aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Ordered.v
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Ordered.v')
-rw-r--r--lib/Ordered.v28
1 files changed, 14 insertions, 14 deletions
diff --git a/lib/Ordered.v b/lib/Ordered.v
index a2c36673..c333cc50 100644
--- a/lib/Ordered.v
+++ b/lib/Ordered.v
@@ -31,11 +31,11 @@ Definition eq (x y: t) := x = y.
Definition lt := Plt.
Lemma eq_refl : forall x : t, eq x x.
-Proof (@refl_equal t).
+Proof (@eq_refl t).
Lemma eq_sym : forall x y : t, eq x y -> eq y x.
-Proof (@sym_equal t).
+Proof (@eq_sym t).
Lemma eq_trans : forall x y z : t, eq x y -> eq y z -> eq x z.
-Proof (@trans_equal t).
+Proof (@eq_trans t).
Lemma lt_trans : forall x y z : t, lt x y -> lt y z -> lt x z.
Proof Plt_trans.
Lemma lt_not_eq : forall x y : t, lt x y -> ~ eq x y.
@@ -58,16 +58,16 @@ Module OrderedZ <: OrderedType.
Definition t := Z.
Definition eq (x y: t) := x = y.
-Definition lt := Zlt.
+Definition lt := Z.lt.
Lemma eq_refl : forall x : t, eq x x.
-Proof (@refl_equal t).
+Proof (@eq_refl t).
Lemma eq_sym : forall x y : t, eq x y -> eq y x.
-Proof (@sym_equal t).
+Proof (@eq_sym t).
Lemma eq_trans : forall x y z : t, eq x y -> eq y z -> eq x z.
-Proof (@trans_equal t).
+Proof (@eq_trans t).
Lemma lt_trans : forall x y z : t, lt x y -> lt y z -> lt x z.
-Proof Zlt_trans.
+Proof Z.lt_trans.
Lemma lt_not_eq : forall x y : t, lt x y -> ~ eq x y.
Proof. unfold lt, eq, t; intros. omega. Qed.
Lemma compare : forall x y : t, Compare lt eq x y.
@@ -91,11 +91,11 @@ Definition eq (x y: t) := x = y.
Definition lt (x y: t) := Int.unsigned x < Int.unsigned y.
Lemma eq_refl : forall x : t, eq x x.
-Proof (@refl_equal t).
+Proof (@eq_refl t).
Lemma eq_sym : forall x y : t, eq x y -> eq y x.
-Proof (@sym_equal t).
+Proof (@eq_sym t).
Lemma eq_trans : forall x y z : t, eq x y -> eq y z -> eq x z.
-Proof (@trans_equal t).
+Proof (@eq_trans t).
Lemma lt_trans : forall x y z : t, lt x y -> lt y z -> lt x z.
Proof.
unfold lt; intros. omega.
@@ -129,11 +129,11 @@ Definition eq (x y: t) := x = y.
Definition lt (x y: t) := Plt (A.index x) (A.index y).
Lemma eq_refl : forall x : t, eq x x.
-Proof (@refl_equal t).
+Proof (@eq_refl t).
Lemma eq_sym : forall x y : t, eq x y -> eq y x.
-Proof (@sym_equal t).
+Proof (@eq_sym t).
Lemma eq_trans : forall x y z : t, eq x y -> eq y z -> eq x z.
-Proof (@trans_equal t).
+Proof (@eq_trans t).
Lemma lt_trans : forall x y z : t, lt x y -> lt y z -> lt x z.
Proof.