aboutsummaryrefslogtreecommitdiffstats
path: root/test/monniaux/glpk-4.65/src/bflib/luf.h
diff options
context:
space:
mode:
Diffstat (limited to 'test/monniaux/glpk-4.65/src/bflib/luf.h')
-rw-r--r--test/monniaux/glpk-4.65/src/bflib/luf.h227
1 files changed, 227 insertions, 0 deletions
diff --git a/test/monniaux/glpk-4.65/src/bflib/luf.h b/test/monniaux/glpk-4.65/src/bflib/luf.h
new file mode 100644
index 00000000..5634a753
--- /dev/null
+++ b/test/monniaux/glpk-4.65/src/bflib/luf.h
@@ -0,0 +1,227 @@
+/* luf.h (sparse LU-factorization) */
+
+/***********************************************************************
+* This code is part of GLPK (GNU Linear Programming Kit).
+*
+* Copyright (C) 2012-2013 Andrew Makhorin, Department for Applied
+* Informatics, Moscow Aviation Institute, Moscow, Russia. All rights
+* reserved. E-mail: <mao@gnu.org>.
+*
+* GLPK is free software: you can redistribute it and/or modify it
+* under the terms of the GNU General Public License as published by
+* the Free Software Foundation, either version 3 of the License, or
+* (at your option) any later version.
+*
+* GLPK is distributed in the hope that it will be useful, but WITHOUT
+* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
+* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
+* License for more details.
+*
+* You should have received a copy of the GNU General Public License
+* along with GLPK. If not, see <http://www.gnu.org/licenses/>.
+***********************************************************************/
+
+#ifndef LUF_H
+#define LUF_H
+
+#include "sva.h"
+
+/***********************************************************************
+* The structure LUF describes sparse LU-factorization.
+*
+* The LU-factorization has the following format:
+*
+* A = F * V = P * L * U * Q, (1)
+*
+* F = P * L * P', (2)
+*
+* V = P * U * Q, (3)
+*
+* where A is a given (unsymmetric) square matrix, F and V are matrix
+* factors actually computed, L is a lower triangular matrix with unity
+* diagonal, U is an upper triangular matrix, P and Q are permutation
+* matrices, P' is a matrix transposed to P. All the matrices have the
+* same order n.
+*
+* Matrices F and V are stored in both row- and column-wise sparse
+* formats in the associated sparse vector area (SVA). Unity diagonal
+* elements of matrix F are not stored. Pivot elements of matrix V
+* (which correspond to diagonal elements of matrix U) are stored in
+* a separate ordinary array.
+*
+* Permutation matrices P and Q are stored in ordinary arrays in both
+* row- and column-like formats.
+*
+* Matrices L and U are completely defined by matrices F, V, P, and Q,
+* and therefore not stored explicitly. */
+
+typedef struct LUF LUF;
+
+struct LUF
+{ /* sparse LU-factorization */
+ int n;
+ /* order of matrices A, F, V, P, Q */
+ SVA *sva;
+ /* associated sparse vector area (SVA) used to store rows and
+ * columns of matrices F and V; note that different objects may
+ * share the same SVA */
+ /*--------------------------------------------------------------*/
+ /* matrix F in row-wise format */
+ /* during the factorization process this object is not used */
+ int fr_ref;
+ /* reference number of sparse vector in SVA, which is the first
+ * row of matrix F */
+#if 0 + 0
+ int *fr_ptr = &sva->ptr[fr_ref-1];
+ /* fr_ptr[0] is not used;
+ * fr_ptr[i], 1 <= i <= n, is pointer to i-th row in SVA */
+ int *fr_len = &sva->len[fr_ref-1];
+ /* fr_len[0] is not used;
+ * fr_len[i], 1 <= i <= n, is length of i-th row */
+#endif
+ /*--------------------------------------------------------------*/
+ /* matrix F in column-wise format */
+ /* during the factorization process this object is constructed
+ * by columns */
+ int fc_ref;
+ /* reference number of sparse vector in SVA, which is the first
+ * column of matrix F */
+#if 0 + 0
+ int *fc_ptr = &sva->ptr[fc_ref-1];
+ /* fc_ptr[0] is not used;
+ * fc_ptr[j], 1 <= j <= n, is pointer to j-th column in SVA */
+ int *fc_len = &sva->len[fc_ref-1];
+ /* fc_len[0] is not used;
+ * fc_len[j], 1 <= j <= n, is length of j-th column */
+#endif
+ /*--------------------------------------------------------------*/
+ /* matrix V in row-wise format */
+ int vr_ref;
+ /* reference number of sparse vector in SVA, which is the first
+ * row of matrix V */
+#if 0 + 0
+ int *vr_ptr = &sva->ptr[vr_ref-1];
+ /* vr_ptr[0] is not used;
+ * vr_ptr[i], 1 <= i <= n, is pointer to i-th row in SVA */
+ int *vr_len = &sva->len[vr_ref-1];
+ /* vr_len[0] is not used;
+ * vr_len[i], 1 <= i <= n, is length of i-th row */
+ int *vr_cap = &sva->cap[vr_ref-1];
+ /* vr_cap[0] is not used;
+ * vr_cap[i], 1 <= i <= n, is capacity of i-th row */
+#endif
+ double *vr_piv; /* double vr_piv[1+n]; */
+ /* vr_piv[0] is not used;
+ * vr_piv[i], 1 <= i <= n, is pivot element of i-th row */
+ /*--------------------------------------------------------------*/
+ /* matrix V in column-wise format */
+ /* during the factorization process this object contains only the
+ * patterns (row indices) of columns of the active submatrix */
+ int vc_ref;
+ /* reference number of sparse vector in SVA, which is the first
+ * column of matrix V */
+#if 0 + 0
+ int *vc_ptr = &sva->ptr[vc_ref-1];
+ /* vc_ptr[0] is not used;
+ * vc_ptr[j], 1 <= j <= n, is pointer to j-th column in SVA */
+ int *vc_len = &sva->len[vc_ref-1];
+ /* vc_len[0] is not used;
+ * vc_len[j], 1 <= j <= n, is length of j-th column */
+ int *vc_cap = &sva->cap[vc_ref-1];
+ /* vc_cap[0] is not used;
+ * vc_cap[j], 1 <= j <= n, is capacity of j-th column */
+#endif
+ /*--------------------------------------------------------------*/
+ /* matrix P */
+ int *pp_ind; /* int pp_ind[1+n]; */
+ /* pp_ind[i] = j means that P[i,j] = 1 */
+ int *pp_inv; /* int pp_inv[1+n]; */
+ /* pp_inv[j] = i means that P[i,j] = 1 */
+ /* if i-th row or column of matrix F is i'-th row or column of
+ * matrix L, or if i-th row of matrix V is i'-th row of matrix U,
+ * then pp_ind[i] = i' and pp_inv[i'] = i */
+ /*--------------------------------------------------------------*/
+ /* matrix Q */
+ int *qq_ind; /* int qq_ind[1+n]; */
+ /* qq_ind[i] = j means that Q[i,j] = 1 */
+ int *qq_inv; /* int qq_inv[1+n]; */
+ /* qq_inv[j] = i means that Q[i,j] = 1 */
+ /* if j-th column of matrix V is j'-th column of matrix U, then
+ * qq_ind[j'] = j and qq_inv[j] = j' */
+};
+
+#define luf_swap_u_rows(i1, i2) \
+ do \
+ { int j1, j2; \
+ j1 = pp_inv[i1], j2 = pp_inv[i2]; \
+ pp_ind[j1] = i2, pp_inv[i2] = j1; \
+ pp_ind[j2] = i1, pp_inv[i1] = j2; \
+ } while (0)
+/* swap rows i1 and i2 of matrix U = P'* V * Q' */
+
+#define luf_swap_u_cols(j1, j2) \
+ do \
+ { int i1, i2; \
+ i1 = qq_ind[j1], i2 = qq_ind[j2]; \
+ qq_ind[j1] = i2, qq_inv[i2] = j1; \
+ qq_ind[j2] = i1, qq_inv[i1] = j2; \
+ } while (0)
+/* swap columns j1 and j2 of matrix U = P'* V * Q' */
+
+#define luf_store_v_cols _glp_luf_store_v_cols
+int luf_store_v_cols(LUF *luf, int (*col)(void *info, int j, int ind[],
+ double val[]), void *info, int ind[], double val[]);
+/* store matrix V = A in column-wise format */
+
+#define luf_check_all _glp_luf_check_all
+void luf_check_all(LUF *luf, int k);
+/* check LU-factorization before k-th elimination step */
+
+#define luf_build_v_rows _glp_luf_build_v_rows
+void luf_build_v_rows(LUF *luf, int len[/*1+n*/]);
+/* build matrix V in row-wise format */
+
+#define luf_build_f_rows _glp_luf_build_f_rows
+void luf_build_f_rows(LUF *luf, int len[/*1+n*/]);
+/* build matrix F in row-wise format */
+
+#define luf_build_v_cols _glp_luf_build_v_cols
+void luf_build_v_cols(LUF *luf, int updat, int len[/*1+n*/]);
+/* build matrix V in column-wise format */
+
+#define luf_check_f_rc _glp_luf_check_f_rc
+void luf_check_f_rc(LUF *luf);
+/* check rows and columns of matrix F */
+
+#define luf_check_v_rc _glp_luf_check_v_rc
+void luf_check_v_rc(LUF *luf);
+/* check rows and columns of matrix V */
+
+#define luf_f_solve _glp_luf_f_solve
+void luf_f_solve(LUF *luf, double x[/*1+n*/]);
+/* solve system F * x = b */
+
+#define luf_ft_solve _glp_luf_ft_solve
+void luf_ft_solve(LUF *luf, double x[/*1+n*/]);
+/* solve system F' * x = b */
+
+#define luf_v_solve _glp_luf_v_solve
+void luf_v_solve(LUF *luf, double b[/*1+n*/], double x[/*1+n*/]);
+/* solve system V * x = b */
+
+#define luf_vt_solve _glp_luf_vt_solve
+void luf_vt_solve(LUF *luf, double b[/*1+n*/], double x[/*1+n*/]);
+/* solve system V' * x = b */
+
+#define luf_vt_solve1 _glp_luf_vt_solve1
+void luf_vt_solve1(LUF *luf, double e[/*1+n*/], double y[/*1+n*/]);
+/* solve system V' * y = e' to cause growth in y */
+
+#define luf_estimate_norm _glp_luf_estimate_norm
+double luf_estimate_norm(LUF *luf, double w1[/*1+n*/], double
+ w2[/*1+n*/]);
+/* estimate 1-norm of inv(A) */
+
+#endif
+
+/* eof */