aboutsummaryrefslogtreecommitdiffstats
path: root/test/monniaux/BearSSL/src/hash/ghash_pwr8.c
diff options
context:
space:
mode:
Diffstat (limited to 'test/monniaux/BearSSL/src/hash/ghash_pwr8.c')
-rw-r--r--test/monniaux/BearSSL/src/hash/ghash_pwr8.c411
1 files changed, 411 insertions, 0 deletions
diff --git a/test/monniaux/BearSSL/src/hash/ghash_pwr8.c b/test/monniaux/BearSSL/src/hash/ghash_pwr8.c
new file mode 100644
index 00000000..2e7b0f4c
--- /dev/null
+++ b/test/monniaux/BearSSL/src/hash/ghash_pwr8.c
@@ -0,0 +1,411 @@
+/*
+ * Copyright (c) 2017 Thomas Pornin <pornin@bolet.org>
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining
+ * a copy of this software and associated documentation files (the
+ * "Software"), to deal in the Software without restriction, including
+ * without limitation the rights to use, copy, modify, merge, publish,
+ * distribute, sublicense, and/or sell copies of the Software, and to
+ * permit persons to whom the Software is furnished to do so, subject to
+ * the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be
+ * included in all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
+ * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+ * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
+ * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
+ * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
+ * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
+ * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+
+#define BR_POWER_ASM_MACROS 1
+#include "inner.h"
+
+/*
+ * This is the GHASH implementation that leverages the POWER8 opcodes.
+ */
+
+#if BR_POWER8
+
+/*
+ * Some symbolic names for registers.
+ * HB0 = 16 bytes of value 0
+ * HB1 = 16 bytes of value 1
+ * HB2 = 16 bytes of value 2
+ * HB6 = 16 bytes of value 6
+ * HB7 = 16 bytes of value 7
+ * TT0, TT1 and TT2 are temporaries
+ *
+ * BSW holds the pattern for byteswapping 32-bit words; this is set only
+ * on little-endian systems. XBSW is the same register with the +32 offset
+ * for access with the VSX opcodes.
+ */
+#define HB0 0
+#define HB1 1
+#define HB2 2
+#define HB6 3
+#define HB7 4
+#define TT0 5
+#define TT1 6
+#define TT2 7
+
+#define BSW 8
+#define XBSW 40
+
+/*
+ * Macro to initialise the constants.
+ */
+#define INIT \
+ vxor(HB0, HB0, HB0) \
+ vspltisb(HB1, 1) \
+ vspltisb(HB2, 2) \
+ vspltisb(HB6, 6) \
+ vspltisb(HB7, 7) \
+ INIT_BSW
+
+/*
+ * Fix endianness of a value after reading it or before writing it, if
+ * necessary.
+ */
+#if BR_POWER8_LE
+#define INIT_BSW lxvw4x(XBSW, 0, %[idx2be])
+#define FIX_ENDIAN(xx) vperm(xx, xx, xx, BSW)
+#else
+#define INIT_BSW
+#define FIX_ENDIAN(xx)
+#endif
+
+/*
+ * Left-shift x0:x1 by one bit to the left. This is a corrective action
+ * needed because GHASH is defined in full little-endian specification,
+ * while the opcodes use full big-endian convention, so the 255-bit product
+ * ends up one bit to the right.
+ */
+#define SL_256(x0, x1) \
+ vsldoi(TT0, HB0, x1, 1) \
+ vsl(x0, x0, HB1) \
+ vsr(TT0, TT0, HB7) \
+ vsl(x1, x1, HB1) \
+ vxor(x0, x0, TT0)
+
+/*
+ * Reduce x0:x1 in GF(2^128), result in xd (register xd may be the same as
+ * x0 or x1, or a different register). x0 and x1 are modified.
+ */
+#define REDUCE_F128(xd, x0, x1) \
+ vxor(x0, x0, x1) \
+ vsr(TT0, x1, HB1) \
+ vsr(TT1, x1, HB2) \
+ vsr(TT2, x1, HB7) \
+ vxor(x0, x0, TT0) \
+ vxor(TT1, TT1, TT2) \
+ vxor(x0, x0, TT1) \
+ vsldoi(x1, x1, HB0, 15) \
+ vsl(TT1, x1, HB6) \
+ vsl(TT2, x1, HB1) \
+ vxor(x1, TT1, TT2) \
+ vsr(TT0, x1, HB1) \
+ vsr(TT1, x1, HB2) \
+ vsr(TT2, x1, HB7) \
+ vxor(x0, x0, x1) \
+ vxor(x0, x0, TT0) \
+ vxor(TT1, TT1, TT2) \
+ vxor(xd, x0, TT1)
+
+/* see bearssl_hash.h */
+void
+br_ghash_pwr8(void *y, const void *h, const void *data, size_t len)
+{
+ const unsigned char *buf1, *buf2;
+ size_t num4, num1;
+ unsigned char tmp[64];
+ long cc0, cc1, cc2, cc3;
+
+#if BR_POWER8_LE
+ static const uint32_t idx2be[] = {
+ 0x03020100, 0x07060504, 0x0B0A0908, 0x0F0E0D0C
+ };
+#endif
+
+ buf1 = data;
+
+ /*
+ * Assembly code requires data into two chunks; first chunk
+ * must contain a number of blocks which is a multiple of 4.
+ * Since the processing for the first chunk is faster, we want
+ * to make it as big as possible.
+ *
+ * For the remainder, there are two possibilities:
+ * -- if the remainder size is a multiple of 16, then use it
+ * in place;
+ * -- otherwise, copy it to the tmp[] array and pad it with
+ * zeros.
+ */
+ num4 = len >> 6;
+ buf2 = buf1 + (num4 << 6);
+ len &= 63;
+ num1 = (len + 15) >> 4;
+ if ((len & 15) != 0) {
+ memcpy(tmp, buf2, len);
+ memset(tmp + len, 0, (num1 << 4) - len);
+ buf2 = tmp;
+ }
+
+ cc0 = 0;
+ cc1 = 16;
+ cc2 = 32;
+ cc3 = 48;
+ asm volatile (
+ INIT
+
+ /*
+ * Load current h (denoted hereafter h1) in v9.
+ */
+ lxvw4x(41, 0, %[h])
+ FIX_ENDIAN(9)
+
+ /*
+ * Load current y into v28.
+ */
+ lxvw4x(60, 0, %[y])
+ FIX_ENDIAN(28)
+
+ /*
+ * Split h1 into three registers:
+ * v17 = h1_1:h1_0
+ * v18 = 0:h1_0
+ * v19 = h1_1:0
+ */
+ xxpermdi(49, 41, 41, 2)
+ vsldoi(18, HB0, 9, 8)
+ vsldoi(19, 9, HB0, 8)
+
+ /*
+ * If num4 is 0, skip directly to the second chunk.
+ */
+ cmpldi(%[num4], 0)
+ beq(chunk1)
+
+ /*
+ * Compute h2 = h*h in v10.
+ */
+ vpmsumd(10, 18, 18)
+ vpmsumd(11, 19, 19)
+ SL_256(10, 11)
+ REDUCE_F128(10, 10, 11)
+
+ /*
+ * Compute h3 = h*h*h in v11.
+ * We first split h2 into:
+ * v10 = h2_0:h2_1
+ * v11 = 0:h2_0
+ * v12 = h2_1:0
+ * Then we do the product with h1, and reduce into v11.
+ */
+ vsldoi(11, HB0, 10, 8)
+ vsldoi(12, 10, HB0, 8)
+ vpmsumd(13, 10, 17)
+ vpmsumd(11, 11, 18)
+ vpmsumd(12, 12, 19)
+ vsldoi(14, HB0, 13, 8)
+ vsldoi(15, 13, HB0, 8)
+ vxor(11, 11, 14)
+ vxor(12, 12, 15)
+ SL_256(11, 12)
+ REDUCE_F128(11, 11, 12)
+
+ /*
+ * Compute h4 = h*h*h*h in v12. This is done by squaring h2.
+ */
+ vsldoi(12, HB0, 10, 8)
+ vsldoi(13, 10, HB0, 8)
+ vpmsumd(12, 12, 12)
+ vpmsumd(13, 13, 13)
+ SL_256(12, 13)
+ REDUCE_F128(12, 12, 13)
+
+ /*
+ * Repack h1, h2, h3 and h4:
+ * v13 = h4_0:h3_0
+ * v14 = h4_1:h3_1
+ * v15 = h2_0:h1_0
+ * v16 = h2_1:h1_1
+ */
+ xxpermdi(45, 44, 43, 0)
+ xxpermdi(46, 44, 43, 3)
+ xxpermdi(47, 42, 41, 0)
+ xxpermdi(48, 42, 41, 3)
+
+ /*
+ * Loop for each group of four blocks.
+ */
+ mtctr(%[num4])
+ label(loop4)
+ /*
+ * Read the four next blocks.
+ * v20 = y + a0 = b0
+ * v21 = a1 = b1
+ * v22 = a2 = b2
+ * v23 = a3 = b3
+ */
+ lxvw4x(52, %[cc0], %[buf1])
+ lxvw4x(53, %[cc1], %[buf1])
+ lxvw4x(54, %[cc2], %[buf1])
+ lxvw4x(55, %[cc3], %[buf1])
+ FIX_ENDIAN(20)
+ FIX_ENDIAN(21)
+ FIX_ENDIAN(22)
+ FIX_ENDIAN(23)
+ addi(%[buf1], %[buf1], 64)
+ vxor(20, 20, 28)
+
+ /*
+ * Repack the blocks into v9, v10, v11 and v12.
+ * v9 = b0_0:b1_0
+ * v10 = b0_1:b1_1
+ * v11 = b2_0:b3_0
+ * v12 = b2_1:b3_1
+ */
+ xxpermdi(41, 52, 53, 0)
+ xxpermdi(42, 52, 53, 3)
+ xxpermdi(43, 54, 55, 0)
+ xxpermdi(44, 54, 55, 3)
+
+ /*
+ * Compute the products.
+ * v20 = b0_0*h4_0 + b1_0*h3_0
+ * v21 = b0_1*h4_0 + b1_1*h3_0
+ * v22 = b0_0*h4_1 + b1_0*h3_1
+ * v23 = b0_1*h4_1 + b1_1*h3_1
+ * v24 = b2_0*h2_0 + b3_0*h1_0
+ * v25 = b2_1*h2_0 + b3_1*h1_0
+ * v26 = b2_0*h2_1 + b3_0*h1_1
+ * v27 = b2_1*h2_1 + b3_1*h1_1
+ */
+ vpmsumd(20, 13, 9)
+ vpmsumd(21, 13, 10)
+ vpmsumd(22, 14, 9)
+ vpmsumd(23, 14, 10)
+ vpmsumd(24, 15, 11)
+ vpmsumd(25, 15, 12)
+ vpmsumd(26, 16, 11)
+ vpmsumd(27, 16, 12)
+
+ /*
+ * Sum products into a single 256-bit result in v11:v12.
+ */
+ vxor(11, 20, 24)
+ vxor(12, 23, 27)
+ vxor( 9, 21, 22)
+ vxor(10, 25, 26)
+ vxor(20, 9, 10)
+ vsldoi( 9, HB0, 20, 8)
+ vsldoi(10, 20, HB0, 8)
+ vxor(11, 11, 9)
+ vxor(12, 12, 10)
+
+ /*
+ * Fix and reduce in GF(2^128); this is the new y (in v28).
+ */
+ SL_256(11, 12)
+ REDUCE_F128(28, 11, 12)
+
+ /*
+ * Loop for next group of four blocks.
+ */
+ bdnz(loop4)
+
+ /*
+ * Process second chunk, one block at a time.
+ */
+ label(chunk1)
+ cmpldi(%[num1], 0)
+ beq(done)
+
+ mtctr(%[num1])
+ label(loop1)
+ /*
+ * Load next data block and XOR it into y.
+ */
+ lxvw4x(41, 0, %[buf2])
+#if BR_POWER8_LE
+ FIX_ENDIAN(9)
+#endif
+ addi(%[buf2], %[buf2], 16)
+ vxor(9, 28, 9)
+
+ /*
+ * Split y into doublewords:
+ * v9 = y_0:y_1
+ * v10 = 0:y_0
+ * v11 = y_1:0
+ */
+ vsldoi(10, HB0, 9, 8)
+ vsldoi(11, 9, HB0, 8)
+
+ /*
+ * Compute products with h:
+ * v12 = y_0 * h_0
+ * v13 = y_1 * h_1
+ * v14 = y_1 * h_0 + y_0 * h_1
+ */
+ vpmsumd(14, 9, 17)
+ vpmsumd(12, 10, 18)
+ vpmsumd(13, 11, 19)
+
+ /*
+ * Propagate v14 into v12:v13 to finalise product.
+ */
+ vsldoi(10, HB0, 14, 8)
+ vsldoi(11, 14, HB0, 8)
+ vxor(12, 12, 10)
+ vxor(13, 13, 11)
+
+ /*
+ * Fix result and reduce into v28 (next value for y).
+ */
+ SL_256(12, 13)
+ REDUCE_F128(28, 12, 13)
+ bdnz(loop1)
+
+ label(done)
+ /*
+ * Write back the new y.
+ */
+ FIX_ENDIAN(28)
+ stxvw4x(60, 0, %[y])
+
+: [buf1] "+b" (buf1), [buf2] "+b" (buf2)
+: [y] "b" (y), [h] "b" (h), [num4] "b" (num4), [num1] "b" (num1),
+ [cc0] "b" (cc0), [cc1] "b" (cc1), [cc2] "b" (cc2), [cc3] "b" (cc3)
+#if BR_POWER8_LE
+ , [idx2be] "b" (idx2be)
+#endif
+: "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", "v8", "v9",
+ "v10", "v11", "v12", "v13", "v14", "v15", "v16", "v17", "v18", "v19",
+ "v20", "v21", "v22", "v23", "v24", "v25", "v26", "v27", "v28", "v29",
+ "ctr", "memory"
+ );
+}
+
+/* see bearssl_hash.h */
+br_ghash
+br_ghash_pwr8_get(void)
+{
+ return &br_ghash_pwr8;
+}
+
+#else
+
+/* see bearssl_hash.h */
+br_ghash
+br_ghash_pwr8_get(void)
+{
+ return 0;
+}
+
+#endif