aboutsummaryrefslogtreecommitdiffstats
path: root/test/monniaux/BearSSL/src/ssl/ssl_engine.c
diff options
context:
space:
mode:
Diffstat (limited to 'test/monniaux/BearSSL/src/ssl/ssl_engine.c')
-rw-r--r--test/monniaux/BearSSL/src/ssl/ssl_engine.c1569
1 files changed, 1569 insertions, 0 deletions
diff --git a/test/monniaux/BearSSL/src/ssl/ssl_engine.c b/test/monniaux/BearSSL/src/ssl/ssl_engine.c
new file mode 100644
index 00000000..f4ffe185
--- /dev/null
+++ b/test/monniaux/BearSSL/src/ssl/ssl_engine.c
@@ -0,0 +1,1569 @@
+/*
+ * Copyright (c) 2016 Thomas Pornin <pornin@bolet.org>
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining
+ * a copy of this software and associated documentation files (the
+ * "Software"), to deal in the Software without restriction, including
+ * without limitation the rights to use, copy, modify, merge, publish,
+ * distribute, sublicense, and/or sell copies of the Software, and to
+ * permit persons to whom the Software is furnished to do so, subject to
+ * the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be
+ * included in all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
+ * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+ * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
+ * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
+ * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
+ * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
+ * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+
+#include "inner.h"
+
+#if 0
+/* obsolete */
+
+/*
+ * If BR_USE_URANDOM is not defined, then try to autodetect its presence
+ * through compiler macros.
+ */
+#ifndef BR_USE_URANDOM
+
+/*
+ * Macro values documented on:
+ * https://sourceforge.net/p/predef/wiki/OperatingSystems/
+ *
+ * Only the most common systems have been included here for now. This
+ * should be enriched later on.
+ */
+#if defined _AIX \
+ || defined __ANDROID__ \
+ || defined __FreeBSD__ \
+ || defined __NetBSD__ \
+ || defined __OpenBSD__ \
+ || defined __DragonFly__ \
+ || defined __linux__ \
+ || (defined __sun && (defined __SVR4 || defined __svr4__)) \
+ || (defined __APPLE__ && defined __MACH__)
+#define BR_USE_URANDOM 1
+#endif
+
+#endif
+
+/*
+ * If BR_USE_WIN32_RAND is not defined, perform autodetection here.
+ */
+#ifndef BR_USE_WIN32_RAND
+
+#if defined _WIN32 || defined _WIN64
+#define BR_USE_WIN32_RAND 1
+#endif
+
+#endif
+
+#if BR_USE_URANDOM
+#include <sys/types.h>
+#include <unistd.h>
+#include <fcntl.h>
+#include <errno.h>
+#endif
+
+#if BR_USE_WIN32_RAND
+#include <windows.h>
+#include <wincrypt.h>
+#pragma comment(lib, "advapi32")
+#endif
+
+#endif
+
+/* ==================================================================== */
+/*
+ * This part of the file does the low-level record management.
+ */
+
+/*
+ * IMPLEMENTATION NOTES
+ * ====================
+ *
+ * In this file, we designate by "input" (and the "i" letter) the "recv"
+ * operations: incoming records from the peer, from which payload data
+ * is obtained, and must be extracted by the application (or the SSL
+ * handshake engine). Similarly, "output" (and the "o" letter) is for
+ * "send": payload data injected by the application (and SSL handshake
+ * engine), to be wrapped into records, that are then conveyed to the
+ * peer over the transport medium.
+ *
+ * The input and output buffers may be distinct or shared. When
+ * shared, input and output cannot occur concurrently; the caller
+ * must make sure that it never needs to output data while input
+ * data has been received. In practice, a shared buffer prevents
+ * pipelining of HTTP requests, or similar protocols; however, a
+ * shared buffer saves RAM.
+ *
+ * The input buffer is pointed to by 'ibuf' and has size 'ibuf_len';
+ * the output buffer is pointed to by 'obuf' and has size 'obuf_len'.
+ * From the size of these buffers is derived the maximum fragment
+ * length, which will be honoured upon sending records; regardless of
+ * that length, incoming records will be processed as long as they
+ * fit in the input buffer, and their length still complies with the
+ * protocol specification (maximum plaintext payload length is 16384
+ * bytes).
+ *
+ * Three registers are used to manage buffering in ibuf, called ixa,
+ * ixb and ixc. Similarly, three registers are used to manage buffering
+ * in obuf, called oxa, oxb and oxc.
+ *
+ *
+ * At any time, the engine is in one of the following modes:
+ * -- Failed mode: an error occurs, no I/O can happen.
+ * -- Input mode: the engine can either receive record bytes from the
+ * transport layer, or it has some buffered payload bytes to yield.
+ * -- Output mode: the engine can either receive payload bytes, or it
+ * has some record bytes to send to the transport layer.
+ * -- Input/Output mode: both input and output modes are active. When
+ * the buffer is shared, this can happen only when the buffer is empty
+ * (no buffered payload bytes or record bytes in either direction).
+ *
+ *
+ * Failed mode:
+ * ------------
+ *
+ * I/O failed for some reason (invalid received data, not enough room
+ * for the next record...). No I/O may ever occur again for this context,
+ * until an explicit reset is performed. This mode, and the error code,
+ * are also used for protocol errors, especially handshake errors.
+ *
+ *
+ * Input mode:
+ * -----------
+ *
+ * ixa index within ibuf[] for the currently read data
+ * ixb maximum index within ibuf[] for the currently read data
+ * ixc number of bytes not yet received for the current record
+ *
+ * -- When ixa == ixb, there is no available data for readers. When
+ * ixa != ixb, there is available data and it starts at offset ixa.
+ *
+ * -- When waiting for the next record header, ixa and ixb are equal
+ * and contain a value ranging from 0 to 4; ixc is equal to 5-ixa.
+ *
+ * -- When the header has been received, record data is obtained. The
+ * ixc field records how many bytes are still needed to reach the
+ * end of the current record.
+ *
+ * ** If encryption is active, then ixa and ixb are kept equal, and
+ * point to the end of the currently received record bytes. When
+ * ixc reaches 0, decryption/MAC is applied, and ixa and ixb are
+ * adjusted.
+ *
+ * ** If encryption is not active, then ixa and ixb are distinct
+ * and data can be read right away. Additional record data is
+ * obtained only when ixa == ixb.
+ *
+ * Note: in input mode and no encryption, records larger than the buffer
+ * size are allowed. When encryption is active, the complete record must
+ * fit within the buffer, since it cannot be decrypted/MACed until it
+ * has been completely received.
+ *
+ * -- When receiving the next record header, 'version_in' contains the
+ * expected input version (0 if not expecting a specific version); on
+ * mismatch, the mode switches to 'failed'.
+ *
+ * -- When the header has been received, 'version_in' contains the received
+ * version. It is up to the caller to check and adjust the 'version_in' field
+ * to implement the required semantics.
+ *
+ * -- The 'record_type_in' field is updated with the incoming record type
+ * when the next record header has been received.
+ *
+ *
+ * Output mode:
+ * ------------
+ *
+ * oxa index within obuf[] for the currently accumulated data
+ * oxb maximum index within obuf[] for record data
+ * oxc pointer for start of record data, and for record sending
+ *
+ * -- When oxa != oxb, more data can be accumulated into the current
+ * record; when oxa == oxb, a closed record is being sent.
+ *
+ * -- When accumulating data, oxc points to the start of the data.
+ *
+ * -- During record sending, oxa (and oxb) point to the next record byte
+ * to send, and oxc indicates the end of the current record.
+ *
+ * Note: sent records must fit within the buffer, since the header is
+ * adjusted only when the complete record has been assembled.
+ *
+ * -- The 'version_out' and 'record_type_out' fields are used to build the
+ * record header when the mode is switched to 'sending'.
+ *
+ *
+ * Modes:
+ * ------
+ *
+ * The state register iomode contains one of the following values:
+ *
+ * BR_IO_FAILED I/O failed
+ * BR_IO_IN input mode
+ * BR_IO_OUT output mode
+ * BR_IO_INOUT input/output mode
+ *
+ * Whether encryption is active on incoming records is indicated by the
+ * incrypt flag. For outgoing records, there is no such flag; "encryption"
+ * is always considered active, but initially uses functions that do not
+ * encrypt anything. The 'incrypt' flag is needed because when there is
+ * no active encryption, records larger than the I/O buffer are accepted.
+ *
+ * Note: we do not support no-encryption modes (MAC only).
+ *
+ * TODO: implement GCM support
+ *
+ *
+ * Misc:
+ * -----
+ *
+ * 'max_frag_len' is the maximum plaintext size for an outgoing record.
+ * By default, it is set to the maximum value that fits in the provided
+ * buffers, in the following list: 512, 1024, 2048, 4096, 16384. The
+ * caller may change it if needed, but the new value MUST still fit in
+ * the buffers, and it MUST be one of the list above for compatibility
+ * with the Maximum Fragment Length extension.
+ *
+ * For incoming records, only the total buffer length and current
+ * encryption mode impact the maximum length for incoming records. The
+ * 'max_frag_len' value is still adjusted so that records up to that
+ * length can be both received and sent.
+ *
+ *
+ * Offsets and lengths:
+ * --------------------
+ *
+ * When sending fragments with TLS-1.1+, the maximum overhead is:
+ * 5 bytes for the record header
+ * 16 bytes for the explicit IV
+ * 48 bytes for the MAC (HMAC/SHA-384)
+ * 16 bytes for the padding (AES)
+ * so a total of 85 extra bytes. Note that we support block cipher sizes
+ * up to 16 bytes (AES) and HMAC output sizes up to 48 bytes (SHA-384).
+ *
+ * With TLS-1.0 and CBC mode, we apply a 1/n-1 split, for a maximum
+ * overhead of:
+ * 5 bytes for the first record header
+ * 32 bytes for the first record payload (AES-CBC + HMAC/SHA-1)
+ * 5 bytes for the second record header
+ * 20 bytes for the MAC (HMAC/SHA-1)
+ * 16 bytes for the padding (AES)
+ * -1 byte to account for the payload byte in the first record
+ * so a total of 77 extra bytes at most, less than the 85 bytes above.
+ * Note that with TLS-1.0, the MAC is HMAC with either MD5 or SHA-1, but
+ * no other hash function.
+ *
+ * The implementation does not try to send larger records when the current
+ * encryption mode has less overhead.
+ *
+ * Maximum input record overhead is:
+ * 5 bytes for the record header
+ * 16 bytes for the explicit IV (TLS-1.1+)
+ * 48 bytes for the MAC (HMAC/SHA-384)
+ * 256 bytes for the padding
+ * so a total of 325 extra bytes.
+ *
+ * When receiving the next record header, it is written into the buffer
+ * bytes 0 to 4 (inclusive). Record data is always written into buf[]
+ * starting at offset 5. When encryption is active, the plaintext data
+ * may start at a larger offset (e.g. because of an explicit IV).
+ */
+
+#define MAX_OUT_OVERHEAD 85
+#define MAX_IN_OVERHEAD 325
+
+/* see inner.h */
+void
+br_ssl_engine_fail(br_ssl_engine_context *rc, int err)
+{
+ if (rc->iomode != BR_IO_FAILED) {
+ rc->iomode = BR_IO_FAILED;
+ rc->err = err;
+ }
+}
+
+/*
+ * Adjust registers for a new incoming record.
+ */
+static void
+make_ready_in(br_ssl_engine_context *rc)
+{
+ rc->ixa = rc->ixb = 0;
+ rc->ixc = 5;
+ if (rc->iomode == BR_IO_IN) {
+ rc->iomode = BR_IO_INOUT;
+ }
+}
+
+/*
+ * Adjust registers for a new outgoing record.
+ */
+static void
+make_ready_out(br_ssl_engine_context *rc)
+{
+ size_t a, b;
+
+ a = 5;
+ b = rc->obuf_len - a;
+ rc->out.vtable->max_plaintext(&rc->out.vtable, &a, &b);
+ if ((b - a) > rc->max_frag_len) {
+ b = a + rc->max_frag_len;
+ }
+ rc->oxa = a;
+ rc->oxb = b;
+ rc->oxc = a;
+ if (rc->iomode == BR_IO_OUT) {
+ rc->iomode = BR_IO_INOUT;
+ }
+}
+
+/* see inner.h */
+void
+br_ssl_engine_new_max_frag_len(br_ssl_engine_context *rc, unsigned max_frag_len)
+{
+ size_t nxb;
+
+ rc->max_frag_len = max_frag_len;
+ nxb = rc->oxc + max_frag_len;
+ if (rc->oxa < rc->oxb && rc->oxb > nxb && rc->oxa < nxb) {
+ rc->oxb = nxb;
+ }
+}
+
+/* see bearssl_ssl.h */
+void
+br_ssl_engine_set_buffer(br_ssl_engine_context *rc,
+ void *buf, size_t buf_len, int bidi)
+{
+ if (buf == NULL) {
+ br_ssl_engine_set_buffers_bidi(rc, NULL, 0, NULL, 0);
+ } else {
+ /*
+ * In bidirectional mode, we want to maximise input
+ * buffer size, since we support arbitrary fragmentation
+ * when sending, but the peer will not necessarily
+ * comply to any low fragment length (in particular if
+ * we are the server, because the maximum fragment
+ * length extension is under client control).
+ *
+ * We keep a minimum size of 512 bytes for the plaintext
+ * of our outgoing records.
+ *
+ * br_ssl_engine_set_buffers_bidi() will compute the maximum
+ * fragment length for outgoing records by using the minimum
+ * of allocated spaces for both input and output records,
+ * rounded down to a standard length.
+ */
+ if (bidi) {
+ size_t w;
+
+ if (buf_len < (512 + MAX_IN_OVERHEAD
+ + 512 + MAX_OUT_OVERHEAD))
+ {
+ rc->iomode = BR_IO_FAILED;
+ rc->err = BR_ERR_BAD_PARAM;
+ return;
+ } else if (buf_len < (16384 + MAX_IN_OVERHEAD
+ + 512 + MAX_OUT_OVERHEAD))
+ {
+ w = 512 + MAX_OUT_OVERHEAD;
+ } else {
+ w = buf_len - (16384 + MAX_IN_OVERHEAD);
+ }
+ br_ssl_engine_set_buffers_bidi(rc,
+ buf, buf_len - w,
+ (unsigned char *)buf + w, w);
+ } else {
+ br_ssl_engine_set_buffers_bidi(rc,
+ buf, buf_len, NULL, 0);
+ }
+ }
+}
+
+/* see bearssl_ssl.h */
+void
+br_ssl_engine_set_buffers_bidi(br_ssl_engine_context *rc,
+ void *ibuf, size_t ibuf_len, void *obuf, size_t obuf_len)
+{
+ rc->iomode = BR_IO_INOUT;
+ rc->incrypt = 0;
+ rc->err = BR_ERR_OK;
+ rc->version_in = 0;
+ rc->record_type_in = 0;
+ rc->version_out = 0;
+ rc->record_type_out = 0;
+ if (ibuf == NULL) {
+ if (rc->ibuf == NULL) {
+ br_ssl_engine_fail(rc, BR_ERR_BAD_PARAM);
+ }
+ } else {
+ unsigned u;
+
+ rc->ibuf = ibuf;
+ rc->ibuf_len = ibuf_len;
+ if (obuf == NULL) {
+ obuf = ibuf;
+ obuf_len = ibuf_len;
+ }
+ rc->obuf = obuf;
+ rc->obuf_len = obuf_len;
+
+ /*
+ * Compute the maximum fragment length, that fits for
+ * both incoming and outgoing records. This length will
+ * be used in fragment length negotiation, so we must
+ * honour it both ways. Regardless, larger incoming
+ * records will be accepted, as long as they fit in the
+ * actual buffer size.
+ */
+ for (u = 14; u >= 9; u --) {
+ size_t flen;
+
+ flen = (size_t)1 << u;
+ if (obuf_len >= flen + MAX_OUT_OVERHEAD
+ && ibuf_len >= flen + MAX_IN_OVERHEAD)
+ {
+ break;
+ }
+ }
+ if (u == 8) {
+ br_ssl_engine_fail(rc, BR_ERR_BAD_PARAM);
+ return;
+ } else if (u == 13) {
+ u = 12;
+ }
+ rc->max_frag_len = (size_t)1 << u;
+ rc->log_max_frag_len = u;
+ rc->peer_log_max_frag_len = 0;
+ }
+ rc->out.vtable = &br_sslrec_out_clear_vtable;
+ make_ready_in(rc);
+ make_ready_out(rc);
+}
+
+/*
+ * Clear buffers in both directions.
+ */
+static void
+engine_clearbuf(br_ssl_engine_context *rc)
+{
+ make_ready_in(rc);
+ make_ready_out(rc);
+}
+
+/*
+ * Make sure the internal PRNG is initialised (but not necessarily
+ * seeded properly yet).
+ */
+static int
+rng_init(br_ssl_engine_context *cc)
+{
+ const br_hash_class *h;
+
+ if (cc->rng_init_done != 0) {
+ return 1;
+ }
+
+ /*
+ * If using TLS-1.2, then SHA-256 or SHA-384 must be present (or
+ * both); we prefer SHA-256 which is faster for 32-bit systems.
+ *
+ * If using TLS-1.0 or 1.1 then SHA-1 must be present.
+ *
+ * Though HMAC_DRBG/SHA-1 is, as far as we know, as safe as
+ * these things can be, we still prefer the SHA-2 functions over
+ * SHA-1, if only for public relations (known theoretical
+ * weaknesses of SHA-1 with regards to collisions are mostly
+ * irrelevant here, but they still make people nervous).
+ */
+ h = br_multihash_getimpl(&cc->mhash, br_sha256_ID);
+ if (!h) {
+ h = br_multihash_getimpl(&cc->mhash, br_sha384_ID);
+ if (!h) {
+ h = br_multihash_getimpl(&cc->mhash,
+ br_sha1_ID);
+ if (!h) {
+ br_ssl_engine_fail(cc, BR_ERR_BAD_STATE);
+ return 0;
+ }
+ }
+ }
+ br_hmac_drbg_init(&cc->rng, h, NULL, 0);
+ cc->rng_init_done = 1;
+ return 1;
+}
+
+/* see inner.h */
+int
+br_ssl_engine_init_rand(br_ssl_engine_context *cc)
+{
+ if (!rng_init(cc)) {
+ return 0;
+ }
+
+ /*
+ * We always try OS/hardware seeding once. If it works, then
+ * we assume proper seeding. If not, then external entropy must
+ * have been injected; otherwise, we report an error.
+ */
+ if (!cc->rng_os_rand_done) {
+ br_prng_seeder sd;
+
+ sd = br_prng_seeder_system(NULL);
+ if (sd != 0 && sd(&cc->rng.vtable)) {
+ cc->rng_init_done = 2;
+ }
+ cc->rng_os_rand_done = 1;
+ }
+ if (cc->rng_init_done < 2) {
+ br_ssl_engine_fail(cc, BR_ERR_NO_RANDOM);
+ return 0;
+ }
+ return 1;
+}
+
+/* see bearssl_ssl.h */
+void
+br_ssl_engine_inject_entropy(br_ssl_engine_context *cc,
+ const void *data, size_t len)
+{
+ /*
+ * Externally provided entropy is assumed to be "good enough"
+ * (we cannot really test its quality) so if the RNG structure
+ * could be initialised at all, then we marked the RNG as
+ * "properly seeded".
+ */
+ if (!rng_init(cc)) {
+ return;
+ }
+ br_hmac_drbg_update(&cc->rng, data, len);
+ cc->rng_init_done = 2;
+}
+
+/*
+ * We define a few internal functions that implement the low-level engine
+ * API for I/O; the external API (br_ssl_engine_sendapp_buf() and similar
+ * functions) is built upon these function, with special processing for
+ * records which are not of type "application data".
+ *
+ * recvrec_buf, recvrec_ack receives bytes from transport medium
+ * sendrec_buf, sendrec_ack send bytes to transport medium
+ * recvpld_buf, recvpld_ack receives payload data from engine
+ * sendpld_buf, sendpld_ack send payload data to engine
+ */
+
+static unsigned char *
+recvrec_buf(const br_ssl_engine_context *rc, size_t *len)
+{
+ if (rc->shutdown_recv) {
+ *len = 0;
+ return NULL;
+ }
+
+ /*
+ * Bytes from the transport can be injected only if the mode is
+ * compatible (in or in/out), and ixa == ixb; ixc then contains
+ * the number of bytes that are still expected (but it may
+ * exceed our buffer size).
+ *
+ * We cannot get "stuck" here (buffer is full, but still more
+ * data is expected) because oversized records are detected when
+ * their header is processed.
+ */
+ switch (rc->iomode) {
+ case BR_IO_IN:
+ case BR_IO_INOUT:
+ if (rc->ixa == rc->ixb) {
+ size_t z;
+
+ z = rc->ixc;
+ if (z > rc->ibuf_len - rc->ixa) {
+ z = rc->ibuf_len - rc->ixa;
+ }
+ *len = z;
+ return rc->ibuf + rc->ixa;
+ }
+ break;
+ }
+ *len = 0;
+ return NULL;
+}
+
+static void
+recvrec_ack(br_ssl_engine_context *rc, size_t len)
+{
+ unsigned char *pbuf;
+ size_t pbuf_len;
+
+ /*
+ * Adjust state if necessary (for a shared input/output buffer):
+ * we got some incoming bytes, so we cannot (temporarily) handle
+ * outgoing data.
+ */
+ if (rc->iomode == BR_IO_INOUT && rc->ibuf == rc->obuf) {
+ rc->iomode = BR_IO_IN;
+ }
+
+ /*
+ * Adjust data pointers.
+ */
+ rc->ixb = (rc->ixa += len);
+ rc->ixc -= len;
+
+ /*
+ * If we are receiving a header and did not fully obtained it
+ * yet, then just wait for the next bytes.
+ */
+ if (rc->ixa < 5) {
+ return;
+ }
+
+ /*
+ * If we just obtained a full header, process it.
+ */
+ if (rc->ixa == 5) {
+ unsigned version;
+ unsigned rlen;
+
+ /*
+ * Get record type and version. We support only versions
+ * 3.x (if the version major number does not match, then
+ * we suppose that the record format is too alien for us
+ * to process it).
+ *
+ * Note: right now, we reject clients that try to send
+ * a ClientHello in a format compatible with SSL-2.0. It
+ * is unclear whether this will ever be supported; and
+ * if we want to support it, then this might be done in
+ * in the server-specific code, not here.
+ */
+ rc->record_type_in = rc->ibuf[0];
+ version = br_dec16be(rc->ibuf + 1);
+ if ((version >> 8) != 3) {
+ br_ssl_engine_fail(rc, BR_ERR_UNSUPPORTED_VERSION);
+ return;
+ }
+
+ /*
+ * We ensure that successive records have the same
+ * version. The handshake code must check and adjust the
+ * variables when necessary to accommodate the protocol
+ * negotiation details.
+ */
+ if (rc->version_in != 0 && rc->version_in != version) {
+ br_ssl_engine_fail(rc, BR_ERR_BAD_VERSION);
+ return;
+ }
+ rc->version_in = version;
+
+ /*
+ * Decode record length. We must check that the length
+ * is valid (relatively to the current encryption mode)
+ * and also (if encryption is active) that the record
+ * will fit in our buffer.
+ *
+ * When no encryption is active, we can process records
+ * by chunks, and thus accept any record up to the
+ * maximum allowed plaintext length (16384 bytes).
+ */
+ rlen = br_dec16be(rc->ibuf + 3);
+ if (rc->incrypt) {
+ if (!rc->in.vtable->check_length(
+ &rc->in.vtable, rlen))
+ {
+ br_ssl_engine_fail(rc, BR_ERR_BAD_LENGTH);
+ return;
+ }
+ if (rlen > (rc->ibuf_len - 5)) {
+ br_ssl_engine_fail(rc, BR_ERR_TOO_LARGE);
+ return;
+ }
+ } else {
+ if (rlen > 16384) {
+ br_ssl_engine_fail(rc, BR_ERR_BAD_LENGTH);
+ return;
+ }
+ }
+
+ /*
+ * If the record is completely empty then we must switch
+ * to a new record. Note that, in that case, we
+ * completely ignore the record type, which is fitting
+ * since we received no actual data of that type.
+ *
+ * A completely empty record is technically allowed as
+ * long as encryption/MAC is not active, i.e. before
+ * completion of the first handshake. It it still weird;
+ * it might conceptually be useful as a heartbeat or
+ * keep-alive mechanism while some lengthy operation is
+ * going on, e.g. interaction with a human user.
+ */
+ if (rlen == 0) {
+ make_ready_in(rc);
+ } else {
+ rc->ixa = rc->ixb = 5;
+ rc->ixc = rlen;
+ }
+ return;
+ }
+
+ /*
+ * If there is no active encryption, then the data can be read
+ * right away. Note that we do not receive bytes from the
+ * transport medium when we still have payload bytes to be
+ * acknowledged.
+ */
+ if (!rc->incrypt) {
+ rc->ixa = 5;
+ return;
+ }
+
+ /*
+ * Since encryption is active, we must wait for a full record
+ * before processing it.
+ */
+ if (rc->ixc != 0) {
+ return;
+ }
+
+ /*
+ * We got the full record. Decrypt it.
+ */
+ pbuf_len = rc->ixa - 5;
+ pbuf = rc->in.vtable->decrypt(&rc->in.vtable,
+ rc->record_type_in, rc->version_in, rc->ibuf + 5, &pbuf_len);
+ if (pbuf == 0) {
+ br_ssl_engine_fail(rc, BR_ERR_BAD_MAC);
+ return;
+ }
+ rc->ixa = (size_t)(pbuf - rc->ibuf);
+ rc->ixb = rc->ixa + pbuf_len;
+
+ /*
+ * Decryption may have yielded an empty record, in which case
+ * we get back to "ready" state immediately.
+ */
+ if (rc->ixa == rc->ixb) {
+ make_ready_in(rc);
+ }
+}
+
+/* see inner.h */
+int
+br_ssl_engine_recvrec_finished(const br_ssl_engine_context *rc)
+{
+ switch (rc->iomode) {
+ case BR_IO_IN:
+ case BR_IO_INOUT:
+ return rc->ixc == 0 || rc->ixa < 5;
+ default:
+ return 1;
+ }
+}
+
+static unsigned char *
+recvpld_buf(const br_ssl_engine_context *rc, size_t *len)
+{
+ /*
+ * There is payload data to be read only if the mode is
+ * compatible, and ixa != ixb.
+ */
+ switch (rc->iomode) {
+ case BR_IO_IN:
+ case BR_IO_INOUT:
+ *len = rc->ixb - rc->ixa;
+ return (*len == 0) ? NULL : (rc->ibuf + rc->ixa);
+ default:
+ *len = 0;
+ return NULL;
+ }
+}
+
+static void
+recvpld_ack(br_ssl_engine_context *rc, size_t len)
+{
+ rc->ixa += len;
+
+ /*
+ * If we read all the available data, then we either expect
+ * the remainder of the current record (if the current record
+ * was not finished; this may happen when encryption is not
+ * active), or go to "ready" state.
+ */
+ if (rc->ixa == rc->ixb) {
+ if (rc->ixc == 0) {
+ make_ready_in(rc);
+ } else {
+ rc->ixa = rc->ixb = 5;
+ }
+ }
+}
+
+static unsigned char *
+sendpld_buf(const br_ssl_engine_context *rc, size_t *len)
+{
+ /*
+ * Payload data can be injected only if the current mode is
+ * compatible, and oxa != oxb.
+ */
+ switch (rc->iomode) {
+ case BR_IO_OUT:
+ case BR_IO_INOUT:
+ *len = rc->oxb - rc->oxa;
+ return (*len == 0) ? NULL : (rc->obuf + rc->oxa);
+ default:
+ *len = 0;
+ return NULL;
+ }
+}
+
+/*
+ * If some payload bytes have been accumulated, then wrap them into
+ * an outgoing record. Otherwise, this function does nothing, unless
+ * 'force' is non-zero, in which case an empty record is assembled.
+ *
+ * The caller must take care not to invoke this function if the engine
+ * is not currently ready to receive payload bytes to send.
+ */
+static void
+sendpld_flush(br_ssl_engine_context *rc, int force)
+{
+ size_t xlen;
+ unsigned char *buf;
+
+ if (rc->oxa == rc->oxb) {
+ return;
+ }
+ xlen = rc->oxa - rc->oxc;
+ if (xlen == 0 && !force) {
+ return;
+ }
+ buf = rc->out.vtable->encrypt(&rc->out.vtable,
+ rc->record_type_out, rc->version_out,
+ rc->obuf + rc->oxc, &xlen);
+ rc->oxb = rc->oxa = (size_t)(buf - rc->obuf);
+ rc->oxc = rc->oxa + xlen;
+}
+
+static void
+sendpld_ack(br_ssl_engine_context *rc, size_t len)
+{
+ /*
+ * If using a shared buffer, then we may have to modify the
+ * current mode.
+ */
+ if (rc->iomode == BR_IO_INOUT && rc->ibuf == rc->obuf) {
+ rc->iomode = BR_IO_OUT;
+ }
+ rc->oxa += len;
+ if (rc->oxa >= rc->oxb) {
+ /*
+ * Set oxb to one more than oxa so that sendpld_flush()
+ * does not mistakingly believe that a record is
+ * already prepared and being sent.
+ */
+ rc->oxb = rc->oxa + 1;
+ sendpld_flush(rc, 0);
+ }
+}
+
+static unsigned char *
+sendrec_buf(const br_ssl_engine_context *rc, size_t *len)
+{
+ /*
+ * When still gathering payload bytes, oxc points to the start
+ * of the record data, so oxc <= oxa. However, when a full
+ * record has been completed, oxc points to the end of the record,
+ * so oxc > oxa.
+ */
+ switch (rc->iomode) {
+ case BR_IO_OUT:
+ case BR_IO_INOUT:
+ if (rc->oxc > rc->oxa) {
+ *len = rc->oxc - rc->oxa;
+ return rc->obuf + rc->oxa;
+ }
+ break;
+ }
+ *len = 0;
+ return NULL;
+}
+
+static void
+sendrec_ack(br_ssl_engine_context *rc, size_t len)
+{
+ rc->oxb = (rc->oxa += len);
+ if (rc->oxa == rc->oxc) {
+ make_ready_out(rc);
+ }
+}
+
+/*
+ * Test whether there is some buffered outgoing record that still must
+ * sent.
+ */
+static inline int
+has_rec_tosend(const br_ssl_engine_context *rc)
+{
+ return rc->oxa == rc->oxb && rc->oxa != rc->oxc;
+}
+
+/*
+ * The "no encryption" mode has no overhead. It limits the payload size
+ * to the maximum size allowed by the standard (16384 bytes); the caller
+ * is responsible for possibly enforcing a smaller fragment length.
+ */
+static void
+clear_max_plaintext(const br_sslrec_out_clear_context *cc,
+ size_t *start, size_t *end)
+{
+ size_t len;
+
+ (void)cc;
+ len = *end - *start;
+ if (len > 16384) {
+ *end = *start + 16384;
+ }
+}
+
+/*
+ * In "no encryption" mode, encryption is trivial (a no-operation) so
+ * we just have to encode the header.
+ */
+static unsigned char *
+clear_encrypt(br_sslrec_out_clear_context *cc,
+ int record_type, unsigned version, void *data, size_t *data_len)
+{
+ unsigned char *buf;
+
+ (void)cc;
+ buf = (unsigned char *)data - 5;
+ buf[0] = record_type;
+ br_enc16be(buf + 1, version);
+ br_enc16be(buf + 3, *data_len);
+ *data_len += 5;
+ return buf;
+}
+
+/* see bearssl_ssl.h */
+const br_sslrec_out_class br_sslrec_out_clear_vtable = {
+ sizeof(br_sslrec_out_clear_context),
+ (void (*)(const br_sslrec_out_class *const *, size_t *, size_t *))
+ &clear_max_plaintext,
+ (unsigned char *(*)(const br_sslrec_out_class **,
+ int, unsigned, void *, size_t *))
+ &clear_encrypt
+};
+
+/* ==================================================================== */
+/*
+ * In this part of the file, we handle the various record types, and
+ * communications with the handshake processor.
+ */
+
+/*
+ * IMPLEMENTATION NOTES
+ * ====================
+ *
+ * The handshake processor is written in T0 and runs as a coroutine.
+ * It receives the contents of all records except application data, and
+ * is responsible for producing the contents of all records except
+ * application data.
+ *
+ * A state flag is maintained, which specifies whether application data
+ * is acceptable or not. When it is set:
+ *
+ * -- Application data can be injected as payload data (provided that
+ * the output buffer is ready for that).
+ *
+ * -- Incoming application data records are accepted, and yield data
+ * that the caller may retrieve.
+ *
+ * When the flag is cleared, application data is not accepted from the
+ * application, and incoming application data records trigger an error.
+ *
+ *
+ * Records of type handshake, alert or change-cipher-spec are handled
+ * by the handshake processor. The handshake processor is written in T0
+ * and runs as a coroutine; it gets invoked whenever one of the following
+ * situations is reached:
+ *
+ * -- An incoming record has type handshake, alert or change-cipher-spec,
+ * and yields data that can be read (zero-length records are thus
+ * ignored).
+ *
+ * -- An outgoing record has just finished being sent, and the "application
+ * data" flag is cleared.
+ *
+ * -- The caller wishes to perform a close (call to br_ssl_engine_close()).
+ *
+ * -- The caller wishes to perform a renegotiation (call to
+ * br_ssl_engine_renegotiate()).
+ *
+ * Whenever the handshake processor is entered, access to the payload
+ * buffers is provided, along with some information about explicit
+ * closures or renegotiations.
+ */
+
+/* see bearssl_ssl.h */
+void
+br_ssl_engine_set_suites(br_ssl_engine_context *cc,
+ const uint16_t *suites, size_t suites_num)
+{
+ if ((suites_num * sizeof *suites) > sizeof cc->suites_buf) {
+ br_ssl_engine_fail(cc, BR_ERR_BAD_PARAM);
+ return;
+ }
+ memcpy(cc->suites_buf, suites, suites_num * sizeof *suites);
+ cc->suites_num = suites_num;
+}
+
+/*
+ * Give control to handshake processor. 'action' is 1 for a close,
+ * 2 for a renegotiation, or 0 for a jump due to I/O completion.
+ */
+static void
+jump_handshake(br_ssl_engine_context *cc, int action)
+{
+ /*
+ * We use a loop because the handshake processor actions may
+ * allow for more actions; namely, if the processor reads all
+ * input data, then it may allow for output data to be produced,
+ * in case of a shared in/out buffer.
+ */
+ for (;;) {
+ size_t hlen_in, hlen_out;
+
+ /*
+ * Get input buffer. We do not want to provide
+ * application data to the handshake processor (we could
+ * get called with an explicit close or renegotiation
+ * while there is application data ready to be read).
+ */
+ cc->hbuf_in = recvpld_buf(cc, &hlen_in);
+ if (cc->hbuf_in != NULL
+ && cc->record_type_in == BR_SSL_APPLICATION_DATA)
+ {
+ hlen_in = 0;
+ }
+
+ /*
+ * Get output buffer. The handshake processor never
+ * leaves an unfinished outgoing record, so if there is
+ * buffered output, then it MUST be some application
+ * data, so the processor cannot write to it.
+ */
+ cc->saved_hbuf_out = cc->hbuf_out = sendpld_buf(cc, &hlen_out);
+ if (cc->hbuf_out != NULL && br_ssl_engine_has_pld_to_send(cc)) {
+ hlen_out = 0;
+ }
+
+ /*
+ * Note: hlen_in and hlen_out can be both non-zero only if
+ * the input and output buffers are disjoint. Thus, we can
+ * offer both buffers to the handshake code.
+ */
+
+ cc->hlen_in = hlen_in;
+ cc->hlen_out = hlen_out;
+ cc->action = action;
+ cc->hsrun(&cc->cpu);
+ if (br_ssl_engine_closed(cc)) {
+ return;
+ }
+ if (cc->hbuf_out != cc->saved_hbuf_out) {
+ sendpld_ack(cc, cc->hbuf_out - cc->saved_hbuf_out);
+ }
+ if (hlen_in != cc->hlen_in) {
+ recvpld_ack(cc, hlen_in - cc->hlen_in);
+ if (cc->hlen_in == 0) {
+ /*
+ * We read all data bytes, which may have
+ * released the output buffer in case it
+ * is shared with the input buffer, and
+ * the handshake code might be waiting for
+ * that.
+ */
+ action = 0;
+ continue;
+ }
+ }
+ break;
+ }
+}
+
+/* see inner.h */
+void
+br_ssl_engine_flush_record(br_ssl_engine_context *cc)
+{
+ if (cc->hbuf_out != cc->saved_hbuf_out) {
+ sendpld_ack(cc, cc->hbuf_out - cc->saved_hbuf_out);
+ }
+ if (br_ssl_engine_has_pld_to_send(cc)) {
+ sendpld_flush(cc, 0);
+ }
+ cc->saved_hbuf_out = cc->hbuf_out = sendpld_buf(cc, &cc->hlen_out);
+}
+
+/* see bearssl_ssl.h */
+unsigned char *
+br_ssl_engine_sendapp_buf(const br_ssl_engine_context *cc, size_t *len)
+{
+ if (!(cc->application_data & 1)) {
+ *len = 0;
+ return NULL;
+ }
+ return sendpld_buf(cc, len);
+}
+
+/* see bearssl_ssl.h */
+void
+br_ssl_engine_sendapp_ack(br_ssl_engine_context *cc, size_t len)
+{
+ sendpld_ack(cc, len);
+}
+
+/* see bearssl_ssl.h */
+unsigned char *
+br_ssl_engine_recvapp_buf(const br_ssl_engine_context *cc, size_t *len)
+{
+ if (!(cc->application_data & 1)
+ || cc->record_type_in != BR_SSL_APPLICATION_DATA)
+ {
+ *len = 0;
+ return NULL;
+ }
+ return recvpld_buf(cc, len);
+}
+
+/* see bearssl_ssl.h */
+void
+br_ssl_engine_recvapp_ack(br_ssl_engine_context *cc, size_t len)
+{
+ recvpld_ack(cc, len);
+}
+
+/* see bearssl_ssl.h */
+unsigned char *
+br_ssl_engine_sendrec_buf(const br_ssl_engine_context *cc, size_t *len)
+{
+ return sendrec_buf(cc, len);
+}
+
+/* see bearssl_ssl.h */
+void
+br_ssl_engine_sendrec_ack(br_ssl_engine_context *cc, size_t len)
+{
+ sendrec_ack(cc, len);
+ if (len != 0 && !has_rec_tosend(cc)
+ && (cc->record_type_out != BR_SSL_APPLICATION_DATA
+ || (cc->application_data & 1) == 0))
+ {
+ jump_handshake(cc, 0);
+ }
+}
+
+/* see bearssl_ssl.h */
+unsigned char *
+br_ssl_engine_recvrec_buf(const br_ssl_engine_context *cc, size_t *len)
+{
+ return recvrec_buf(cc, len);
+}
+
+/* see bearssl_ssl.h */
+void
+br_ssl_engine_recvrec_ack(br_ssl_engine_context *cc, size_t len)
+{
+ unsigned char *buf;
+
+ recvrec_ack(cc, len);
+ if (br_ssl_engine_closed(cc)) {
+ return;
+ }
+
+ /*
+ * We just received some bytes from the peer. This may have
+ * yielded some payload bytes, in which case we must process
+ * them according to the record type.
+ */
+ buf = recvpld_buf(cc, &len);
+ if (buf != NULL) {
+ switch (cc->record_type_in) {
+ case BR_SSL_CHANGE_CIPHER_SPEC:
+ case BR_SSL_ALERT:
+ case BR_SSL_HANDSHAKE:
+ jump_handshake(cc, 0);
+ break;
+ case BR_SSL_APPLICATION_DATA:
+ if (cc->application_data == 1) {
+ break;
+ }
+
+ /*
+ * If we are currently closing, and waiting for
+ * a close_notify from the peer, then incoming
+ * application data should be discarded.
+ */
+ if (cc->application_data == 2) {
+ recvpld_ack(cc, len);
+ break;
+ }
+
+ /* Fall through */
+ default:
+ br_ssl_engine_fail(cc, BR_ERR_UNEXPECTED);
+ break;
+ }
+ }
+}
+
+/* see bearssl_ssl.h */
+void
+br_ssl_engine_close(br_ssl_engine_context *cc)
+{
+ if (!br_ssl_engine_closed(cc)) {
+ jump_handshake(cc, 1);
+ }
+}
+
+/* see bearssl_ssl.h */
+int
+br_ssl_engine_renegotiate(br_ssl_engine_context *cc)
+{
+ size_t len;
+
+ if (br_ssl_engine_closed(cc) || cc->reneg == 1
+ || (cc->flags & BR_OPT_NO_RENEGOTIATION) != 0
+ || br_ssl_engine_recvapp_buf(cc, &len) != NULL)
+ {
+ return 0;
+ }
+ jump_handshake(cc, 2);
+ return 1;
+}
+
+/* see bearssl.h */
+unsigned
+br_ssl_engine_current_state(const br_ssl_engine_context *cc)
+{
+ unsigned s;
+ size_t len;
+
+ if (br_ssl_engine_closed(cc)) {
+ return BR_SSL_CLOSED;
+ }
+
+ s = 0;
+ if (br_ssl_engine_sendrec_buf(cc, &len) != NULL) {
+ s |= BR_SSL_SENDREC;
+ }
+ if (br_ssl_engine_recvrec_buf(cc, &len) != NULL) {
+ s |= BR_SSL_RECVREC;
+ }
+ if (br_ssl_engine_sendapp_buf(cc, &len) != NULL) {
+ s |= BR_SSL_SENDAPP;
+ }
+ if (br_ssl_engine_recvapp_buf(cc, &len) != NULL) {
+ s |= BR_SSL_RECVAPP;
+ }
+ return s;
+}
+
+/* see bearssl_ssl.h */
+void
+br_ssl_engine_flush(br_ssl_engine_context *cc, int force)
+{
+ if (!br_ssl_engine_closed(cc) && (cc->application_data & 1) != 0) {
+ sendpld_flush(cc, force);
+ }
+}
+
+/* see inner.h */
+void
+br_ssl_engine_hs_reset(br_ssl_engine_context *cc,
+ void (*hsinit)(void *), void (*hsrun)(void *))
+{
+ engine_clearbuf(cc);
+ cc->cpu.dp = cc->dp_stack;
+ cc->cpu.rp = cc->rp_stack;
+ hsinit(&cc->cpu);
+ cc->hsrun = hsrun;
+ cc->shutdown_recv = 0;
+ cc->application_data = 0;
+ cc->alert = 0;
+ jump_handshake(cc, 0);
+}
+
+/* see inner.h */
+br_tls_prf_impl
+br_ssl_engine_get_PRF(br_ssl_engine_context *cc, int prf_id)
+{
+ if (cc->session.version >= BR_TLS12) {
+ if (prf_id == br_sha384_ID) {
+ return cc->prf_sha384;
+ } else {
+ return cc->prf_sha256;
+ }
+ } else {
+ return cc->prf10;
+ }
+}
+
+/* see inner.h */
+void
+br_ssl_engine_compute_master(br_ssl_engine_context *cc,
+ int prf_id, const void *pms, size_t pms_len)
+{
+ br_tls_prf_impl iprf;
+ br_tls_prf_seed_chunk seed[2] = {
+ { cc->client_random, sizeof cc->client_random },
+ { cc->server_random, sizeof cc->server_random }
+ };
+
+ iprf = br_ssl_engine_get_PRF(cc, prf_id);
+ iprf(cc->session.master_secret, sizeof cc->session.master_secret,
+ pms, pms_len, "master secret", 2, seed);
+}
+
+/*
+ * Compute key block.
+ */
+static void
+compute_key_block(br_ssl_engine_context *cc, int prf_id,
+ size_t half_len, unsigned char *kb)
+{
+ br_tls_prf_impl iprf;
+ br_tls_prf_seed_chunk seed[2] = {
+ { cc->server_random, sizeof cc->server_random },
+ { cc->client_random, sizeof cc->client_random }
+ };
+
+ iprf = br_ssl_engine_get_PRF(cc, prf_id);
+ iprf(kb, half_len << 1,
+ cc->session.master_secret, sizeof cc->session.master_secret,
+ "key expansion", 2, seed);
+}
+
+/* see inner.h */
+void
+br_ssl_engine_switch_cbc_in(br_ssl_engine_context *cc,
+ int is_client, int prf_id, int mac_id,
+ const br_block_cbcdec_class *bc_impl, size_t cipher_key_len)
+{
+ unsigned char kb[192];
+ unsigned char *cipher_key, *mac_key, *iv;
+ const br_hash_class *imh;
+ size_t mac_key_len, mac_out_len, iv_len;
+
+ imh = br_ssl_engine_get_hash(cc, mac_id);
+ mac_out_len = (imh->desc >> BR_HASHDESC_OUT_OFF) & BR_HASHDESC_OUT_MASK;
+ mac_key_len = mac_out_len;
+
+ /*
+ * TLS 1.1+ uses per-record explicit IV, so no IV to generate here.
+ */
+ if (cc->session.version >= BR_TLS11) {
+ iv_len = 0;
+ } else {
+ iv_len = bc_impl->block_size;
+ }
+ compute_key_block(cc, prf_id,
+ mac_key_len + cipher_key_len + iv_len, kb);
+ if (is_client) {
+ mac_key = &kb[mac_key_len];
+ cipher_key = &kb[(mac_key_len << 1) + cipher_key_len];
+ iv = &kb[((mac_key_len + cipher_key_len) << 1) + iv_len];
+ } else {
+ mac_key = &kb[0];
+ cipher_key = &kb[mac_key_len << 1];
+ iv = &kb[(mac_key_len + cipher_key_len) << 1];
+ }
+ if (iv_len == 0) {
+ iv = NULL;
+ }
+ cc->icbc_in->init(&cc->in.cbc.vtable,
+ bc_impl, cipher_key, cipher_key_len,
+ imh, mac_key, mac_key_len, mac_out_len, iv);
+ cc->incrypt = 1;
+}
+
+/* see inner.h */
+void
+br_ssl_engine_switch_cbc_out(br_ssl_engine_context *cc,
+ int is_client, int prf_id, int mac_id,
+ const br_block_cbcenc_class *bc_impl, size_t cipher_key_len)
+{
+ unsigned char kb[192];
+ unsigned char *cipher_key, *mac_key, *iv;
+ const br_hash_class *imh;
+ size_t mac_key_len, mac_out_len, iv_len;
+
+ imh = br_ssl_engine_get_hash(cc, mac_id);
+ mac_out_len = (imh->desc >> BR_HASHDESC_OUT_OFF) & BR_HASHDESC_OUT_MASK;
+ mac_key_len = mac_out_len;
+
+ /*
+ * TLS 1.1+ uses per-record explicit IV, so no IV to generate here.
+ */
+ if (cc->session.version >= BR_TLS11) {
+ iv_len = 0;
+ } else {
+ iv_len = bc_impl->block_size;
+ }
+ compute_key_block(cc, prf_id,
+ mac_key_len + cipher_key_len + iv_len, kb);
+ if (is_client) {
+ mac_key = &kb[0];
+ cipher_key = &kb[mac_key_len << 1];
+ iv = &kb[(mac_key_len + cipher_key_len) << 1];
+ } else {
+ mac_key = &kb[mac_key_len];
+ cipher_key = &kb[(mac_key_len << 1) + cipher_key_len];
+ iv = &kb[((mac_key_len + cipher_key_len) << 1) + iv_len];
+ }
+ if (iv_len == 0) {
+ iv = NULL;
+ }
+ cc->icbc_out->init(&cc->out.cbc.vtable,
+ bc_impl, cipher_key, cipher_key_len,
+ imh, mac_key, mac_key_len, mac_out_len, iv);
+}
+
+/* see inner.h */
+void
+br_ssl_engine_switch_gcm_in(br_ssl_engine_context *cc,
+ int is_client, int prf_id,
+ const br_block_ctr_class *bc_impl, size_t cipher_key_len)
+{
+ unsigned char kb[72];
+ unsigned char *cipher_key, *iv;
+
+ compute_key_block(cc, prf_id, cipher_key_len + 4, kb);
+ if (is_client) {
+ cipher_key = &kb[cipher_key_len];
+ iv = &kb[(cipher_key_len << 1) + 4];
+ } else {
+ cipher_key = &kb[0];
+ iv = &kb[cipher_key_len << 1];
+ }
+ cc->igcm_in->init(&cc->in.gcm.vtable.in,
+ bc_impl, cipher_key, cipher_key_len, cc->ighash, iv);
+ cc->incrypt = 1;
+}
+
+/* see inner.h */
+void
+br_ssl_engine_switch_gcm_out(br_ssl_engine_context *cc,
+ int is_client, int prf_id,
+ const br_block_ctr_class *bc_impl, size_t cipher_key_len)
+{
+ unsigned char kb[72];
+ unsigned char *cipher_key, *iv;
+
+ compute_key_block(cc, prf_id, cipher_key_len + 4, kb);
+ if (is_client) {
+ cipher_key = &kb[0];
+ iv = &kb[cipher_key_len << 1];
+ } else {
+ cipher_key = &kb[cipher_key_len];
+ iv = &kb[(cipher_key_len << 1) + 4];
+ }
+ cc->igcm_out->init(&cc->out.gcm.vtable.out,
+ bc_impl, cipher_key, cipher_key_len, cc->ighash, iv);
+}
+
+/* see inner.h */
+void
+br_ssl_engine_switch_chapol_in(br_ssl_engine_context *cc,
+ int is_client, int prf_id)
+{
+ unsigned char kb[88];
+ unsigned char *cipher_key, *iv;
+
+ compute_key_block(cc, prf_id, 44, kb);
+ if (is_client) {
+ cipher_key = &kb[32];
+ iv = &kb[76];
+ } else {
+ cipher_key = &kb[0];
+ iv = &kb[64];
+ }
+ cc->ichapol_in->init(&cc->in.chapol.vtable.in,
+ cc->ichacha, cc->ipoly, cipher_key, iv);
+ cc->incrypt = 1;
+}
+
+/* see inner.h */
+void
+br_ssl_engine_switch_chapol_out(br_ssl_engine_context *cc,
+ int is_client, int prf_id)
+{
+ unsigned char kb[88];
+ unsigned char *cipher_key, *iv;
+
+ compute_key_block(cc, prf_id, 44, kb);
+ if (is_client) {
+ cipher_key = &kb[0];
+ iv = &kb[64];
+ } else {
+ cipher_key = &kb[32];
+ iv = &kb[76];
+ }
+ cc->ichapol_out->init(&cc->out.chapol.vtable.out,
+ cc->ichacha, cc->ipoly, cipher_key, iv);
+}
+
+/* see inner.h */
+void
+br_ssl_engine_switch_ccm_in(br_ssl_engine_context *cc,
+ int is_client, int prf_id,
+ const br_block_ctrcbc_class *bc_impl,
+ size_t cipher_key_len, size_t tag_len)
+{
+ unsigned char kb[72];
+ unsigned char *cipher_key, *iv;
+
+ compute_key_block(cc, prf_id, cipher_key_len + 4, kb);
+ if (is_client) {
+ cipher_key = &kb[cipher_key_len];
+ iv = &kb[(cipher_key_len << 1) + 4];
+ } else {
+ cipher_key = &kb[0];
+ iv = &kb[cipher_key_len << 1];
+ }
+ cc->iccm_in->init(&cc->in.ccm.vtable.in,
+ bc_impl, cipher_key, cipher_key_len, iv, tag_len);
+ cc->incrypt = 1;
+}
+
+/* see inner.h */
+void
+br_ssl_engine_switch_ccm_out(br_ssl_engine_context *cc,
+ int is_client, int prf_id,
+ const br_block_ctrcbc_class *bc_impl,
+ size_t cipher_key_len, size_t tag_len)
+{
+ unsigned char kb[72];
+ unsigned char *cipher_key, *iv;
+
+ compute_key_block(cc, prf_id, cipher_key_len + 4, kb);
+ if (is_client) {
+ cipher_key = &kb[0];
+ iv = &kb[cipher_key_len << 1];
+ } else {
+ cipher_key = &kb[cipher_key_len];
+ iv = &kb[(cipher_key_len << 1) + 4];
+ }
+ cc->iccm_out->init(&cc->out.ccm.vtable.out,
+ bc_impl, cipher_key, cipher_key_len, iv, tag_len);
+}