aboutsummaryrefslogtreecommitdiffstats
path: root/riscV/SelectOpproof.v
diff options
context:
space:
mode:
Diffstat (limited to 'riscV/SelectOpproof.v')
-rw-r--r--riscV/SelectOpproof.v944
1 files changed, 0 insertions, 944 deletions
diff --git a/riscV/SelectOpproof.v b/riscV/SelectOpproof.v
deleted file mode 100644
index b0b4b794..00000000
--- a/riscV/SelectOpproof.v
+++ /dev/null
@@ -1,944 +0,0 @@
-(* *********************************************************************)
-(* *)
-(* The Compcert verified compiler *)
-(* *)
-(* Xavier Leroy, INRIA Paris-Rocquencourt *)
-(* Prashanth Mundkur, SRI International *)
-(* *)
-(* Copyright Institut National de Recherche en Informatique et en *)
-(* Automatique. All rights reserved. This file is distributed *)
-(* under the terms of the INRIA Non-Commercial License Agreement. *)
-(* *)
-(* The contributions by Prashanth Mundkur are reused and adapted *)
-(* under the terms of a Contributor License Agreement between *)
-(* SRI International and INRIA. *)
-(* *)
-(* *********************************************************************)
-
-(** Correctness of instruction selection for operators *)
-
-Require Import Coqlib Zbits.
-Require Import AST Integers Floats.
-Require Import Values Memory Builtins Globalenvs.
-Require Import Cminor Op CminorSel.
-Require Import SelectOp.
-
-Local Open Scope cminorsel_scope.
-
-(** * Useful lemmas and tactics *)
-
-(** The following are trivial lemmas and custom tactics that help
- perform backward (inversion) and forward reasoning over the evaluation
- of operator applications. *)
-
-Ltac EvalOp := eapply eval_Eop; eauto with evalexpr.
-
-Ltac InvEval1 :=
- match goal with
- | [ H: (eval_expr _ _ _ _ _ (Eop _ Enil) _) |- _ ] =>
- inv H; InvEval1
- | [ H: (eval_expr _ _ _ _ _ (Eop _ (_ ::: Enil)) _) |- _ ] =>
- inv H; InvEval1
- | [ H: (eval_expr _ _ _ _ _ (Eop _ (_ ::: _ ::: Enil)) _) |- _ ] =>
- inv H; InvEval1
- | [ H: (eval_exprlist _ _ _ _ _ Enil _) |- _ ] =>
- inv H; InvEval1
- | [ H: (eval_exprlist _ _ _ _ _ (_ ::: _) _) |- _ ] =>
- inv H; InvEval1
- | _ =>
- idtac
- end.
-
-Ltac InvEval2 :=
- match goal with
- | [ H: (eval_operation _ _ _ nil _ = Some _) |- _ ] =>
- simpl in H; inv H
- | [ H: (eval_operation _ _ _ (_ :: nil) _ = Some _) |- _ ] =>
- simpl in H; FuncInv
- | [ H: (eval_operation _ _ _ (_ :: _ :: nil) _ = Some _) |- _ ] =>
- simpl in H; FuncInv
- | [ H: (eval_operation _ _ _ (_ :: _ :: _ :: nil) _ = Some _) |- _ ] =>
- simpl in H; FuncInv
- | _ =>
- idtac
- end.
-
-Ltac InvEval := InvEval1; InvEval2; InvEval2.
-
-Ltac TrivialExists :=
- match goal with
- | [ |- exists v, _ /\ Val.lessdef ?a v ] => exists a; split; [EvalOp | auto]
- end.
-
-(** * Correctness of the smart constructors *)
-
-Section CMCONSTR.
-
-Variable ge: genv.
-Variable sp: val.
-Variable e: env.
-Variable m: mem.
-
-(** We now show that the code generated by "smart constructor" functions
- such as [Selection.notint] behaves as expected. Continuing the
- [notint] example, we show that if the expression [e]
- evaluates to some integer value [Vint n], then [Selection.notint e]
- evaluates to a value [Vint (Int.not n)] which is indeed the integer
- negation of the value of [e].
-
- All proofs follow a common pattern:
-- Reasoning by case over the result of the classification functions
- (such as [add_match] for integer addition), gathering additional
- information on the shape of the argument expressions in the non-default
- cases.
-- Inversion of the evaluations of the arguments, exploiting the additional
- information thus gathered.
-- Equational reasoning over the arithmetic operations performed,
- using the lemmas from the [Int] and [Float] modules.
-- Construction of an evaluation derivation for the expression returned
- by the smart constructor.
-*)
-
-Definition unary_constructor_sound (cstr: expr -> expr) (sem: val -> val) : Prop :=
- forall le a x,
- eval_expr ge sp e m le a x ->
- exists v, eval_expr ge sp e m le (cstr a) v /\ Val.lessdef (sem x) v.
-
-Definition binary_constructor_sound (cstr: expr -> expr -> expr) (sem: val -> val -> val) : Prop :=
- forall le a x b y,
- eval_expr ge sp e m le a x ->
- eval_expr ge sp e m le b y ->
- exists v, eval_expr ge sp e m le (cstr a b) v /\ Val.lessdef (sem x y) v.
-
-Theorem eval_addrsymbol:
- forall le id ofs,
- exists v, eval_expr ge sp e m le (addrsymbol id ofs) v /\ Val.lessdef (Genv.symbol_address ge id ofs) v.
-Proof.
- intros. unfold addrsymbol. econstructor; split.
- EvalOp. simpl; eauto.
- auto.
-Qed.
-
-Theorem eval_addrstack:
- forall le ofs,
- exists v, eval_expr ge sp e m le (addrstack ofs) v /\ Val.lessdef (Val.offset_ptr sp ofs) v.
-Proof.
- intros. unfold addrstack. econstructor; split.
- EvalOp. simpl; eauto.
- auto.
-Qed.
-
-Theorem eval_addimm:
- forall n, unary_constructor_sound (addimm n) (fun x => Val.add x (Vint n)).
-Proof.
- red; unfold addimm; intros until x.
- predSpec Int.eq Int.eq_spec n Int.zero.
- - subst n. intros. exists x; split; auto.
- destruct x; simpl; auto.
- rewrite Int.add_zero; auto.
- destruct Archi.ptr64; auto. rewrite Ptrofs.add_zero; auto.
- - case (addimm_match a); intros; InvEval; simpl.
- + TrivialExists; simpl. rewrite Int.add_commut. auto.
- + econstructor; split. EvalOp. simpl; eauto.
- unfold Genv.symbol_address. destruct (Genv.find_symbol ge s); simpl; auto.
- destruct Archi.ptr64; auto. rewrite Ptrofs.add_commut; auto.
- + econstructor; split. EvalOp. simpl; eauto.
- destruct sp; simpl; auto. destruct Archi.ptr64; auto.
- rewrite Ptrofs.add_assoc. rewrite (Ptrofs.add_commut m0). auto.
- + TrivialExists; simpl. subst x. rewrite Val.add_assoc. rewrite Int.add_commut. auto.
- + TrivialExists.
-Qed.
-
-Theorem eval_add: binary_constructor_sound add Val.add.
-Proof.
- red; intros until y.
- unfold add; case (add_match a b); intros; InvEval.
- - rewrite Val.add_commut. apply eval_addimm; auto.
- - apply eval_addimm; auto.
- - subst.
- replace (Val.add (Val.add v1 (Vint n1)) (Val.add v0 (Vint n2)))
- with (Val.add (Val.add v1 v0) (Val.add (Vint n1) (Vint n2))).
- apply eval_addimm. EvalOp.
- repeat rewrite Val.add_assoc. decEq. apply Val.add_permut.
- - subst. econstructor; split.
- EvalOp. constructor. EvalOp. simpl; eauto. constructor. eauto. constructor. simpl; eauto.
- rewrite Val.add_commut. destruct sp; simpl; auto.
- destruct v1; simpl; auto.
- destruct Archi.ptr64 eqn:SF; auto.
- apply Val.lessdef_same. f_equal. rewrite ! Ptrofs.add_assoc. f_equal.
- rewrite (Ptrofs.add_commut (Ptrofs.of_int n1)), Ptrofs.add_assoc. f_equal. auto with ptrofs.
- destruct Archi.ptr64 eqn:SF; auto.
- - subst. econstructor; split.
- EvalOp. constructor. EvalOp. simpl; eauto. constructor. eauto. constructor. simpl; eauto.
- destruct sp; simpl; auto.
- destruct v1; simpl; auto.
- destruct Archi.ptr64 eqn:SF; auto.
- apply Val.lessdef_same. f_equal. rewrite ! Ptrofs.add_assoc. f_equal. f_equal.
- rewrite Ptrofs.add_commut. auto with ptrofs.
- destruct Archi.ptr64 eqn:SF; auto.
- - subst.
- replace (Val.add (Val.add v1 (Vint n1)) y)
- with (Val.add (Val.add v1 y) (Vint n1)).
- apply eval_addimm. EvalOp.
- repeat rewrite Val.add_assoc. decEq. apply Val.add_commut.
- - subst.
- replace (Val.add x (Val.add v1 (Vint n2)))
- with (Val.add (Val.add x v1) (Vint n2)).
- apply eval_addimm. EvalOp.
- repeat rewrite Val.add_assoc. reflexivity.
- - TrivialExists.
-Qed.
-
-Theorem eval_sub: binary_constructor_sound sub Val.sub.
-Proof.
- red; intros until y.
- unfold sub; case (sub_match a b); intros; InvEval.
- - rewrite Val.sub_add_opp. apply eval_addimm; auto.
- - subst. rewrite Val.sub_add_l. rewrite Val.sub_add_r.
- rewrite Val.add_assoc. simpl. rewrite Int.add_commut. rewrite <- Int.sub_add_opp.
- apply eval_addimm; EvalOp.
- - subst. rewrite Val.sub_add_l. apply eval_addimm; EvalOp.
- - subst. rewrite Val.sub_add_r. apply eval_addimm; EvalOp.
- - TrivialExists.
-Qed.
-
-Theorem eval_negint: unary_constructor_sound negint (fun v => Val.sub Vzero v).
-Proof.
- red; intros until x. unfold negint. case (negint_match a); intros; InvEval.
- TrivialExists.
- TrivialExists.
-Qed.
-
-Theorem eval_shlimm:
- forall n, unary_constructor_sound (fun a => shlimm a n)
- (fun x => Val.shl x (Vint n)).
-Proof.
- red; intros until x. unfold shlimm.
-
- predSpec Int.eq Int.eq_spec n Int.zero.
- intros; subst. exists x; split; auto. destruct x; simpl; auto. rewrite Int.shl_zero; auto.
-
- destruct (Int.ltu n Int.iwordsize) eqn:LT; simpl.
- destruct (shlimm_match a); intros; InvEval.
- - exists (Vint (Int.shl n1 n)); split. EvalOp.
- simpl. rewrite LT. auto.
- - destruct (Int.ltu (Int.add n n1) Int.iwordsize) eqn:?.
- + exists (Val.shl v1 (Vint (Int.add n n1))); split. EvalOp.
- subst. destruct v1; simpl; auto.
- rewrite Heqb.
- destruct (Int.ltu n1 Int.iwordsize) eqn:?; simpl; auto.
- destruct (Int.ltu n Int.iwordsize) eqn:?; simpl; auto.
- rewrite Int.add_commut. rewrite Int.shl_shl; auto. rewrite Int.add_commut; auto.
- + subst. TrivialExists. econstructor. EvalOp. simpl; eauto. constructor.
- simpl. auto.
- - TrivialExists.
- - intros; TrivialExists. constructor. eauto. constructor. EvalOp. simpl; eauto. constructor.
- auto.
-Qed.
-
-Theorem eval_shruimm:
- forall n, unary_constructor_sound (fun a => shruimm a n)
- (fun x => Val.shru x (Vint n)).
-Proof.
- red; intros until x. unfold shruimm.
-
- predSpec Int.eq Int.eq_spec n Int.zero.
- intros; subst. exists x; split; auto. destruct x; simpl; auto. rewrite Int.shru_zero; auto.
-
- destruct (Int.ltu n Int.iwordsize) eqn:LT; simpl.
- destruct (shruimm_match a); intros; InvEval.
- - exists (Vint (Int.shru n1 n)); split. EvalOp.
- simpl. rewrite LT; auto.
- - destruct (Int.ltu (Int.add n n1) Int.iwordsize) eqn:?.
- exists (Val.shru v1 (Vint (Int.add n n1))); split. EvalOp.
- subst. destruct v1; simpl; auto.
- rewrite Heqb.
- destruct (Int.ltu n1 Int.iwordsize) eqn:?; simpl; auto.
- rewrite LT. rewrite Int.add_commut. rewrite Int.shru_shru; auto. rewrite Int.add_commut; auto.
- subst. TrivialExists. econstructor. EvalOp. simpl; eauto. constructor.
- simpl. auto.
- - TrivialExists.
- - intros; TrivialExists. constructor. eauto. constructor. EvalOp. simpl; eauto. constructor.
- auto.
-Qed.
-
-Theorem eval_shrimm:
- forall n, unary_constructor_sound (fun a => shrimm a n)
- (fun x => Val.shr x (Vint n)).
-Proof.
- red; intros until x. unfold shrimm.
-
- predSpec Int.eq Int.eq_spec n Int.zero.
- intros; subst. exists x; split; auto. destruct x; simpl; auto. rewrite Int.shr_zero; auto.
-
- destruct (Int.ltu n Int.iwordsize) eqn:LT; simpl.
- destruct (shrimm_match a); intros; InvEval.
- - exists (Vint (Int.shr n1 n)); split. EvalOp.
- simpl. rewrite LT; auto.
- - destruct (Int.ltu (Int.add n n1) Int.iwordsize) eqn:?.
- exists (Val.shr v1 (Vint (Int.add n n1))); split. EvalOp.
- subst. destruct v1; simpl; auto.
- rewrite Heqb.
- destruct (Int.ltu n1 Int.iwordsize) eqn:?; simpl; auto.
- rewrite LT.
- rewrite Int.add_commut. rewrite Int.shr_shr; auto. rewrite Int.add_commut; auto.
- subst. TrivialExists. econstructor. EvalOp. simpl; eauto. constructor.
- simpl. auto.
- - TrivialExists.
- - intros; TrivialExists. constructor. eauto. constructor. EvalOp. simpl; eauto. constructor.
- auto.
-Qed.
-
-Lemma eval_mulimm_base:
- forall n, unary_constructor_sound (mulimm_base n) (fun x => Val.mul x (Vint n)).
-Proof.
- intros; red; intros; unfold mulimm_base.
-
- assert (DFL: exists v, eval_expr ge sp e m le (Eop Omul (Eop (Ointconst n) Enil ::: a ::: Enil)) v /\ Val.lessdef (Val.mul x (Vint n)) v).
- TrivialExists. econstructor. EvalOp. simpl; eauto. econstructor. eauto. constructor.
- rewrite Val.mul_commut. auto.
-
- generalize (Int.one_bits_decomp n).
- generalize (Int.one_bits_range n).
- destruct (Int.one_bits n).
- - intros. auto.
- - destruct l.
- + intros. rewrite H1. simpl.
- rewrite Int.add_zero.
- replace (Vint (Int.shl Int.one i)) with (Val.shl Vone (Vint i)). rewrite Val.shl_mul.
- apply eval_shlimm. auto. simpl. rewrite H0; auto with coqlib.
- + destruct l.
- intros. rewrite H1. simpl.
- exploit (eval_shlimm i (x :: le) (Eletvar 0) x). constructor; auto. intros [v1 [A1 B1]].
- exploit (eval_shlimm i0 (x :: le) (Eletvar 0) x). constructor; auto. intros [v2 [A2 B2]].
- exploit (eval_add (x :: le)). eexact A1. eexact A2. intros [v [A B]].
- exists v; split. econstructor; eauto.
- rewrite Int.add_zero.
- replace (Vint (Int.add (Int.shl Int.one i) (Int.shl Int.one i0)))
- with (Val.add (Val.shl Vone (Vint i)) (Val.shl Vone (Vint i0))).
- rewrite Val.mul_add_distr_r.
- repeat rewrite Val.shl_mul. eapply Val.lessdef_trans. 2: eauto. apply Val.add_lessdef; auto.
- simpl. repeat rewrite H0; auto with coqlib.
- intros. auto.
-Qed.
-
-Theorem eval_mulimm:
- forall n, unary_constructor_sound (mulimm n) (fun x => Val.mul x (Vint n)).
-Proof.
- intros; red; intros until x; unfold mulimm.
-
- predSpec Int.eq Int.eq_spec n Int.zero.
- intros. exists (Vint Int.zero); split. EvalOp.
- destruct x; simpl; auto. subst n. rewrite Int.mul_zero. auto.
-
- predSpec Int.eq Int.eq_spec n Int.one.
- intros. exists x; split; auto.
- destruct x; simpl; auto. subst n. rewrite Int.mul_one. auto.
-
- case (mulimm_match a); intros; InvEval.
- - TrivialExists. simpl. rewrite Int.mul_commut; auto.
- - subst. rewrite Val.mul_add_distr_l.
- exploit eval_mulimm_base; eauto. instantiate (1 := n). intros [v' [A1 B1]].
- exploit (eval_addimm (Int.mul n n2) le (mulimm_base n t2) v'). auto. intros [v'' [A2 B2]].
- exists v''; split; auto. eapply Val.lessdef_trans. eapply Val.add_lessdef; eauto.
- rewrite Val.mul_commut; auto.
- - apply eval_mulimm_base; auto.
-Qed.
-
-Theorem eval_mul: binary_constructor_sound mul Val.mul.
-Proof.
- red; intros until y.
- unfold mul; case (mul_match a b); intros; InvEval.
- rewrite Val.mul_commut. apply eval_mulimm. auto.
- apply eval_mulimm. auto.
- TrivialExists.
-Qed.
-
-Theorem eval_mulhs: binary_constructor_sound mulhs Val.mulhs.
-Proof.
- red; intros. unfold mulhs; destruct Archi.ptr64 eqn:SF.
-- econstructor; split.
- EvalOp. constructor. EvalOp. constructor. EvalOp. constructor. EvalOp. simpl; eauto.
- constructor. EvalOp. simpl; eauto. constructor.
- simpl; eauto. constructor. simpl; eauto. constructor. simpl; eauto.
- destruct x; simpl; auto. destruct y; simpl; auto.
- change (Int.ltu (Int.repr 32) Int64.iwordsize') with true; simpl.
- apply Val.lessdef_same. f_equal.
- transitivity (Int.repr (Z.shiftr (Int.signed i * Int.signed i0) 32)).
- unfold Int.mulhs; f_equal. rewrite Zshiftr_div_two_p by lia. reflexivity.
- apply Int.same_bits_eq; intros n N.
- change Int.zwordsize with 32 in *.
- assert (N1: 0 <= n < 64) by lia.
- rewrite Int64.bits_loword by auto.
- rewrite Int64.bits_shr' by auto.
- change (Int.unsigned (Int.repr 32)) with 32. change Int64.zwordsize with 64.
- rewrite zlt_true by lia.
- rewrite Int.testbit_repr by auto.
- unfold Int64.mul. rewrite Int64.testbit_repr by (change Int64.zwordsize with 64; lia).
- transitivity (Z.testbit (Int.signed i * Int.signed i0) (n + 32)).
- rewrite Z.shiftr_spec by lia. auto.
- apply Int64.same_bits_eqm. apply Int64.eqm_mult; apply Int64.eqm_unsigned_repr.
- change Int64.zwordsize with 64; lia.
-- TrivialExists.
-Qed.
-
-Theorem eval_mulhu: binary_constructor_sound mulhu Val.mulhu.
-Proof.
- red; intros. unfold mulhu; destruct Archi.ptr64 eqn:SF.
-- econstructor; split.
- EvalOp. constructor. EvalOp. constructor. EvalOp. constructor. EvalOp. simpl; eauto.
- constructor. EvalOp. simpl; eauto. constructor.
- simpl; eauto. constructor. simpl; eauto. constructor. simpl; eauto.
- destruct x; simpl; auto. destruct y; simpl; auto.
- change (Int.ltu (Int.repr 32) Int64.iwordsize') with true; simpl.
- apply Val.lessdef_same. f_equal.
- transitivity (Int.repr (Z.shiftr (Int.unsigned i * Int.unsigned i0) 32)).
- unfold Int.mulhu; f_equal. rewrite Zshiftr_div_two_p by lia. reflexivity.
- apply Int.same_bits_eq; intros n N.
- change Int.zwordsize with 32 in *.
- assert (N1: 0 <= n < 64) by lia.
- rewrite Int64.bits_loword by auto.
- rewrite Int64.bits_shru' by auto.
- change (Int.unsigned (Int.repr 32)) with 32. change Int64.zwordsize with 64.
- rewrite zlt_true by lia.
- rewrite Int.testbit_repr by auto.
- unfold Int64.mul. rewrite Int64.testbit_repr by (change Int64.zwordsize with 64; lia).
- transitivity (Z.testbit (Int.unsigned i * Int.unsigned i0) (n + 32)).
- rewrite Z.shiftr_spec by lia. auto.
- apply Int64.same_bits_eqm. apply Int64.eqm_mult; apply Int64.eqm_unsigned_repr.
- change Int64.zwordsize with 64; lia.
-- TrivialExists.
-Qed.
-
-Theorem eval_andimm:
- forall n, unary_constructor_sound (andimm n) (fun x => Val.and x (Vint n)).
-Proof.
- intros; red; intros until x. unfold andimm.
-
- predSpec Int.eq Int.eq_spec n Int.zero.
- intros. exists (Vint Int.zero); split. EvalOp.
- destruct x; simpl; auto. subst n. rewrite Int.and_zero. auto.
-
- predSpec Int.eq Int.eq_spec n Int.mone.
- intros. exists x; split; auto.
- subst. destruct x; simpl; auto. rewrite Int.and_mone; auto.
-
- case (andimm_match a); intros.
- - InvEval. TrivialExists. simpl. rewrite Int.and_commut; auto.
- - InvEval. subst. rewrite Val.and_assoc. simpl. rewrite Int.and_commut. TrivialExists.
- - TrivialExists.
-Qed.
-
-Theorem eval_and: binary_constructor_sound and Val.and.
-Proof.
- red; intros until y; unfold and; case (and_match a b); intros; InvEval.
- - rewrite Val.and_commut. apply eval_andimm; auto.
- - apply eval_andimm; auto.
- - TrivialExists.
-Qed.
-
-Theorem eval_orimm:
- forall n, unary_constructor_sound (orimm n) (fun x => Val.or x (Vint n)).
-Proof.
- intros; red; intros until x. unfold orimm.
-
- predSpec Int.eq Int.eq_spec n Int.zero.
- intros. subst. exists x; split; auto.
- destruct x; simpl; auto. rewrite Int.or_zero; auto.
-
- predSpec Int.eq Int.eq_spec n Int.mone.
- intros. exists (Vint Int.mone); split. EvalOp.
- destruct x; simpl; auto. subst n. rewrite Int.or_mone. auto.
-
- destruct (orimm_match a); intros; InvEval.
- - TrivialExists. simpl. rewrite Int.or_commut; auto.
- - subst. rewrite Val.or_assoc. simpl. rewrite Int.or_commut. TrivialExists.
- - TrivialExists.
-Qed.
-
-Theorem eval_or: binary_constructor_sound or Val.or.
-Proof.
- red; intros until y; unfold or; case (or_match a b); intros; InvEval.
- - rewrite Val.or_commut. apply eval_orimm; auto.
- - apply eval_orimm; auto.
- - TrivialExists.
-Qed.
-
-Theorem eval_xorimm:
- forall n, unary_constructor_sound (xorimm n) (fun x => Val.xor x (Vint n)).
-Proof.
- intros; red; intros until x. unfold xorimm.
-
- predSpec Int.eq Int.eq_spec n Int.zero.
- intros. exists x; split. auto.
- destruct x; simpl; auto. subst n. rewrite Int.xor_zero. auto.
-
- intros. destruct (xorimm_match a); intros; InvEval.
- - TrivialExists. simpl. rewrite Int.xor_commut; auto.
- - subst. rewrite Val.xor_assoc. simpl. rewrite Int.xor_commut.
- predSpec Int.eq Int.eq_spec (Int.xor n2 n) Int.zero.
- + exists v1; split; auto. destruct v1; simpl; auto. rewrite H0, Int.xor_zero; auto.
- + TrivialExists.
- - TrivialExists.
-Qed.
-
-Theorem eval_xor: binary_constructor_sound xor Val.xor.
-Proof.
- red; intros until y; unfold xor; case (xor_match a b); intros; InvEval.
- - rewrite Val.xor_commut. apply eval_xorimm; auto.
- - apply eval_xorimm; auto.
- - TrivialExists.
-Qed.
-
-Theorem eval_notint: unary_constructor_sound notint Val.notint.
-Proof.
- unfold notint; red; intros. rewrite Val.not_xor. apply eval_xorimm; auto.
-Qed.
-
-Theorem eval_divs_base:
- forall le a b x y z,
- eval_expr ge sp e m le a x ->
- eval_expr ge sp e m le b y ->
- Val.divs x y = Some z ->
- exists v, eval_expr ge sp e m le (divs_base a b) v /\ Val.lessdef z v.
-Proof.
- intros. unfold divs_base. exists z; split. EvalOp. auto.
-Qed.
-
-Theorem eval_mods_base:
- forall le a b x y z,
- eval_expr ge sp e m le a x ->
- eval_expr ge sp e m le b y ->
- Val.mods x y = Some z ->
- exists v, eval_expr ge sp e m le (mods_base a b) v /\ Val.lessdef z v.
-Proof.
- intros. unfold mods_base. exists z; split. EvalOp. auto.
-Qed.
-
-Theorem eval_divu_base:
- forall le a b x y z,
- eval_expr ge sp e m le a x ->
- eval_expr ge sp e m le b y ->
- Val.divu x y = Some z ->
- exists v, eval_expr ge sp e m le (divu_base a b) v /\ Val.lessdef z v.
-Proof.
- intros. unfold divu_base. exists z; split. EvalOp. auto.
-Qed.
-
-Theorem eval_modu_base:
- forall le a b x y z,
- eval_expr ge sp e m le a x ->
- eval_expr ge sp e m le b y ->
- Val.modu x y = Some z ->
- exists v, eval_expr ge sp e m le (modu_base a b) v /\ Val.lessdef z v.
-Proof.
- intros. unfold modu_base. exists z; split. EvalOp. auto.
-Qed.
-
-Theorem eval_shrximm:
- forall le a n x z,
- eval_expr ge sp e m le a x ->
- Val.shrx x (Vint n) = Some z ->
- exists v, eval_expr ge sp e m le (shrximm a n) v /\ Val.lessdef z v.
-Proof.
- intros. unfold shrximm.
- predSpec Int.eq Int.eq_spec n Int.zero.
- subst n. exists x; split; auto.
- destruct x; simpl in H0; try discriminate.
- destruct (Int.ltu Int.zero (Int.repr 31)); inv H0.
- replace (Int.shrx i Int.zero) with i. auto.
- unfold Int.shrx, Int.divs. rewrite Int.shl_zero.
- change (Int.signed Int.one) with 1. rewrite Z.quot_1_r. rewrite Int.repr_signed; auto.
- econstructor; split. EvalOp. auto.
-(*
- intros. destruct x; simpl in H0; try discriminate.
- destruct (Int.ltu n (Int.repr 31)) eqn:LTU; inv H0.
- unfold shrximm.
- predSpec Int.eq Int.eq_spec n Int.zero.
- - subst n. exists (Vint i); split; auto.
- unfold Int.shrx, Int.divs. rewrite Z.quot_1_r. rewrite Int.repr_signed. auto.
- - assert (NZ: Int.unsigned n <> 0).
- { intro EQ; elim H0. rewrite <- (Int.repr_unsigned n). rewrite EQ; auto. }
- assert (LT: 0 <= Int.unsigned n < 31) by (apply Int.ltu_inv in LTU; assumption).
- assert (LTU2: Int.ltu (Int.sub Int.iwordsize n) Int.iwordsize = true).
- { unfold Int.ltu; apply zlt_true.
- unfold Int.sub. change (Int.unsigned Int.iwordsize) with 32.
- rewrite Int.unsigned_repr. lia.
- assert (32 < Int.max_unsigned) by reflexivity. lia. }
- assert (X: eval_expr ge sp e m le
- (Eop (Oshrimm (Int.repr (Int.zwordsize - 1))) (a ::: Enil))
- (Vint (Int.shr i (Int.repr (Int.zwordsize - 1))))).
- { EvalOp. }
- assert (Y: eval_expr ge sp e m le (shrximm_inner a n)
- (Vint (Int.shru (Int.shr i (Int.repr (Int.zwordsize - 1))) (Int.sub Int.iwordsize n)))).
- { EvalOp. simpl. rewrite LTU2. auto. }
- TrivialExists.
- constructor. EvalOp. simpl; eauto. constructor.
- simpl. unfold Int.ltu; rewrite zlt_true. rewrite Int.shrx_shr_2 by auto. reflexivity.
- change (Int.unsigned Int.iwordsize) with 32; lia.
-*)
-Qed.
-
-Theorem eval_shl: binary_constructor_sound shl Val.shl.
-Proof.
- red; intros until y; unfold shl; case (shl_match b); intros.
- InvEval. apply eval_shlimm; auto.
- TrivialExists.
-Qed.
-
-Theorem eval_shr: binary_constructor_sound shr Val.shr.
-Proof.
- red; intros until y; unfold shr; case (shr_match b); intros.
- InvEval. apply eval_shrimm; auto.
- TrivialExists.
-Qed.
-
-Theorem eval_shru: binary_constructor_sound shru Val.shru.
-Proof.
- red; intros until y; unfold shru; case (shru_match b); intros.
- InvEval. apply eval_shruimm; auto.
- TrivialExists.
-Qed.
-
-Theorem eval_negf: unary_constructor_sound negf Val.negf.
-Proof.
- red; intros. TrivialExists.
-Qed.
-
-Theorem eval_absf: unary_constructor_sound absf Val.absf.
-Proof.
- red; intros. TrivialExists.
-Qed.
-
-Theorem eval_addf: binary_constructor_sound addf Val.addf.
-Proof.
- red; intros; TrivialExists.
-Qed.
-
-Theorem eval_subf: binary_constructor_sound subf Val.subf.
-Proof.
- red; intros; TrivialExists.
-Qed.
-
-Theorem eval_mulf: binary_constructor_sound mulf Val.mulf.
-Proof.
- red; intros; TrivialExists.
-Qed.
-
-Theorem eval_negfs: unary_constructor_sound negfs Val.negfs.
-Proof.
- red; intros. TrivialExists.
-Qed.
-
-Theorem eval_absfs: unary_constructor_sound absfs Val.absfs.
-Proof.
- red; intros. TrivialExists.
-Qed.
-
-Theorem eval_addfs: binary_constructor_sound addfs Val.addfs.
-Proof.
- red; intros; TrivialExists.
-Qed.
-
-Theorem eval_subfs: binary_constructor_sound subfs Val.subfs.
-Proof.
- red; intros; TrivialExists.
-Qed.
-
-Theorem eval_mulfs: binary_constructor_sound mulfs Val.mulfs.
-Proof.
- red; intros; TrivialExists.
-Qed.
-
-Section COMP_IMM.
-
-Variable default: comparison -> int -> condition.
-Variable intsem: comparison -> int -> int -> bool.
-Variable sem: comparison -> val -> val -> val.
-
-Hypothesis sem_int: forall c x y, sem c (Vint x) (Vint y) = Val.of_bool (intsem c x y).
-Hypothesis sem_undef: forall c v, sem c Vundef v = Vundef.
-Hypothesis sem_eq: forall x y, sem Ceq (Vint x) (Vint y) = Val.of_bool (Int.eq x y).
-Hypothesis sem_ne: forall x y, sem Cne (Vint x) (Vint y) = Val.of_bool (negb (Int.eq x y)).
-Hypothesis sem_default: forall c v n, sem c v (Vint n) = Val.of_optbool (eval_condition (default c n) (v :: nil) m).
-
-Lemma eval_compimm:
- forall le c a n2 x,
- eval_expr ge sp e m le a x ->
- exists v, eval_expr ge sp e m le (compimm default intsem c a n2) v
- /\ Val.lessdef (sem c x (Vint n2)) v.
-Proof.
- intros until x.
- unfold compimm; case (compimm_match c a); intros.
-(* constant *)
- - InvEval. rewrite sem_int. TrivialExists. simpl. destruct (intsem c0 n1 n2); auto.
-(* eq cmp *)
- - InvEval. inv H. simpl in H5. inv H5.
- destruct (Int.eq_dec n2 Int.zero).
- + subst n2. TrivialExists.
- simpl. rewrite eval_negate_condition.
- destruct (eval_condition c0 vl m); simpl.
- unfold Vtrue, Vfalse. destruct b; simpl; rewrite sem_eq; auto.
- rewrite sem_undef; auto.
- + destruct (Int.eq_dec n2 Int.one). subst n2. TrivialExists.
- simpl. destruct (eval_condition c0 vl m); simpl.
- unfold Vtrue, Vfalse. destruct b; simpl; rewrite sem_eq; auto.
- rewrite sem_undef; auto.
- exists (Vint Int.zero); split. EvalOp.
- destruct (eval_condition c0 vl m); simpl.
- unfold Vtrue, Vfalse. destruct b; rewrite sem_eq; rewrite Int.eq_false; auto.
- rewrite sem_undef; auto.
-(* ne cmp *)
- - InvEval. inv H. simpl in H5. inv H5.
- destruct (Int.eq_dec n2 Int.zero).
- + subst n2. TrivialExists.
- simpl. destruct (eval_condition c0 vl m); simpl.
- unfold Vtrue, Vfalse. destruct b; simpl; rewrite sem_ne; auto.
- rewrite sem_undef; auto.
- + destruct (Int.eq_dec n2 Int.one). subst n2. TrivialExists.
- simpl. rewrite eval_negate_condition. destruct (eval_condition c0 vl m); simpl.
- unfold Vtrue, Vfalse. destruct b; simpl; rewrite sem_ne; auto.
- rewrite sem_undef; auto.
- exists (Vint Int.one); split. EvalOp.
- destruct (eval_condition c0 vl m); simpl.
- unfold Vtrue, Vfalse. destruct b; rewrite sem_ne; rewrite Int.eq_false; auto.
- rewrite sem_undef; auto.
-(* default *)
- - TrivialExists. simpl. rewrite sem_default. auto.
-Qed.
-
-Hypothesis sem_swap:
- forall c x y, sem (swap_comparison c) x y = sem c y x.
-
-Lemma eval_compimm_swap:
- forall le c a n2 x,
- eval_expr ge sp e m le a x ->
- exists v, eval_expr ge sp e m le (compimm default intsem (swap_comparison c) a n2) v
- /\ Val.lessdef (sem c (Vint n2) x) v.
-Proof.
- intros. rewrite <- sem_swap. eapply eval_compimm; eauto.
-Qed.
-
-End COMP_IMM.
-
-Theorem eval_comp:
- forall c, binary_constructor_sound (comp c) (Val.cmp c).
-Proof.
- intros; red; intros until y. unfold comp; case (comp_match a b); intros; InvEval.
- eapply eval_compimm_swap; eauto.
- intros. unfold Val.cmp. rewrite Val.swap_cmp_bool; auto.
- eapply eval_compimm; eauto.
- TrivialExists.
-Qed.
-
-Theorem eval_compu:
- forall c, binary_constructor_sound (compu c) (Val.cmpu (Mem.valid_pointer m) c).
-Proof.
- intros; red; intros until y. unfold compu; case (compu_match a b); intros; InvEval.
- eapply eval_compimm_swap; eauto.
- intros. unfold Val.cmpu. rewrite Val.swap_cmpu_bool; auto.
- eapply eval_compimm; eauto.
- TrivialExists.
-Qed.
-
-Theorem eval_compf:
- forall c, binary_constructor_sound (compf c) (Val.cmpf c).
-Proof.
- intros; red; intros. unfold compf. TrivialExists.
-Qed.
-
-Theorem eval_compfs:
- forall c, binary_constructor_sound (compfs c) (Val.cmpfs c).
-Proof.
- intros; red; intros. unfold compfs. TrivialExists.
-Qed.
-
-Theorem eval_cast8signed: unary_constructor_sound cast8signed (Val.sign_ext 8).
-Proof.
- red; intros until x. unfold cast8signed. case (cast8signed_match a); intros; InvEval.
- TrivialExists.
- TrivialExists.
-Qed.
-
-Theorem eval_cast8unsigned: unary_constructor_sound cast8unsigned (Val.zero_ext 8).
-Proof.
- red; intros until x. unfold cast8unsigned.
- rewrite Val.zero_ext_and. apply eval_andimm. lia.
-Qed.
-
-Theorem eval_cast16signed: unary_constructor_sound cast16signed (Val.sign_ext 16).
-Proof.
- red; intros until x. unfold cast16signed. case (cast16signed_match a); intros; InvEval.
- TrivialExists.
- TrivialExists.
-Qed.
-
-Theorem eval_cast16unsigned: unary_constructor_sound cast16unsigned (Val.zero_ext 16).
-Proof.
- red; intros until x. unfold cast8unsigned.
- rewrite Val.zero_ext_and. apply eval_andimm. lia.
-Qed.
-
-Theorem eval_intoffloat:
- forall le a x y,
- eval_expr ge sp e m le a x ->
- Val.intoffloat x = Some y ->
- exists v, eval_expr ge sp e m le (intoffloat a) v /\ Val.lessdef y v.
-Proof.
- intros; unfold intoffloat. TrivialExists.
-Qed.
-
-Theorem eval_intuoffloat:
- forall le a x y,
- eval_expr ge sp e m le a x ->
- Val.intuoffloat x = Some y ->
- exists v, eval_expr ge sp e m le (intuoffloat a) v /\ Val.lessdef y v.
-Proof.
- intros; unfold intuoffloat. TrivialExists.
-Qed.
-
-Theorem eval_floatofintu:
- forall le a x y,
- eval_expr ge sp e m le a x ->
- Val.floatofintu x = Some y ->
- exists v, eval_expr ge sp e m le (floatofintu a) v /\ Val.lessdef y v.
-Proof.
- intros until y; unfold floatofintu. case (floatofintu_match a); intros.
- InvEval. simpl in H0. TrivialExists.
- TrivialExists.
-Qed.
-
-Theorem eval_floatofint:
- forall le a x y,
- eval_expr ge sp e m le a x ->
- Val.floatofint x = Some y ->
- exists v, eval_expr ge sp e m le (floatofint a) v /\ Val.lessdef y v.
-Proof.
- intros until y; unfold floatofint. case (floatofint_match a); intros.
- InvEval. simpl in H0. TrivialExists.
- TrivialExists.
-Qed.
-
-Theorem eval_intofsingle:
- forall le a x y,
- eval_expr ge sp e m le a x ->
- Val.intofsingle x = Some y ->
- exists v, eval_expr ge sp e m le (intofsingle a) v /\ Val.lessdef y v.
-Proof.
- intros; unfold intofsingle. TrivialExists.
-Qed.
-
-Theorem eval_singleofint:
- forall le a x y,
- eval_expr ge sp e m le a x ->
- Val.singleofint x = Some y ->
- exists v, eval_expr ge sp e m le (singleofint a) v /\ Val.lessdef y v.
-Proof.
- intros; unfold singleofint; TrivialExists.
-Qed.
-
-Theorem eval_intuofsingle:
- forall le a x y,
- eval_expr ge sp e m le a x ->
- Val.intuofsingle x = Some y ->
- exists v, eval_expr ge sp e m le (intuofsingle a) v /\ Val.lessdef y v.
-Proof.
- intros; unfold intuofsingle. TrivialExists.
-Qed.
-
-Theorem eval_singleofintu:
- forall le a x y,
- eval_expr ge sp e m le a x ->
- Val.singleofintu x = Some y ->
- exists v, eval_expr ge sp e m le (singleofintu a) v /\ Val.lessdef y v.
-Proof.
- intros; unfold intuofsingle. TrivialExists.
-Qed.
-
-Theorem eval_singleoffloat: unary_constructor_sound singleoffloat Val.singleoffloat.
-Proof.
- red; intros. unfold singleoffloat. TrivialExists.
-Qed.
-
-Theorem eval_floatofsingle: unary_constructor_sound floatofsingle Val.floatofsingle.
-Proof.
- red; intros. unfold floatofsingle. TrivialExists.
-Qed.
-
-Theorem eval_select:
- forall le ty cond al vl a1 v1 a2 v2 a b,
- select ty cond al a1 a2 = Some a ->
- eval_exprlist ge sp e m le al vl ->
- eval_expr ge sp e m le a1 v1 ->
- eval_expr ge sp e m le a2 v2 ->
- eval_condition cond vl m = Some b ->
- exists v,
- eval_expr ge sp e m le a v
- /\ Val.lessdef (Val.select (Some b) v1 v2 ty) v.
-Proof.
- unfold select; intros; discriminate.
-Qed.
-
-Theorem eval_addressing:
- forall le chunk a v b ofs,
- eval_expr ge sp e m le a v ->
- v = Vptr b ofs ->
- match addressing chunk a with (mode, args) =>
- exists vl,
- eval_exprlist ge sp e m le args vl /\
- eval_addressing ge sp mode vl = Some v
- end.
-Proof.
- intros until v. unfold addressing; case (addressing_match a); intros; InvEval.
- - exists (@nil val); split. eauto with evalexpr. simpl. auto.
- - destruct (Archi.pic_code tt).
- + exists (Vptr b ofs0 :: nil); split.
- constructor. EvalOp. simpl. congruence. constructor. simpl. rewrite Ptrofs.add_zero. congruence.
- + exists (@nil val); split. constructor. simpl; auto.
- - exists (v1 :: nil); split. eauto with evalexpr. simpl.
- destruct v1; simpl in H; try discriminate. destruct Archi.ptr64 eqn:SF; inv H.
- simpl. auto.
- - exists (v1 :: nil); split. eauto with evalexpr. simpl.
- destruct v1; simpl in H; try discriminate. destruct Archi.ptr64 eqn:SF; inv H.
- simpl. auto.
- - exists (v :: nil); split. eauto with evalexpr. subst. simpl. rewrite Ptrofs.add_zero; auto.
-Qed.
-
-Theorem eval_builtin_arg:
- forall a v,
- eval_expr ge sp e m nil a v ->
- CminorSel.eval_builtin_arg ge sp e m (builtin_arg a) v.
-Proof.
- intros until v. unfold builtin_arg; case (builtin_arg_match a); intros.
-- InvEval. constructor.
-- InvEval. constructor.
-- InvEval. constructor.
-- InvEval. simpl in H5. inv H5. constructor.
-- InvEval. subst v. constructor; auto.
-- inv H. InvEval. simpl in H6; inv H6. constructor; auto.
-- destruct Archi.ptr64 eqn:SF.
-+ constructor; auto.
-+ InvEval. replace v with (if Archi.ptr64 then Val.addl v1 (Vint n) else Val.add v1 (Vint n)).
- repeat constructor; auto.
- rewrite SF; auto.
-- destruct Archi.ptr64 eqn:SF.
-+ InvEval. replace v with (if Archi.ptr64 then Val.addl v1 (Vlong n) else Val.add v1 (Vlong n)).
- repeat constructor; auto.
- rewrite SF; auto.
-+ constructor; auto.
-- constructor; auto.
-Qed.
-
-(** Platform-specific known builtins *)
-
-Theorem eval_platform_builtin:
- forall bf al a vl v le,
- platform_builtin bf al = Some a ->
- eval_exprlist ge sp e m le al vl ->
- platform_builtin_sem bf vl = Some v ->
- exists v', eval_expr ge sp e m le a v' /\ Val.lessdef v v'.
-Proof.
- intros. discriminate.
-Qed.
-
-End CMCONSTR.