aboutsummaryrefslogtreecommitdiffstats
path: root/test/monniaux/crypto-algorithms/sha1.c
diff options
context:
space:
mode:
Diffstat (limited to 'test/monniaux/crypto-algorithms/sha1.c')
-rw-r--r--test/monniaux/crypto-algorithms/sha1.c149
1 files changed, 149 insertions, 0 deletions
diff --git a/test/monniaux/crypto-algorithms/sha1.c b/test/monniaux/crypto-algorithms/sha1.c
new file mode 100644
index 00000000..2f9622d4
--- /dev/null
+++ b/test/monniaux/crypto-algorithms/sha1.c
@@ -0,0 +1,149 @@
+/*********************************************************************
+* Filename: sha1.c
+* Author: Brad Conte (brad AT bradconte.com)
+* Copyright:
+* Disclaimer: This code is presented "as is" without any guarantees.
+* Details: Implementation of the SHA1 hashing algorithm.
+ Algorithm specification can be found here:
+ * http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf
+ This implementation uses little endian byte order.
+*********************************************************************/
+
+/*************************** HEADER FILES ***************************/
+#include <stdlib.h>
+#include <memory.h>
+#include "sha1.h"
+
+/****************************** MACROS ******************************/
+#define ROTLEFT(a, b) ((a << b) | (a >> (32 - b)))
+
+/*********************** FUNCTION DEFINITIONS ***********************/
+void sha1_transform(SHA1_CTX *ctx, const BYTE data[])
+{
+ WORD a, b, c, d, e, i, j, t, m[80];
+
+ for (i = 0, j = 0; i < 16; ++i, j += 4)
+ m[i] = (data[j] << 24) + (data[j + 1] << 16) + (data[j + 2] << 8) + (data[j + 3]);
+ for ( ; i < 80; ++i) {
+ m[i] = (m[i - 3] ^ m[i - 8] ^ m[i - 14] ^ m[i - 16]);
+ m[i] = (m[i] << 1) | (m[i] >> 31);
+ }
+
+ a = ctx->state[0];
+ b = ctx->state[1];
+ c = ctx->state[2];
+ d = ctx->state[3];
+ e = ctx->state[4];
+
+ for (i = 0; i < 20; ++i) {
+ t = ROTLEFT(a, 5) + ((b & c) ^ (~b & d)) + e + ctx->k[0] + m[i];
+ e = d;
+ d = c;
+ c = ROTLEFT(b, 30);
+ b = a;
+ a = t;
+ }
+ for ( ; i < 40; ++i) {
+ t = ROTLEFT(a, 5) + (b ^ c ^ d) + e + ctx->k[1] + m[i];
+ e = d;
+ d = c;
+ c = ROTLEFT(b, 30);
+ b = a;
+ a = t;
+ }
+ for ( ; i < 60; ++i) {
+ t = ROTLEFT(a, 5) + ((b & c) ^ (b & d) ^ (c & d)) + e + ctx->k[2] + m[i];
+ e = d;
+ d = c;
+ c = ROTLEFT(b, 30);
+ b = a;
+ a = t;
+ }
+ for ( ; i < 80; ++i) {
+ t = ROTLEFT(a, 5) + (b ^ c ^ d) + e + ctx->k[3] + m[i];
+ e = d;
+ d = c;
+ c = ROTLEFT(b, 30);
+ b = a;
+ a = t;
+ }
+
+ ctx->state[0] += a;
+ ctx->state[1] += b;
+ ctx->state[2] += c;
+ ctx->state[3] += d;
+ ctx->state[4] += e;
+}
+
+void sha1_init(SHA1_CTX *ctx)
+{
+ ctx->datalen = 0;
+ ctx->bitlen = 0;
+ ctx->state[0] = 0x67452301;
+ ctx->state[1] = 0xEFCDAB89;
+ ctx->state[2] = 0x98BADCFE;
+ ctx->state[3] = 0x10325476;
+ ctx->state[4] = 0xc3d2e1f0;
+ ctx->k[0] = 0x5a827999;
+ ctx->k[1] = 0x6ed9eba1;
+ ctx->k[2] = 0x8f1bbcdc;
+ ctx->k[3] = 0xca62c1d6;
+}
+
+void sha1_update(SHA1_CTX *ctx, const BYTE data[], size_t len)
+{
+ size_t i;
+
+ for (i = 0; i < len; ++i) {
+ ctx->data[ctx->datalen] = data[i];
+ ctx->datalen++;
+ if (ctx->datalen == 64) {
+ sha1_transform(ctx, ctx->data);
+ ctx->bitlen += 512;
+ ctx->datalen = 0;
+ }
+ }
+}
+
+void sha1_final(SHA1_CTX *ctx, BYTE hash[])
+{
+ WORD i;
+
+ i = ctx->datalen;
+
+ // Pad whatever data is left in the buffer.
+ if (ctx->datalen < 56) {
+ ctx->data[i++] = 0x80;
+ while (i < 56)
+ ctx->data[i++] = 0x00;
+ }
+ else {
+ ctx->data[i++] = 0x80;
+ while (i < 64)
+ ctx->data[i++] = 0x00;
+ sha1_transform(ctx, ctx->data);
+ memset(ctx->data, 0, 56);
+ }
+
+ // Append to the padding the total message's length in bits and transform.
+ ctx->bitlen += ctx->datalen * 8;
+ ctx->data[63] = ctx->bitlen;
+ ctx->data[62] = ctx->bitlen >> 8;
+ ctx->data[61] = ctx->bitlen >> 16;
+ ctx->data[60] = ctx->bitlen >> 24;
+ ctx->data[59] = ctx->bitlen >> 32;
+ ctx->data[58] = ctx->bitlen >> 40;
+ ctx->data[57] = ctx->bitlen >> 48;
+ ctx->data[56] = ctx->bitlen >> 56;
+ sha1_transform(ctx, ctx->data);
+
+ // Since this implementation uses little endian byte ordering and MD uses big endian,
+ // reverse all the bytes when copying the final state to the output hash.
+ for (i = 0; i < 4; ++i) {
+ hash[i] = (ctx->state[0] >> (24 - i * 8)) & 0x000000ff;
+ hash[i + 4] = (ctx->state[1] >> (24 - i * 8)) & 0x000000ff;
+ hash[i + 8] = (ctx->state[2] >> (24 - i * 8)) & 0x000000ff;
+ hash[i + 12] = (ctx->state[3] >> (24 - i * 8)) & 0x000000ff;
+ hash[i + 16] = (ctx->state[4] >> (24 - i * 8)) & 0x000000ff;
+ }
+}