aboutsummaryrefslogtreecommitdiffstats
path: root/test/monniaux/glpk-4.65/src/api/asnhall.c
diff options
context:
space:
mode:
Diffstat (limited to 'test/monniaux/glpk-4.65/src/api/asnhall.c')
-rw-r--r--test/monniaux/glpk-4.65/src/api/asnhall.c163
1 files changed, 163 insertions, 0 deletions
diff --git a/test/monniaux/glpk-4.65/src/api/asnhall.c b/test/monniaux/glpk-4.65/src/api/asnhall.c
new file mode 100644
index 00000000..d7112a10
--- /dev/null
+++ b/test/monniaux/glpk-4.65/src/api/asnhall.c
@@ -0,0 +1,163 @@
+/* asnhall.c (find bipartite matching of maximum cardinality) */
+
+/***********************************************************************
+* This code is part of GLPK (GNU Linear Programming Kit).
+*
+* Copyright (C) 2009-2016 Andrew Makhorin, Department for Applied
+* Informatics, Moscow Aviation Institute, Moscow, Russia. All rights
+* reserved. E-mail: <mao@gnu.org>.
+*
+* GLPK is free software: you can redistribute it and/or modify it
+* under the terms of the GNU General Public License as published by
+* the Free Software Foundation, either version 3 of the License, or
+* (at your option) any later version.
+*
+* GLPK is distributed in the hope that it will be useful, but WITHOUT
+* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
+* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
+* License for more details.
+*
+* You should have received a copy of the GNU General Public License
+* along with GLPK. If not, see <http://www.gnu.org/licenses/>.
+***********************************************************************/
+
+#include "env.h"
+#include "glpk.h"
+#include "mc21a.h"
+
+/***********************************************************************
+* NAME
+*
+* glp_asnprob_hall - find bipartite matching of maximum cardinality
+*
+* SYNOPSIS
+*
+* int glp_asnprob_hall(glp_graph *G, int v_set, int a_x);
+*
+* DESCRIPTION
+*
+* The routine glp_asnprob_hall finds a matching of maximal cardinality
+* in the specified bipartite graph G. It uses a version of the Fortran
+* routine MC21A developed by I.S.Duff [1], which implements Hall's
+* algorithm [2].
+*
+* RETURNS
+*
+* The routine glp_asnprob_hall returns the cardinality of the matching
+* found. However, if the specified graph is incorrect (as detected by
+* the routine glp_check_asnprob), the routine returns negative value.
+*
+* REFERENCES
+*
+* 1. I.S.Duff, Algorithm 575: Permutations for zero-free diagonal, ACM
+* Trans. on Math. Softw. 7 (1981), 387-390.
+*
+* 2. M.Hall, "An Algorithm for distinct representatives," Amer. Math.
+* Monthly 63 (1956), 716-717. */
+
+int glp_asnprob_hall(glp_graph *G, int v_set, int a_x)
+{ glp_vertex *v;
+ glp_arc *a;
+ int card, i, k, loc, n, n1, n2, xij;
+ int *num, *icn, *ip, *lenr, *iperm, *pr, *arp, *cv, *out;
+ if (v_set >= 0 && v_set > G->v_size - (int)sizeof(int))
+ xerror("glp_asnprob_hall: v_set = %d; invalid offset\n",
+ v_set);
+ if (a_x >= 0 && a_x > G->a_size - (int)sizeof(int))
+ xerror("glp_asnprob_hall: a_x = %d; invalid offset\n", a_x);
+ if (glp_check_asnprob(G, v_set))
+ return -1;
+ /* determine the number of vertices in sets R and S and renumber
+ vertices in S which correspond to columns of the matrix; skip
+ all isolated vertices */
+ num = xcalloc(1+G->nv, sizeof(int));
+ n1 = n2 = 0;
+ for (i = 1; i <= G->nv; i++)
+ { v = G->v[i];
+ if (v->in == NULL && v->out != NULL)
+ n1++, num[i] = 0; /* vertex in R */
+ else if (v->in != NULL && v->out == NULL)
+ n2++, num[i] = n2; /* vertex in S */
+ else
+ { xassert(v->in == NULL && v->out == NULL);
+ num[i] = -1; /* isolated vertex */
+ }
+ }
+ /* the matrix must be square, thus, if it has more columns than
+ rows, extra rows will be just empty, and vice versa */
+ n = (n1 >= n2 ? n1 : n2);
+ /* allocate working arrays */
+ icn = xcalloc(1+G->na, sizeof(int));
+ ip = xcalloc(1+n, sizeof(int));
+ lenr = xcalloc(1+n, sizeof(int));
+ iperm = xcalloc(1+n, sizeof(int));
+ pr = xcalloc(1+n, sizeof(int));
+ arp = xcalloc(1+n, sizeof(int));
+ cv = xcalloc(1+n, sizeof(int));
+ out = xcalloc(1+n, sizeof(int));
+ /* build the adjacency matrix of the bipartite graph in row-wise
+ format (rows are vertices in R, columns are vertices in S) */
+ k = 0, loc = 1;
+ for (i = 1; i <= G->nv; i++)
+ { if (num[i] != 0) continue;
+ /* vertex i in R */
+ ip[++k] = loc;
+ v = G->v[i];
+ for (a = v->out; a != NULL; a = a->t_next)
+ { xassert(num[a->head->i] != 0);
+ icn[loc++] = num[a->head->i];
+ }
+ lenr[k] = loc - ip[k];
+ }
+ xassert(loc-1 == G->na);
+ /* make all extra rows empty (all extra columns are empty due to
+ the row-wise format used) */
+ for (k++; k <= n; k++)
+ ip[k] = loc, lenr[k] = 0;
+ /* find a row permutation that maximizes the number of non-zeros
+ on the main diagonal */
+ card = mc21a(n, icn, ip, lenr, iperm, pr, arp, cv, out);
+#if 1 /* 18/II-2010 */
+ /* FIXED: if card = n, arp remains clobbered on exit */
+ for (i = 1; i <= n; i++)
+ arp[i] = 0;
+ for (i = 1; i <= card; i++)
+ { k = iperm[i];
+ xassert(1 <= k && k <= n);
+ xassert(arp[k] == 0);
+ arp[k] = i;
+ }
+#endif
+ /* store solution, if necessary */
+ if (a_x < 0) goto skip;
+ k = 0;
+ for (i = 1; i <= G->nv; i++)
+ { if (num[i] != 0) continue;
+ /* vertex i in R */
+ k++;
+ v = G->v[i];
+ for (a = v->out; a != NULL; a = a->t_next)
+ { /* arp[k] is the number of matched column or zero */
+ if (arp[k] == num[a->head->i])
+ { xassert(arp[k] != 0);
+ xij = 1;
+ }
+ else
+ xij = 0;
+ memcpy((char *)a->data + a_x, &xij, sizeof(int));
+ }
+ }
+skip: /* free working arrays */
+ xfree(num);
+ xfree(icn);
+ xfree(ip);
+ xfree(lenr);
+ xfree(iperm);
+ xfree(pr);
+ xfree(arp);
+ xfree(cv);
+ xfree(out);
+ return card;
+}
+
+/* eof */