+ | Icall sig ros args dst s =>
+ Icall sig ros (subst_args fmap pc args) dst s
+ | Itailcall sig ros args =>
+ Itailcall sig ros (subst_args fmap pc args)
+ | Icond cond args s1 s2 =>
+ Icond cond (subst_args fmap pc args) s1 s2
+ | Ijumptable arg tbl =>
+ Ijumptable (subst_arg fmap pc arg) tbl
+ | Ireturn (Some arg) =>
+ Ireturn (Some (subst_arg fmap pc arg))
+ | _ => instr
+ end.
+End REWRITE.
+
+Definition transf_function (f: function) : res function :=
+ do tenv <- type_function f;
+ let (invariants, hints) := preanalysis tenv f in
+ let ctx := context_from_hints hints in
+ if check_inductiveness (ctx:=ctx) f tenv invariants
+ then
+ OK {| fn_sig := f.(fn_sig);
+ fn_params := f.(fn_params);
+ fn_stacksize := f.(fn_stacksize);
+ fn_code := PTree.map (transf_instr (ctx := ctx) invariants)
+ f.(fn_code);
+ fn_entrypoint := f.(fn_entrypoint) |}
+ else Error (msg "cse3: not inductive").
+
+Definition transf_fundef (fd: fundef) : res fundef :=
+ AST.transf_partial_fundef transf_function fd.
+
+Definition transf_program (p: program) : res program :=
+ transform_partial_program transf_fundef p.
diff --git a/backend/CSE3analysis.v b/backend/CSE3analysis.v
new file mode 100644
index 00000000..12fb2d1f
--- /dev/null
+++ b/backend/CSE3analysis.v
@@ -0,0 +1,403 @@
+Require Import Coqlib Maps Errors Integers Floats Lattice Kildall.
+Require Import AST Linking.
+Require Import Memory Registers Op RTL Maps CSE2deps.
+Require Import HashedSet.
+Require List Compopts.
+
+Definition typing_env := reg -> typ.
+
+Definition loadv_storev_compatible_type
+ (chunk : memory_chunk) (ty : typ) : bool :=
+ match chunk, ty with
+ | Mint32, Tint
+ | Mint64, Tlong
+ | Mfloat32, Tsingle
+ | Mfloat64, Tfloat => true
+ | _, _ => false
+ end.
+
+Module RELATION <: SEMILATTICE_WITHOUT_BOTTOM.
+ Definition t := PSet.t.
+ Definition eq (x : t) (y : t) := x = y.
+
+ Lemma eq_refl: forall x, eq x x.
+ Proof.
+ unfold eq. trivial.
+ Qed.
+
+ Lemma eq_sym: forall x y, eq x y -> eq y x.
+ Proof.
+ unfold eq. congruence.
+ Qed.
+
+ Lemma eq_trans: forall x y z, eq x y -> eq y z -> eq x z.
+ Proof.
+ unfold eq. congruence.
+ Qed.
+
+ Definition beq (x y : t) := if PSet.eq x y then true else false.
+
+ Lemma beq_correct: forall x y, beq x y = true -> eq x y.
+ Proof.
+ unfold beq.
+ intros.
+ destruct PSet.eq; congruence.
+ Qed.
+
+ Definition ge (x y : t) := (PSet.is_subset x y) = true.
+
+ Lemma ge_refl: forall x y, eq x y -> ge x y.
+ Proof.
+ unfold eq, ge.
+ intros.
+ subst y.
+ apply PSet.is_subset_spec.
+ trivial.
+ Qed.
+
+ Lemma ge_trans: forall x y z, ge x y -> ge y z -> ge x z.
+ Proof.
+ unfold ge.
+ intros.
+ rewrite PSet.is_subset_spec in *.
+ intuition.
+ Qed.
+
+ Definition lub := PSet.inter.
+
+ Lemma ge_lub_left: forall x y, ge (lub x y) x.
+ Proof.
+ unfold ge, lub.
+ intros.
+ apply PSet.is_subset_spec.
+ intro.
+ rewrite PSet.ginter.
+ rewrite andb_true_iff.
+ intuition.
+ Qed.
+
+ Lemma ge_lub_right: forall x y, ge (lub x y) y.
+ Proof.
+ unfold ge, lub.
+ intros.
+ apply PSet.is_subset_spec.
+ intro.
+ rewrite PSet.ginter.
+ rewrite andb_true_iff.
+ intuition.
+ Qed.
+
+ Definition top := PSet.empty.
+End RELATION.
+
+Module RB := ADD_BOTTOM(RELATION).
+Module DS := Dataflow_Solver(RB)(NodeSetForward).
+
+Inductive sym_op : Type :=
+| SOp : operation -> sym_op
+| SLoad : memory_chunk -> addressing -> sym_op.
+
+Definition eq_dec_sym_op : forall s s' : sym_op, {s = s'} + {s <> s'}.
+Proof.
+ generalize eq_operation.
+ generalize eq_addressing.
+ generalize chunk_eq.
+ decide equality.
+Defined.
+
+Definition eq_dec_args : forall l l' : list reg, { l = l' } + { l <> l' }.
+Proof.
+ apply List.list_eq_dec.
+ exact peq.
+Defined.
+
+Record equation :=
+ mkequation
+ { eq_lhs : reg;
+ eq_op : sym_op;
+ eq_args : list reg }.
+
+Definition eq_dec_equation :
+ forall eq eq' : equation, {eq = eq'} + {eq <> eq'}.
+Proof.
+ generalize peq.
+ generalize eq_dec_sym_op.
+ generalize eq_dec_args.
+ decide equality.
+Defined.
+
+Definition eq_id := node.
+
+Definition add_i_j (i : reg) (j : eq_id) (m : Regmap.t PSet.t) :=
+ Regmap.set i (PSet.add j (Regmap.get i m)) m.
+
+Definition add_ilist_j (ilist : list reg) (j : eq_id) (m : Regmap.t PSet.t) :=
+ List.fold_left (fun already i => add_i_j i j already) ilist m.
+
+Definition get_reg_kills (eqs : PTree.t equation) :
+ Regmap.t PSet.t :=
+ PTree.fold (fun already (eqno : eq_id) (eq : equation) =>
+ add_i_j (eq_lhs eq) eqno
+ (add_ilist_j (eq_args eq) eqno already)) eqs
+ (PMap.init PSet.empty).
+
+Definition eq_depends_on_mem eq :=
+ match eq_op eq with
+ | SLoad _ _ => true
+ | SOp op => op_depends_on_memory op
+ end.
+
+Definition get_mem_kills (eqs : PTree.t equation) : PSet.t :=
+ PTree.fold (fun already (eqno : eq_id) (eq : equation) =>
+ if eq_depends_on_mem eq
+ then PSet.add eqno already
+ else already) eqs PSet.empty.
+
+Definition is_move (op : operation) :
+ { op = Omove } + { op <> Omove }.
+Proof.
+ destruct op; try (right ; congruence).
+ left; trivial.
+Qed.
+
+Definition is_smove (sop : sym_op) :
+ { sop = SOp Omove } + { sop <> SOp Omove }.
+Proof.
+ destruct sop; try (right ; congruence).
+ destruct (is_move o).
+ - left; congruence.
+ - right; congruence.
+Qed.
+
+Definition get_moves (eqs : PTree.t equation) :
+ Regmap.t PSet.t :=
+ PTree.fold (fun already (eqno : eq_id) (eq : equation) =>
+ if is_smove (eq_op eq)
+ then add_i_j (eq_lhs eq) eqno already
+ else already) eqs (PMap.init PSet.empty).
+
+Record eq_context := mkeqcontext
+ { eq_catalog : eq_id -> option equation;
+ eq_find_oracle : node -> equation -> option eq_id;
+ eq_rhs_oracle : node -> sym_op -> list reg -> PSet.t;
+ eq_kill_reg : reg -> PSet.t;
+ eq_kill_mem : unit -> PSet.t;
+ eq_moves : reg -> PSet.t }.
+
+Section OPERATIONS.
+ Context {ctx : eq_context}.
+
+ Definition kill_reg (r : reg) (rel : RELATION.t) : RELATION.t :=
+ PSet.subtract rel (eq_kill_reg ctx r).
+
+ Definition kill_mem (rel : RELATION.t) : RELATION.t :=
+ PSet.subtract rel (eq_kill_mem ctx tt).
+
+ Definition pick_source (l : list reg) := (* todo: take min? *)
+ match l with
+ | h::t => Some h
+ | nil => None
+ end.
+
+ Definition forward_move (rel : RELATION.t) (x : reg) : reg :=
+ match pick_source (PSet.elements (PSet.inter rel (eq_moves ctx x))) with
+ | None => x
+ | Some eqno =>
+ match eq_catalog ctx eqno with
+ | Some eq =>
+ if is_smove (eq_op eq) && peq x (eq_lhs eq)
+ then
+ match eq_args eq with
+ | src::nil => src
+ | _ => x
+ end
+ else x
+ | _ => x
+ end
+ end.
+
+ Definition forward_move_l (rel : RELATION.t) : list reg -> list reg :=
+ List.map (forward_move rel).
+
+ Section PER_NODE.
+ Variable no : node.
+
+ Definition eq_find (eq : equation) :=
+ match eq_find_oracle ctx no eq with
+ | Some id =>
+ match eq_catalog ctx id with
+ | Some eq' => if eq_dec_equation eq eq' then Some id else None
+ | None => None
+ end
+ | None => None
+ end.
+
+
+ Definition rhs_find (sop : sym_op) (args : list reg) (rel : RELATION.t) : option reg :=
+ match pick_source (PSet.elements (PSet.inter (eq_rhs_oracle ctx no sop args) rel)) with
+ | None => None
+ | Some src =>
+ match eq_catalog ctx src with
+ | None => None
+ | Some eq =>
+ if eq_dec_sym_op sop (eq_op eq) && eq_dec_args args (eq_args eq)
+ then Some (eq_lhs eq)
+ else None
+ end
+ end.
+
+ Definition oper2 (dst : reg) (op: sym_op)(args : list reg)
+ (rel : RELATION.t) : RELATION.t :=
+ let rel' := kill_reg dst rel in
+ match eq_find {| eq_lhs := dst;
+ eq_op := op;
+ eq_args:= args |} with
+ | Some id => PSet.add id rel'
+ | None => rel'
+ end.
+
+ Definition oper1 (dst : reg) (op: sym_op) (args : list reg)
+ (rel : RELATION.t) : RELATION.t :=
+ if List.in_dec peq dst args
+ then kill_reg dst rel
+ else oper2 dst op args rel.
+
+
+ Definition move (src dst : reg) (rel : RELATION.t) : RELATION.t :=
+ match eq_find {| eq_lhs := dst;
+ eq_op := SOp Omove;
+ eq_args:= src::nil |} with
+ | Some eq_id => PSet.add eq_id (kill_reg dst rel)
+ | None => kill_reg dst rel
+ end.
+
+ Definition oper (dst : reg) (op: sym_op) (args : list reg)
+ (rel : RELATION.t) : RELATION.t :=
+ match rhs_find op (forward_move_l rel args) rel with
+ | Some r => move r dst rel
+ | None => oper1 dst op args rel
+ end.
+
+ Definition clever_kill_store
+ (chunk : memory_chunk) (addr: addressing) (args : list reg)
+ (src : reg)
+ (rel : RELATION.t) : RELATION.t :=
+ PSet.subtract rel
+ (PSet.filter
+ (fun eqno =>
+ match eq_catalog ctx eqno with
+ | None => false
+ | Some eq =>
+ match eq_op eq with
+ | SOp op => true
+ | SLoad chunk' addr' =>
+ may_overlap chunk addr args chunk' addr' (eq_args eq)
+ end
+ end)
+ (PSet.inter rel (eq_kill_mem ctx tt))).
+
+ Definition store2
+ (chunk : memory_chunk) (addr: addressing) (args : list reg)
+ (src : reg)
+ (rel : RELATION.t) : RELATION.t :=
+ if Compopts.optim_CSE3_alias_analysis tt
+ then clever_kill_store chunk addr args src rel
+ else kill_mem rel.
+
+ Definition store1
+ (chunk : memory_chunk) (addr: addressing) (args : list reg)
+ (src : reg) (ty: typ)
+ (rel : RELATION.t) : RELATION.t :=
+ let rel' := store2 chunk addr args src rel in
+ if loadv_storev_compatible_type chunk ty
+ then
+ match eq_find {| eq_lhs := src;
+ eq_op := SLoad chunk addr;
+ eq_args:= args |} with
+ | Some id => PSet.add id rel'
+ | None => rel'
+ end
+ else rel'.
+
+ Definition store
+ (chunk : memory_chunk) (addr: addressing) (args : list reg)
+ (src : reg) (ty: typ)
+ (rel : RELATION.t) : RELATION.t :=
+ store1 chunk addr (forward_move_l rel args) src ty rel.
+
+ Definition apply_instr (tenv : typing_env) (instr : RTL.instruction) (rel : RELATION.t) : RB.t :=
+ match instr with
+ | Inop _
+ | Icond _ _ _ _
+ | Ijumptable _ _ => Some rel
+ | Istore chunk addr args src _ =>
+ Some (store chunk addr args src (tenv src) rel)
+ | Iop op args dst _ => Some (oper dst (SOp op) args rel)
+ | Iload trap chunk addr args dst _ => Some (oper dst (SLoad chunk addr) args rel)
+ | Icall _ _ _ dst _ => Some (kill_reg dst (kill_mem rel))
+ | Ibuiltin _ _ res _ => Some (RELATION.top) (* TODO (kill_builtin_res res x) *)
+ | Itailcall _ _ _ | Ireturn _ => RB.bot
+ end.
+ End PER_NODE.
+
+Definition apply_instr' (tenv : typing_env) code (pc : node) (ro : RB.t) : RB.t :=
+ match ro with
+ | None => None
+ | Some x =>
+ match code ! pc with
+ | None => RB.bot
+ | Some instr => apply_instr pc tenv instr x
+ end
+ end.
+
+Definition invariants := PMap.t RB.t.
+
+Definition rel_leb (x y : RELATION.t) : bool := (PSet.is_subset y x).
+
+Definition relb_leb (x y : RB.t) : bool :=
+ match x, y with
+ | None, _ => true
+ | (Some _), None => false
+ | (Some x), (Some y) => rel_leb x y
+ end.
+
+Definition check_inductiveness (fn : RTL.function) (tenv: typing_env) (inv: invariants) :=
+ (RB.beq (Some RELATION.top) (PMap.get (fn_entrypoint fn) inv)) &&
+ PTree_Properties.for_all (fn_code fn)
+ (fun pc instr =>
+ match PMap.get pc inv with
+ | None => true
+ | Some rel =>
+ let rel' := apply_instr pc tenv instr rel in
+ List.forallb
+ (fun pc' => relb_leb rel' (PMap.get pc' inv))
+ (RTL.successors_instr instr)
+ end).
+
+Definition internal_analysis
+ (tenv : typing_env)
+ (f : RTL.function) : option invariants := DS.fixpoint
+ (RTL.fn_code f) RTL.successors_instr
+ (apply_instr' tenv (RTL.fn_code f)) (RTL.fn_entrypoint f) (Some RELATION.top).
+
+End OPERATIONS.
+
+Record analysis_hints :=
+ mkanalysis_hints
+ { hint_eq_catalog : PTree.t equation;
+ hint_eq_find_oracle : node -> equation -> option eq_id;
+ hint_eq_rhs_oracle : node -> sym_op -> list reg -> PSet.t }.
+
+Definition context_from_hints (hints : analysis_hints) :=
+ let eqs := hint_eq_catalog hints in
+ let reg_kills := get_reg_kills eqs in
+ let mem_kills := get_mem_kills eqs in
+ let moves := get_moves eqs in
+ {|
+ eq_catalog := fun eq_id => PTree.get eq_id eqs;
+ eq_find_oracle := hint_eq_find_oracle hints ;
+ eq_rhs_oracle := hint_eq_rhs_oracle hints;
+ eq_kill_reg := fun reg => PMap.get reg reg_kills;
+ eq_kill_mem := fun _ => mem_kills;
+ eq_moves := fun reg => PMap.get reg moves
+ |}.
diff --git a/backend/CSE3analysisaux.ml b/backend/CSE3analysisaux.ml
new file mode 100644
index 00000000..23e20ea8
--- /dev/null
+++ b/backend/CSE3analysisaux.ml
@@ -0,0 +1,97 @@
+open CSE3analysis
+open Maps
+open HashedSet
+open Camlcoq
+
+let flatten_eq eq =
+ ((P.to_int eq.eq_lhs), eq.eq_op, List.map P.to_int eq.eq_args);;
+
+let imp_add_i_j s i j =
+ s := PMap.set i (PSet.add j (PMap.get i !s)) !s;;
+
+let string_of_chunk = function
+ | AST.Mint8signed -> "int8signed"
+ | AST.Mint8unsigned -> "int8unsigned"
+ | AST.Mint16signed -> "int16signed"
+ | AST.Mint16unsigned -> "int16unsigned"
+ | AST.Mint32 -> "int32"
+ | AST.Mint64 -> "int64"
+ | AST.Mfloat32 -> "float32"
+ | AST.Mfloat64 -> "float64"
+ | AST.Many32 -> "any32"
+ | AST.Many64 -> "any64";;
+
+let print_reg channel i =
+ Printf.fprintf channel "r%d" i;;
+
+let print_eq channel (lhs, sop, args) =
+ match sop with
+ | SOp op ->
+ Printf.printf "%a = %a\n" print_reg lhs (PrintOp.print_operation print_reg) (op, args)
+ | SLoad(chunk, addr) ->
+ Printf.printf "%a = %s @ %a\n" print_reg lhs (string_of_chunk chunk)
+ (PrintOp.print_addressing print_reg) (addr, args);;
+
+let print_set s =
+ Printf.printf "{ ";
+ List.iter (fun i -> Printf.printf "%d; " (P.to_int i)) (PSet.elements s);
+ Printf.printf "}\n";;
+
+let preanalysis (tenv : typing_env) (f : RTL.coq_function) =
+ let cur_eq_id = ref 0
+ and cur_catalog = ref PTree.empty
+ and eq_table = Hashtbl.create 100
+ and rhs_table = Hashtbl.create 100
+ and cur_kill_reg = ref (PMap.init PSet.empty)
+ and cur_kill_mem = ref PSet.empty
+ and cur_moves = ref (PMap.init PSet.empty) in
+ let eq_find_oracle node eq =
+ Hashtbl.find_opt eq_table (flatten_eq eq)
+ and rhs_find_oracle node sop args =
+ match Hashtbl.find_opt rhs_table (sop, List.map P.to_int args) with
+ | None -> PSet.empty
+ | Some s -> s in
+ let mutating_eq_find_oracle node eq : P.t option =
+ let (flat_eq_lhs, flat_eq_op, flat_eq_args) as flat_eq = flatten_eq eq in
+ match Hashtbl.find_opt eq_table flat_eq with
+ | Some x ->
+ Some x
+ | None ->
+ (* TODO print_eq stderr flat_eq; *)
+ incr cur_eq_id;
+ let id = !cur_eq_id in
+ let coq_id = P.of_int id in
+ begin
+ Hashtbl.add eq_table flat_eq coq_id;
+ (cur_catalog := PTree.set coq_id eq !cur_catalog);
+ Hashtbl.add rhs_table (flat_eq_op, flat_eq_args)
+ (PSet.add coq_id
+ (match Hashtbl.find_opt rhs_table (flat_eq_op, flat_eq_args) with
+ | None -> PSet.empty
+ | Some s -> s));
+ List.iter
+ (fun reg -> imp_add_i_j cur_kill_reg reg coq_id)
+ (eq.eq_lhs :: eq.eq_args);
+ (if eq_depends_on_mem eq
+ then cur_kill_mem := PSet.add coq_id !cur_kill_mem);
+ (match eq.eq_op, eq.eq_args with
+ | (SOp Op.Omove), [rhs] -> imp_add_i_j cur_moves eq.eq_lhs coq_id
+ | _, _ -> ());
+ Some coq_id
+ end
+ in
+ match
+ internal_analysis
+ { eq_catalog = (fun eq_id -> PTree.get eq_id !cur_catalog);
+ eq_find_oracle = mutating_eq_find_oracle;
+ eq_rhs_oracle = rhs_find_oracle ;
+ eq_kill_reg = (fun reg -> PMap.get reg !cur_kill_reg);
+ eq_kill_mem = (fun () -> !cur_kill_mem);
+ eq_moves = (fun reg -> PMap.get reg !cur_moves)
+ } tenv f
+ with None -> failwith "CSE3analysisaux analysis failed, try re-running with -fno-cse3"
+ | Some invariants ->
+ invariants,
+ { hint_eq_catalog = !cur_catalog;
+ hint_eq_find_oracle= eq_find_oracle;
+ hint_eq_rhs_oracle = rhs_find_oracle };;
diff --git a/backend/CSE3analysisproof.v b/backend/CSE3analysisproof.v
new file mode 100644
index 00000000..b87ec92c
--- /dev/null
+++ b/backend/CSE3analysisproof.v
@@ -0,0 +1,926 @@
+
+Require Import Coqlib Maps Errors Integers Floats Lattice Kildall.
+Require Import AST Linking.
+Require Import Memory Registers Op RTL Maps.
+
+Require Import Globalenvs Values.
+Require Import Linking Values Memory Globalenvs Events Smallstep.
+Require Import Registers Op RTL.
+Require Import CSE3analysis CSE2deps CSE2depsproof HashedSet.
+Require Import RTLtyping.
+Require Import Lia.
+
+Lemma rel_leb_correct:
+ forall x x',
+ rel_leb x x' = true <-> RELATION.ge x' x.
+Proof.
+ unfold rel_leb, RELATION.ge.
+ split; auto.
+Qed.
+
+Hint Resolve rel_leb_correct : cse3.
+
+Lemma relb_leb_correct:
+ forall x x',
+ relb_leb x x' = true <-> RB.ge x' x.
+Proof.
+ unfold relb_leb, RB.ge.
+ destruct x; destruct x'; split; trivial; try contradiction; discriminate.
+Qed.
+
+Hint Resolve relb_leb_correct : cse3.
+
+Theorem loadv_storev_really_same:
+ forall chunk: memory_chunk,
+ forall m1: mem,
+ forall addr v: val,
+ forall m2: mem,
+ forall ty : typ,
+ forall TYPE: Val.has_type v ty,
+ forall STORE: Mem.storev chunk m1 addr v = Some m2,
+ forall COMPATIBLE: loadv_storev_compatible_type chunk ty = true,
+ Mem.loadv chunk m2 addr = Some v.
+Proof.
+ intros.
+ rewrite Mem.loadv_storev_same with (m1:=m1) (v:=v) by assumption.
+ f_equal.
+ destruct chunk; destruct ty; try discriminate.
+ all: destruct v; trivial; try contradiction.
+ all: unfold Val.load_result, Val.has_type in *.
+ all: destruct Archi.ptr64; trivial; discriminate.
+Qed.
+
+Lemma subst_args_notin :
+ forall (rs : regset) dst v args,
+ ~ In dst args ->
+ (rs # dst <- v) ## args = rs ## args.
+Proof.
+ induction args; simpl; trivial.
+ intro NOTIN.
+ destruct (peq a dst).
+ {
+ subst a.
+ intuition congruence.
+ }
+ rewrite Regmap.gso by congruence.
+ f_equal.
+ apply IHargs.
+ intuition congruence.
+Qed.
+
+Lemma add_i_j_adds : forall i j m,
+ PSet.contains (Regmap.get i (add_i_j i j m)) j = true.
+Proof.
+ intros.
+ unfold add_i_j.
+ rewrite Regmap.gss.
+ auto with pset.
+Qed.
+Hint Resolve add_i_j_adds: cse3.
+
+Lemma add_i_j_monotone : forall i j i' j' m,
+ PSet.contains (Regmap.get i' m) j' = true ->
+ PSet.contains (Regmap.get i' (add_i_j i j m)) j' = true.
+Proof.
+ intros.
+ unfold add_i_j.
+ destruct (peq i i').
+ - subst i'.
+ rewrite Regmap.gss.
+ destruct (peq j j').
+ + subst j'.
+ apply PSet.gadds.
+ + eauto with pset.
+ - rewrite Regmap.gso.
+ assumption.
+ congruence.
+Qed.
+
+Hint Resolve add_i_j_monotone: cse3.
+
+Lemma add_ilist_j_monotone : forall ilist j i' j' m,
+ PSet.contains (Regmap.get i' m) j' = true ->
+ PSet.contains (Regmap.get i' (add_ilist_j ilist j m)) j' = true.
+Proof.
+ induction ilist; simpl; intros until m; intro CONTAINS; auto with cse3.
+Qed.
+Hint Resolve add_ilist_j_monotone: cse3.
+
+Lemma add_ilist_j_adds : forall ilist j m,
+ forall i, In i ilist ->
+ PSet.contains (Regmap.get i (add_ilist_j ilist j m)) j = true.
+Proof.
+ induction ilist; simpl; intros until i; intro IN.
+ contradiction.
+ destruct IN as [HEAD | TAIL]; subst; auto with cse3.
+Qed.
+Hint Resolve add_ilist_j_adds: cse3.
+
+Definition xlget_kills (eqs : list (eq_id * equation)) (m : Regmap.t PSet.t) :
+ Regmap.t PSet.t :=
+ List.fold_left (fun already (item : eq_id * equation) =>
+ add_i_j (eq_lhs (snd item)) (fst item)
+ (add_ilist_j (eq_args (snd item)) (fst item) already)) eqs m.
+
+
+Definition xlget_mem_kills (eqs : list (positive * equation)) (m : PSet.t) : PSet.t :=
+(fold_left
+ (fun (a : PSet.t) (p : positive * equation) =>
+ if eq_depends_on_mem (snd p) then PSet.add (fst p) a else a)
+ eqs m).
+
+Lemma xlget_kills_monotone :
+ forall eqs m i j,
+ PSet.contains (Regmap.get i m) j = true ->
+ PSet.contains (Regmap.get i (xlget_kills eqs m)) j = true.
+Proof.
+ induction eqs; simpl; trivial.
+ intros.
+ auto with cse3.
+Qed.
+
+Hint Resolve xlget_kills_monotone : cse3.
+
+Lemma xlget_mem_kills_monotone :
+ forall eqs m j,
+ PSet.contains m j = true ->
+ PSet.contains (xlget_mem_kills eqs m) j = true.
+Proof.
+ induction eqs; simpl; trivial.
+ intros.
+ destruct eq_depends_on_mem.
+ - apply IHeqs.
+ destruct (peq (fst a) j).
+ + subst j. apply PSet.gadds.
+ + rewrite PSet.gaddo by congruence.
+ trivial.
+ - auto.
+Qed.
+
+Hint Resolve xlget_mem_kills_monotone : cse3.
+
+Lemma xlget_kills_has_lhs :
+ forall eqs m lhs sop args j,
+ In (j, {| eq_lhs := lhs;
+ eq_op := sop;
+ eq_args:= args |}) eqs ->
+ PSet.contains (Regmap.get lhs (xlget_kills eqs m)) j = true.
+Proof.
+ induction eqs; simpl.
+ contradiction.
+ intros until j.
+ intro HEAD_TAIL.
+ destruct HEAD_TAIL as [HEAD | TAIL]; subst; simpl.
+ - auto with cse3.
+ - eapply IHeqs. eassumption.
+Qed.
+Hint Resolve xlget_kills_has_lhs : cse3.
+
+Lemma xlget_kills_has_arg :
+ forall eqs m lhs sop arg args j,
+ In (j, {| eq_lhs := lhs;
+ eq_op := sop;
+ eq_args:= args |}) eqs ->
+ In arg args ->
+ PSet.contains (Regmap.get arg (xlget_kills eqs m)) j = true.
+Proof.
+ induction eqs; simpl.
+ contradiction.
+ intros until j.
+ intros HEAD_TAIL ARG.
+ destruct HEAD_TAIL as [HEAD | TAIL]; subst; simpl.
+ - auto with cse3.
+ - eapply IHeqs; eassumption.
+Qed.
+
+Hint Resolve xlget_kills_has_arg : cse3.
+
+Lemma get_kills_has_lhs :
+ forall eqs lhs sop args j,
+ PTree.get j eqs = Some {| eq_lhs := lhs;
+ eq_op := sop;
+ eq_args:= args |} ->
+ PSet.contains (Regmap.get lhs (get_reg_kills eqs)) j = true.
+Proof.
+ unfold get_reg_kills.
+ intros.
+ rewrite PTree.fold_spec.
+ change (fold_left
+ (fun (a : Regmap.t PSet.t) (p : positive * equation) =>
+ add_i_j (eq_lhs (snd p)) (fst p)
+ (add_ilist_j (eq_args (snd p)) (fst p) a))) with xlget_kills.
+ eapply xlget_kills_has_lhs.
+ apply PTree.elements_correct.
+ eassumption.
+Qed.
+
+Hint Resolve get_kills_has_lhs : cse3.
+
+Lemma context_from_hints_get_kills_has_lhs :
+ forall hints lhs sop args j,
+ PTree.get j (hint_eq_catalog hints) = Some {| eq_lhs := lhs;
+ eq_op := sop;
+ eq_args:= args |} ->
+ PSet.contains (eq_kill_reg (context_from_hints hints) lhs) j = true.
+Proof.
+ intros; simpl.
+ eapply get_kills_has_lhs.
+ eassumption.
+Qed.
+
+Hint Resolve context_from_hints_get_kills_has_lhs : cse3.
+
+Lemma get_kills_has_arg :
+ forall eqs lhs sop arg args j,
+ PTree.get j eqs = Some {| eq_lhs := lhs;
+ eq_op := sop;
+ eq_args:= args |} ->
+ In arg args ->
+ PSet.contains (Regmap.get arg (get_reg_kills eqs)) j = true.
+Proof.
+ unfold get_reg_kills.
+ intros.
+ rewrite PTree.fold_spec.
+ change (fold_left
+ (fun (a : Regmap.t PSet.t) (p : positive * equation) =>
+ add_i_j (eq_lhs (snd p)) (fst p)
+ (add_ilist_j (eq_args (snd p)) (fst p) a))) with xlget_kills.
+ eapply xlget_kills_has_arg.
+ - apply PTree.elements_correct.
+ eassumption.
+ - assumption.
+Qed.
+
+Hint Resolve get_kills_has_arg : cse3.
+
+Lemma context_from_hints_get_kills_has_arg :
+ forall hints lhs sop arg args j,
+ PTree.get j (hint_eq_catalog hints) = Some {| eq_lhs := lhs;
+ eq_op := sop;
+ eq_args:= args |} ->
+ In arg args ->
+ PSet.contains (eq_kill_reg (context_from_hints hints) arg) j = true.
+Proof.
+ intros.
+ simpl.
+ eapply get_kills_has_arg; eassumption.
+Qed.
+
+Hint Resolve context_from_hints_get_kills_has_arg : cse3.
+
+Lemma xlget_kills_has_eq_depends_on_mem :
+ forall eqs eq j m,
+ In (j, eq) eqs ->
+ eq_depends_on_mem eq = true ->
+ PSet.contains (xlget_mem_kills eqs m) j = true.
+Proof.
+ induction eqs; simpl.
+ contradiction.
+ intros.
+ destruct H.
+ { subst a.
+ simpl.
+ rewrite H0.
+ apply xlget_mem_kills_monotone.
+ apply PSet.gadds.
+ }
+ eauto.
+Qed.
+
+Hint Resolve xlget_kills_has_eq_depends_on_mem : cse3.
+
+Lemma get_kills_has_eq_depends_on_mem :
+ forall eqs eq j,
+ PTree.get j eqs = Some eq ->
+ eq_depends_on_mem eq = true ->
+ PSet.contains (get_mem_kills eqs) j = true.
+Proof.
+ intros.
+ unfold get_mem_kills.
+ rewrite PTree.fold_spec.
+ change (fold_left
+ (fun (a : PSet.t) (p : positive * equation) =>
+ if eq_depends_on_mem (snd p) then PSet.add (fst p) a else a)
+ (PTree.elements eqs) PSet.empty)
+ with (xlget_mem_kills (PTree.elements eqs) PSet.empty).
+ eapply xlget_kills_has_eq_depends_on_mem.
+ apply PTree.elements_correct.
+ eassumption.
+ trivial.
+Qed.
+
+Lemma context_from_hints_get_kills_has_eq_depends_on_mem :
+ forall hints eq j,
+ PTree.get j (hint_eq_catalog hints) = Some eq ->
+ eq_depends_on_mem eq = true ->
+ PSet.contains (eq_kill_mem (context_from_hints hints) tt) j = true.
+Proof.
+ intros.
+ simpl.
+ eapply get_kills_has_eq_depends_on_mem; eassumption.
+Qed.
+
+Hint Resolve context_from_hints_get_kills_has_eq_depends_on_mem : cse3.
+
+Definition eq_involves (eq : equation) (i : reg) :=
+ i = (eq_lhs eq) \/ In i (eq_args eq).
+
+Section SOUNDNESS.
+ Context {F V : Type}.
+ Context {genv: Genv.t F V}.
+ Context {sp : val}.
+
+ Context {ctx : eq_context}.
+
+ Definition sem_rhs (sop : sym_op) (args : list reg)
+ (rs : regset) (m : mem) (v' : val) :=
+ match sop with
+ | SOp op =>
+ match eval_operation genv sp op (rs ## args) m with
+ | Some v => v' = v
+ | None => False
+ end
+ | SLoad chunk addr =>
+ match
+ match eval_addressing genv sp addr (rs ## args) with
+ | Some a => Mem.loadv chunk m a
+ | None => None
+ end
+ with
+ | Some dat => v' = dat
+ | None => v' = default_notrap_load_value chunk
+ end
+ end.
+
+ Definition sem_eq (eq : equation) (rs : regset) (m : mem) :=
+ sem_rhs (eq_op eq) (eq_args eq) rs m (rs # (eq_lhs eq)).
+
+ Definition sem_rel (rel : RELATION.t) (rs : regset) (m : mem) :=
+ forall i eq,
+ PSet.contains rel i = true ->
+ eq_catalog ctx i = Some eq ->
+ sem_eq eq rs m.
+
+ Hypothesis ctx_kill_reg_has_lhs :
+ forall lhs sop args j,
+ eq_catalog ctx j = Some {| eq_lhs := lhs;
+ eq_op := sop;
+ eq_args:= args |} ->
+ PSet.contains (eq_kill_reg ctx lhs) j = true.
+
+ Hypothesis ctx_kill_reg_has_arg :
+ forall lhs sop args j,
+ eq_catalog ctx j = Some {| eq_lhs := lhs;
+ eq_op := sop;
+ eq_args:= args |} ->
+ forall arg,
+ In arg args ->
+ PSet.contains (eq_kill_reg ctx arg) j = true.
+
+ Hypothesis ctx_kill_mem_has_depends_on_mem :
+ forall eq j,
+ eq_catalog ctx j = Some eq ->
+ eq_depends_on_mem eq = true ->
+ PSet.contains (eq_kill_mem ctx tt) j = true.
+
+ Theorem kill_reg_sound :
+ forall rel rs m dst v,
+ (sem_rel rel rs m) ->
+ (sem_rel (kill_reg (ctx:=ctx) dst rel) (rs#dst <- v) m).
+ Proof.
+ unfold sem_rel, sem_eq, sem_rhs, kill_reg.
+ intros until v.
+ intros REL i eq.
+ specialize REL with (i := i) (eq0 := eq).
+ destruct eq as [lhs sop args]; simpl.
+ specialize ctx_kill_reg_has_lhs with (lhs := lhs) (sop := sop) (args := args) (j := i).
+ specialize ctx_kill_reg_has_arg with (lhs := lhs) (sop := sop) (args := args) (j := i) (arg := dst).
+ intuition.
+ rewrite PSet.gsubtract in H.
+ rewrite andb_true_iff in H.
+ rewrite negb_true_iff in H.
+ intuition.
+ simpl in *.
+ assert ({In dst args} + {~In dst args}) as IN_ARGS.
+ {
+ apply List.in_dec.
+ apply peq.
+ }
+ destruct IN_ARGS as [IN_ARGS | NOTIN_ARGS].
+ { intuition.
+ congruence.
+ }
+ destruct (peq dst lhs).
+ {
+ congruence.
+ }
+ rewrite subst_args_notin by assumption.
+ destruct sop.
+ - destruct (eval_operation genv sp o rs ## args m) as [ev | ]; trivial.
+ rewrite Regmap.gso by congruence.
+ assumption.
+ - rewrite Regmap.gso by congruence.
+ assumption.
+ Qed.
+
+ Hint Resolve kill_reg_sound : cse3.
+
+ Theorem kill_reg_sound2 :
+ forall rel rs m dst,
+ (sem_rel rel rs m) ->
+ (sem_rel (kill_reg (ctx:=ctx) dst rel) rs m).
+ Proof.
+ unfold sem_rel, sem_eq, sem_rhs, kill_reg.
+ intros until dst.
+ intros REL i eq.
+ specialize REL with (i := i) (eq0 := eq).
+ destruct eq as [lhs sop args]; simpl.
+ specialize ctx_kill_reg_has_lhs with (lhs := lhs) (sop := sop) (args := args) (j := i).
+ specialize ctx_kill_reg_has_arg with (lhs := lhs) (sop := sop) (args := args) (j := i) (arg := dst).
+ intuition.
+ rewrite PSet.gsubtract in H.
+ rewrite andb_true_iff in H.
+ rewrite negb_true_iff in H.
+ intuition.
+ Qed.
+
+ Lemma pick_source_sound :
+ forall (l : list reg),
+ match pick_source l with
+ | Some x => In x l
+ | None => True
+ end.
+ Proof.
+ unfold pick_source.
+ destruct l; simpl; trivial.
+ left; trivial.
+ Qed.
+
+ Hint Resolve pick_source_sound : cse3.
+
+ Theorem forward_move_sound :
+ forall rel rs m x,
+ (sem_rel rel rs m) ->
+ rs # (forward_move (ctx := ctx) rel x) = rs # x.
+ Proof.
+ unfold sem_rel, forward_move.
+ intros until x.
+ intro REL.
+ pose proof (pick_source_sound (PSet.elements (PSet.inter rel (eq_moves ctx x)))) as ELEMENT.
+ destruct (pick_source (PSet.elements (PSet.inter rel (eq_moves ctx x)))).
+ 2: reflexivity.
+ destruct (eq_catalog ctx r) as [eq | ] eqn:CATALOG.
+ 2: reflexivity.
+ specialize REL with (i := r) (eq0 := eq).
+ destruct (is_smove (eq_op eq)) as [MOVE | ].
+ 2: reflexivity.
+ destruct (peq x (eq_lhs eq)).
+ 2: reflexivity.
+ simpl.
+ subst x.
+ rewrite PSet.elements_spec in ELEMENT.
+ rewrite PSet.ginter in ELEMENT.
+ rewrite andb_true_iff in ELEMENT.
+ unfold sem_eq in REL.
+ rewrite MOVE in REL.
+ simpl in REL.
+ destruct (eq_args eq) as [ | h t].
+ reflexivity.
+ destruct t.
+ 2: reflexivity.
+ simpl in REL.
+ intuition congruence.
+ Qed.
+
+ Hint Resolve forward_move_sound : cse3.
+
+ Theorem forward_move_l_sound :
+ forall rel rs m l,
+ (sem_rel rel rs m) ->
+ rs ## (forward_move_l (ctx := ctx) rel l) = rs ## l.
+ Proof.
+ induction l; simpl; intros; trivial.
+ erewrite forward_move_sound by eassumption.
+ intuition congruence.
+ Qed.
+
+ Hint Resolve forward_move_l_sound : cse3.
+
+ Theorem kill_mem_sound :
+ forall rel rs m m',
+ (sem_rel rel rs m) ->
+ (sem_rel (kill_mem (ctx:=ctx) rel) rs m').
+ Proof.
+ unfold sem_rel, sem_eq, sem_rhs, kill_mem.
+ intros until m'.
+ intros REL i eq.
+ specialize REL with (i := i) (eq0 := eq).
+ intros SUBTRACT CATALOG.
+ rewrite PSet.gsubtract in SUBTRACT.
+ rewrite andb_true_iff in SUBTRACT.
+ intuition.
+ destruct (eq_op eq) as [op | chunk addr] eqn:OP.
+ - specialize ctx_kill_mem_has_depends_on_mem with (eq0 := eq) (j := i).
+ unfold eq_depends_on_mem in ctx_kill_mem_has_depends_on_mem.
+ rewrite OP in ctx_kill_mem_has_depends_on_mem.
+ rewrite (op_depends_on_memory_correct genv sp op) with (m2 := m).
+ assumption.
+ destruct (op_depends_on_memory op) in *; trivial.
+ rewrite ctx_kill_mem_has_depends_on_mem in H0; trivial.
+ discriminate H0.
+ - specialize ctx_kill_mem_has_depends_on_mem with (eq0 := eq) (j := i).
+ destruct eq as [lhs op args]; simpl in *.
+ rewrite OP in ctx_kill_mem_has_depends_on_mem.
+ rewrite negb_true_iff in H0.
+ rewrite OP in CATALOG.
+ intuition.
+ congruence.
+ Qed.
+
+ Hint Resolve kill_mem_sound : cse3.
+
+ Theorem eq_find_sound:
+ forall no eq id,
+ eq_find (ctx := ctx) no eq = Some id ->
+ eq_catalog ctx id = Some eq.
+ Proof.
+ unfold eq_find.
+ intros.
+ destruct (eq_find_oracle ctx no eq) as [ id' | ].
+ 2: discriminate.
+ destruct (eq_catalog ctx id') as [eq' |] eqn:CATALOG.
+ 2: discriminate.
+ destruct (eq_dec_equation eq eq').
+ 2: discriminate.
+ congruence.
+ Qed.
+
+ Hint Resolve eq_find_sound : cse3.
+
+ Theorem rhs_find_sound:
+ forall no sop args rel src rs m,
+ sem_rel rel rs m ->
+ rhs_find (ctx := ctx) no sop args rel = Some src ->
+ sem_rhs sop args rs m (rs # src).
+ Proof.
+ unfold rhs_find, sem_rel, sem_eq.
+ intros until m.
+ intros REL FIND.
+ pose proof (pick_source_sound (PSet.elements (PSet.inter (eq_rhs_oracle ctx no sop args) rel))) as SOURCE.
+ destruct (pick_source (PSet.elements (PSet.inter (eq_rhs_oracle ctx no sop args) rel))) as [ src' | ].
+ 2: discriminate.
+ rewrite PSet.elements_spec in SOURCE.
+ rewrite PSet.ginter in SOURCE.
+ rewrite andb_true_iff in SOURCE.
+ destruct (eq_catalog ctx src') as [eq | ] eqn:CATALOG.
+ 2: discriminate.
+ specialize REL with (i := src') (eq0 := eq).
+ destruct (eq_dec_sym_op sop (eq_op eq)).
+ 2: discriminate.
+ destruct (eq_dec_args args (eq_args eq)).
+ 2: discriminate.
+ simpl in FIND.
+ intuition congruence.
+ Qed.
+
+ Hint Resolve rhs_find_sound : cse3.
+
+ Theorem forward_move_rhs_sound :
+ forall sop args rel rs m v,
+ (sem_rel rel rs m) ->
+ (sem_rhs sop args rs m v) ->
+ (sem_rhs sop (forward_move_l (ctx := ctx) rel args) rs m v).
+ Proof.
+ intros until v.
+ intros REL RHS.
+ destruct sop; simpl in *.
+ all: erewrite forward_move_l_sound by eassumption; assumption.
+ Qed.
+
+ Hint Resolve forward_move_rhs_sound : cse3.
+
+ Lemma arg_not_replaced:
+ forall (rs : regset) dst v args,
+ ~ In dst args ->
+ (rs # dst <- v) ## args = rs ## args.
+ Proof.
+ induction args; simpl; trivial.
+ intuition.
+ f_equal; trivial.
+ apply Regmap.gso; congruence.
+ Qed.
+
+ Lemma sem_rhs_depends_on_args_only:
+ forall sop args rs dst m v,
+ sem_rhs sop args rs m v ->
+ ~ In dst args ->
+ sem_rhs sop args (rs # dst <- v) m v.
+ Proof.
+ unfold sem_rhs.
+ intros.
+ rewrite arg_not_replaced by assumption.
+ assumption.
+ Qed.
+
+ Lemma replace_sound:
+ forall no eqno dst sop args rel rs m v,
+ sem_rel rel rs m ->
+ sem_rhs sop args rs m v ->
+ ~ In dst args ->
+ eq_find (ctx := ctx) no
+ {| eq_lhs := dst;
+ eq_op := sop;
+ eq_args:= args |} = Some eqno ->
+ sem_rel (PSet.add eqno (kill_reg (ctx := ctx) dst rel)) (rs # dst <- v) m.
+ Proof.
+ intros until v.
+ intros REL RHS NOTIN FIND i eq CONTAINS CATALOG.
+ destruct (peq i eqno).
+ - subst i.
+ rewrite eq_find_sound with (no := no) (eq0 := {| eq_lhs := dst; eq_op := sop; eq_args := args |}) in CATALOG by exact FIND.
+ clear FIND.
+ inv CATALOG.
+ unfold sem_eq.
+ simpl in *.
+ rewrite Regmap.gss.
+ apply sem_rhs_depends_on_args_only; auto.
+ - rewrite PSet.gaddo in CONTAINS by congruence.
+ eapply kill_reg_sound; eauto.
+ Qed.
+
+ Lemma sem_rhs_det:
+ forall {sop} {args} {rs} {m} {v} {v'},
+ sem_rhs sop args rs m v ->
+ sem_rhs sop args rs m v' ->
+ v = v'.
+ Proof.
+ intros until v'. intro SEMv.
+ destruct sop; simpl in *.
+ - destruct eval_operation.
+ congruence.
+ contradiction.
+ - destruct eval_addressing.
+ + destruct Mem.loadv; congruence.
+ + congruence.
+ Qed.
+
+ Theorem oper2_sound:
+ forall no dst sop args rel rs m v,
+ sem_rel rel rs m ->
+ not (In dst args) ->
+ sem_rhs sop args rs m v ->
+ sem_rel (oper2 (ctx := ctx) no dst sop args rel) (rs # dst <- v) m.
+ Proof.
+ unfold oper2.
+ intros until v.
+ intros REL NOTIN RHS.
+ pose proof (eq_find_sound no {| eq_lhs := dst; eq_op := sop; eq_args := args |}) as EQ_FIND_SOUND.
+ destruct eq_find.
+ 2: auto with cse3; fail.
+ specialize EQ_FIND_SOUND with (id := e).
+ intuition.
+ intros i eq CONTAINS.
+ destruct (peq i e).
+ { subst i.
+ rewrite H.
+ clear H.
+ intro Z.
+ inv Z.
+ unfold sem_eq.
+ simpl.
+ rewrite Regmap.gss.
+ apply sem_rhs_depends_on_args_only; auto.
+ }
+ rewrite PSet.gaddo in CONTAINS by congruence.
+ apply (kill_reg_sound rel rs m dst v REL i eq); auto.
+ Qed.
+
+ Hint Resolve oper2_sound : cse3.
+
+ Theorem oper1_sound:
+ forall no dst sop args rel rs m v,
+ sem_rel rel rs m ->
+ sem_rhs sop args rs m v ->
+ sem_rel (oper1 (ctx := ctx) no dst sop args rel) (rs # dst <- v) m.
+ Proof.
+ intros.
+ unfold oper1.
+ destruct in_dec; auto with cse3.
+ Qed.
+
+ Hint Resolve oper1_sound : cse3.
+
+ Lemma move_sound :
+ forall no : node,
+ forall rel : RELATION.t,
+ forall src dst : reg,
+ forall rs m,
+ sem_rel rel rs m ->
+ sem_rel (move (ctx:=ctx) no src dst rel) (rs # dst <- (rs # src)) m.
+ Proof.
+ unfold move.
+ intros until m.
+ intro REL.
+ pose proof (eq_find_sound no {| eq_lhs := dst; eq_op := SOp Omove; eq_args := src :: nil |}) as EQ_FIND_SOUND.
+ destruct eq_find.
+ - intros i eq CONTAINS.
+ destruct (peq i e).
+ + subst i.
+ rewrite (EQ_FIND_SOUND e) by trivial.
+ intro Z.
+ inv Z.
+ unfold sem_eq.
+ simpl.
+ destruct (peq src dst).
+ * subst dst.
+ reflexivity.
+ * rewrite Regmap.gss.
+ rewrite Regmap.gso by congruence.
+ reflexivity.
+ + intros.
+ rewrite PSet.gaddo in CONTAINS by congruence.
+ apply (kill_reg_sound rel rs m dst (rs # src) REL i); auto.
+ - apply kill_reg_sound; auto.
+ Qed.
+
+ Hint Resolve move_sound : cse3.
+
+ Theorem oper_sound:
+ forall no dst sop args rel rs m v,
+ sem_rel rel rs m ->
+ sem_rhs sop args rs m v ->
+ sem_rel (oper (ctx := ctx) no dst sop args rel) (rs # dst <- v) m.
+ Proof.
+ intros until v.
+ intros REL RHS.
+ unfold oper.
+ destruct rhs_find as [src |] eqn:RHS_FIND.
+ - pose proof (rhs_find_sound no sop (forward_move_l (ctx:=ctx) rel args) rel src rs m REL RHS_FIND) as SOUND.
+ eapply forward_move_rhs_sound in RHS.
+ 2: eassumption.
+ rewrite <- (sem_rhs_det SOUND RHS).
+ apply move_sound; auto.
+ - apply oper1_sound; auto.
+ Qed.
+
+ Hint Resolve oper_sound : cse3.
+
+
+ Theorem clever_kill_store_sound:
+ forall chunk addr args a src rel rs m m',
+ sem_rel rel rs m ->
+ eval_addressing genv sp addr (rs ## args) = Some a ->
+ Mem.storev chunk m a (rs # src) = Some m' ->
+ sem_rel (clever_kill_store (ctx:=ctx) chunk addr args src rel) rs m'.
+ Proof.
+ unfold clever_kill_store.
+ intros until m'. intros REL ADDR STORE i eq CONTAINS CATALOG.
+ autorewrite with pset in CONTAINS.
+ destruct (PSet.contains rel i) eqn:RELi; simpl in CONTAINS.
+ 2: discriminate.
+ rewrite CATALOG in CONTAINS.
+ unfold sem_rel in REL.
+ specialize REL with (i := i) (eq0 := eq).
+ destruct eq; simpl in *.
+ unfold sem_eq in *.
+ simpl in *.
+ destruct eq_op as [op' | chunk' addr']; simpl.
+ - destruct (op_depends_on_memory op') eqn:DEPENDS.
+ + erewrite ctx_kill_mem_has_depends_on_mem in CONTAINS by eauto.
+ discriminate.
+ + rewrite op_depends_on_memory_correct with (m2:=m); trivial.
+ apply REL; auto.
+ - simpl in REL.
+ erewrite ctx_kill_mem_has_depends_on_mem in CONTAINS by eauto.
+ simpl in CONTAINS.
+ rewrite negb_true_iff in CONTAINS.
+ destruct (eval_addressing genv sp addr' rs ## eq_args) as [a'|] eqn:ADDR'.
+ + erewrite may_overlap_sound with (chunk:=chunk) (addr:=addr) (args:=args) (chunk':=chunk') (addr':=addr') (args':=eq_args); try eassumption.
+ apply REL; auto.
+ + apply REL; auto.
+ Qed.
+
+ Hint Resolve clever_kill_store_sound : cse3.
+
+ Theorem store2_sound:
+ forall chunk addr args a src rel rs m m',
+ sem_rel rel rs m ->
+ eval_addressing genv sp addr (rs ## args) = Some a ->
+ Mem.storev chunk m a (rs # src) = Some m' ->
+ sem_rel (store2 (ctx:=ctx) chunk addr args src rel) rs m'.
+ Proof.
+ unfold store2.
+ intros.
+ destruct (Compopts.optim_CSE3_alias_analysis tt); eauto with cse3.
+ Qed.
+
+ Hint Resolve store2_sound : cse3.
+
+ Theorem store1_sound:
+ forall no chunk addr args a src rel tenv rs m m',
+ sem_rel rel rs m ->
+ wt_regset tenv rs ->
+ eval_addressing genv sp addr (rs ## args) = Some a ->
+ Mem.storev chunk m a (rs#src) = Some m' ->
+ sem_rel (store1 (ctx:=ctx) no chunk addr args src (tenv src) rel) rs m'.
+ Proof.
+ unfold store1.
+ intros until m'.
+ intros REL WT ADDR STORE.
+ assert (sem_rel (store2 (ctx:=ctx) chunk addr args src rel) rs m') as REL' by eauto with cse3.
+ destruct loadv_storev_compatible_type eqn:COMPATIBLE.
+ 2: auto; fail.
+ destruct eq_find as [eq_id | ] eqn:FIND.
+ 2: auto; fail.
+ intros i eq CONTAINS CATALOG.
+ destruct (peq i eq_id).
+ { subst i.
+ rewrite eq_find_sound with (no:=no) (eq0:={| eq_lhs := src; eq_op := SLoad chunk addr; eq_args := args |}) in CATALOG; trivial.
+ inv CATALOG.
+ unfold sem_eq.
+ simpl.
+ rewrite ADDR.
+ rewrite loadv_storev_really_same with (m1:=m) (v:=rs#src) (ty:=(tenv src)); trivial.
+ }
+ unfold sem_rel in REL'.
+ rewrite PSet.gaddo in CONTAINS by congruence.
+ eauto.
+ Qed.
+
+ Hint Resolve store1_sound : cse3.
+
+ Theorem store_sound:
+ forall no chunk addr args a src rel tenv rs m m',
+ sem_rel rel rs m ->
+ wt_regset tenv rs ->
+ eval_addressing genv sp addr (rs ## args) = Some a ->
+ Mem.storev chunk m a (rs#src) = Some m' ->
+ sem_rel (store (ctx:=ctx) no chunk addr args src (tenv src) rel) rs m'.
+ Proof.
+ unfold store.
+ intros until m'.
+ intros REL WT ADDR STORE.
+ rewrite <- forward_move_l_sound with (rel:=rel) (m:=m) in ADDR by trivial.
+ rewrite <- forward_move_sound with (rel:=rel) (m:=m) in STORE by trivial.
+ apply store1_sound with (a := a) (m := m); trivial.
+ rewrite forward_move_sound with (rel:=rel) (m:=m) in STORE by trivial.
+ assumption.
+ Qed.
+
+ Hint Resolve store_sound : cse3.
+
+ Section INDUCTIVENESS.
+ Variable fn : RTL.function.
+ Variable tenv : typing_env.
+ Variable inv: invariants.
+
+ Definition is_inductive_step (pc pc' : node) :=
+ forall instr,
+ PTree.get pc (fn_code fn) = Some instr ->
+ In pc' (successors_instr instr) ->
+ RB.ge (PMap.get pc' inv)
+ (apply_instr' (ctx:=ctx) tenv (fn_code fn) pc (PMap.get pc inv)).
+
+ Definition is_inductive_allstep :=
+ forall pc pc', is_inductive_step pc pc'.
+
+ Lemma checked_is_inductive_allstep:
+ (check_inductiveness (ctx:=ctx) fn tenv inv) = true ->
+ is_inductive_allstep.
+ Proof.
+ unfold check_inductiveness, is_inductive_allstep, is_inductive_step.
+ rewrite andb_true_iff.
+ rewrite PTree_Properties.for_all_correct.
+ intros (ENTRYPOINT & ALL).
+ intros until instr.
+ intros INSTR IN_SUCC.
+ specialize ALL with (x := pc) (a := instr).
+ pose proof (ALL INSTR) as AT_PC.
+ destruct (inv # pc).
+ 2: apply RB.ge_bot.
+ rewrite List.forallb_forall in AT_PC.
+ unfold apply_instr'.
+ rewrite INSTR.
+ apply relb_leb_correct.
+ auto.
+ Qed.
+
+ Lemma checked_is_inductive_entry:
+ (check_inductiveness (ctx:=ctx) fn tenv inv) = true ->
+ inv # (fn_entrypoint fn) = Some RELATION.top.
+ Proof.
+ unfold check_inductiveness, is_inductive_allstep, is_inductive_step.
+ rewrite andb_true_iff.
+ intros (ENTRYPOINT & ALL).
+ apply RB.beq_correct in ENTRYPOINT.
+ unfold RB.eq, RELATION.eq in ENTRYPOINT.
+ destruct (inv # (fn_entrypoint fn)) as [rel | ].
+ 2: contradiction.
+ f_equal.
+ symmetry.
+ assumption.
+ Qed.
+ End INDUCTIVENESS.
+
+ Hint Resolve checked_is_inductive_allstep checked_is_inductive_entry : cse3.
+End SOUNDNESS.
diff --git a/backend/CSE3proof.v b/backend/CSE3proof.v
new file mode 100644
index 00000000..19fb20be
--- /dev/null
+++ b/backend/CSE3proof.v
@@ -0,0 +1,875 @@
+(*
+Replace available expressions by the register containing their value.
+
+Proofs.
+
+David Monniaux, CNRS, VERIMAG
+ *)
+
+Require Import Coqlib Maps Errors Integers Floats Lattice Kildall.
+Require Import AST Linking.
+Require Import Memory Registers Op RTL Maps.
+
+Require Import Globalenvs Values.
+Require Import Linking Values Memory Globalenvs Events Smallstep.
+Require Import Registers Op RTL.
+Require Import CSE3 CSE3analysis CSE3analysisproof.
+Require Import RTLtyping.
+
+
+Definition match_prog (p tp: RTL.program) :=
+ match_program (fun ctx f tf => transf_fundef f = OK tf) eq p tp.
+
+Lemma transf_program_match:
+ forall p tp, transf_program p = OK tp -> match_prog p tp.
+Proof.
+ intros. eapply match_transform_partial_program; eauto.
+Qed.
+
+Section PRESERVATION.
+
+Variables prog tprog: program.
+Hypothesis TRANSF: match_prog prog tprog.
+Let ge := Genv.globalenv prog.
+Let tge := Genv.globalenv tprog.
+
+Section SOUNDNESS.
+Variable sp : val.
+Variable ctx : eq_context.
+
+Definition sem_rel_b (rel : RB.t) (rs : regset) (m : mem) :=
+ match rel with
+ | None => False
+ | Some rel => sem_rel (ctx:=ctx) (genv:=ge) (sp:=sp) rel rs m
+ end.
+
+Lemma forward_move_b_sound :
+ forall rel rs m x,
+ (sem_rel_b rel rs m) ->
+ rs # (forward_move_b (ctx := ctx) rel x) = rs # x.
+Proof.
+ destruct rel as [rel | ]; simpl; intros.
+ 2: contradiction.
+ eapply forward_move_sound; eauto.
+ Qed.
+
+ Lemma forward_move_l_b_sound :
+ forall rel rs m x,
+ (sem_rel_b rel rs m) ->
+ rs ## (forward_move_l_b (ctx := ctx) rel x) = rs ## x.
+ Proof.
+ destruct rel as [rel | ]; simpl; intros.
+ 2: contradiction.
+ eapply forward_move_l_sound; eauto.
+ Qed.
+
+ Definition fmap_sem (fmap : PMap.t RB.t) (pc : node) (rs : regset) (m : mem) :=
+ sem_rel_b (PMap.get pc fmap) rs m.
+
+ Lemma subst_arg_ok:
+ forall invariants,
+ forall pc,
+ forall rs,
+ forall m,
+ forall arg,
+ forall (SEM : fmap_sem invariants pc rs m),
+ rs # (subst_arg (ctx:=ctx) invariants pc arg) = rs # arg.
+ Proof.
+ intros.
+ apply forward_move_b_sound with (m:=m).
+ assumption.
+ Qed.
+
+ Lemma subst_args_ok:
+ forall invariants,
+ forall pc,
+ forall rs,
+ forall m,
+ forall args,
+ forall (SEM : fmap_sem invariants pc rs m),
+ rs ## (subst_args (ctx:=ctx) invariants pc args) = rs ## args.
+ Proof.
+ intros.
+ apply forward_move_l_b_sound with (m:=m).
+ assumption.
+ Qed.
+End SOUNDNESS.
+
+Lemma functions_translated:
+ forall (v: val) (f: RTL.fundef),
+ Genv.find_funct ge v = Some f ->
+ exists tf,
+ Genv.find_funct tge v = Some tf /\ transf_fundef f = OK tf.
+Proof.
+ apply (Genv.find_funct_transf_partial TRANSF).
+Qed.
+
+Lemma function_ptr_translated:
+ forall (b: block) (f: RTL.fundef),
+ Genv.find_funct_ptr ge b = Some f ->
+ exists tf,
+ Genv.find_funct_ptr tge b = Some tf /\ transf_fundef f = OK tf.
+Proof.
+ apply (Genv.find_funct_ptr_transf_partial TRANSF).
+Qed.
+
+Lemma symbols_preserved:
+ forall id,
+ Genv.find_symbol tge id = Genv.find_symbol ge id.
+Proof.
+ apply (Genv.find_symbol_match TRANSF).
+Qed.
+
+Lemma senv_preserved:
+ Senv.equiv ge tge.
+Proof.
+ apply (Genv.senv_match TRANSF).
+Qed.
+
+Lemma sig_preserved:
+ forall f tf, transf_fundef f = OK tf -> funsig tf = funsig f.
+Proof.
+ destruct f; simpl; intros.
+ - monadInv H.
+ monadInv EQ.
+ destruct preanalysis as [invariants hints].
+ destruct check_inductiveness.
+ 2: discriminate.
+ inv EQ1.
+ reflexivity.
+ - monadInv H.
+ reflexivity.
+Qed.
+
+Lemma stacksize_preserved:
+ forall f tf, transf_function f = OK tf -> fn_stacksize tf = fn_stacksize f.
+Proof.
+ unfold transf_function; destruct f; simpl; intros.
+ monadInv H.
+ destruct preanalysis as [invariants hints].
+ destruct check_inductiveness.
+ 2: discriminate.
+ inv EQ0.
+ reflexivity.
+Qed.
+
+Lemma params_preserved:
+ forall f tf, transf_function f = OK tf -> fn_params tf = fn_params f.
+Proof.
+ unfold transf_function; destruct f; simpl; intros.
+ monadInv H.
+ destruct preanalysis as [invariants hints].
+ destruct check_inductiveness.
+ 2: discriminate.
+ inv EQ0.
+ reflexivity.
+Qed.
+
+Lemma entrypoint_preserved:
+ forall f tf, transf_function f = OK tf -> fn_entrypoint tf = fn_entrypoint f.
+Proof.
+ unfold transf_function; destruct f; simpl; intros.
+ monadInv H.
+ destruct preanalysis as [invariants hints].
+ destruct check_inductiveness.
+ 2: discriminate.
+ inv EQ0.
+ reflexivity.
+Qed.
+
+Lemma sig_preserved2:
+ forall f tf, transf_function f = OK tf -> fn_sig tf = fn_sig f.
+Proof.
+ unfold transf_function; destruct f; simpl; intros.
+ monadInv H.
+ destruct preanalysis as [invariants hints].
+ destruct check_inductiveness.
+ 2: discriminate.
+ inv EQ0.
+ reflexivity.
+Qed.
+
+Lemma transf_function_is_typable:
+ forall f tf, transf_function f = OK tf ->
+ exists tenv, type_function f = OK tenv.
+Proof.
+ unfold transf_function; destruct f; simpl; intros.
+ monadInv H.
+ exists x.
+ assumption.
+Qed.
+Lemma transf_function_invariants_inductive:
+ forall f tf tenv, transf_function f = OK tf ->
+ type_function f = OK tenv ->
+ check_inductiveness (ctx:=(context_from_hints (snd (preanalysis tenv f))))
+ f tenv (fst (preanalysis tenv f)) = true.
+Proof.
+ unfold transf_function; destruct f; simpl; intros.
+ monadInv H.
+ replace x with tenv in * by congruence.
+ clear x.
+ destruct preanalysis as [invariants hints].
+ destruct check_inductiveness; trivial; discriminate.
+Qed.
+
+Lemma find_function_translated:
+ forall ros rs fd,
+ find_function ge ros rs = Some fd ->
+ exists tfd,
+ find_function tge ros rs = Some tfd /\ transf_fundef fd = OK tfd.
+Proof.
+ unfold find_function; intros. destruct ros as [r|id].
+ eapply functions_translated; eauto.
+ rewrite symbols_preserved. destruct (Genv.find_symbol ge id); try congruence.
+ eapply function_ptr_translated; eauto.
+Qed.
+
+Check sem_rel_b.
+Inductive match_stackframes: list stackframe -> list stackframe -> signature -> Prop :=
+ | match_stackframes_nil: forall sg,
+ sg.(sig_res) = Tint ->
+ match_stackframes nil nil sg
+ | match_stackframes_cons:
+ forall res f sp pc rs s tf ts sg tenv
+ (STACKS: match_stackframes s ts (fn_sig tf))
+ (FUN: transf_function f = OK tf)
+ (WTF: type_function f = OK tenv)
+ (WTRS: wt_regset tenv rs)
+ (WTRES: tenv res = proj_sig_res sg)
+ (REL: forall m vres,
+ sem_rel_b sp (context_from_hints (snd (preanalysis tenv f)))
+ ((fst (preanalysis tenv f))#pc) (rs#res <- vres) m),
+
+ match_stackframes
+ (Stackframe res f sp pc rs :: s)
+ (Stackframe res tf sp pc rs :: ts)
+ sg.
+
+Inductive match_states: state -> state -> Prop :=
+ | match_states_intro:
+ forall s f sp pc rs m ts tf tenv
+ (STACKS: match_stackframes s ts (fn_sig tf))
+ (FUN: transf_function f = OK tf)
+ (WTF: type_function f = OK tenv)
+ (WTRS: wt_regset tenv rs)
+ (REL: sem_rel_b sp (context_from_hints (snd (preanalysis tenv f))) ((fst (preanalysis tenv f))#pc) rs m),
+ match_states (State s f sp pc rs m)
+ (State ts tf sp pc rs m)
+ | match_states_call:
+ forall s f args m ts tf
+ (STACKS: match_stackframes s ts (funsig tf))
+ (FUN: transf_fundef f = OK tf)
+ (WTARGS: Val.has_type_list args (sig_args (funsig tf))),
+ match_states (Callstate s f args m)
+ (Callstate ts tf args m)
+ | match_states_return:
+ forall s res m ts sg
+ (STACKS: match_stackframes s ts sg)
+ (WTRES: Val.has_type res (proj_sig_res sg)),
+ match_states (Returnstate s res m)
+ (Returnstate ts res m).
+
+Lemma match_stackframes_change_sig:
+ forall s ts sg sg',
+ match_stackframes s ts sg ->
+ sg'.(sig_res) = sg.(sig_res) ->
+ match_stackframes s ts sg'.
+Proof.
+ intros. inv H.
+ constructor. congruence.
+ econstructor; eauto.
+ unfold proj_sig_res in *. rewrite H0; auto.
+Qed.
+
+Lemma transf_function_at:
+ forall f tf pc tenv instr
+ (TF : transf_function f = OK tf)
+ (TYPE : type_function f = OK tenv)
+ (PC : (fn_code f) ! pc = Some instr),
+ (fn_code tf) ! pc = Some (transf_instr
+ (ctx := (context_from_hints (snd (preanalysis tenv f))))
+ (fst (preanalysis tenv f))
+ pc instr).
+Proof.
+ intros.
+ unfold transf_function in TF.
+ monadInv TF.
+ replace x with tenv in * by congruence.
+ clear EQ.
+ destruct (preanalysis tenv f) as [invariants hints].
+ destruct check_inductiveness.
+ 2: discriminate.
+ inv EQ0.
+ simpl.
+ rewrite PTree.gmap.
+ rewrite PC.
+ reflexivity.
+Qed.
+
+Ltac TR_AT := erewrite transf_function_at by eauto.
+
+Hint Resolve wt_instrs type_function_correct : wt.
+
+Lemma wt_undef :
+ forall tenv rs dst,
+ wt_regset tenv rs ->
+ wt_regset tenv rs # dst <- Vundef.
+Proof.
+ unfold wt_regset.
+ intros.
+ destruct (peq r dst).
+ { subst dst.
+ rewrite Regmap.gss.
+ constructor.
+ }
+ rewrite Regmap.gso by congruence.
+ auto.
+Qed.
+
+Lemma rel_ge:
+ forall inv inv'
+ (GE : RELATION.ge inv' inv)
+ ctx sp rs m
+ (REL: sem_rel (genv:=ge) (sp:=sp) (ctx:=ctx) inv rs m),
+ sem_rel (genv:=ge) (sp:=sp) (ctx:=ctx) inv' rs m.
+Proof.
+ unfold sem_rel, RELATION.ge.
+ intros.
+ apply (REL i); trivial.
+ eapply HashedSet.PSet.is_subset_spec1; eassumption.
+Qed.
+
+Hint Resolve rel_ge : cse3.
+
+Lemma sem_rhs_sop :
+ forall sp op rs args m v,
+ eval_operation ge sp op rs ## args m = Some v ->
+ sem_rhs (genv:=ge) (sp:=sp) (SOp op) args rs m v.
+Proof.
+ intros. simpl.
+ rewrite H.
+ reflexivity.
+Qed.
+
+Hint Resolve sem_rhs_sop : cse3.
+
+Lemma sem_rhs_sload :
+ forall sp chunk addr rs args m a v,
+ eval_addressing ge sp addr rs ## args = Some a ->
+ Mem.loadv chunk m a = Some v ->
+ sem_rhs (genv:=ge) (sp:=sp) (SLoad chunk addr) args rs m v.
+Proof.
+ intros. simpl.
+ rewrite H. rewrite H0.
+ reflexivity.
+Qed.
+
+Hint Resolve sem_rhs_sload : cse3.
+
+Lemma sem_rhs_sload_notrap1 :
+ forall sp chunk addr rs args m,
+ eval_addressing ge sp addr rs ## args = None ->
+ sem_rhs (genv:=ge) (sp:=sp) (SLoad chunk addr) args rs m Vundef.
+Proof.
+ intros. simpl.
+ rewrite H.
+ reflexivity.
+Qed.
+
+Hint Resolve sem_rhs_sload_notrap1 : cse3.
+
+Lemma sem_rhs_sload_notrap2 :
+ forall sp chunk addr rs args m a,
+ eval_addressing ge sp addr rs ## args = Some a ->
+ Mem.loadv chunk m a = None ->
+ sem_rhs (genv:=ge) (sp:=sp) (SLoad chunk addr) args rs m Vundef.
+Proof.
+ intros. simpl.
+ rewrite H. rewrite H0.
+ reflexivity.
+Qed.
+
+Hint Resolve sem_rhs_sload_notrap2 : cse3.
+
+Lemma sem_rel_top:
+ forall ctx sp rs m, sem_rel (genv:=ge) (sp:=sp) (ctx:=ctx) RELATION.top rs m.
+Proof.
+ unfold sem_rel, RELATION.top.
+ intros.
+ rewrite HashedSet.PSet.gempty in *.
+ discriminate.
+Qed.
+
+Hint Resolve sem_rel_top : cse3.
+
+Lemma sem_rel_b_top:
+ forall ctx sp rs m, sem_rel_b sp ctx (Some RELATION.top) rs m.
+Proof.
+ intros. simpl.
+ apply sem_rel_top.
+Qed.
+
+Hint Resolve sem_rel_b_top : cse3.
+
+Ltac IND_STEP :=
+ match goal with
+ REW: (fn_code ?fn) ! ?mpc = Some ?minstr
+ |-
+ sem_rel_b ?sp (context_from_hints (snd (preanalysis ?tenv ?fn))) ((fst (preanalysis ?tenv ?fn)) # ?mpc') ?rs ?m =>
+ assert (is_inductive_allstep (ctx:= (context_from_hints (snd (preanalysis tenv fn)))) fn tenv (fst (preanalysis tenv fn))) as IND by
+ (apply checked_is_inductive_allstep;
+ eapply transf_function_invariants_inductive; eassumption);
+ unfold is_inductive_allstep, is_inductive_step, apply_instr' in IND;
+ specialize IND with (pc:=mpc) (pc':=mpc') (instr:=minstr);
+ simpl in IND;
+ rewrite REW in IND;
+ simpl in IND;
+ destruct ((fst (preanalysis tenv fn)) # mpc') as [zinv' | ];
+ destruct ((fst (preanalysis tenv fn)) # mpc) as [zinv | ];
+ simpl in *;
+ intuition;
+ eapply rel_ge; eauto with cse3;
+ idtac mpc mpc' fn minstr
+ end.
+
+Lemma if_same : forall {T : Type} (b : bool) (x : T),
+ (if b then x else x) = x.
+Proof.
+ destruct b; trivial.
+Qed.
+
+Lemma step_simulation:
+ forall S1 t S2, RTL.step ge S1 t S2 ->
+ forall S1', match_states S1 S1' ->
+ exists S2', RTL.step tge S1' t S2' /\ match_states S2 S2'.
+Proof.
+ induction 1; intros S1' MS; inv MS.
+ - (* Inop *)
+ exists (State ts tf sp pc' rs m). split.
+ + apply exec_Inop; auto.
+ TR_AT. reflexivity.
+ + econstructor; eauto.
+ IND_STEP.
+ - (* Iop *)
+ exists (State ts tf sp pc' (rs # res <- v) m). split.
+ + pose (transf_instr (ctx:=(context_from_hints (snd (preanalysis tenv f)))) (fst (preanalysis tenv f)) pc (Iop op args res pc')) as instr'.
+ assert (instr' = (transf_instr (ctx:=(context_from_hints (snd (preanalysis tenv f)))) (fst (preanalysis tenv f)) pc (Iop op args res pc'))) by reflexivity.
+ unfold transf_instr, find_op_in_fmap in instr'.
+ destruct (@PMap.get (option RELATION.t) pc) eqn:INV_PC.
+ pose proof (rhs_find_sound (sp:=sp) (genv:=ge) (ctx:=(context_from_hints (snd (preanalysis tenv f)))) pc (SOp op)
+ (subst_args (ctx:=(context_from_hints (snd (preanalysis tenv f)))) (fst (preanalysis tenv f)) pc args) t) as FIND_SOUND.
+ * destruct (if is_trivial_op op
+ then None
+ else
+ rhs_find pc (SOp op)
+ (subst_args (fst (preanalysis tenv f)) pc args) t) eqn:FIND.
+ ** destruct (is_trivial_op op). discriminate.
+ apply exec_Iop with (op := Omove) (args := r :: nil).
+ TR_AT.
+ subst instr'.
+ congruence.
+ simpl.
+ specialize FIND_SOUND with (src := r) (rs := rs) (m := m).
+ simpl in FIND_SOUND.
+ rewrite subst_args_ok with (sp:=sp) (m:=m) in FIND_SOUND.
+ rewrite H0 in FIND_SOUND.
+ rewrite FIND_SOUND; auto.
+ unfold fmap_sem.
+ change ((fst (preanalysis tenv f)) # pc)
+ with (@PMap.get (option RELATION.t) pc (@fst invariants analysis_hints (preanalysis tenv f))).
+ rewrite INV_PC.
+ assumption.
+ ** apply exec_Iop with (op := op) (args := (subst_args (ctx:=(context_from_hints (snd (preanalysis tenv f)))) (fst (preanalysis tenv f)) pc args)).
+ TR_AT.
+ { subst instr'.
+ congruence. }
+ rewrite subst_args_ok with (sp:=sp) (m:=m).
+ {
+ rewrite eval_operation_preserved with (ge1:=ge) by exact symbols_preserved.
+ assumption.
+ }
+ unfold fmap_sem.
+ change ((fst (preanalysis tenv f)) # pc)
+ with (@PMap.get (option RELATION.t) pc (@fst invariants analysis_hints (preanalysis tenv f))).
+ rewrite INV_PC.
+ assumption.
+ * apply exec_Iop with (op := op) (args := (subst_args (ctx:=(context_from_hints (snd (preanalysis tenv f)))) (fst (preanalysis tenv f)) pc args)).
+ TR_AT.
+ { subst instr'.
+ rewrite if_same in H1.
+ congruence. }
+ rewrite subst_args_ok with (sp:=sp) (m:=m).
+ {
+ rewrite eval_operation_preserved with (ge1:=ge) by exact symbols_preserved.
+ assumption.
+ }
+ unfold fmap_sem.
+ change ((fst (preanalysis tenv f)) # pc)
+ with (@PMap.get (option RELATION.t) pc (@fst invariants analysis_hints (preanalysis tenv f))).
+ rewrite INV_PC.
+ assumption.
+ + econstructor; eauto.
+ * eapply wt_exec_Iop with (f:=f); try eassumption.
+ eauto with wt.
+ * IND_STEP.
+ apply oper_sound; eauto with cse3.
+
+ - (* Iload *)
+ exists (State ts tf sp pc' (rs # dst <- v) m). split.
+ + pose (transf_instr (ctx:=(context_from_hints (snd (preanalysis tenv f)))) (fst (preanalysis tenv f)) pc (Iload trap chunk addr args dst pc')) as instr'.
+ assert (instr' = (transf_instr (ctx:=(context_from_hints (snd (preanalysis tenv f)))) (fst (preanalysis tenv f)) pc (Iload trap chunk addr args dst pc'))) by reflexivity.
+ unfold transf_instr, find_load_in_fmap in instr'.
+ destruct (@PMap.get (option RELATION.t) pc) eqn:INV_PC.
+ pose proof (rhs_find_sound (sp:=sp) (genv:=ge) (ctx:=(context_from_hints (snd (preanalysis tenv f)))) pc (SLoad chunk addr)
+ (subst_args (ctx:=(context_from_hints (snd (preanalysis tenv f)))) (fst (preanalysis tenv f)) pc args) t) as FIND_SOUND.
+ * destruct rhs_find eqn:FIND.
+ ** apply exec_Iop with (op := Omove) (args := r :: nil).
+ TR_AT.
+ subst instr'.
+ congruence.
+ simpl.
+ specialize FIND_SOUND with (src := r) (rs := rs) (m := m).
+ simpl in FIND_SOUND.
+ rewrite subst_args_ok with (sp:=sp) (m:=m) in FIND_SOUND.
+ rewrite H0 in FIND_SOUND. (* ADDR *)
+ rewrite H1 in FIND_SOUND. (* LOAD *)
+ rewrite FIND_SOUND; auto.
+ unfold fmap_sem.
+ change ((fst (preanalysis tenv f)) # pc)
+ with (@PMap.get (option RELATION.t) pc (@fst invariants analysis_hints (preanalysis tenv f))).
+ rewrite INV_PC.
+ assumption.
+ ** apply exec_Iload with (trap := trap) (chunk := chunk) (a := a) (addr := addr) (args := (subst_args (ctx:=(context_from_hints (snd (preanalysis tenv f)))) (fst (preanalysis tenv f)) pc args)); trivial.
+ TR_AT.
+ { subst instr'.
+ congruence. }
+ rewrite subst_args_ok with (sp:=sp) (m:=m).
+ {
+ rewrite eval_addressing_preserved with (ge1:=ge) by exact symbols_preserved.
+ assumption.
+ }
+ unfold fmap_sem.
+ change ((fst (preanalysis tenv f)) # pc)
+ with (@PMap.get (option RELATION.t) pc (@fst invariants analysis_hints (preanalysis tenv f))).
+ rewrite INV_PC.
+ assumption.
+ * apply exec_Iload with (chunk := chunk) (trap := trap) (addr := addr) (a := a) (args := (subst_args (ctx:=(context_from_hints (snd (preanalysis tenv f)))) (fst (preanalysis tenv f)) pc args)); trivial.
+ TR_AT.
+ { subst instr'.
+ congruence. }
+ rewrite subst_args_ok with (sp:=sp) (m:=m).
+ {
+ rewrite eval_addressing_preserved with (ge1:=ge) by exact symbols_preserved.
+ assumption.
+ }
+ unfold fmap_sem.
+ change ((fst (preanalysis tenv f)) # pc)
+ with (@PMap.get (option RELATION.t) pc (@fst invariants analysis_hints (preanalysis tenv f))).
+ rewrite INV_PC.
+ assumption.
+ + econstructor; eauto.
+ * eapply wt_exec_Iload with (f:=f); try eassumption.
+ eauto with wt.
+ * IND_STEP.
+ apply oper_sound; eauto with cse3.
+
+ - (* Iload notrap1 *)
+ exists (State ts tf sp pc' (rs # dst <- Vundef) m). split.
+ + pose (transf_instr (ctx:=(context_from_hints (snd (preanalysis tenv f)))) (fst (preanalysis tenv f)) pc (Iload NOTRAP chunk addr args dst pc')) as instr'.
+ assert (instr' = (transf_instr (ctx:=(context_from_hints (snd (preanalysis tenv f)))) (fst (preanalysis tenv f)) pc (Iload NOTRAP chunk addr args dst pc'))) by reflexivity.
+ unfold transf_instr, find_load_in_fmap in instr'.
+ destruct (@PMap.get (option RELATION.t) pc) eqn:INV_PC.
+ pose proof (rhs_find_sound (sp:=sp) (genv:=ge) (ctx:=(context_from_hints (snd (preanalysis tenv f)))) pc (SLoad chunk addr)
+ (subst_args (ctx:=(context_from_hints (snd (preanalysis tenv f)))) (fst (preanalysis tenv f)) pc args) t) as FIND_SOUND.
+ * destruct rhs_find eqn:FIND.
+ ** apply exec_Iop with (op := Omove) (args := r :: nil).
+ TR_AT.
+ subst instr'.
+ congruence.
+ simpl.
+ specialize FIND_SOUND with (src := r) (rs := rs) (m := m).
+ simpl in FIND_SOUND.
+ rewrite subst_args_ok with (sp:=sp) (m:=m) in FIND_SOUND.
+ rewrite H0 in FIND_SOUND. (* ADDR *)
+ rewrite FIND_SOUND; auto.
+ unfold fmap_sem.
+ change ((fst (preanalysis tenv f)) # pc)
+ with (@PMap.get (option RELATION.t) pc (@fst invariants analysis_hints (preanalysis tenv f))).
+ rewrite INV_PC.
+ assumption.
+ ** apply exec_Iload_notrap1 with (chunk := chunk) (addr := addr) (args := (subst_args (ctx:=(context_from_hints (snd (preanalysis tenv f)))) (fst (preanalysis tenv f)) pc args)); trivial.
+ TR_AT.
+ { subst instr'.
+ congruence. }
+ rewrite subst_args_ok with (sp:=sp) (m:=m).
+ {
+ rewrite eval_addressing_preserved with (ge1:=ge) by exact symbols_preserved.
+ assumption.
+ }
+ unfold fmap_sem.
+ change ((fst (preanalysis tenv f)) # pc)
+ with (@PMap.get (option RELATION.t) pc (@fst invariants analysis_hints (preanalysis tenv f))).
+ rewrite INV_PC.
+ assumption.
+ * apply exec_Iload_notrap1 with (chunk := chunk) (addr := addr) (args := (subst_args (ctx:=(context_from_hints (snd (preanalysis tenv f)))) (fst (preanalysis tenv f)) pc args)); trivial.
+ TR_AT.
+ { subst instr'.
+ congruence. }
+ rewrite subst_args_ok with (sp:=sp) (m:=m).
+ {
+ rewrite eval_addressing_preserved with (ge1:=ge) by exact symbols_preserved.
+ assumption.
+ }
+ unfold fmap_sem.
+ change ((fst (preanalysis tenv f)) # pc)
+ with (@PMap.get (option RELATION.t) pc (@fst invariants analysis_hints (preanalysis tenv f))).
+ rewrite INV_PC.
+ assumption.
+ + econstructor; eauto.
+ * apply wt_undef; assumption.
+ * IND_STEP.
+ apply oper_sound; eauto with cse3.
+
+ - (* Iload notrap2 *)
+ exists (State ts tf sp pc' (rs # dst <- Vundef) m). split.
+ + pose (transf_instr (ctx:=(context_from_hints (snd (preanalysis tenv f)))) (fst (preanalysis tenv f)) pc (Iload NOTRAP chunk addr args dst pc')) as instr'.
+ assert (instr' = (transf_instr (ctx:=(context_from_hints (snd (preanalysis tenv f)))) (fst (preanalysis tenv f)) pc (Iload NOTRAP chunk addr args dst pc'))) by reflexivity.
+ unfold transf_instr, find_load_in_fmap in instr'.
+ destruct (@PMap.get (option RELATION.t) pc) eqn:INV_PC.
+ pose proof (rhs_find_sound (sp:=sp) (genv:=ge) (ctx:=(context_from_hints (snd (preanalysis tenv f)))) pc (SLoad chunk addr)
+ (subst_args (ctx:=(context_from_hints (snd (preanalysis tenv f)))) (fst (preanalysis tenv f)) pc args) t) as FIND_SOUND.
+ * destruct rhs_find eqn:FIND.
+ ** apply exec_Iop with (op := Omove) (args := r :: nil).
+ TR_AT.
+ subst instr'.
+ congruence.
+ simpl.
+ specialize FIND_SOUND with (src := r) (rs := rs) (m := m).
+ simpl in FIND_SOUND.
+ rewrite subst_args_ok with (sp:=sp) (m:=m) in FIND_SOUND.
+ rewrite H0 in FIND_SOUND. (* ADDR *)
+ rewrite H1 in FIND_SOUND. (* LOAD *)
+ rewrite FIND_SOUND; auto.
+ unfold fmap_sem.
+ change ((fst (preanalysis tenv f)) # pc)
+ with (@PMap.get (option RELATION.t) pc (@fst invariants analysis_hints (preanalysis tenv f))).
+ rewrite INV_PC.
+ assumption.
+ ** apply exec_Iload_notrap2 with (chunk := chunk) (a := a) (addr := addr) (args := (subst_args (ctx:=(context_from_hints (snd (preanalysis tenv f)))) (fst (preanalysis tenv f)) pc args)); trivial.
+ TR_AT.
+ { subst instr'.
+ congruence. }
+ rewrite subst_args_ok with (sp:=sp) (m:=m).
+ {
+ rewrite eval_addressing_preserved with (ge1:=ge) by exact symbols_preserved.
+ assumption.
+ }
+ unfold fmap_sem.
+ change ((fst (preanalysis tenv f)) # pc)
+ with (@PMap.get (option RELATION.t) pc (@fst invariants analysis_hints (preanalysis tenv f))).
+ rewrite INV_PC.
+ assumption.
+ * apply exec_Iload_notrap2 with (chunk := chunk) (addr := addr) (a := a) (args := (subst_args (ctx:=(context_from_hints (snd (preanalysis tenv f)))) (fst (preanalysis tenv f)) pc args)); trivial.
+ TR_AT.
+ { subst instr'.
+ congruence. }
+ rewrite subst_args_ok with (sp:=sp) (m:=m).
+ {
+ rewrite eval_addressing_preserved with (ge1:=ge) by exact symbols_preserved.
+ assumption.
+ }
+ unfold fmap_sem.
+ change ((fst (preanalysis tenv f)) # pc)
+ with (@PMap.get (option RELATION.t) pc (@fst invariants analysis_hints (preanalysis tenv f))).
+ rewrite INV_PC.
+ assumption.
+ + econstructor; eauto.
+ * apply wt_undef; assumption.
+ * IND_STEP.
+ apply oper_sound; eauto with cse3.
+
+ - (* Istore *)
+ exists (State ts tf sp pc' rs m'). split.
+ + eapply exec_Istore with (args := (subst_args (ctx:=(context_from_hints (snd (preanalysis tenv f)))) (fst (preanalysis tenv f)) pc args)); try eassumption.
+ * TR_AT. reflexivity.
+ * rewrite subst_args_ok with (sp:=sp) (m:=m) by trivial.
+ rewrite eval_addressing_preserved with (ge1 := ge) by exact symbols_preserved.
+ assumption.
+ + econstructor; eauto.
+ IND_STEP.
+ apply store_sound with (a0:=a) (m0:=m); eauto with cse3.
+
+ - (* Icall *)
+ destruct (find_function_translated ros rs fd H0) as [tfd [HTFD1 HTFD2]].
+ econstructor. split.
+ + eapply exec_Icall; try eassumption.
+ * TR_AT. reflexivity.
+ * apply sig_preserved; auto.
+ + rewrite subst_args_ok with (sp:=sp) (m:=m) by trivial.
+ assert (wt_instr f tenv (Icall (funsig fd) ros args res pc')) as WTcall by eauto with wt.
+ inv WTcall.
+ constructor; trivial.
+ * econstructor; eauto.
+ ** rewrite sig_preserved with (f:=fd); assumption.
+ ** intros.
+ IND_STEP.
+ apply kill_reg_sound; eauto with cse3.
+ eapply kill_mem_sound; eauto with cse3.
+ * rewrite sig_preserved with (f:=fd) by trivial.
+ rewrite <- H7.
+ apply wt_regset_list; auto.
+ - (* Itailcall *)
+ destruct (find_function_translated ros rs fd H0) as [tfd [HTFD1 HTFD2]].
+ econstructor. split.
+ + eapply exec_Itailcall; try eassumption.
+ * TR_AT. reflexivity.
+ * apply sig_preserved; auto.
+ * rewrite stacksize_preserved with (f:=f); eauto.
+ + rewrite subst_args_ok with (m:=m) (sp := (Vptr stk Ptrofs.zero)) by trivial.
+ assert (wt_instr f tenv (Itailcall (funsig fd) ros args)) as WTcall by eauto with wt.
+ inv WTcall.
+ constructor; trivial.
+ * rewrite sig_preserved with (f:=fd) by trivial.
+ inv STACKS.
+ ** econstructor; eauto.
+ rewrite H7.
+ rewrite <- sig_preserved2 with (tf:=tf) by trivial.
+ assumption.
+ ** econstructor; eauto.
+ unfold proj_sig_res in *.
+ rewrite H7.
+ rewrite WTRES.
+ rewrite sig_preserved2 with (f:=f) by trivial.
+ reflexivity.
+ * rewrite sig_preserved with (f:=fd) by trivial.
+ rewrite <- H6.
+ apply wt_regset_list; auto.
+ - (* Ibuiltin *)
+ econstructor. split.
+ + eapply exec_Ibuiltin; try eassumption.
+ * TR_AT. reflexivity.
+ * eapply eval_builtin_args_preserved with (ge1 := ge); eauto. exact symbols_preserved.
+ * eapply external_call_symbols_preserved; eauto. apply senv_preserved.
+ + econstructor; eauto.
+ * eapply wt_exec_Ibuiltin with (f:=f); eauto with wt.
+ * IND_STEP.
+ - (* Icond *)
+ econstructor. split.
+ + eapply exec_Icond with (args := (subst_args (ctx:=(context_from_hints (snd (preanalysis tenv f)))) (fst (preanalysis tenv f)) pc args)); try eassumption.
+ * TR_AT. reflexivity.
+ * rewrite subst_args_ok with (sp:=sp) (m:=m) by trivial.
+ eassumption.
+ * reflexivity.
+ + econstructor; eauto.
+ destruct b; IND_STEP.
+
+ - (* Ijumptable *)
+ econstructor. split.
+ + eapply exec_Ijumptable with (arg := (subst_arg (ctx:=(context_from_hints (snd (preanalysis tenv f)))) (fst (preanalysis tenv f)) pc arg)); try eassumption.
+ * TR_AT. reflexivity.
+ * rewrite subst_arg_ok with (sp:=sp) (m:=m) by trivial.
+ assumption.
+ + econstructor; eauto.
+ assert (In pc' tbl) as IN_LIST by (eapply list_nth_z_in; eassumption).
+ IND_STEP.
+
+ - (* Ireturn *)
+ destruct or as [arg | ].
+ -- econstructor. split.
+ + eapply exec_Ireturn with (or := Some (subst_arg (ctx:=(context_from_hints (snd (preanalysis tenv f)))) (fst (preanalysis tenv f)) pc arg)).
+ * TR_AT. reflexivity.
+ * rewrite stacksize_preserved with (f:=f); eauto.
+ + simpl.
+ rewrite subst_arg_ok with (sp:=(Vptr stk Ptrofs.zero)) (m:=m) by trivial.
+ econstructor; eauto.
+ apply type_function_correct in WTF.
+ apply wt_instrs with (pc:=pc) (instr:=(Ireturn (Some arg))) in WTF.
+ 2: assumption.
+ inv WTF.
+ rewrite sig_preserved2 with (f:=f) by assumption.
+ rewrite <- H3.
+ unfold wt_regset in WTRS.
+ apply WTRS.
+ -- econstructor. split.
+ + eapply exec_Ireturn; try eassumption.
+ * TR_AT; reflexivity.
+ * rewrite stacksize_preserved with (f:=f); eauto.
+ + econstructor; eauto.
+ simpl. trivial.
+ - (* Callstate internal *)
+ monadInv FUN.
+ rename x into tf.
+ destruct (transf_function_is_typable f tf EQ) as [tenv TENV].
+ econstructor; split.
+ + apply exec_function_internal.
+ rewrite stacksize_preserved with (f:=f); eauto.
+ + rewrite params_preserved with (tf:=tf) (f:=f) by assumption.
+ rewrite entrypoint_preserved with (tf:=tf) (f:=f) by assumption.
+ econstructor; eauto.
+ * apply type_function_correct in TENV.
+ inv TENV.
+ simpl in WTARGS.
+ rewrite sig_preserved2 with (f:=f) in WTARGS by assumption.
+ apply wt_init_regs.
+ rewrite <- wt_params in WTARGS.
+ assumption.
+ * rewrite @checked_is_inductive_entry with (tenv:=tenv) (ctx:=(context_from_hints (snd (preanalysis tenv f)))).
+ ** apply sem_rel_b_top.
+ ** apply transf_function_invariants_inductive with (tf:=tf); auto.
+
+ - (* external *)
+ simpl in FUN.
+ inv FUN.
+ econstructor. split.
+ + eapply exec_function_external.
+ eapply external_call_symbols_preserved; eauto. apply senv_preserved.
+ + econstructor; eauto.
+ eapply external_call_well_typed; eauto.
+ - (* return *)
+ inv STACKS.
+ econstructor. split.
+ + eapply exec_return.
+ + econstructor; eauto.
+ apply wt_regset_assign; trivial.
+ rewrite WTRES0.
+ exact WTRES.
+Qed.
+
+Lemma transf_initial_states:
+ forall S1, RTL.initial_state prog S1 ->
+ exists S2, RTL.initial_state tprog S2 /\ match_states S1 S2.
+Proof.
+ intros. inversion H.
+ exploit function_ptr_translated; eauto.
+ intros (tf & A & B).
+ exists (Callstate nil tf nil m0); split.
+ - econstructor; eauto.
+ + eapply (Genv.init_mem_match TRANSF); eauto.
+ + replace (prog_main tprog) with (prog_main prog).
+ rewrite symbols_preserved. eauto.
+ symmetry. eapply match_program_main; eauto.
+ + rewrite <- H3. eapply sig_preserved; eauto.
+ - constructor; trivial.
+ + constructor. rewrite sig_preserved with (f:=f) by assumption.
+ rewrite H3. reflexivity.
+ + rewrite sig_preserved with (f:=f) by assumption.
+ rewrite H3. reflexivity.
+Qed.
+
+Lemma transf_final_states:
+ forall S1 S2 r, match_states S1 S2 -> final_state S1 r -> final_state S2 r.
+Proof.
+ intros. inv H0. inv H. inv STACKS. constructor.
+Qed.
+
+Theorem transf_program_correct:
+ forward_simulation (RTL.semantics prog) (RTL.semantics tprog).
+Proof.
+ eapply forward_simulation_step.
+ - apply senv_preserved.
+ - eexact transf_initial_states.
+ - eexact transf_final_states.
+ - intros. eapply step_simulation; eauto.
+Qed.
+
+End PRESERVATION.
diff --git a/backend/FirstNop.v b/backend/FirstNop.v
new file mode 100644
index 00000000..f7e5261e
--- /dev/null
+++ b/backend/FirstNop.v
@@ -0,0 +1,18 @@
+Require Import Coqlib Maps Errors Integers Floats Lattice Kildall.
+Require Import AST Linking.
+Require Import Memory Registers Op RTL.
+
+Definition transf_function (f: function) : function :=
+ let start_pc := Pos.succ (max_pc_function f) in
+ {| fn_sig := f.(fn_sig);
+ fn_params := f.(fn_params);
+ fn_stacksize := f.(fn_stacksize);
+ fn_code := PTree.set start_pc (Inop f.(fn_entrypoint)) f.(fn_code);
+ fn_entrypoint := start_pc |}.
+
+Definition transf_fundef (fd: fundef) : fundef :=
+ AST.transf_fundef transf_function fd.
+
+Definition transf_program (p: program) : program :=
+ transform_program transf_fundef p.
+
diff --git a/backend/FirstNopproof.v b/backend/FirstNopproof.v
new file mode 100644
index 00000000..5d9a7d6a
--- /dev/null
+++ b/backend/FirstNopproof.v
@@ -0,0 +1,274 @@
+Require Import Coqlib Maps Errors Integers Floats Lattice Kildall.
+Require Import AST Linking.
+Require Import Values Memory Globalenvs Events Smallstep.
+Require Import Registers Op RTL.
+Require Import FirstNop.
+Require Import Lia.
+
+Definition match_prog (p tp: RTL.program) :=
+ match_program (fun ctx f tf => tf = transf_fundef f) eq p tp.
+
+Lemma transf_program_match:
+ forall p, match_prog p (transf_program p).
+Proof.
+ intros. eapply match_transform_program; eauto.
+Qed.
+
+Section PRESERVATION.
+
+Variables prog tprog: program.
+Hypothesis TRANSL: match_prog prog tprog.
+Let ge := Genv.globalenv prog.
+Let tge := Genv.globalenv tprog.
+
+Lemma functions_translated:
+ forall v f,
+ Genv.find_funct ge v = Some f ->
+ Genv.find_funct tge v = Some (transf_fundef f).
+Proof (Genv.find_funct_transf TRANSL).
+
+Lemma function_ptr_translated:
+ forall v f,
+ Genv.find_funct_ptr ge v = Some f ->
+ Genv.find_funct_ptr tge v = Some (transf_fundef f).
+Proof (Genv.find_funct_ptr_transf TRANSL).
+
+Lemma symbols_preserved:
+ forall id,
+ Genv.find_symbol tge id = Genv.find_symbol ge id.
+Proof (Genv.find_symbol_transf TRANSL).
+
+Lemma senv_preserved:
+ Senv.equiv ge tge.
+Proof (Genv.senv_transf TRANSL).
+
+Lemma sig_preserved:
+ forall f, funsig (transf_fundef f) = funsig f.
+Proof.
+ destruct f; reflexivity.
+Qed.
+
+Lemma find_function_translated:
+ forall ros rs fd,
+ find_function ge ros rs = Some fd ->
+ find_function tge ros rs = Some (transf_fundef fd).
+Proof.
+ unfold find_function; intros. destruct ros as [r|id].
+ eapply functions_translated; eauto.
+ rewrite symbols_preserved. destruct (Genv.find_symbol ge id); try congruence.
+ eapply function_ptr_translated; eauto.
+Qed.
+
+Lemma transf_function_at:
+ forall f pc i,
+ f.(fn_code)!pc = Some i ->
+ (transf_function f).(fn_code)!pc = Some i.
+Proof.
+ intros until i. intro Hcode.
+ unfold transf_function; simpl.
+ destruct (peq pc (Pos.succ (max_pc_function f))) as [EQ | NEQ].
+ { assert (pc <= (max_pc_function f))%positive as LE by (eapply max_pc_function_sound; eassumption).
+ subst pc.
+ lia.
+ }
+ rewrite PTree.gso by congruence.
+ assumption.
+Qed.
+
+Hint Resolve transf_function_at : firstnop.
+
+Ltac TR_AT :=
+ match goal with
+ | [ A: (fn_code _)!_ = Some _ |- _ ] =>
+ generalize (transf_function_at _ _ _ A); intros
+ end.
+
+
+Inductive match_frames: RTL.stackframe -> RTL.stackframe -> Prop :=
+| match_frames_intro: forall res f sp pc rs,
+ match_frames (Stackframe res f sp pc rs)
+ (Stackframe res (transf_function f) sp pc rs).
+
+Inductive match_states: RTL.state -> RTL.state -> Prop :=
+ | match_regular_states: forall stk f sp pc rs m stk'
+ (STACKS: list_forall2 match_frames stk stk'),
+ match_states (State stk f sp pc rs m)
+ (State stk' (transf_function f) sp pc rs m)
+ | match_callstates: forall stk f args m stk'
+ (STACKS: list_forall2 match_frames stk stk'),
+ match_states (Callstate stk f args m)
+ (Callstate stk' (transf_fundef f) args m)
+ | match_returnstates: forall stk v m stk'
+ (STACKS: list_forall2 match_frames stk stk'),
+ match_states (Returnstate stk v m)
+ (Returnstate stk' v m).
+
+(*
+Lemma match_pc_refl : forall f pc, match_pc f pc pc.
+Proof.
+ unfold match_pc.
+ left.
+ trivial.
+Qed.
+
+Hint Resolve match_pc_refl : firstnop.
+
+Lemma initial_jump:
+ forall f,
+ (fn_code (transf_function f)) ! (Pos.succ (max_pc_function f)) =
+ Some (Inop (fn_entrypoint f)).
+Proof.
+ intros. unfold transf_function. simpl.
+ apply PTree.gss.
+Qed.
+
+Hint Resolve initial_jump : firstnop.
+ *)
+
+Lemma match_pc_same :
+ forall f pc i,
+ PTree.get pc (fn_code f) = Some i ->
+ PTree.get pc (fn_code (transf_function f)) = Some i.
+Proof.
+ intros.
+ unfold transf_function. simpl.
+ rewrite <- H.
+ apply PTree.gso.
+ pose proof (max_pc_function_sound f pc i H) as LE.
+ unfold Ple in LE.
+ lia.
+Qed.
+
+Hint Resolve match_pc_same : firstnop.
+
+
+Definition measure (S: RTL.state) : nat :=
+ match S with
+ | State _ _ _ _ _ _ => 0%nat
+ | Callstate _ _ _ _ => 1%nat
+ | Returnstate _ _ _ => 0%nat
+ end.
+
+Lemma step_simulation:
+ forall S1 t S2,
+ step ge S1 t S2 ->
+ forall S1' (MS: match_states S1 S1'),
+ (exists S2', plus step tge S1' t S2' /\ match_states S2 S2')
+ \/ (measure S2 < measure S1 /\ t = E0 /\ match_states S2 S1')%nat.
+Proof.
+ induction 1; intros; inv MS.
+ - left. econstructor. split.
+ + eapply plus_one. eapply exec_Inop; eauto with firstnop.
+ + constructor; auto with firstnop.
+ - left. econstructor. split.
+ + eapply plus_one. eapply exec_Iop with (v:=v); eauto with firstnop.
+ rewrite <- H0.
+ apply eval_operation_preserved.
+ apply symbols_preserved.
+ + constructor; auto with firstnop.
+ - left. econstructor. split.
+ + eapply plus_one. eapply exec_Iload with (v:=v); eauto with firstnop.
+ rewrite <- H0.
+ apply eval_addressing_preserved.
+ apply symbols_preserved.
+ + constructor; auto with firstnop.
+ - left. econstructor. split.
+ + eapply plus_one. eapply exec_Iload_notrap1; eauto with firstnop.
+ rewrite <- H0.
+ apply eval_addressing_preserved.
+ apply symbols_preserved.
+ + constructor; auto with firstnop.
+ - left. econstructor. split.
+ + eapply plus_one. eapply exec_Iload_notrap2; eauto with firstnop.
+ rewrite <- H0.
+ apply eval_addressing_preserved.
+ apply symbols_preserved.
+ + constructor; auto with firstnop.
+ - left. econstructor. split.
+ + eapply plus_one. eapply exec_Istore; eauto with firstnop.
+ rewrite <- H0.
+ apply eval_addressing_preserved.
+ apply symbols_preserved.
+ + constructor; auto with firstnop.
+ - left. econstructor. split.
+ + eapply plus_one. eapply exec_Icall.
+ apply match_pc_same. exact H.
+ apply find_function_translated.
+ exact H0.
+ apply sig_preserved.
+ + constructor.
+ constructor; auto.
+ constructor.
+ - left. econstructor. split.
+ + eapply plus_one. eapply exec_Itailcall.
+ apply match_pc_same. exact H.
+ apply find_function_translated.
+ exact H0.
+ apply sig_preserved.
+ unfold transf_function; simpl.
+ eassumption.
+ + constructor; auto.
+ - left. econstructor. split.
+ + eapply plus_one. eapply exec_Ibuiltin; eauto with firstnop.
+ eapply eval_builtin_args_preserved with (ge1 := ge); eauto. exact symbols_preserved.
+ eapply external_call_symbols_preserved; eauto. apply senv_preserved.
+ + constructor; auto.
+ - left. econstructor. split.
+ + eapply plus_one. eapply exec_Icond; eauto with firstnop.
+ + constructor; auto.
+ - left. econstructor. split.
+ + eapply plus_one. eapply exec_Ijumptable; eauto with firstnop.
+ + constructor; auto.
+ - left. econstructor. split.
+ + eapply plus_one. eapply exec_Ireturn; eauto with firstnop.
+ + constructor; auto.
+ - left. econstructor. split.
+ + eapply plus_two.
+ * eapply exec_function_internal; eauto with firstnop.
+ * eapply exec_Inop.
+ unfold transf_function; simpl.
+ rewrite PTree.gss.
+ reflexivity.
+ * auto.
+ + constructor; auto.
+ - left. econstructor. split.
+ + eapply plus_one. eapply exec_function_external; eauto with firstnop.
+ eapply external_call_symbols_preserved; eauto. apply senv_preserved.
+ + constructor; auto.
+ - left.
+ inv STACKS. inv H1.
+ econstructor; split.
+ + eapply plus_one. eapply exec_return; eauto.
+ + constructor; auto.
+Qed.
+
+Lemma transf_initial_states:
+ forall S1, RTL.initial_state prog S1 ->
+ exists S2, RTL.initial_state tprog S2 /\ match_states S1 S2.
+Proof.
+ intros. inv H. econstructor; split.
+ econstructor.
+ eapply (Genv.init_mem_transf TRANSL); eauto.
+ rewrite symbols_preserved. rewrite (match_program_main TRANSL). eauto.
+ eapply function_ptr_translated; eauto.
+ rewrite <- H3; apply sig_preserved.
+ constructor. constructor.
+Qed.
+
+Lemma transf_final_states:
+ forall S1 S2 r, match_states S1 S2 -> RTL.final_state S1 r -> RTL.final_state S2 r.
+Proof.
+ intros. inv H0. inv H. inv STACKS. constructor.
+Qed.
+
+Theorem transf_program_correct:
+ forward_simulation (RTL.semantics prog) (RTL.semantics tprog).
+Proof.
+ eapply forward_simulation_star.
+ apply senv_preserved.
+ eexact transf_initial_states.
+ eexact transf_final_states.
+ exact step_simulation.
+Qed.
+
+End PRESERVATION.