aboutsummaryrefslogtreecommitdiffstats
path: root/flocq/Core/Generic_fmt.v
diff options
context:
space:
mode:
Diffstat (limited to 'flocq/Core/Generic_fmt.v')
-rw-r--r--flocq/Core/Generic_fmt.v2308
1 files changed, 2308 insertions, 0 deletions
diff --git a/flocq/Core/Generic_fmt.v b/flocq/Core/Generic_fmt.v
new file mode 100644
index 00000000..cb37bd91
--- /dev/null
+++ b/flocq/Core/Generic_fmt.v
@@ -0,0 +1,2308 @@
+(**
+This file is part of the Flocq formalization of floating-point
+arithmetic in Coq: http://flocq.gforge.inria.fr/
+
+Copyright (C) 2009-2018 Sylvie Boldo
+#<br />#
+Copyright (C) 2009-2018 Guillaume Melquiond
+
+This library is free software; you can redistribute it and/or
+modify it under the terms of the GNU Lesser General Public
+License as published by the Free Software Foundation; either
+version 3 of the License, or (at your option) any later version.
+
+This library is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+COPYING file for more details.
+*)
+
+(** * What is a real number belonging to a format, and many properties. *)
+Require Import Raux Defs Round_pred Float_prop.
+
+Section Generic.
+
+Variable beta : radix.
+
+Notation bpow e := (bpow beta e).
+
+Section Format.
+
+Variable fexp : Z -> Z.
+
+(** To be a good fexp *)
+
+Class Valid_exp :=
+ valid_exp :
+ forall k : Z,
+ ( (fexp k < k)%Z -> (fexp (k + 1) <= k)%Z ) /\
+ ( (k <= fexp k)%Z ->
+ (fexp (fexp k + 1) <= fexp k)%Z /\
+ forall l : Z, (l <= fexp k)%Z -> fexp l = fexp k ).
+
+Context { valid_exp_ : Valid_exp }.
+
+Theorem valid_exp_large :
+ forall k l,
+ (fexp k < k)%Z -> (k <= l)%Z ->
+ (fexp l < l)%Z.
+Proof.
+intros k l Hk H.
+apply Znot_ge_lt.
+intros Hl.
+apply Z.ge_le in Hl.
+assert (H' := proj2 (proj2 (valid_exp l) Hl) k).
+omega.
+Qed.
+
+Theorem valid_exp_large' :
+ forall k l,
+ (fexp k < k)%Z -> (l <= k)%Z ->
+ (fexp l < k)%Z.
+Proof.
+intros k l Hk H.
+apply Znot_ge_lt.
+intros H'.
+apply Z.ge_le in H'.
+assert (Hl := Z.le_trans _ _ _ H H').
+apply valid_exp in Hl.
+assert (H1 := proj2 Hl k H').
+omega.
+Qed.
+
+Definition cexp x :=
+ fexp (mag beta x).
+
+Definition canonical (f : float beta) :=
+ Fexp f = cexp (F2R f).
+
+Definition scaled_mantissa x :=
+ (x * bpow (- cexp x))%R.
+
+Definition generic_format (x : R) :=
+ x = F2R (Float beta (Ztrunc (scaled_mantissa x)) (cexp x)).
+
+(** Basic facts *)
+Theorem generic_format_0 :
+ generic_format 0.
+Proof.
+unfold generic_format, scaled_mantissa.
+rewrite Rmult_0_l.
+now rewrite Ztrunc_IZR, F2R_0.
+Qed.
+
+Theorem cexp_opp :
+ forall x,
+ cexp (-x) = cexp x.
+Proof.
+intros x.
+unfold cexp.
+now rewrite mag_opp.
+Qed.
+
+Theorem cexp_abs :
+ forall x,
+ cexp (Rabs x) = cexp x.
+Proof.
+intros x.
+unfold cexp.
+now rewrite mag_abs.
+Qed.
+
+Theorem canonical_generic_format :
+ forall x,
+ generic_format x ->
+ exists f : float beta,
+ x = F2R f /\ canonical f.
+Proof.
+intros x Hx.
+rewrite Hx.
+eexists.
+apply (conj eq_refl).
+unfold canonical.
+now rewrite <- Hx.
+Qed.
+
+Theorem generic_format_bpow :
+ forall e, (fexp (e + 1) <= e)%Z ->
+ generic_format (bpow e).
+Proof.
+intros e H.
+unfold generic_format, scaled_mantissa, cexp.
+rewrite mag_bpow.
+rewrite <- bpow_plus.
+rewrite <- (IZR_Zpower beta (e + - fexp (e + 1))).
+rewrite Ztrunc_IZR.
+rewrite <- F2R_bpow.
+rewrite F2R_change_exp with (1 := H).
+now rewrite Zmult_1_l.
+now apply Zle_minus_le_0.
+Qed.
+
+Theorem generic_format_bpow' :
+ forall e, (fexp e <= e)%Z ->
+ generic_format (bpow e).
+Proof.
+intros e He.
+apply generic_format_bpow.
+destruct (Zle_lt_or_eq _ _ He).
+now apply valid_exp_.
+rewrite <- H.
+apply valid_exp.
+rewrite H.
+apply Z.le_refl.
+Qed.
+
+Theorem generic_format_F2R :
+ forall m e,
+ ( m <> 0 -> cexp (F2R (Float beta m e)) <= e )%Z ->
+ generic_format (F2R (Float beta m e)).
+Proof.
+intros m e.
+destruct (Z.eq_dec m 0) as [Zm|Zm].
+intros _.
+rewrite Zm, F2R_0.
+apply generic_format_0.
+unfold generic_format, scaled_mantissa.
+set (e' := cexp (F2R (Float beta m e))).
+intros He.
+specialize (He Zm).
+unfold F2R at 3. simpl.
+rewrite F2R_change_exp with (1 := He).
+apply F2R_eq.
+rewrite Rmult_assoc, <- bpow_plus, <- IZR_Zpower, <- mult_IZR.
+now rewrite Ztrunc_IZR.
+now apply Zle_left.
+Qed.
+
+Lemma generic_format_F2R' :
+ forall (x : R) (f : float beta),
+ F2R f = x ->
+ (x <> 0%R -> (cexp x <= Fexp f)%Z) ->
+ generic_format x.
+Proof.
+intros x f H1 H2.
+rewrite <- H1; destruct f as (m,e).
+apply generic_format_F2R.
+simpl in *; intros H3.
+rewrite H1; apply H2.
+intros Y; apply H3.
+apply eq_0_F2R with beta e.
+now rewrite H1.
+Qed.
+
+Theorem canonical_opp :
+ forall m e,
+ canonical (Float beta m e) ->
+ canonical (Float beta (-m) e).
+Proof.
+intros m e H.
+unfold canonical.
+now rewrite F2R_Zopp, cexp_opp.
+Qed.
+
+Theorem canonical_abs :
+ forall m e,
+ canonical (Float beta m e) ->
+ canonical (Float beta (Z.abs m) e).
+Proof.
+intros m e H.
+unfold canonical.
+now rewrite F2R_Zabs, cexp_abs.
+Qed.
+
+Theorem canonical_0 :
+ canonical (Float beta 0 (fexp (mag beta 0%R))).
+Proof.
+unfold canonical; simpl ; unfold cexp.
+now rewrite F2R_0.
+Qed.
+
+Theorem canonical_unique :
+ forall f1 f2,
+ canonical f1 ->
+ canonical f2 ->
+ F2R f1 = F2R f2 ->
+ f1 = f2.
+Proof.
+intros (m1, e1) (m2, e2).
+unfold canonical. simpl.
+intros H1 H2 H.
+rewrite H in H1.
+rewrite <- H2 in H1. clear H2.
+rewrite H1 in H |- *.
+apply (f_equal (fun m => Float beta m e2)).
+apply eq_F2R with (1 := H).
+Qed.
+
+Theorem scaled_mantissa_generic :
+ forall x,
+ generic_format x ->
+ scaled_mantissa x = IZR (Ztrunc (scaled_mantissa x)).
+Proof.
+intros x Hx.
+unfold scaled_mantissa.
+pattern x at 1 3 ; rewrite Hx.
+unfold F2R. simpl.
+rewrite Rmult_assoc, <- bpow_plus, Zplus_opp_r, Rmult_1_r.
+now rewrite Ztrunc_IZR.
+Qed.
+
+Theorem scaled_mantissa_mult_bpow :
+ forall x,
+ (scaled_mantissa x * bpow (cexp x))%R = x.
+Proof.
+intros x.
+unfold scaled_mantissa.
+rewrite Rmult_assoc, <- bpow_plus, Zplus_opp_l.
+apply Rmult_1_r.
+Qed.
+
+Theorem scaled_mantissa_0 :
+ scaled_mantissa 0 = 0%R.
+Proof.
+apply Rmult_0_l.
+Qed.
+
+Theorem scaled_mantissa_opp :
+ forall x,
+ scaled_mantissa (-x) = (-scaled_mantissa x)%R.
+Proof.
+intros x.
+unfold scaled_mantissa.
+rewrite cexp_opp.
+now rewrite Ropp_mult_distr_l_reverse.
+Qed.
+
+Theorem scaled_mantissa_abs :
+ forall x,
+ scaled_mantissa (Rabs x) = Rabs (scaled_mantissa x).
+Proof.
+intros x.
+unfold scaled_mantissa.
+rewrite cexp_abs, Rabs_mult.
+apply f_equal.
+apply sym_eq.
+apply Rabs_pos_eq.
+apply bpow_ge_0.
+Qed.
+
+Theorem generic_format_opp :
+ forall x, generic_format x -> generic_format (-x).
+Proof.
+intros x Hx.
+unfold generic_format.
+rewrite scaled_mantissa_opp, cexp_opp.
+rewrite Ztrunc_opp.
+rewrite F2R_Zopp.
+now apply f_equal.
+Qed.
+
+Theorem generic_format_abs :
+ forall x, generic_format x -> generic_format (Rabs x).
+Proof.
+intros x Hx.
+unfold generic_format.
+rewrite scaled_mantissa_abs, cexp_abs.
+rewrite Ztrunc_abs.
+rewrite F2R_Zabs.
+now apply f_equal.
+Qed.
+
+Theorem generic_format_abs_inv :
+ forall x, generic_format (Rabs x) -> generic_format x.
+Proof.
+intros x.
+unfold generic_format, Rabs.
+case Rcase_abs ; intros _.
+rewrite scaled_mantissa_opp, cexp_opp, Ztrunc_opp.
+intros H.
+rewrite <- (Ropp_involutive x) at 1.
+rewrite H, F2R_Zopp.
+apply Ropp_involutive.
+easy.
+Qed.
+
+Theorem cexp_fexp :
+ forall x ex,
+ (bpow (ex - 1) <= Rabs x < bpow ex)%R ->
+ cexp x = fexp ex.
+Proof.
+intros x ex Hx.
+unfold cexp.
+now rewrite mag_unique with (1 := Hx).
+Qed.
+
+Theorem cexp_fexp_pos :
+ forall x ex,
+ (bpow (ex - 1) <= x < bpow ex)%R ->
+ cexp x = fexp ex.
+Proof.
+intros x ex Hx.
+apply cexp_fexp.
+rewrite Rabs_pos_eq.
+exact Hx.
+apply Rle_trans with (2 := proj1 Hx).
+apply bpow_ge_0.
+Qed.
+
+(** Properties when the real number is "small" (kind of subnormal) *)
+Theorem mantissa_small_pos :
+ forall x ex,
+ (bpow (ex - 1) <= x < bpow ex)%R ->
+ (ex <= fexp ex)%Z ->
+ (0 < x * bpow (- fexp ex) < 1)%R.
+Proof.
+intros x ex Hx He.
+split.
+apply Rmult_lt_0_compat.
+apply Rlt_le_trans with (2 := proj1 Hx).
+apply bpow_gt_0.
+apply bpow_gt_0.
+apply Rmult_lt_reg_r with (bpow (fexp ex)).
+apply bpow_gt_0.
+rewrite Rmult_assoc, <- bpow_plus, Zplus_opp_l.
+rewrite Rmult_1_r, Rmult_1_l.
+apply Rlt_le_trans with (1 := proj2 Hx).
+now apply bpow_le.
+Qed.
+
+Theorem scaled_mantissa_lt_1 :
+ forall x ex,
+ (Rabs x < bpow ex)%R ->
+ (ex <= fexp ex)%Z ->
+ (Rabs (scaled_mantissa x) < 1)%R.
+Proof.
+intros x ex Ex He.
+destruct (Req_dec x 0) as [Zx|Zx].
+rewrite Zx, scaled_mantissa_0, Rabs_R0.
+now apply IZR_lt.
+rewrite <- scaled_mantissa_abs.
+unfold scaled_mantissa.
+rewrite cexp_abs.
+unfold cexp.
+destruct (mag beta x) as (ex', Ex').
+simpl.
+specialize (Ex' Zx).
+apply (mantissa_small_pos _ _ Ex').
+assert (ex' <= fexp ex)%Z.
+apply Z.le_trans with (2 := He).
+apply bpow_lt_bpow with beta.
+now apply Rle_lt_trans with (2 := Ex).
+now rewrite (proj2 (proj2 (valid_exp _) He)).
+Qed.
+
+Theorem scaled_mantissa_lt_bpow :
+ forall x,
+ (Rabs (scaled_mantissa x) < bpow (mag beta x - cexp x))%R.
+Proof.
+intros x.
+destruct (Req_dec x 0) as [Zx|Zx].
+rewrite Zx, scaled_mantissa_0, Rabs_R0.
+apply bpow_gt_0.
+apply Rlt_le_trans with (1 := bpow_mag_gt beta _).
+apply bpow_le.
+unfold scaled_mantissa.
+rewrite mag_mult_bpow with (1 := Zx).
+apply Z.le_refl.
+Qed.
+
+Theorem mag_generic_gt :
+ forall x, (x <> 0)%R ->
+ generic_format x ->
+ (cexp x < mag beta x)%Z.
+Proof.
+intros x Zx Gx.
+apply Znot_ge_lt.
+unfold cexp.
+destruct (mag beta x) as (ex,Ex) ; simpl.
+specialize (Ex Zx).
+intros H.
+apply Z.ge_le in H.
+generalize (scaled_mantissa_lt_1 x ex (proj2 Ex) H).
+contradict Zx.
+rewrite Gx.
+replace (Ztrunc (scaled_mantissa x)) with Z0.
+apply F2R_0.
+cut (Z.abs (Ztrunc (scaled_mantissa x)) < 1)%Z.
+clear ; zify ; omega.
+apply lt_IZR.
+rewrite abs_IZR.
+now rewrite <- scaled_mantissa_generic.
+Qed.
+
+Lemma mantissa_DN_small_pos :
+ forall x ex,
+ (bpow (ex - 1) <= x < bpow ex)%R ->
+ (ex <= fexp ex)%Z ->
+ Zfloor (x * bpow (- fexp ex)) = Z0.
+Proof.
+intros x ex Hx He.
+apply Zfloor_imp. simpl.
+assert (H := mantissa_small_pos x ex Hx He).
+split ; try apply Rlt_le ; apply H.
+Qed.
+
+Lemma mantissa_UP_small_pos :
+ forall x ex,
+ (bpow (ex - 1) <= x < bpow ex)%R ->
+ (ex <= fexp ex)%Z ->
+ Zceil (x * bpow (- fexp ex)) = 1%Z.
+Proof.
+intros x ex Hx He.
+apply Zceil_imp. simpl.
+assert (H := mantissa_small_pos x ex Hx He).
+split ; try apply Rlt_le ; apply H.
+Qed.
+
+(** Generic facts about any format *)
+Theorem generic_format_discrete :
+ forall x m,
+ let e := cexp x in
+ (F2R (Float beta m e) < x < F2R (Float beta (m + 1) e))%R ->
+ ~ generic_format x.
+Proof.
+intros x m e (Hx,Hx2) Hf.
+apply Rlt_not_le with (1 := Hx2). clear Hx2.
+rewrite Hf.
+fold e.
+apply F2R_le.
+apply Zlt_le_succ.
+apply lt_IZR.
+rewrite <- scaled_mantissa_generic with (1 := Hf).
+apply Rmult_lt_reg_r with (bpow e).
+apply bpow_gt_0.
+now rewrite scaled_mantissa_mult_bpow.
+Qed.
+
+Theorem generic_format_canonical :
+ forall f, canonical f ->
+ generic_format (F2R f).
+Proof.
+intros (m, e) Hf.
+unfold canonical in Hf. simpl in Hf.
+unfold generic_format, scaled_mantissa.
+rewrite <- Hf.
+apply F2R_eq.
+unfold F2R. simpl.
+rewrite Rmult_assoc, <- bpow_plus, Zplus_opp_r, Rmult_1_r.
+now rewrite Ztrunc_IZR.
+Qed.
+
+Theorem generic_format_ge_bpow :
+ forall emin,
+ ( forall e, (emin <= fexp e)%Z ) ->
+ forall x,
+ (0 < x)%R ->
+ generic_format x ->
+ (bpow emin <= x)%R.
+Proof.
+intros emin Emin x Hx Fx.
+rewrite Fx.
+apply Rle_trans with (bpow (fexp (mag beta x))).
+now apply bpow_le.
+apply bpow_le_F2R.
+apply gt_0_F2R with beta (cexp x).
+now rewrite <- Fx.
+Qed.
+
+Theorem abs_lt_bpow_prec:
+ forall prec,
+ (forall e, (e - prec <= fexp e)%Z) ->
+ (* OK with FLX, FLT and FTZ *)
+ forall x,
+ (Rabs x < bpow (prec + cexp x))%R.
+intros prec Hp x.
+case (Req_dec x 0); intros Hxz.
+rewrite Hxz, Rabs_R0.
+apply bpow_gt_0.
+unfold cexp.
+destruct (mag beta x) as (ex,Ex) ; simpl.
+specialize (Ex Hxz).
+apply Rlt_le_trans with (1 := proj2 Ex).
+apply bpow_le.
+specialize (Hp ex).
+omega.
+Qed.
+
+Theorem generic_format_bpow_inv' :
+ forall e,
+ generic_format (bpow e) ->
+ (fexp (e + 1) <= e)%Z.
+Proof.
+intros e He.
+apply Znot_gt_le.
+contradict He.
+unfold generic_format, scaled_mantissa, cexp, F2R. simpl.
+rewrite mag_bpow, <- bpow_plus.
+apply Rgt_not_eq.
+rewrite Ztrunc_floor.
+2: apply bpow_ge_0.
+rewrite Zfloor_imp with (n := Z0).
+rewrite Rmult_0_l.
+apply bpow_gt_0.
+split.
+apply bpow_ge_0.
+apply (bpow_lt _ _ 0).
+clear -He ; omega.
+Qed.
+
+Theorem generic_format_bpow_inv :
+ forall e,
+ generic_format (bpow e) ->
+ (fexp e <= e)%Z.
+Proof.
+intros e He.
+apply generic_format_bpow_inv' in He.
+assert (H := valid_exp_large' (e + 1) e).
+omega.
+Qed.
+
+Section Fcore_generic_round_pos.
+
+(** Rounding functions: R -> Z *)
+
+Variable rnd : R -> Z.
+
+Class Valid_rnd := {
+ Zrnd_le : forall x y, (x <= y)%R -> (rnd x <= rnd y)%Z ;
+ Zrnd_IZR : forall n, rnd (IZR n) = n
+}.
+
+Context { valid_rnd : Valid_rnd }.
+
+Theorem Zrnd_DN_or_UP :
+ forall x, rnd x = Zfloor x \/ rnd x = Zceil x.
+Proof.
+intros x.
+destruct (Zle_or_lt (rnd x) (Zfloor x)) as [Hx|Hx].
+left.
+apply Zle_antisym with (1 := Hx).
+rewrite <- (Zrnd_IZR (Zfloor x)).
+apply Zrnd_le.
+apply Zfloor_lb.
+right.
+apply Zle_antisym.
+rewrite <- (Zrnd_IZR (Zceil x)).
+apply Zrnd_le.
+apply Zceil_ub.
+rewrite Zceil_floor_neq.
+omega.
+intros H.
+rewrite <- H in Hx.
+rewrite Zfloor_IZR, Zrnd_IZR in Hx.
+apply Z.lt_irrefl with (1 := Hx).
+Qed.
+
+Theorem Zrnd_ZR_or_AW :
+ forall x, rnd x = Ztrunc x \/ rnd x = Zaway x.
+Proof.
+intros x.
+unfold Ztrunc, Zaway.
+destruct (Zrnd_DN_or_UP x) as [Hx|Hx] ;
+ case Rlt_bool.
+now right.
+now left.
+now left.
+now right.
+Qed.
+
+(** the most useful one: R -> F *)
+Definition round x :=
+ F2R (Float beta (rnd (scaled_mantissa x)) (cexp x)).
+
+Theorem round_bounded_large_pos :
+ forall x ex,
+ (fexp ex < ex)%Z ->
+ (bpow (ex - 1) <= x < bpow ex)%R ->
+ (bpow (ex - 1) <= round x <= bpow ex)%R.
+Proof.
+intros x ex He Hx.
+unfold round, scaled_mantissa.
+rewrite (cexp_fexp_pos _ _ Hx).
+unfold F2R. simpl.
+destruct (Zrnd_DN_or_UP (x * bpow (- fexp ex))) as [Hr|Hr] ; rewrite Hr.
+(* DN *)
+split.
+replace (ex - 1)%Z with (ex - 1 + - fexp ex + fexp ex)%Z by ring.
+rewrite bpow_plus.
+apply Rmult_le_compat_r.
+apply bpow_ge_0.
+assert (Hf: IZR (Zpower beta (ex - 1 - fexp ex)) = bpow (ex - 1 + - fexp ex)).
+apply IZR_Zpower.
+omega.
+rewrite <- Hf.
+apply IZR_le.
+apply Zfloor_lub.
+rewrite Hf.
+rewrite bpow_plus.
+apply Rmult_le_compat_r.
+apply bpow_ge_0.
+apply Hx.
+apply Rle_trans with (2 := Rlt_le _ _ (proj2 Hx)).
+apply Rmult_le_reg_r with (bpow (- fexp ex)).
+apply bpow_gt_0.
+rewrite Rmult_assoc, <- bpow_plus, Zplus_opp_r, Rmult_1_r.
+apply Zfloor_lb.
+(* UP *)
+split.
+apply Rle_trans with (1 := proj1 Hx).
+apply Rmult_le_reg_r with (bpow (- fexp ex)).
+apply bpow_gt_0.
+rewrite Rmult_assoc, <- bpow_plus, Zplus_opp_r, Rmult_1_r.
+apply Zceil_ub.
+pattern ex at 3 ; replace ex with (ex - fexp ex + fexp ex)%Z by ring.
+rewrite bpow_plus.
+apply Rmult_le_compat_r.
+apply bpow_ge_0.
+assert (Hf: IZR (Zpower beta (ex - fexp ex)) = bpow (ex - fexp ex)).
+apply IZR_Zpower.
+omega.
+rewrite <- Hf.
+apply IZR_le.
+apply Zceil_glb.
+rewrite Hf.
+unfold Zminus.
+rewrite bpow_plus.
+apply Rmult_le_compat_r.
+apply bpow_ge_0.
+apply Rlt_le.
+apply Hx.
+Qed.
+
+Theorem round_bounded_small_pos :
+ forall x ex,
+ (ex <= fexp ex)%Z ->
+ (bpow (ex - 1) <= x < bpow ex)%R ->
+ round x = 0%R \/ round x = bpow (fexp ex).
+Proof.
+intros x ex He Hx.
+unfold round, scaled_mantissa.
+rewrite (cexp_fexp_pos _ _ Hx).
+unfold F2R. simpl.
+destruct (Zrnd_DN_or_UP (x * bpow (-fexp ex))) as [Hr|Hr] ; rewrite Hr.
+(* DN *)
+left.
+apply Rmult_eq_0_compat_r.
+apply IZR_eq.
+apply Zfloor_imp.
+refine (let H := _ in conj (Rlt_le _ _ (proj1 H)) (proj2 H)).
+now apply mantissa_small_pos.
+(* UP *)
+right.
+pattern (bpow (fexp ex)) at 2 ; rewrite <- Rmult_1_l.
+apply (f_equal (fun m => (m * bpow (fexp ex))%R)).
+apply IZR_eq.
+apply Zceil_imp.
+refine (let H := _ in conj (proj1 H) (Rlt_le _ _ (proj2 H))).
+now apply mantissa_small_pos.
+Qed.
+
+Lemma round_le_pos :
+ forall x y, (0 < x)%R -> (x <= y)%R -> (round x <= round y)%R.
+Proof.
+intros x y Hx Hxy.
+destruct (mag beta x) as [ex Hex].
+destruct (mag beta y) as [ey Hey].
+specialize (Hex (Rgt_not_eq _ _ Hx)).
+specialize (Hey (Rgt_not_eq _ _ (Rlt_le_trans _ _ _ Hx Hxy))).
+rewrite Rabs_pos_eq in Hex.
+2: now apply Rlt_le.
+rewrite Rabs_pos_eq in Hey.
+2: apply Rle_trans with (2:=Hxy); now apply Rlt_le.
+assert (He: (ex <= ey)%Z).
+ apply bpow_lt_bpow with beta.
+ apply Rle_lt_trans with (1 := proj1 Hex).
+ now apply Rle_lt_trans with y.
+assert (Heq: fexp ex = fexp ey -> (round x <= round y)%R).
+ intros H.
+ unfold round, scaled_mantissa, cexp.
+ rewrite mag_unique_pos with (1 := Hex).
+ rewrite mag_unique_pos with (1 := Hey).
+ rewrite H.
+ apply F2R_le.
+ apply Zrnd_le.
+ apply Rmult_le_compat_r with (2 := Hxy).
+ apply bpow_ge_0.
+destruct (Zle_or_lt ey (fexp ey)) as [Hy1|Hy1].
+ apply Heq.
+ apply valid_exp with (1 := Hy1).
+ now apply Z.le_trans with ey.
+destruct (Zle_lt_or_eq _ _ He) as [He'|He'].
+2: now apply Heq, f_equal.
+apply Rle_trans with (bpow (ey - 1)).
+2: now apply round_bounded_large_pos.
+destruct (Zle_or_lt ex (fexp ex)) as [Hx1|Hx1].
+ destruct (round_bounded_small_pos _ _ Hx1 Hex) as [-> | ->].
+ apply bpow_ge_0.
+ apply bpow_le.
+ apply valid_exp, proj2 in Hx1.
+ specialize (Hx1 ey).
+ omega.
+apply Rle_trans with (bpow ex).
+now apply round_bounded_large_pos.
+apply bpow_le.
+now apply Z.lt_le_pred.
+Qed.
+
+Theorem round_generic :
+ forall x,
+ generic_format x ->
+ round x = x.
+Proof.
+intros x Hx.
+unfold round.
+rewrite scaled_mantissa_generic with (1 := Hx).
+rewrite Zrnd_IZR.
+now apply sym_eq.
+Qed.
+
+Theorem round_0 :
+ round 0 = 0%R.
+Proof.
+unfold round, scaled_mantissa.
+rewrite Rmult_0_l.
+rewrite Zrnd_IZR.
+apply F2R_0.
+Qed.
+
+Theorem exp_small_round_0_pos :
+ forall x ex,
+ (bpow (ex - 1) <= x < bpow ex)%R ->
+ round x = 0%R -> (ex <= fexp ex)%Z .
+Proof.
+intros x ex H H1.
+case (Zle_or_lt ex (fexp ex)); trivial; intros V.
+contradict H1.
+apply Rgt_not_eq.
+apply Rlt_le_trans with (bpow (ex-1)).
+apply bpow_gt_0.
+apply (round_bounded_large_pos); assumption.
+Qed.
+
+Lemma generic_format_round_pos :
+ forall x,
+ (0 < x)%R ->
+ generic_format (round x).
+Proof.
+intros x Hx0.
+destruct (mag beta x) as (ex, Hex).
+specialize (Hex (Rgt_not_eq _ _ Hx0)).
+rewrite Rabs_pos_eq in Hex. 2: now apply Rlt_le.
+destruct (Zle_or_lt ex (fexp ex)) as [He|He].
+(* small *)
+destruct (round_bounded_small_pos _ _ He Hex) as [Hr|Hr] ; rewrite Hr.
+apply generic_format_0.
+apply generic_format_bpow.
+now apply valid_exp.
+(* large *)
+generalize (round_bounded_large_pos _ _ He Hex).
+intros (Hr1, Hr2).
+destruct (Rle_or_lt (bpow ex) (round x)) as [Hr|Hr].
+rewrite <- (Rle_antisym _ _ Hr Hr2).
+apply generic_format_bpow.
+now apply valid_exp.
+apply generic_format_F2R.
+intros _.
+rewrite (cexp_fexp_pos (F2R _) _ (conj Hr1 Hr)).
+rewrite (cexp_fexp_pos _ _ Hex).
+now apply Zeq_le.
+Qed.
+
+End Fcore_generic_round_pos.
+
+Theorem round_ext :
+ forall rnd1 rnd2,
+ ( forall x, rnd1 x = rnd2 x ) ->
+ forall x,
+ round rnd1 x = round rnd2 x.
+Proof.
+intros rnd1 rnd2 Hext x.
+unfold round.
+now rewrite Hext.
+Qed.
+
+Section Zround_opp.
+
+Variable rnd : R -> Z.
+Context { valid_rnd : Valid_rnd rnd }.
+
+Definition Zrnd_opp x := Z.opp (rnd (-x)).
+
+Global Instance valid_rnd_opp : Valid_rnd Zrnd_opp.
+Proof with auto with typeclass_instances.
+split.
+(* *)
+intros x y Hxy.
+unfold Zrnd_opp.
+apply Zopp_le_cancel.
+rewrite 2!Z.opp_involutive.
+apply Zrnd_le...
+now apply Ropp_le_contravar.
+(* *)
+intros n.
+unfold Zrnd_opp.
+rewrite <- opp_IZR, Zrnd_IZR...
+apply Z.opp_involutive.
+Qed.
+
+Theorem round_opp :
+ forall x,
+ round rnd (- x) = Ropp (round Zrnd_opp x).
+Proof.
+intros x.
+unfold round.
+rewrite <- F2R_Zopp, cexp_opp, scaled_mantissa_opp.
+apply F2R_eq.
+apply sym_eq.
+exact (Z.opp_involutive _).
+Qed.
+
+End Zround_opp.
+
+(** IEEE-754 roundings: up, down and to zero *)
+
+Global Instance valid_rnd_DN : Valid_rnd Zfloor.
+Proof.
+split.
+apply Zfloor_le.
+apply Zfloor_IZR.
+Qed.
+
+Global Instance valid_rnd_UP : Valid_rnd Zceil.
+Proof.
+split.
+apply Zceil_le.
+apply Zceil_IZR.
+Qed.
+
+Global Instance valid_rnd_ZR : Valid_rnd Ztrunc.
+Proof.
+split.
+apply Ztrunc_le.
+apply Ztrunc_IZR.
+Qed.
+
+Global Instance valid_rnd_AW : Valid_rnd Zaway.
+Proof.
+split.
+apply Zaway_le.
+apply Zaway_IZR.
+Qed.
+
+Section monotone.
+
+Variable rnd : R -> Z.
+Context { valid_rnd : Valid_rnd rnd }.
+
+Theorem round_DN_or_UP :
+ forall x,
+ round rnd x = round Zfloor x \/ round rnd x = round Zceil x.
+Proof.
+intros x.
+unfold round.
+destruct (Zrnd_DN_or_UP rnd (scaled_mantissa x)) as [Hx|Hx].
+left. now rewrite Hx.
+right. now rewrite Hx.
+Qed.
+
+Theorem round_ZR_or_AW :
+ forall x,
+ round rnd x = round Ztrunc x \/ round rnd x = round Zaway x.
+Proof.
+intros x.
+unfold round.
+destruct (Zrnd_ZR_or_AW rnd (scaled_mantissa x)) as [Hx|Hx].
+left. now rewrite Hx.
+right. now rewrite Hx.
+Qed.
+
+Theorem round_le :
+ forall x y, (x <= y)%R -> (round rnd x <= round rnd y)%R.
+Proof with auto with typeclass_instances.
+intros x y Hxy.
+destruct (total_order_T x 0) as [[Hx|Hx]|Hx].
+3: now apply round_le_pos.
+(* x < 0 *)
+unfold round.
+destruct (Rlt_or_le y 0) as [Hy|Hy].
+(* . y < 0 *)
+rewrite <- (Ropp_involutive x), <- (Ropp_involutive y).
+rewrite (scaled_mantissa_opp (-x)), (scaled_mantissa_opp (-y)).
+rewrite (cexp_opp (-x)), (cexp_opp (-y)).
+apply Ropp_le_cancel.
+rewrite <- 2!F2R_Zopp.
+apply (round_le_pos (Zrnd_opp rnd) (-y) (-x)).
+rewrite <- Ropp_0.
+now apply Ropp_lt_contravar.
+now apply Ropp_le_contravar.
+(* . 0 <= y *)
+apply Rle_trans with 0%R.
+apply F2R_le_0. simpl.
+rewrite <- (Zrnd_IZR rnd 0).
+apply Zrnd_le...
+simpl.
+rewrite <- (Rmult_0_l (bpow (- fexp (mag beta x)))).
+apply Rmult_le_compat_r.
+apply bpow_ge_0.
+now apply Rlt_le.
+apply F2R_ge_0. simpl.
+rewrite <- (Zrnd_IZR rnd 0).
+apply Zrnd_le...
+apply Rmult_le_pos.
+exact Hy.
+apply bpow_ge_0.
+(* x = 0 *)
+rewrite Hx.
+rewrite round_0...
+apply F2R_ge_0.
+simpl.
+rewrite <- (Zrnd_IZR rnd 0).
+apply Zrnd_le...
+apply Rmult_le_pos.
+now rewrite <- Hx.
+apply bpow_ge_0.
+Qed.
+
+Theorem round_ge_generic :
+ forall x y, generic_format x -> (x <= y)%R -> (x <= round rnd y)%R.
+Proof.
+intros x y Hx Hxy.
+rewrite <- (round_generic rnd x Hx).
+now apply round_le.
+Qed.
+
+Theorem round_le_generic :
+ forall x y, generic_format y -> (x <= y)%R -> (round rnd x <= y)%R.
+Proof.
+intros x y Hy Hxy.
+rewrite <- (round_generic rnd y Hy).
+now apply round_le.
+Qed.
+
+End monotone.
+
+Theorem round_abs_abs :
+ forall P : R -> R -> Prop,
+ ( forall rnd (Hr : Valid_rnd rnd) x, (0 <= x)%R -> P x (round rnd x) ) ->
+ forall rnd {Hr : Valid_rnd rnd} x, P (Rabs x) (Rabs (round rnd x)).
+Proof with auto with typeclass_instances.
+intros P HP rnd Hr x.
+destruct (Rle_or_lt 0 x) as [Hx|Hx].
+(* . *)
+rewrite 2!Rabs_pos_eq.
+now apply HP.
+rewrite <- (round_0 rnd).
+now apply round_le.
+exact Hx.
+(* . *)
+rewrite (Rabs_left _ Hx).
+rewrite Rabs_left1.
+pattern x at 2 ; rewrite <- Ropp_involutive.
+rewrite round_opp.
+rewrite Ropp_involutive.
+apply HP...
+rewrite <- Ropp_0.
+apply Ropp_le_contravar.
+now apply Rlt_le.
+rewrite <- (round_0 rnd).
+apply round_le...
+now apply Rlt_le.
+Qed.
+
+Theorem round_bounded_large :
+ forall rnd {Hr : Valid_rnd rnd} x ex,
+ (fexp ex < ex)%Z ->
+ (bpow (ex - 1) <= Rabs x < bpow ex)%R ->
+ (bpow (ex - 1) <= Rabs (round rnd x) <= bpow ex)%R.
+Proof with auto with typeclass_instances.
+intros rnd Hr x ex He.
+apply round_abs_abs...
+clear rnd Hr x.
+intros rnd' Hr x _.
+apply round_bounded_large_pos...
+Qed.
+
+Theorem exp_small_round_0 :
+ forall rnd {Hr : Valid_rnd rnd} x ex,
+ (bpow (ex - 1) <= Rabs x < bpow ex)%R ->
+ round rnd x = 0%R -> (ex <= fexp ex)%Z .
+Proof.
+intros rnd Hr x ex H1 H2.
+generalize Rabs_R0.
+rewrite <- H2 at 1.
+apply (round_abs_abs (fun t rt => forall (ex : Z),
+(bpow (ex - 1) <= t < bpow ex)%R ->
+rt = 0%R -> (ex <= fexp ex)%Z)); trivial.
+clear; intros rnd Hr x Hx.
+now apply exp_small_round_0_pos.
+Qed.
+
+
+
+
+Section monotone_abs.
+
+Variable rnd : R -> Z.
+Context { valid_rnd : Valid_rnd rnd }.
+
+Theorem abs_round_ge_generic :
+ forall x y, generic_format x -> (x <= Rabs y)%R -> (x <= Rabs (round rnd y))%R.
+Proof with auto with typeclass_instances.
+intros x y.
+apply round_abs_abs...
+clear rnd valid_rnd y.
+intros rnd' Hrnd y Hy.
+apply round_ge_generic...
+Qed.
+
+Theorem abs_round_le_generic :
+ forall x y, generic_format y -> (Rabs x <= y)%R -> (Rabs (round rnd x) <= y)%R.
+Proof with auto with typeclass_instances.
+intros x y.
+apply round_abs_abs...
+clear rnd valid_rnd x.
+intros rnd' Hrnd x Hx.
+apply round_le_generic...
+Qed.
+
+End monotone_abs.
+
+Theorem round_DN_opp :
+ forall x,
+ round Zfloor (-x) = (- round Zceil x)%R.
+Proof.
+intros x.
+unfold round.
+rewrite scaled_mantissa_opp.
+rewrite <- F2R_Zopp.
+unfold Zceil.
+rewrite Z.opp_involutive.
+now rewrite cexp_opp.
+Qed.
+
+Theorem round_UP_opp :
+ forall x,
+ round Zceil (-x) = (- round Zfloor x)%R.
+Proof.
+intros x.
+unfold round.
+rewrite scaled_mantissa_opp.
+rewrite <- F2R_Zopp.
+unfold Zceil.
+rewrite Ropp_involutive.
+now rewrite cexp_opp.
+Qed.
+
+Theorem round_ZR_opp :
+ forall x,
+ round Ztrunc (- x) = Ropp (round Ztrunc x).
+Proof.
+intros x.
+unfold round.
+rewrite scaled_mantissa_opp, cexp_opp, Ztrunc_opp.
+apply F2R_Zopp.
+Qed.
+
+Theorem round_ZR_abs :
+ forall x,
+ round Ztrunc (Rabs x) = Rabs (round Ztrunc x).
+Proof with auto with typeclass_instances.
+intros x.
+apply sym_eq.
+unfold Rabs at 2.
+destruct (Rcase_abs x) as [Hx|Hx].
+rewrite round_ZR_opp.
+apply Rabs_left1.
+rewrite <- (round_0 Ztrunc).
+apply round_le...
+now apply Rlt_le.
+apply Rabs_pos_eq.
+rewrite <- (round_0 Ztrunc).
+apply round_le...
+now apply Rge_le.
+Qed.
+
+Theorem round_AW_opp :
+ forall x,
+ round Zaway (- x) = Ropp (round Zaway x).
+Proof.
+intros x.
+unfold round.
+rewrite scaled_mantissa_opp, cexp_opp, Zaway_opp.
+apply F2R_Zopp.
+Qed.
+
+Theorem round_AW_abs :
+ forall x,
+ round Zaway (Rabs x) = Rabs (round Zaway x).
+Proof with auto with typeclass_instances.
+intros x.
+apply sym_eq.
+unfold Rabs at 2.
+destruct (Rcase_abs x) as [Hx|Hx].
+rewrite round_AW_opp.
+apply Rabs_left1.
+rewrite <- (round_0 Zaway).
+apply round_le...
+now apply Rlt_le.
+apply Rabs_pos_eq.
+rewrite <- (round_0 Zaway).
+apply round_le...
+now apply Rge_le.
+Qed.
+
+Theorem round_ZR_DN :
+ forall x,
+ (0 <= x)%R ->
+ round Ztrunc x = round Zfloor x.
+Proof.
+intros x Hx.
+unfold round, Ztrunc.
+case Rlt_bool_spec.
+intros H.
+elim Rlt_not_le with (1 := H).
+rewrite <- (Rmult_0_l (bpow (- cexp x))).
+apply Rmult_le_compat_r with (2 := Hx).
+apply bpow_ge_0.
+easy.
+Qed.
+
+Theorem round_ZR_UP :
+ forall x,
+ (x <= 0)%R ->
+ round Ztrunc x = round Zceil x.
+Proof.
+intros x Hx.
+unfold round, Ztrunc.
+case Rlt_bool_spec.
+easy.
+intros [H|H].
+elim Rlt_not_le with (1 := H).
+rewrite <- (Rmult_0_l (bpow (- cexp x))).
+apply Rmult_le_compat_r with (2 := Hx).
+apply bpow_ge_0.
+rewrite <- H.
+now rewrite Zfloor_IZR, Zceil_IZR.
+Qed.
+
+Theorem round_AW_UP :
+ forall x,
+ (0 <= x)%R ->
+ round Zaway x = round Zceil x.
+Proof.
+intros x Hx.
+unfold round, Zaway.
+case Rlt_bool_spec.
+intros H.
+elim Rlt_not_le with (1 := H).
+rewrite <- (Rmult_0_l (bpow (- cexp x))).
+apply Rmult_le_compat_r with (2 := Hx).
+apply bpow_ge_0.
+easy.
+Qed.
+
+Theorem round_AW_DN :
+ forall x,
+ (x <= 0)%R ->
+ round Zaway x = round Zfloor x.
+Proof.
+intros x Hx.
+unfold round, Zaway.
+case Rlt_bool_spec.
+easy.
+intros [H|H].
+elim Rlt_not_le with (1 := H).
+rewrite <- (Rmult_0_l (bpow (- cexp x))).
+apply Rmult_le_compat_r with (2 := Hx).
+apply bpow_ge_0.
+rewrite <- H.
+now rewrite Zfloor_IZR, Zceil_IZR.
+Qed.
+
+Theorem generic_format_round :
+ forall rnd { Hr : Valid_rnd rnd } x,
+ generic_format (round rnd x).
+Proof with auto with typeclass_instances.
+intros rnd Zrnd x.
+destruct (total_order_T x 0) as [[Hx|Hx]|Hx].
+rewrite <- (Ropp_involutive x).
+destruct (round_DN_or_UP rnd (- - x)) as [Hr|Hr] ; rewrite Hr.
+rewrite round_DN_opp.
+apply generic_format_opp.
+apply generic_format_round_pos...
+now apply Ropp_0_gt_lt_contravar.
+rewrite round_UP_opp.
+apply generic_format_opp.
+apply generic_format_round_pos...
+now apply Ropp_0_gt_lt_contravar.
+rewrite Hx.
+rewrite round_0...
+apply generic_format_0.
+now apply generic_format_round_pos.
+Qed.
+
+Theorem round_DN_pt :
+ forall x,
+ Rnd_DN_pt generic_format x (round Zfloor x).
+Proof with auto with typeclass_instances.
+intros x.
+split.
+apply generic_format_round...
+split.
+pattern x at 2 ; rewrite <- scaled_mantissa_mult_bpow.
+unfold round, F2R. simpl.
+apply Rmult_le_compat_r.
+apply bpow_ge_0.
+apply Zfloor_lb.
+intros g Hg Hgx.
+apply round_ge_generic...
+Qed.
+
+Theorem generic_format_satisfies_any :
+ satisfies_any generic_format.
+Proof.
+split.
+(* symmetric set *)
+exact generic_format_0.
+exact generic_format_opp.
+(* round down *)
+intros x.
+eexists.
+apply round_DN_pt.
+Qed.
+
+Theorem round_UP_pt :
+ forall x,
+ Rnd_UP_pt generic_format x (round Zceil x).
+Proof.
+intros x.
+rewrite <- (Ropp_involutive x).
+rewrite round_UP_opp.
+apply Rnd_UP_pt_opp.
+apply generic_format_opp.
+apply round_DN_pt.
+Qed.
+
+Theorem round_ZR_pt :
+ forall x,
+ Rnd_ZR_pt generic_format x (round Ztrunc x).
+Proof.
+intros x.
+split ; intros Hx.
+rewrite round_ZR_DN with (1 := Hx).
+apply round_DN_pt.
+rewrite round_ZR_UP with (1 := Hx).
+apply round_UP_pt.
+Qed.
+
+Lemma round_DN_small_pos :
+ forall x ex,
+ (bpow (ex - 1) <= x < bpow ex)%R ->
+ (ex <= fexp ex)%Z ->
+ round Zfloor x = 0%R.
+Proof.
+intros x ex Hx He.
+rewrite <- (F2R_0 beta (cexp x)).
+rewrite <- mantissa_DN_small_pos with (1 := Hx) (2 := He).
+now rewrite <- cexp_fexp_pos with (1 := Hx).
+Qed.
+
+
+Theorem round_DN_UP_lt :
+ forall x, ~ generic_format x ->
+ (round Zfloor x < x < round Zceil x)%R.
+Proof with auto with typeclass_instances.
+intros x Fx.
+assert (Hx:(round Zfloor x <= x <= round Zceil x)%R).
+split.
+apply round_DN_pt.
+apply round_UP_pt.
+split.
+ destruct Hx as [Hx _].
+ apply Rnot_le_lt; intro Hle.
+ assert (x = round Zfloor x) by now apply Rle_antisym.
+ rewrite H in Fx.
+ contradict Fx.
+ apply generic_format_round...
+destruct Hx as [_ Hx].
+apply Rnot_le_lt; intro Hle.
+assert (x = round Zceil x) by now apply Rle_antisym.
+rewrite H in Fx.
+contradict Fx.
+apply generic_format_round...
+Qed.
+
+Lemma round_UP_small_pos :
+ forall x ex,
+ (bpow (ex - 1) <= x < bpow ex)%R ->
+ (ex <= fexp ex)%Z ->
+ round Zceil x = (bpow (fexp ex)).
+Proof.
+intros x ex Hx He.
+rewrite <- F2R_bpow.
+rewrite <- mantissa_UP_small_pos with (1 := Hx) (2 := He).
+now rewrite <- cexp_fexp_pos with (1 := Hx).
+Qed.
+
+Theorem generic_format_EM :
+ forall x,
+ generic_format x \/ ~generic_format x.
+Proof with auto with typeclass_instances.
+intros x.
+destruct (Req_dec (round Zfloor x) x) as [Hx|Hx].
+left.
+rewrite <- Hx.
+apply generic_format_round...
+right.
+intros H.
+apply Hx.
+apply round_generic...
+Qed.
+
+Section round_large.
+
+Variable rnd : R -> Z.
+Context { valid_rnd : Valid_rnd rnd }.
+
+Lemma round_large_pos_ge_bpow :
+ forall x e,
+ (0 < round rnd x)%R ->
+ (bpow e <= x)%R ->
+ (bpow e <= round rnd x)%R.
+Proof.
+intros x e Hd Hex.
+destruct (mag beta x) as (ex, He).
+assert (Hx: (0 < x)%R).
+apply Rlt_le_trans with (2 := Hex).
+apply bpow_gt_0.
+specialize (He (Rgt_not_eq _ _ Hx)).
+rewrite Rabs_pos_eq in He. 2: now apply Rlt_le.
+apply Rle_trans with (bpow (ex - 1)).
+apply bpow_le.
+cut (e < ex)%Z. omega.
+apply (lt_bpow beta).
+now apply Rle_lt_trans with (2 := proj2 He).
+destruct (Zle_or_lt ex (fexp ex)).
+destruct (round_bounded_small_pos rnd x ex H He) as [Hr|Hr].
+rewrite Hr in Hd.
+elim Rlt_irrefl with (1 := Hd).
+rewrite Hr.
+apply bpow_le.
+omega.
+apply (round_bounded_large_pos rnd x ex H He).
+Qed.
+
+End round_large.
+
+Theorem mag_round_ZR :
+ forall x,
+ (round Ztrunc x <> 0)%R ->
+ (mag beta (round Ztrunc x) = mag beta x :> Z).
+Proof with auto with typeclass_instances.
+intros x Zr.
+destruct (Req_dec x 0) as [Zx|Zx].
+rewrite Zx, round_0...
+apply mag_unique.
+destruct (mag beta x) as (ex, Ex) ; simpl.
+specialize (Ex Zx).
+rewrite <- round_ZR_abs.
+split.
+apply round_large_pos_ge_bpow...
+rewrite round_ZR_abs.
+now apply Rabs_pos_lt.
+apply Ex.
+apply Rle_lt_trans with (2 := proj2 Ex).
+rewrite round_ZR_DN.
+apply round_DN_pt.
+apply Rabs_pos.
+Qed.
+
+Theorem mag_round :
+ forall rnd {Hrnd : Valid_rnd rnd} x,
+ (round rnd x <> 0)%R ->
+ (mag beta (round rnd x) = mag beta x :> Z) \/
+ Rabs (round rnd x) = bpow (Z.max (mag beta x) (fexp (mag beta x))).
+Proof with auto with typeclass_instances.
+intros rnd Hrnd x.
+destruct (round_ZR_or_AW rnd x) as [Hr|Hr] ; rewrite Hr ; clear Hr rnd Hrnd.
+left.
+now apply mag_round_ZR.
+intros Zr.
+destruct (Req_dec x 0) as [Zx|Zx].
+rewrite Zx, round_0...
+destruct (mag beta x) as (ex, Ex) ; simpl.
+specialize (Ex Zx).
+rewrite <- mag_abs.
+rewrite <- round_AW_abs.
+destruct (Zle_or_lt ex (fexp ex)) as [He|He].
+right.
+rewrite Z.max_r with (1 := He).
+rewrite round_AW_UP with (1 := Rabs_pos _).
+now apply round_UP_small_pos.
+destruct (round_bounded_large_pos Zaway _ ex He Ex) as (H1,[H2|H2]).
+left.
+apply mag_unique.
+rewrite <- round_AW_abs, Rabs_Rabsolu.
+now split.
+right.
+now rewrite Z.max_l with (1 := Zlt_le_weak _ _ He).
+Qed.
+
+Theorem mag_DN :
+ forall x,
+ (0 < round Zfloor x)%R ->
+ (mag beta (round Zfloor x) = mag beta x :> Z).
+Proof.
+intros x Hd.
+assert (0 < x)%R.
+apply Rlt_le_trans with (1 := Hd).
+apply round_DN_pt.
+revert Hd.
+rewrite <- round_ZR_DN.
+intros Hd.
+apply mag_round_ZR.
+now apply Rgt_not_eq.
+now apply Rlt_le.
+Qed.
+
+Theorem cexp_DN :
+ forall x,
+ (0 < round Zfloor x)%R ->
+ cexp (round Zfloor x) = cexp x.
+Proof.
+intros x Hd.
+apply (f_equal fexp).
+now apply mag_DN.
+Qed.
+
+Theorem scaled_mantissa_DN :
+ forall x,
+ (0 < round Zfloor x)%R ->
+ scaled_mantissa (round Zfloor x) = IZR (Zfloor (scaled_mantissa x)).
+Proof.
+intros x Hd.
+unfold scaled_mantissa.
+rewrite cexp_DN with (1 := Hd).
+unfold round, F2R. simpl.
+now rewrite Rmult_assoc, <- bpow_plus, Zplus_opp_r, Rmult_1_r.
+Qed.
+
+Theorem generic_N_pt_DN_or_UP :
+ forall x f,
+ Rnd_N_pt generic_format x f ->
+ f = round Zfloor x \/ f = round Zceil x.
+Proof.
+intros x f Hxf.
+destruct (Rnd_N_pt_DN_or_UP _ _ _ Hxf).
+left.
+apply Rnd_DN_pt_unique with (1 := H).
+apply round_DN_pt.
+right.
+apply Rnd_UP_pt_unique with (1 := H).
+apply round_UP_pt.
+Qed.
+
+Section not_FTZ.
+
+Class Exp_not_FTZ :=
+ exp_not_FTZ : forall e, (fexp (fexp e + 1) <= fexp e)%Z.
+
+Context { exp_not_FTZ_ : Exp_not_FTZ }.
+
+Theorem subnormal_exponent :
+ forall e x,
+ (e <= fexp e)%Z ->
+ generic_format x ->
+ x = F2R (Float beta (Ztrunc (x * bpow (- fexp e))) (fexp e)).
+Proof.
+intros e x He Hx.
+pattern x at 2 ; rewrite Hx.
+unfold F2R at 2. simpl.
+rewrite Rmult_assoc, <- bpow_plus.
+assert (H: IZR (Zpower beta (cexp x + - fexp e)) = bpow (cexp x + - fexp e)).
+apply IZR_Zpower.
+unfold cexp.
+set (ex := mag beta x).
+generalize (exp_not_FTZ ex).
+generalize (proj2 (proj2 (valid_exp _) He) (fexp ex + 1)%Z).
+omega.
+rewrite <- H.
+rewrite <- mult_IZR, Ztrunc_IZR.
+unfold F2R. simpl.
+rewrite mult_IZR.
+rewrite H.
+rewrite Rmult_assoc, <- bpow_plus.
+now ring_simplify (cexp x + - fexp e + fexp e)%Z.
+Qed.
+
+End not_FTZ.
+
+Section monotone_exp.
+
+Class Monotone_exp :=
+ monotone_exp : forall ex ey, (ex <= ey)%Z -> (fexp ex <= fexp ey)%Z.
+
+Context { monotone_exp_ : Monotone_exp }.
+
+Global Instance monotone_exp_not_FTZ : Exp_not_FTZ.
+Proof.
+intros e.
+destruct (Z_lt_le_dec (fexp e) e) as [He|He].
+apply monotone_exp.
+now apply Zlt_le_succ.
+now apply valid_exp.
+Qed.
+
+Lemma cexp_le_bpow :
+ forall (x : R) (e : Z),
+ x <> 0%R ->
+ (Rabs x < bpow e)%R ->
+ (cexp x <= fexp e)%Z.
+Proof.
+intros x e Zx Hx.
+apply monotone_exp.
+now apply mag_le_bpow.
+Qed.
+
+Lemma cexp_ge_bpow :
+ forall (x : R) (e : Z),
+ (bpow (e - 1) <= Rabs x)%R ->
+ (fexp e <= cexp x)%Z.
+Proof.
+intros x e Hx.
+apply monotone_exp.
+rewrite (Zsucc_pred e).
+apply Zlt_le_succ.
+now apply mag_gt_bpow.
+Qed.
+
+Variable rnd : R -> Z.
+Context { valid_rnd : Valid_rnd rnd }.
+
+Theorem mag_round_ge :
+ forall x,
+ round rnd x <> 0%R ->
+ (mag beta x <= mag beta (round rnd x))%Z.
+Proof with auto with typeclass_instances.
+intros x.
+destruct (round_ZR_or_AW rnd x) as [H|H] ; rewrite H ; clear H ; intros Zr.
+rewrite mag_round_ZR with (1 := Zr).
+apply Z.le_refl.
+apply mag_le_abs.
+contradict Zr.
+rewrite Zr.
+apply round_0...
+rewrite <- round_AW_abs.
+rewrite round_AW_UP.
+apply round_UP_pt.
+apply Rabs_pos.
+Qed.
+
+Theorem cexp_round_ge :
+ forall x,
+ round rnd x <> 0%R ->
+ (cexp x <= cexp (round rnd x))%Z.
+Proof with auto with typeclass_instances.
+intros x Zr.
+unfold cexp.
+apply monotone_exp.
+now apply mag_round_ge.
+Qed.
+
+End monotone_exp.
+
+Section Znearest.
+
+(** Roundings to nearest: when in the middle, use the choice function *)
+Variable choice : Z -> bool.
+
+Definition Znearest x :=
+ match Rcompare (x - IZR (Zfloor x)) (/2) with
+ | Lt => Zfloor x
+ | Eq => if choice (Zfloor x) then Zceil x else Zfloor x
+ | Gt => Zceil x
+ end.
+
+Theorem Znearest_DN_or_UP :
+ forall x,
+ Znearest x = Zfloor x \/ Znearest x = Zceil x.
+Proof.
+intros x.
+unfold Znearest.
+case Rcompare_spec ; intros _.
+now left.
+case choice.
+now right.
+now left.
+now right.
+Qed.
+
+Theorem Znearest_ge_floor :
+ forall x,
+ (Zfloor x <= Znearest x)%Z.
+Proof.
+intros x.
+destruct (Znearest_DN_or_UP x) as [Hx|Hx] ; rewrite Hx.
+apply Z.le_refl.
+apply le_IZR.
+apply Rle_trans with x.
+apply Zfloor_lb.
+apply Zceil_ub.
+Qed.
+
+Theorem Znearest_le_ceil :
+ forall x,
+ (Znearest x <= Zceil x)%Z.
+Proof.
+intros x.
+destruct (Znearest_DN_or_UP x) as [Hx|Hx] ; rewrite Hx.
+apply le_IZR.
+apply Rle_trans with x.
+apply Zfloor_lb.
+apply Zceil_ub.
+apply Z.le_refl.
+Qed.
+
+Global Instance valid_rnd_N : Valid_rnd Znearest.
+Proof.
+split.
+(* *)
+intros x y Hxy.
+destruct (Rle_or_lt (IZR (Zceil x)) y) as [H|H].
+apply Z.le_trans with (1 := Znearest_le_ceil x).
+apply Z.le_trans with (2 := Znearest_ge_floor y).
+now apply Zfloor_lub.
+(* . *)
+assert (Hf: Zfloor y = Zfloor x).
+apply Zfloor_imp.
+split.
+apply Rle_trans with (2 := Zfloor_lb y).
+apply IZR_le.
+now apply Zfloor_le.
+apply Rlt_le_trans with (1 := H).
+apply IZR_le.
+apply Zceil_glb.
+apply Rlt_le.
+rewrite plus_IZR.
+apply Zfloor_ub.
+(* . *)
+unfold Znearest at 1.
+case Rcompare_spec ; intro Hx.
+(* .. *)
+rewrite <- Hf.
+apply Znearest_ge_floor.
+(* .. *)
+unfold Znearest.
+rewrite Hf.
+case Rcompare_spec ; intro Hy.
+elim Rlt_not_le with (1 := Hy).
+rewrite <- Hx.
+now apply Rplus_le_compat_r.
+replace y with x.
+apply Z.le_refl.
+apply Rplus_eq_reg_l with (- IZR (Zfloor x))%R.
+rewrite 2!(Rplus_comm (- (IZR (Zfloor x)))).
+change (x - IZR (Zfloor x) = y - IZR (Zfloor x))%R.
+now rewrite Hy.
+apply Z.le_trans with (Zceil x).
+case choice.
+apply Z.le_refl.
+apply le_IZR.
+apply Rle_trans with x.
+apply Zfloor_lb.
+apply Zceil_ub.
+now apply Zceil_le.
+(* .. *)
+unfold Znearest.
+rewrite Hf.
+rewrite Rcompare_Gt.
+now apply Zceil_le.
+apply Rlt_le_trans with (1 := Hx).
+now apply Rplus_le_compat_r.
+(* *)
+intros n.
+unfold Znearest.
+rewrite Zfloor_IZR.
+rewrite Rcompare_Lt.
+easy.
+unfold Rminus.
+rewrite Rplus_opp_r.
+apply Rinv_0_lt_compat.
+now apply IZR_lt.
+Qed.
+
+Theorem Znearest_N_strict :
+ forall x,
+ (x - IZR (Zfloor x) <> /2)%R ->
+ (Rabs (x - IZR (Znearest x)) < /2)%R.
+Proof.
+intros x Hx.
+unfold Znearest.
+case Rcompare_spec ; intros H.
+rewrite Rabs_pos_eq.
+exact H.
+apply Rle_0_minus.
+apply Zfloor_lb.
+now elim Hx.
+rewrite Rabs_left1.
+rewrite Ropp_minus_distr.
+rewrite Zceil_floor_neq.
+rewrite plus_IZR.
+apply Ropp_lt_cancel.
+apply Rplus_lt_reg_l with 1%R.
+replace (1 + -/2)%R with (/2)%R by field.
+now replace (1 + - (IZR (Zfloor x) + 1 - x))%R with (x - IZR (Zfloor x))%R by ring.
+apply Rlt_not_eq.
+apply Rplus_lt_reg_l with (- IZR (Zfloor x))%R.
+apply Rlt_trans with (/2)%R.
+rewrite Rplus_opp_l.
+apply Rinv_0_lt_compat.
+now apply IZR_lt.
+now rewrite <- (Rplus_comm x).
+apply Rle_minus.
+apply Zceil_ub.
+Qed.
+
+Theorem Znearest_half :
+ forall x,
+ (Rabs (x - IZR (Znearest x)) <= /2)%R.
+Proof.
+intros x.
+destruct (Req_dec (x - IZR (Zfloor x)) (/2)) as [Hx|Hx].
+assert (K: (Rabs (/2) <= /2)%R).
+apply Req_le.
+apply Rabs_pos_eq.
+apply Rlt_le.
+apply Rinv_0_lt_compat.
+now apply IZR_lt.
+destruct (Znearest_DN_or_UP x) as [H|H] ; rewrite H ; clear H.
+now rewrite Hx.
+rewrite Zceil_floor_neq.
+rewrite plus_IZR.
+replace (x - (IZR (Zfloor x) + 1))%R with (x - IZR (Zfloor x) - 1)%R by ring.
+rewrite Hx.
+rewrite Rabs_minus_sym.
+now replace (1 - /2)%R with (/2)%R by field.
+apply Rlt_not_eq.
+apply Rplus_lt_reg_l with (- IZR (Zfloor x))%R.
+rewrite Rplus_opp_l, Rplus_comm.
+fold (x - IZR (Zfloor x))%R.
+rewrite Hx.
+apply Rinv_0_lt_compat.
+now apply IZR_lt.
+apply Rlt_le.
+now apply Znearest_N_strict.
+Qed.
+
+Theorem Znearest_imp :
+ forall x n,
+ (Rabs (x - IZR n) < /2)%R ->
+ Znearest x = n.
+Proof.
+intros x n Hd.
+cut (Z.abs (Znearest x - n) < 1)%Z.
+clear ; zify ; omega.
+apply lt_IZR.
+rewrite abs_IZR, minus_IZR.
+replace (IZR (Znearest x) - IZR n)%R with (- (x - IZR (Znearest x)) + (x - IZR n))%R by ring.
+apply Rle_lt_trans with (1 := Rabs_triang _ _).
+simpl.
+replace 1%R with (/2 + /2)%R by field.
+apply Rplus_le_lt_compat with (2 := Hd).
+rewrite Rabs_Ropp.
+apply Znearest_half.
+Qed.
+
+Theorem round_N_pt :
+ forall x,
+ Rnd_N_pt generic_format x (round Znearest x).
+Proof.
+intros x.
+set (d := round Zfloor x).
+set (u := round Zceil x).
+set (mx := scaled_mantissa x).
+set (bx := bpow (cexp x)).
+(* . *)
+assert (H: (Rabs (round Znearest x - x) <= Rmin (x - d) (u - x))%R).
+pattern x at -1 ; rewrite <- scaled_mantissa_mult_bpow.
+unfold d, u, round, F2R. simpl.
+fold mx bx.
+rewrite <- 3!Rmult_minus_distr_r.
+rewrite Rabs_mult, (Rabs_pos_eq bx). 2: apply bpow_ge_0.
+rewrite <- Rmult_min_distr_r. 2: apply bpow_ge_0.
+apply Rmult_le_compat_r.
+apply bpow_ge_0.
+unfold Znearest.
+destruct (Req_dec (IZR (Zfloor mx)) mx) as [Hm|Hm].
+(* .. *)
+rewrite Hm.
+unfold Rminus at 2.
+rewrite Rplus_opp_r.
+rewrite Rcompare_Lt.
+rewrite Hm.
+unfold Rminus at -3.
+rewrite Rplus_opp_r.
+rewrite Rabs_R0.
+unfold Rmin.
+destruct (Rle_dec 0 (IZR (Zceil mx) - mx)) as [H|H].
+apply Rle_refl.
+apply Rle_0_minus.
+apply Zceil_ub.
+apply Rinv_0_lt_compat.
+now apply IZR_lt.
+(* .. *)
+rewrite Rcompare_floor_ceil_middle with (1 := Hm).
+rewrite Rmin_compare.
+assert (H: (Rabs (mx - IZR (Zfloor mx)) <= mx - IZR (Zfloor mx))%R).
+rewrite Rabs_pos_eq.
+apply Rle_refl.
+apply Rle_0_minus.
+apply Zfloor_lb.
+case Rcompare_spec ; intros Hm'.
+now rewrite Rabs_minus_sym.
+case choice.
+rewrite <- Hm'.
+exact H.
+now rewrite Rabs_minus_sym.
+rewrite Rabs_pos_eq.
+apply Rle_refl.
+apply Rle_0_minus.
+apply Zceil_ub.
+(* . *)
+apply Rnd_N_pt_DN_UP with d u.
+apply generic_format_round.
+auto with typeclass_instances.
+now apply round_DN_pt.
+now apply round_UP_pt.
+apply Rle_trans with (1 := H).
+apply Rmin_l.
+apply Rle_trans with (1 := H).
+apply Rmin_r.
+Qed.
+
+Theorem round_N_middle :
+ forall x,
+ (x - round Zfloor x = round Zceil x - x)%R ->
+ round Znearest x = if choice (Zfloor (scaled_mantissa x)) then round Zceil x else round Zfloor x.
+Proof.
+intros x.
+pattern x at 1 4 ; rewrite <- scaled_mantissa_mult_bpow.
+unfold round, Znearest, F2R. simpl.
+destruct (Req_dec (IZR (Zfloor (scaled_mantissa x))) (scaled_mantissa x)) as [Fx|Fx].
+(* *)
+intros _.
+rewrite <- Fx.
+rewrite Zceil_IZR, Zfloor_IZR.
+set (m := Zfloor (scaled_mantissa x)).
+now case (Rcompare (IZR m - IZR m) (/ 2)) ; case (choice m).
+(* *)
+intros H.
+rewrite Rcompare_floor_ceil_middle with (1 := Fx).
+rewrite Rcompare_Eq.
+now case choice.
+apply Rmult_eq_reg_r with (bpow (cexp x)).
+now rewrite 2!Rmult_minus_distr_r.
+apply Rgt_not_eq.
+apply bpow_gt_0.
+Qed.
+
+Lemma round_N_small_pos :
+ forall x,
+ forall ex,
+ (Raux.bpow beta (ex - 1) <= x < Raux.bpow beta ex)%R ->
+ (ex < fexp ex)%Z ->
+ (round Znearest x = 0)%R.
+Proof.
+intros x ex Hex Hf.
+unfold round, F2R, scaled_mantissa, cexp; simpl.
+apply (Rmult_eq_reg_r (bpow (- fexp (mag beta x))));
+ [|now apply Rgt_not_eq; apply bpow_gt_0].
+rewrite Rmult_0_l, Rmult_assoc, <- bpow_plus.
+replace (_ + - _)%Z with 0%Z by ring; simpl; rewrite Rmult_1_r.
+apply IZR_eq.
+apply Znearest_imp.
+unfold Rminus; rewrite Ropp_0; rewrite Rplus_0_r.
+assert (H : (x >= 0)%R).
+{ apply Rle_ge; apply Rle_trans with (bpow (ex - 1)); [|exact (proj1 Hex)].
+ now apply bpow_ge_0. }
+assert (H' : (x * bpow (- fexp (mag beta x)) >= 0)%R).
+{ apply Rle_ge; apply Rmult_le_pos.
+ - now apply Rge_le.
+ - now apply bpow_ge_0. }
+rewrite Rabs_right; [|exact H'].
+apply (Rmult_lt_reg_r (bpow (fexp (mag beta x)))); [now apply bpow_gt_0|].
+rewrite Rmult_assoc, <- bpow_plus.
+replace (- _ + _)%Z with 0%Z by ring; simpl; rewrite Rmult_1_r.
+apply (Rlt_le_trans _ _ _ (proj2 Hex)).
+apply Rle_trans with (bpow (fexp (mag beta x) - 1)).
+- apply bpow_le.
+ rewrite (mag_unique beta x ex); [omega|].
+ now rewrite Rabs_right.
+- unfold Zminus; rewrite bpow_plus.
+ rewrite Rmult_comm.
+ apply Rmult_le_compat_r; [now apply bpow_ge_0|].
+ unfold Raux.bpow, Z.pow_pos; simpl.
+ rewrite Zmult_1_r.
+ apply Rinv_le; [exact Rlt_0_2|].
+ apply IZR_le.
+ destruct beta as (beta_val,beta_prop).
+ now apply Zle_bool_imp_le.
+Qed.
+
+End Znearest.
+
+Section rndNA.
+
+Global Instance valid_rnd_NA : Valid_rnd (Znearest (Zle_bool 0)) := valid_rnd_N _.
+
+Theorem round_NA_pt :
+ forall x,
+ Rnd_NA_pt generic_format x (round (Znearest (Zle_bool 0)) x).
+Proof.
+intros x.
+generalize (round_N_pt (Zle_bool 0) x).
+set (f := round (Znearest (Zle_bool 0)) x).
+intros Rxf.
+destruct (Req_dec (x - round Zfloor x) (round Zceil x - x)) as [Hm|Hm].
+(* *)
+apply Rnd_NA_pt_N.
+exact generic_format_0.
+exact Rxf.
+destruct (Rle_or_lt 0 x) as [Hx|Hx].
+(* . *)
+rewrite Rabs_pos_eq with (1 := Hx).
+rewrite Rabs_pos_eq.
+unfold f.
+rewrite round_N_middle with (1 := Hm).
+rewrite Zle_bool_true.
+apply (round_UP_pt x).
+apply Zfloor_lub.
+apply Rmult_le_pos with (1 := Hx).
+apply bpow_ge_0.
+apply Rnd_N_pt_ge_0 with (2 := Hx) (3 := Rxf).
+exact generic_format_0.
+(* . *)
+rewrite Rabs_left with (1 := Hx).
+rewrite Rabs_left1.
+apply Ropp_le_contravar.
+unfold f.
+rewrite round_N_middle with (1 := Hm).
+rewrite Zle_bool_false.
+apply (round_DN_pt x).
+apply lt_IZR.
+apply Rle_lt_trans with (scaled_mantissa x).
+apply Zfloor_lb.
+simpl.
+rewrite <- (Rmult_0_l (bpow (- cexp x))).
+apply Rmult_lt_compat_r with (2 := Hx).
+apply bpow_gt_0.
+apply Rnd_N_pt_le_0 with (3 := Rxf).
+exact generic_format_0.
+now apply Rlt_le.
+(* *)
+split.
+apply Rxf.
+intros g Rxg.
+rewrite Rnd_N_pt_unique with (3 := Hm) (4 := Rxf) (5 := Rxg).
+apply Rle_refl.
+apply round_DN_pt.
+apply round_UP_pt.
+Qed.
+
+End rndNA.
+
+Section rndN_opp.
+
+Theorem Znearest_opp :
+ forall choice x,
+ Znearest choice (- x) = (- Znearest (fun t => negb (choice (- (t + 1))%Z)) x)%Z.
+Proof with auto with typeclass_instances.
+intros choice x.
+destruct (Req_dec (IZR (Zfloor x)) x) as [Hx|Hx].
+rewrite <- Hx.
+rewrite <- opp_IZR.
+rewrite 2!Zrnd_IZR...
+unfold Znearest.
+replace (- x - IZR (Zfloor (-x)))%R with (IZR (Zceil x) - x)%R.
+rewrite Rcompare_ceil_floor_middle with (1 := Hx).
+rewrite Rcompare_floor_ceil_middle with (1 := Hx).
+rewrite Rcompare_sym.
+rewrite <- Zceil_floor_neq with (1 := Hx).
+unfold Zceil.
+rewrite Ropp_involutive.
+case Rcompare ; simpl ; trivial.
+rewrite Z.opp_involutive.
+case (choice (Zfloor (- x))) ; simpl ; trivial.
+now rewrite Z.opp_involutive.
+now rewrite Z.opp_involutive.
+unfold Zceil.
+rewrite opp_IZR.
+apply Rplus_comm.
+Qed.
+
+Theorem round_N_opp :
+ forall choice,
+ forall x,
+ round (Znearest choice) (-x) = (- round (Znearest (fun t => negb (choice (- (t + 1))%Z))) x)%R.
+Proof.
+intros choice x.
+unfold round, F2R. simpl.
+rewrite cexp_opp.
+rewrite scaled_mantissa_opp.
+rewrite Znearest_opp.
+rewrite opp_IZR.
+now rewrite Ropp_mult_distr_l_reverse.
+Qed.
+
+End rndN_opp.
+
+Lemma round_N_small :
+ forall choice,
+ forall x,
+ forall ex,
+ (Raux.bpow beta (ex - 1) <= Rabs x < Raux.bpow beta ex)%R ->
+ (ex < fexp ex)%Z ->
+ (round (Znearest choice) x = 0)%R.
+Proof.
+intros choice x ex Hx Hex.
+destruct (Rle_or_lt 0 x) as [Px|Nx].
+{ now revert Hex; apply round_N_small_pos; revert Hx; rewrite Rabs_pos_eq. }
+rewrite <-(Ropp_involutive x), round_N_opp, <-Ropp_0; f_equal.
+now revert Hex; apply round_N_small_pos; revert Hx; rewrite Rabs_left.
+Qed.
+
+End Format.
+
+(** Inclusion of a format into an extended format *)
+Section Inclusion.
+
+Variables fexp1 fexp2 : Z -> Z.
+
+Context { valid_exp1 : Valid_exp fexp1 }.
+Context { valid_exp2 : Valid_exp fexp2 }.
+
+Theorem generic_inclusion_mag :
+ forall x,
+ ( x <> 0%R -> (fexp2 (mag beta x) <= fexp1 (mag beta x))%Z ) ->
+ generic_format fexp1 x ->
+ generic_format fexp2 x.
+Proof.
+intros x He Fx.
+rewrite Fx.
+apply generic_format_F2R.
+intros Zx.
+rewrite <- Fx.
+apply He.
+contradict Zx.
+rewrite Zx, scaled_mantissa_0.
+apply Ztrunc_IZR.
+Qed.
+
+Theorem generic_inclusion_lt_ge :
+ forall e1 e2,
+ ( forall e, (e1 < e <= e2)%Z -> (fexp2 e <= fexp1 e)%Z ) ->
+ forall x,
+ (bpow e1 <= Rabs x < bpow e2)%R ->
+ generic_format fexp1 x ->
+ generic_format fexp2 x.
+Proof.
+intros e1 e2 He x (Hx1,Hx2).
+apply generic_inclusion_mag.
+intros Zx.
+apply He.
+split.
+now apply mag_gt_bpow.
+now apply mag_le_bpow.
+Qed.
+
+Theorem generic_inclusion :
+ forall e,
+ (fexp2 e <= fexp1 e)%Z ->
+ forall x,
+ (bpow (e - 1) <= Rabs x <= bpow e)%R ->
+ generic_format fexp1 x ->
+ generic_format fexp2 x.
+Proof with auto with typeclass_instances.
+intros e He x (Hx1,[Hx2|Hx2]).
+apply generic_inclusion_mag.
+now rewrite mag_unique with (1 := conj Hx1 Hx2).
+intros Fx.
+apply generic_format_abs_inv.
+rewrite Hx2.
+apply generic_format_bpow'...
+apply Z.le_trans with (1 := He).
+apply generic_format_bpow_inv...
+rewrite <- Hx2.
+now apply generic_format_abs.
+Qed.
+
+Theorem generic_inclusion_le_ge :
+ forall e1 e2,
+ (e1 < e2)%Z ->
+ ( forall e, (e1 < e <= e2)%Z -> (fexp2 e <= fexp1 e)%Z ) ->
+ forall x,
+ (bpow e1 <= Rabs x <= bpow e2)%R ->
+ generic_format fexp1 x ->
+ generic_format fexp2 x.
+Proof.
+intros e1 e2 He' He x (Hx1,[Hx2|Hx2]).
+(* *)
+apply generic_inclusion_mag.
+intros Zx.
+apply He.
+split.
+now apply mag_gt_bpow.
+now apply mag_le_bpow.
+(* *)
+apply generic_inclusion with (e := e2).
+apply He.
+split.
+apply He'.
+apply Z.le_refl.
+rewrite Hx2.
+split.
+apply bpow_le.
+apply Zle_pred.
+apply Rle_refl.
+Qed.
+
+Theorem generic_inclusion_le :
+ forall e2,
+ ( forall e, (e <= e2)%Z -> (fexp2 e <= fexp1 e)%Z ) ->
+ forall x,
+ (Rabs x <= bpow e2)%R ->
+ generic_format fexp1 x ->
+ generic_format fexp2 x.
+Proof.
+intros e2 He x [Hx|Hx].
+apply generic_inclusion_mag.
+intros Zx.
+apply He.
+now apply mag_le_bpow.
+apply generic_inclusion with (e := e2).
+apply He.
+apply Z.le_refl.
+rewrite Hx.
+split.
+apply bpow_le.
+apply Zle_pred.
+apply Rle_refl.
+Qed.
+
+Theorem generic_inclusion_ge :
+ forall e1,
+ ( forall e, (e1 < e)%Z -> (fexp2 e <= fexp1 e)%Z ) ->
+ forall x,
+ (bpow e1 <= Rabs x)%R ->
+ generic_format fexp1 x ->
+ generic_format fexp2 x.
+Proof.
+intros e1 He x Hx.
+apply generic_inclusion_mag.
+intros Zx.
+apply He.
+now apply mag_gt_bpow.
+Qed.
+
+Variable rnd : R -> Z.
+Context { valid_rnd : Valid_rnd rnd }.
+
+Theorem generic_round_generic :
+ forall x,
+ generic_format fexp1 x ->
+ generic_format fexp1 (round fexp2 rnd x).
+Proof with auto with typeclass_instances.
+intros x Gx.
+apply generic_format_abs_inv.
+apply generic_format_abs in Gx.
+revert rnd valid_rnd x Gx.
+refine (round_abs_abs _ (fun x y => generic_format fexp1 x -> generic_format fexp1 y) _).
+intros rnd valid_rnd x [Hx|Hx] Gx.
+(* x > 0 *)
+generalize (mag_generic_gt _ x (Rgt_not_eq _ _ Hx) Gx).
+unfold cexp.
+destruct (mag beta x) as (ex,Ex) ; simpl.
+specialize (Ex (Rgt_not_eq _ _ Hx)).
+intros He'.
+rewrite Rabs_pos_eq in Ex by now apply Rlt_le.
+destruct (Zle_or_lt ex (fexp2 ex)) as [He|He].
+(* - x near 0 for fexp2 *)
+destruct (round_bounded_small_pos fexp2 rnd x ex He Ex) as [Hr|Hr].
+rewrite Hr.
+apply generic_format_0.
+rewrite Hr.
+apply generic_format_bpow'...
+apply Zlt_le_weak.
+apply valid_exp_large with ex...
+(* - x large for fexp2 *)
+destruct (Zle_or_lt (cexp fexp2 x) (cexp fexp1 x)) as [He''|He''].
+(* - - round fexp2 x is representable for fexp1 *)
+rewrite round_generic...
+rewrite Gx.
+apply generic_format_F2R.
+fold (round fexp1 Ztrunc x).
+intros Zx.
+unfold cexp at 1.
+rewrite mag_round_ZR...
+contradict Zx.
+apply eq_0_F2R with (1 := Zx).
+(* - - round fexp2 x has too many digits for fexp1 *)
+destruct (round_bounded_large_pos fexp2 rnd x ex He Ex) as (Hr1,[Hr2|Hr2]).
+apply generic_format_F2R.
+intros Zx.
+fold (round fexp2 rnd x).
+unfold cexp at 1.
+rewrite mag_unique_pos with (1 := conj Hr1 Hr2).
+rewrite <- mag_unique_pos with (1 := Ex).
+now apply Zlt_le_weak.
+rewrite Hr2.
+apply generic_format_bpow'...
+now apply Zlt_le_weak.
+(* x = 0 *)
+rewrite <- Hx, round_0...
+apply generic_format_0.
+Qed.
+
+End Inclusion.
+
+End Generic.
+
+Notation ZnearestA := (Znearest (Zle_bool 0)).
+
+Section rndNA_opp.
+
+Lemma round_NA_opp :
+ forall beta : radix,
+ forall (fexp : Z -> Z),
+ forall x,
+ (round beta fexp ZnearestA (- x) = - round beta fexp ZnearestA x)%R.
+Proof.
+intros beta fexp x.
+rewrite round_N_opp.
+apply Ropp_eq_compat.
+apply round_ext.
+clear x; intro x.
+unfold Znearest.
+case_eq (Rcompare (x - IZR (Zfloor x)) (/ 2)); intro C;
+[|reflexivity|reflexivity].
+apply Rcompare_Eq_inv in C.
+assert (H : negb (0 <=? - (Zfloor x + 1))%Z = (0 <=? Zfloor x)%Z);
+ [|now rewrite H].
+rewrite negb_Zle_bool.
+case_eq (0 <=? Zfloor x)%Z; intro C'.
+- apply Zle_bool_imp_le in C'.
+ apply Zlt_bool_true.
+ omega.
+- rewrite Z.leb_gt in C'.
+ apply Zlt_bool_false.
+ omega.
+Qed.
+
+End rndNA_opp.
+
+(** Notations for backward-compatibility with Flocq 1.4. *)
+Notation rndDN := Zfloor (only parsing).
+Notation rndUP := Zceil (only parsing).
+Notation rndZR := Ztrunc (only parsing).
+Notation rndNA := ZnearestA (only parsing).