aboutsummaryrefslogtreecommitdiffstats
path: root/test/monniaux/BearSSL/src/hash/ghash_ctmul32.c
diff options
context:
space:
mode:
Diffstat (limited to 'test/monniaux/BearSSL/src/hash/ghash_ctmul32.c')
-rw-r--r--test/monniaux/BearSSL/src/hash/ghash_ctmul32.c251
1 files changed, 251 insertions, 0 deletions
diff --git a/test/monniaux/BearSSL/src/hash/ghash_ctmul32.c b/test/monniaux/BearSSL/src/hash/ghash_ctmul32.c
new file mode 100644
index 00000000..c66af465
--- /dev/null
+++ b/test/monniaux/BearSSL/src/hash/ghash_ctmul32.c
@@ -0,0 +1,251 @@
+/*
+ * Copyright (c) 2016 Thomas Pornin <pornin@bolet.org>
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining
+ * a copy of this software and associated documentation files (the
+ * "Software"), to deal in the Software without restriction, including
+ * without limitation the rights to use, copy, modify, merge, publish,
+ * distribute, sublicense, and/or sell copies of the Software, and to
+ * permit persons to whom the Software is furnished to do so, subject to
+ * the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be
+ * included in all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
+ * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+ * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
+ * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
+ * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
+ * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
+ * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+
+#include "inner.h"
+
+/*
+ * This implementation uses 32-bit multiplications, and only the low
+ * 32 bits for each multiplication result. This is meant primarily for
+ * the ARM Cortex M0 and M0+, whose multiplication opcode does not yield
+ * the upper 32 bits; but it might also be useful on architectures where
+ * access to the upper 32 bits requires use of specific registers that
+ * create contention (e.g. on i386, "mul" necessarily outputs the result
+ * in edx:eax, while "imul" can use any registers but is limited to the
+ * low 32 bits).
+ *
+ * The implementation trick that is used here is bit-reversing (bit 0
+ * is swapped with bit 31, bit 1 with bit 30, and so on). In GF(2)[X],
+ * for all values x and y, we have:
+ * rev32(x) * rev32(y) = rev64(x * y)
+ * In other words, if we bit-reverse (over 32 bits) the operands, then we
+ * bit-reverse (over 64 bits) the result.
+ */
+
+/*
+ * Multiplication in GF(2)[X], truncated to its low 32 bits.
+ */
+static inline uint32_t
+bmul32(uint32_t x, uint32_t y)
+{
+ uint32_t x0, x1, x2, x3;
+ uint32_t y0, y1, y2, y3;
+ uint32_t z0, z1, z2, z3;
+
+ x0 = x & (uint32_t)0x11111111;
+ x1 = x & (uint32_t)0x22222222;
+ x2 = x & (uint32_t)0x44444444;
+ x3 = x & (uint32_t)0x88888888;
+ y0 = y & (uint32_t)0x11111111;
+ y1 = y & (uint32_t)0x22222222;
+ y2 = y & (uint32_t)0x44444444;
+ y3 = y & (uint32_t)0x88888888;
+ z0 = (x0 * y0) ^ (x1 * y3) ^ (x2 * y2) ^ (x3 * y1);
+ z1 = (x0 * y1) ^ (x1 * y0) ^ (x2 * y3) ^ (x3 * y2);
+ z2 = (x0 * y2) ^ (x1 * y1) ^ (x2 * y0) ^ (x3 * y3);
+ z3 = (x0 * y3) ^ (x1 * y2) ^ (x2 * y1) ^ (x3 * y0);
+ z0 &= (uint32_t)0x11111111;
+ z1 &= (uint32_t)0x22222222;
+ z2 &= (uint32_t)0x44444444;
+ z3 &= (uint32_t)0x88888888;
+ return z0 | z1 | z2 | z3;
+}
+
+/*
+ * Bit-reverse a 32-bit word.
+ */
+static uint32_t
+rev32(uint32_t x)
+{
+#define RMS(m, s) do { \
+ x = ((x & (uint32_t)(m)) << (s)) \
+ | ((x >> (s)) & (uint32_t)(m)); \
+ } while (0)
+
+ RMS(0x55555555, 1);
+ RMS(0x33333333, 2);
+ RMS(0x0F0F0F0F, 4);
+ RMS(0x00FF00FF, 8);
+ return (x << 16) | (x >> 16);
+
+#undef RMS
+}
+
+/* see bearssl_hash.h */
+void
+br_ghash_ctmul32(void *y, const void *h, const void *data, size_t len)
+{
+ /*
+ * This implementation is similar to br_ghash_ctmul() except
+ * that we have to do the multiplication twice, with the
+ * "normal" and "bit reversed" operands. Hence we end up with
+ * eighteen 32-bit multiplications instead of nine.
+ */
+
+ const unsigned char *buf, *hb;
+ unsigned char *yb;
+ uint32_t yw[4];
+ uint32_t hw[4], hwr[4];
+
+ buf = data;
+ yb = y;
+ hb = h;
+ yw[3] = br_dec32be(yb);
+ yw[2] = br_dec32be(yb + 4);
+ yw[1] = br_dec32be(yb + 8);
+ yw[0] = br_dec32be(yb + 12);
+ hw[3] = br_dec32be(hb);
+ hw[2] = br_dec32be(hb + 4);
+ hw[1] = br_dec32be(hb + 8);
+ hw[0] = br_dec32be(hb + 12);
+ hwr[3] = rev32(hw[3]);
+ hwr[2] = rev32(hw[2]);
+ hwr[1] = rev32(hw[1]);
+ hwr[0] = rev32(hw[0]);
+ while (len > 0) {
+ const unsigned char *src;
+ unsigned char tmp[16];
+ int i;
+ uint32_t a[18], b[18], c[18];
+ uint32_t d0, d1, d2, d3, d4, d5, d6, d7;
+ uint32_t zw[8];
+
+ if (len >= 16) {
+ src = buf;
+ buf += 16;
+ len -= 16;
+ } else {
+ memcpy(tmp, buf, len);
+ memset(tmp + len, 0, (sizeof tmp) - len);
+ src = tmp;
+ len = 0;
+ }
+ yw[3] ^= br_dec32be(src);
+ yw[2] ^= br_dec32be(src + 4);
+ yw[1] ^= br_dec32be(src + 8);
+ yw[0] ^= br_dec32be(src + 12);
+
+ /*
+ * We are using Karatsuba: the 128x128 multiplication is
+ * reduced to three 64x64 multiplications, hence nine
+ * 32x32 multiplications. With the bit-reversal trick,
+ * we have to perform 18 32x32 multiplications.
+ */
+
+ /*
+ * y[0,1]*h[0,1] -> 0,1,4
+ * y[2,3]*h[2,3] -> 2,3,5
+ * (y[0,1]+y[2,3])*(h[0,1]+h[2,3]) -> 6,7,8
+ */
+
+ a[0] = yw[0];
+ a[1] = yw[1];
+ a[2] = yw[2];
+ a[3] = yw[3];
+ a[4] = a[0] ^ a[1];
+ a[5] = a[2] ^ a[3];
+ a[6] = a[0] ^ a[2];
+ a[7] = a[1] ^ a[3];
+ a[8] = a[6] ^ a[7];
+
+ a[ 9] = rev32(yw[0]);
+ a[10] = rev32(yw[1]);
+ a[11] = rev32(yw[2]);
+ a[12] = rev32(yw[3]);
+ a[13] = a[ 9] ^ a[10];
+ a[14] = a[11] ^ a[12];
+ a[15] = a[ 9] ^ a[11];
+ a[16] = a[10] ^ a[12];
+ a[17] = a[15] ^ a[16];
+
+ b[0] = hw[0];
+ b[1] = hw[1];
+ b[2] = hw[2];
+ b[3] = hw[3];
+ b[4] = b[0] ^ b[1];
+ b[5] = b[2] ^ b[3];
+ b[6] = b[0] ^ b[2];
+ b[7] = b[1] ^ b[3];
+ b[8] = b[6] ^ b[7];
+
+ b[ 9] = hwr[0];
+ b[10] = hwr[1];
+ b[11] = hwr[2];
+ b[12] = hwr[3];
+ b[13] = b[ 9] ^ b[10];
+ b[14] = b[11] ^ b[12];
+ b[15] = b[ 9] ^ b[11];
+ b[16] = b[10] ^ b[12];
+ b[17] = b[15] ^ b[16];
+
+ for (i = 0; i < 18; i ++) {
+ c[i] = bmul32(a[i], b[i]);
+ }
+
+ c[4] ^= c[0] ^ c[1];
+ c[5] ^= c[2] ^ c[3];
+ c[8] ^= c[6] ^ c[7];
+
+ c[13] ^= c[ 9] ^ c[10];
+ c[14] ^= c[11] ^ c[12];
+ c[17] ^= c[15] ^ c[16];
+
+ /*
+ * y[0,1]*h[0,1] -> 0,9^4,1^13,10
+ * y[2,3]*h[2,3] -> 2,11^5,3^14,12
+ * (y[0,1]+y[2,3])*(h[0,1]+h[2,3]) -> 6,15^8,7^17,16
+ */
+ d0 = c[0];
+ d1 = c[4] ^ (rev32(c[9]) >> 1);
+ d2 = c[1] ^ c[0] ^ c[2] ^ c[6] ^ (rev32(c[13]) >> 1);
+ d3 = c[4] ^ c[5] ^ c[8]
+ ^ (rev32(c[10] ^ c[9] ^ c[11] ^ c[15]) >> 1);
+ d4 = c[2] ^ c[1] ^ c[3] ^ c[7]
+ ^ (rev32(c[13] ^ c[14] ^ c[17]) >> 1);
+ d5 = c[5] ^ (rev32(c[11] ^ c[10] ^ c[12] ^ c[16]) >> 1);
+ d6 = c[3] ^ (rev32(c[14]) >> 1);
+ d7 = rev32(c[12]) >> 1;
+
+ zw[0] = d0 << 1;
+ zw[1] = (d1 << 1) | (d0 >> 31);
+ zw[2] = (d2 << 1) | (d1 >> 31);
+ zw[3] = (d3 << 1) | (d2 >> 31);
+ zw[4] = (d4 << 1) | (d3 >> 31);
+ zw[5] = (d5 << 1) | (d4 >> 31);
+ zw[6] = (d6 << 1) | (d5 >> 31);
+ zw[7] = (d7 << 1) | (d6 >> 31);
+
+ for (i = 0; i < 4; i ++) {
+ uint32_t lw;
+
+ lw = zw[i];
+ zw[i + 4] ^= lw ^ (lw >> 1) ^ (lw >> 2) ^ (lw >> 7);
+ zw[i + 3] ^= (lw << 31) ^ (lw << 30) ^ (lw << 25);
+ }
+ memcpy(yw, zw + 4, sizeof yw);
+ }
+ br_enc32be(yb, yw[3]);
+ br_enc32be(yb + 4, yw[2]);
+ br_enc32be(yb + 8, yw[1]);
+ br_enc32be(yb + 12, yw[0]);
+}