aboutsummaryrefslogtreecommitdiffstats
path: root/test/monniaux/glpk-4.65/src/draft/glpapi12.c
diff options
context:
space:
mode:
Diffstat (limited to 'test/monniaux/glpk-4.65/src/draft/glpapi12.c')
-rw-r--r--test/monniaux/glpk-4.65/src/draft/glpapi12.c2185
1 files changed, 2185 insertions, 0 deletions
diff --git a/test/monniaux/glpk-4.65/src/draft/glpapi12.c b/test/monniaux/glpk-4.65/src/draft/glpapi12.c
new file mode 100644
index 00000000..020c8981
--- /dev/null
+++ b/test/monniaux/glpk-4.65/src/draft/glpapi12.c
@@ -0,0 +1,2185 @@
+/* glpapi12.c (basis factorization and simplex tableau routines) */
+
+/***********************************************************************
+* This code is part of GLPK (GNU Linear Programming Kit).
+*
+* Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
+* 2009, 2010, 2011, 2013 Andrew Makhorin, Department for Applied
+* Informatics, Moscow Aviation Institute, Moscow, Russia. All rights
+* reserved. E-mail: <mao@gnu.org>.
+*
+* GLPK is free software: you can redistribute it and/or modify it
+* under the terms of the GNU General Public License as published by
+* the Free Software Foundation, either version 3 of the License, or
+* (at your option) any later version.
+*
+* GLPK is distributed in the hope that it will be useful, but WITHOUT
+* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
+* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
+* License for more details.
+*
+* You should have received a copy of the GNU General Public License
+* along with GLPK. If not, see <http://www.gnu.org/licenses/>.
+***********************************************************************/
+
+#include "draft.h"
+#include "env.h"
+#include "prob.h"
+
+/***********************************************************************
+* NAME
+*
+* glp_bf_exists - check if the basis factorization exists
+*
+* SYNOPSIS
+*
+* int glp_bf_exists(glp_prob *lp);
+*
+* RETURNS
+*
+* If the basis factorization for the current basis associated with
+* the specified problem object exists and therefore is available for
+* computations, the routine glp_bf_exists returns non-zero. Otherwise
+* the routine returns zero. */
+
+int glp_bf_exists(glp_prob *lp)
+{ int ret;
+ ret = (lp->m == 0 || lp->valid);
+ return ret;
+}
+
+/***********************************************************************
+* NAME
+*
+* glp_factorize - compute the basis factorization
+*
+* SYNOPSIS
+*
+* int glp_factorize(glp_prob *lp);
+*
+* DESCRIPTION
+*
+* The routine glp_factorize computes the basis factorization for the
+* current basis associated with the specified problem object.
+*
+* RETURNS
+*
+* 0 The basis factorization has been successfully computed.
+*
+* GLP_EBADB
+* The basis matrix is invalid, i.e. the number of basic (auxiliary
+* and structural) variables differs from the number of rows in the
+* problem object.
+*
+* GLP_ESING
+* The basis matrix is singular within the working precision.
+*
+* GLP_ECOND
+* The basis matrix is ill-conditioned. */
+
+static int b_col(void *info, int j, int ind[], double val[])
+{ glp_prob *lp = info;
+ int m = lp->m;
+ GLPAIJ *aij;
+ int k, len;
+ xassert(1 <= j && j <= m);
+ /* determine the ordinal number of basic auxiliary or structural
+ variable x[k] corresponding to basic variable xB[j] */
+ k = lp->head[j];
+ /* build j-th column of the basic matrix, which is k-th column of
+ the scaled augmented matrix (I | -R*A*S) */
+ if (k <= m)
+ { /* x[k] is auxiliary variable */
+ len = 1;
+ ind[1] = k;
+ val[1] = 1.0;
+ }
+ else
+ { /* x[k] is structural variable */
+ len = 0;
+ for (aij = lp->col[k-m]->ptr; aij != NULL; aij = aij->c_next)
+ { len++;
+ ind[len] = aij->row->i;
+ val[len] = - aij->row->rii * aij->val * aij->col->sjj;
+ }
+ }
+ return len;
+}
+
+int glp_factorize(glp_prob *lp)
+{ int m = lp->m;
+ int n = lp->n;
+ GLPROW **row = lp->row;
+ GLPCOL **col = lp->col;
+ int *head = lp->head;
+ int j, k, stat, ret;
+ /* invalidate the basis factorization */
+ lp->valid = 0;
+ /* build the basis header */
+ j = 0;
+ for (k = 1; k <= m+n; k++)
+ { if (k <= m)
+ { stat = row[k]->stat;
+ row[k]->bind = 0;
+ }
+ else
+ { stat = col[k-m]->stat;
+ col[k-m]->bind = 0;
+ }
+ if (stat == GLP_BS)
+ { j++;
+ if (j > m)
+ { /* too many basic variables */
+ ret = GLP_EBADB;
+ goto fini;
+ }
+ head[j] = k;
+ if (k <= m)
+ row[k]->bind = j;
+ else
+ col[k-m]->bind = j;
+ }
+ }
+ if (j < m)
+ { /* too few basic variables */
+ ret = GLP_EBADB;
+ goto fini;
+ }
+ /* try to factorize the basis matrix */
+ if (m > 0)
+ { if (lp->bfd == NULL)
+ { lp->bfd = bfd_create_it();
+#if 0 /* 08/III-2014 */
+ copy_bfcp(lp);
+#endif
+ }
+ switch (bfd_factorize(lp->bfd, m, /*lp->head,*/ b_col, lp))
+ { case 0:
+ /* ok */
+ break;
+ case BFD_ESING:
+ /* singular matrix */
+ ret = GLP_ESING;
+ goto fini;
+ case BFD_ECOND:
+ /* ill-conditioned matrix */
+ ret = GLP_ECOND;
+ goto fini;
+ default:
+ xassert(lp != lp);
+ }
+ lp->valid = 1;
+ }
+ /* factorization successful */
+ ret = 0;
+fini: /* bring the return code to the calling program */
+ return ret;
+}
+
+/***********************************************************************
+* NAME
+*
+* glp_bf_updated - check if the basis factorization has been updated
+*
+* SYNOPSIS
+*
+* int glp_bf_updated(glp_prob *lp);
+*
+* RETURNS
+*
+* If the basis factorization has been just computed from scratch, the
+* routine glp_bf_updated returns zero. Otherwise, if the factorization
+* has been updated one or more times, the routine returns non-zero. */
+
+int glp_bf_updated(glp_prob *lp)
+{ int cnt;
+ if (!(lp->m == 0 || lp->valid))
+ xerror("glp_bf_update: basis factorization does not exist\n");
+#if 0 /* 15/XI-2009 */
+ cnt = (lp->m == 0 ? 0 : lp->bfd->upd_cnt);
+#else
+ cnt = (lp->m == 0 ? 0 : bfd_get_count(lp->bfd));
+#endif
+ return cnt;
+}
+
+/***********************************************************************
+* NAME
+*
+* glp_get_bfcp - retrieve basis factorization control parameters
+*
+* SYNOPSIS
+*
+* void glp_get_bfcp(glp_prob *lp, glp_bfcp *parm);
+*
+* DESCRIPTION
+*
+* The routine glp_get_bfcp retrieves control parameters, which are
+* used on computing and updating the basis factorization associated
+* with the specified problem object.
+*
+* Current values of control parameters are stored by the routine in
+* a glp_bfcp structure, which the parameter parm points to. */
+
+#if 1 /* 08/III-2014 */
+void glp_get_bfcp(glp_prob *P, glp_bfcp *parm)
+{ if (P->bfd == NULL)
+ P->bfd = bfd_create_it();
+ bfd_get_bfcp(P->bfd, parm);
+ return;
+}
+#endif
+
+/***********************************************************************
+* NAME
+*
+* glp_set_bfcp - change basis factorization control parameters
+*
+* SYNOPSIS
+*
+* void glp_set_bfcp(glp_prob *lp, const glp_bfcp *parm);
+*
+* DESCRIPTION
+*
+* The routine glp_set_bfcp changes control parameters, which are used
+* by internal GLPK routines in computing and updating the basis
+* factorization associated with the specified problem object.
+*
+* New values of the control parameters should be passed in a structure
+* glp_bfcp, which the parameter parm points to.
+*
+* The parameter parm can be specified as NULL, in which case all
+* control parameters are reset to their default values. */
+
+#if 1 /* 08/III-2014 */
+void glp_set_bfcp(glp_prob *P, const glp_bfcp *parm)
+{ if (P->bfd == NULL)
+ P->bfd = bfd_create_it();
+ if (parm != NULL)
+ { if (!(parm->type == GLP_BF_LUF + GLP_BF_FT ||
+ parm->type == GLP_BF_LUF + GLP_BF_BG ||
+ parm->type == GLP_BF_LUF + GLP_BF_GR ||
+ parm->type == GLP_BF_BTF + GLP_BF_BG ||
+ parm->type == GLP_BF_BTF + GLP_BF_GR))
+ xerror("glp_set_bfcp: type = 0x%02X; invalid parameter\n",
+ parm->type);
+ if (!(0.0 < parm->piv_tol && parm->piv_tol < 1.0))
+ xerror("glp_set_bfcp: piv_tol = %g; invalid parameter\n",
+ parm->piv_tol);
+ if (parm->piv_lim < 1)
+ xerror("glp_set_bfcp: piv_lim = %d; invalid parameter\n",
+ parm->piv_lim);
+ if (!(parm->suhl == GLP_ON || parm->suhl == GLP_OFF))
+ xerror("glp_set_bfcp: suhl = %d; invalid parameter\n",
+ parm->suhl);
+ if (!(0.0 <= parm->eps_tol && parm->eps_tol <= 1e-6))
+ xerror("glp_set_bfcp: eps_tol = %g; invalid parameter\n",
+ parm->eps_tol);
+ if (!(1 <= parm->nfs_max && parm->nfs_max <= 32767))
+ xerror("glp_set_bfcp: nfs_max = %d; invalid parameter\n",
+ parm->nfs_max);
+ if (!(1 <= parm->nrs_max && parm->nrs_max <= 32767))
+ xerror("glp_set_bfcp: nrs_max = %d; invalid parameter\n",
+ parm->nrs_max);
+ }
+ bfd_set_bfcp(P->bfd, parm);
+ return;
+}
+#endif
+
+/***********************************************************************
+* NAME
+*
+* glp_get_bhead - retrieve the basis header information
+*
+* SYNOPSIS
+*
+* int glp_get_bhead(glp_prob *lp, int k);
+*
+* DESCRIPTION
+*
+* The routine glp_get_bhead returns the basis header information for
+* the current basis associated with the specified problem object.
+*
+* RETURNS
+*
+* If xB[k], 1 <= k <= m, is i-th auxiliary variable (1 <= i <= m), the
+* routine returns i. Otherwise, if xB[k] is j-th structural variable
+* (1 <= j <= n), the routine returns m+j. Here m is the number of rows
+* and n is the number of columns in the problem object. */
+
+int glp_get_bhead(glp_prob *lp, int k)
+{ if (!(lp->m == 0 || lp->valid))
+ xerror("glp_get_bhead: basis factorization does not exist\n");
+ if (!(1 <= k && k <= lp->m))
+ xerror("glp_get_bhead: k = %d; index out of range\n", k);
+ return lp->head[k];
+}
+
+/***********************************************************************
+* NAME
+*
+* glp_get_row_bind - retrieve row index in the basis header
+*
+* SYNOPSIS
+*
+* int glp_get_row_bind(glp_prob *lp, int i);
+*
+* RETURNS
+*
+* The routine glp_get_row_bind returns the index k of basic variable
+* xB[k], 1 <= k <= m, which is i-th auxiliary variable, 1 <= i <= m,
+* in the current basis associated with the specified problem object,
+* where m is the number of rows. However, if i-th auxiliary variable
+* is non-basic, the routine returns zero. */
+
+int glp_get_row_bind(glp_prob *lp, int i)
+{ if (!(lp->m == 0 || lp->valid))
+ xerror("glp_get_row_bind: basis factorization does not exist\n"
+ );
+ if (!(1 <= i && i <= lp->m))
+ xerror("glp_get_row_bind: i = %d; row number out of range\n",
+ i);
+ return lp->row[i]->bind;
+}
+
+/***********************************************************************
+* NAME
+*
+* glp_get_col_bind - retrieve column index in the basis header
+*
+* SYNOPSIS
+*
+* int glp_get_col_bind(glp_prob *lp, int j);
+*
+* RETURNS
+*
+* The routine glp_get_col_bind returns the index k of basic variable
+* xB[k], 1 <= k <= m, which is j-th structural variable, 1 <= j <= n,
+* in the current basis associated with the specified problem object,
+* where m is the number of rows, n is the number of columns. However,
+* if j-th structural variable is non-basic, the routine returns zero.*/
+
+int glp_get_col_bind(glp_prob *lp, int j)
+{ if (!(lp->m == 0 || lp->valid))
+ xerror("glp_get_col_bind: basis factorization does not exist\n"
+ );
+ if (!(1 <= j && j <= lp->n))
+ xerror("glp_get_col_bind: j = %d; column number out of range\n"
+ , j);
+ return lp->col[j]->bind;
+}
+
+/***********************************************************************
+* NAME
+*
+* glp_ftran - perform forward transformation (solve system B*x = b)
+*
+* SYNOPSIS
+*
+* void glp_ftran(glp_prob *lp, double x[]);
+*
+* DESCRIPTION
+*
+* The routine glp_ftran performs forward transformation, i.e. solves
+* the system B*x = b, where B is the basis matrix corresponding to the
+* current basis for the specified problem object, x is the vector of
+* unknowns to be computed, b is the vector of right-hand sides.
+*
+* On entry elements of the vector b should be stored in dense format
+* in locations x[1], ..., x[m], where m is the number of rows. On exit
+* the routine stores elements of the vector x in the same locations.
+*
+* SCALING/UNSCALING
+*
+* Let A~ = (I | -A) is the augmented constraint matrix of the original
+* (unscaled) problem. In the scaled LP problem instead the matrix A the
+* scaled matrix A" = R*A*S is actually used, so
+*
+* A~" = (I | A") = (I | R*A*S) = (R*I*inv(R) | R*A*S) =
+* (1)
+* = R*(I | A)*S~ = R*A~*S~,
+*
+* is the scaled augmented constraint matrix, where R and S are diagonal
+* scaling matrices used to scale rows and columns of the matrix A, and
+*
+* S~ = diag(inv(R) | S) (2)
+*
+* is an augmented diagonal scaling matrix.
+*
+* By definition:
+*
+* A~ = (B | N), (3)
+*
+* where B is the basic matrix, which consists of basic columns of the
+* augmented constraint matrix A~, and N is a matrix, which consists of
+* non-basic columns of A~. From (1) it follows that:
+*
+* A~" = (B" | N") = (R*B*SB | R*N*SN), (4)
+*
+* where SB and SN are parts of the augmented scaling matrix S~, which
+* correspond to basic and non-basic variables, respectively. Therefore
+*
+* B" = R*B*SB, (5)
+*
+* which is the scaled basis matrix. */
+
+void glp_ftran(glp_prob *lp, double x[])
+{ int m = lp->m;
+ GLPROW **row = lp->row;
+ GLPCOL **col = lp->col;
+ int i, k;
+ /* B*x = b ===> (R*B*SB)*(inv(SB)*x) = R*b ===>
+ B"*x" = b", where b" = R*b, x = SB*x" */
+ if (!(m == 0 || lp->valid))
+ xerror("glp_ftran: basis factorization does not exist\n");
+ /* b" := R*b */
+ for (i = 1; i <= m; i++)
+ x[i] *= row[i]->rii;
+ /* x" := inv(B")*b" */
+ if (m > 0) bfd_ftran(lp->bfd, x);
+ /* x := SB*x" */
+ for (i = 1; i <= m; i++)
+ { k = lp->head[i];
+ if (k <= m)
+ x[i] /= row[k]->rii;
+ else
+ x[i] *= col[k-m]->sjj;
+ }
+ return;
+}
+
+/***********************************************************************
+* NAME
+*
+* glp_btran - perform backward transformation (solve system B'*x = b)
+*
+* SYNOPSIS
+*
+* void glp_btran(glp_prob *lp, double x[]);
+*
+* DESCRIPTION
+*
+* The routine glp_btran performs backward transformation, i.e. solves
+* the system B'*x = b, where B' is a matrix transposed to the basis
+* matrix corresponding to the current basis for the specified problem
+* problem object, x is the vector of unknowns to be computed, b is the
+* vector of right-hand sides.
+*
+* On entry elements of the vector b should be stored in dense format
+* in locations x[1], ..., x[m], where m is the number of rows. On exit
+* the routine stores elements of the vector x in the same locations.
+*
+* SCALING/UNSCALING
+*
+* See comments to the routine glp_ftran. */
+
+void glp_btran(glp_prob *lp, double x[])
+{ int m = lp->m;
+ GLPROW **row = lp->row;
+ GLPCOL **col = lp->col;
+ int i, k;
+ /* B'*x = b ===> (SB*B'*R)*(inv(R)*x) = SB*b ===>
+ (B")'*x" = b", where b" = SB*b, x = R*x" */
+ if (!(m == 0 || lp->valid))
+ xerror("glp_btran: basis factorization does not exist\n");
+ /* b" := SB*b */
+ for (i = 1; i <= m; i++)
+ { k = lp->head[i];
+ if (k <= m)
+ x[i] /= row[k]->rii;
+ else
+ x[i] *= col[k-m]->sjj;
+ }
+ /* x" := inv[(B")']*b" */
+ if (m > 0) bfd_btran(lp->bfd, x);
+ /* x := R*x" */
+ for (i = 1; i <= m; i++)
+ x[i] *= row[i]->rii;
+ return;
+}
+
+/***********************************************************************
+* NAME
+*
+* glp_warm_up - "warm up" LP basis
+*
+* SYNOPSIS
+*
+* int glp_warm_up(glp_prob *P);
+*
+* DESCRIPTION
+*
+* The routine glp_warm_up "warms up" the LP basis for the specified
+* problem object using current statuses assigned to rows and columns
+* (that is, to auxiliary and structural variables).
+*
+* This operation includes computing factorization of the basis matrix
+* (if it does not exist), computing primal and dual components of basic
+* solution, and determining the solution status.
+*
+* RETURNS
+*
+* 0 The operation has been successfully performed.
+*
+* GLP_EBADB
+* The basis matrix is invalid, i.e. the number of basic (auxiliary
+* and structural) variables differs from the number of rows in the
+* problem object.
+*
+* GLP_ESING
+* The basis matrix is singular within the working precision.
+*
+* GLP_ECOND
+* The basis matrix is ill-conditioned. */
+
+int glp_warm_up(glp_prob *P)
+{ GLPROW *row;
+ GLPCOL *col;
+ GLPAIJ *aij;
+ int i, j, type, stat, ret;
+ double eps, temp, *work;
+ /* invalidate basic solution */
+ P->pbs_stat = P->dbs_stat = GLP_UNDEF;
+ P->obj_val = 0.0;
+ P->some = 0;
+ for (i = 1; i <= P->m; i++)
+ { row = P->row[i];
+ row->prim = row->dual = 0.0;
+ }
+ for (j = 1; j <= P->n; j++)
+ { col = P->col[j];
+ col->prim = col->dual = 0.0;
+ }
+ /* compute the basis factorization, if necessary */
+ if (!glp_bf_exists(P))
+ { ret = glp_factorize(P);
+ if (ret != 0) goto done;
+ }
+ /* allocate working array */
+ work = xcalloc(1+P->m, sizeof(double));
+ /* determine and store values of non-basic variables, compute
+ vector (- N * xN) */
+ for (i = 1; i <= P->m; i++)
+ work[i] = 0.0;
+ for (i = 1; i <= P->m; i++)
+ { row = P->row[i];
+ if (row->stat == GLP_BS)
+ continue;
+ else if (row->stat == GLP_NL)
+ row->prim = row->lb;
+ else if (row->stat == GLP_NU)
+ row->prim = row->ub;
+ else if (row->stat == GLP_NF)
+ row->prim = 0.0;
+ else if (row->stat == GLP_NS)
+ row->prim = row->lb;
+ else
+ xassert(row != row);
+ /* N[j] is i-th column of matrix (I|-A) */
+ work[i] -= row->prim;
+ }
+ for (j = 1; j <= P->n; j++)
+ { col = P->col[j];
+ if (col->stat == GLP_BS)
+ continue;
+ else if (col->stat == GLP_NL)
+ col->prim = col->lb;
+ else if (col->stat == GLP_NU)
+ col->prim = col->ub;
+ else if (col->stat == GLP_NF)
+ col->prim = 0.0;
+ else if (col->stat == GLP_NS)
+ col->prim = col->lb;
+ else
+ xassert(col != col);
+ /* N[j] is (m+j)-th column of matrix (I|-A) */
+ if (col->prim != 0.0)
+ { for (aij = col->ptr; aij != NULL; aij = aij->c_next)
+ work[aij->row->i] += aij->val * col->prim;
+ }
+ }
+ /* compute vector of basic variables xB = - inv(B) * N * xN */
+ glp_ftran(P, work);
+ /* store values of basic variables, check primal feasibility */
+ P->pbs_stat = GLP_FEAS;
+ for (i = 1; i <= P->m; i++)
+ { row = P->row[i];
+ if (row->stat != GLP_BS)
+ continue;
+ row->prim = work[row->bind];
+ type = row->type;
+ if (type == GLP_LO || type == GLP_DB || type == GLP_FX)
+ { eps = 1e-6 + 1e-9 * fabs(row->lb);
+ if (row->prim < row->lb - eps)
+ P->pbs_stat = GLP_INFEAS;
+ }
+ if (type == GLP_UP || type == GLP_DB || type == GLP_FX)
+ { eps = 1e-6 + 1e-9 * fabs(row->ub);
+ if (row->prim > row->ub + eps)
+ P->pbs_stat = GLP_INFEAS;
+ }
+ }
+ for (j = 1; j <= P->n; j++)
+ { col = P->col[j];
+ if (col->stat != GLP_BS)
+ continue;
+ col->prim = work[col->bind];
+ type = col->type;
+ if (type == GLP_LO || type == GLP_DB || type == GLP_FX)
+ { eps = 1e-6 + 1e-9 * fabs(col->lb);
+ if (col->prim < col->lb - eps)
+ P->pbs_stat = GLP_INFEAS;
+ }
+ if (type == GLP_UP || type == GLP_DB || type == GLP_FX)
+ { eps = 1e-6 + 1e-9 * fabs(col->ub);
+ if (col->prim > col->ub + eps)
+ P->pbs_stat = GLP_INFEAS;
+ }
+ }
+ /* compute value of the objective function */
+ P->obj_val = P->c0;
+ for (j = 1; j <= P->n; j++)
+ { col = P->col[j];
+ P->obj_val += col->coef * col->prim;
+ }
+ /* build vector cB of objective coefficients at basic variables */
+ for (i = 1; i <= P->m; i++)
+ work[i] = 0.0;
+ for (j = 1; j <= P->n; j++)
+ { col = P->col[j];
+ if (col->stat == GLP_BS)
+ work[col->bind] = col->coef;
+ }
+ /* compute vector of simplex multipliers pi = inv(B') * cB */
+ glp_btran(P, work);
+ /* compute and store reduced costs of non-basic variables d[j] =
+ c[j] - N'[j] * pi, check dual feasibility */
+ P->dbs_stat = GLP_FEAS;
+ for (i = 1; i <= P->m; i++)
+ { row = P->row[i];
+ if (row->stat == GLP_BS)
+ { row->dual = 0.0;
+ continue;
+ }
+ /* N[j] is i-th column of matrix (I|-A) */
+ row->dual = - work[i];
+#if 0 /* 07/III-2013 */
+ type = row->type;
+ temp = (P->dir == GLP_MIN ? + row->dual : - row->dual);
+ if ((type == GLP_FR || type == GLP_LO) && temp < -1e-5 ||
+ (type == GLP_FR || type == GLP_UP) && temp > +1e-5)
+ P->dbs_stat = GLP_INFEAS;
+#else
+ stat = row->stat;
+ temp = (P->dir == GLP_MIN ? + row->dual : - row->dual);
+ if ((stat == GLP_NF || stat == GLP_NL) && temp < -1e-5 ||
+ (stat == GLP_NF || stat == GLP_NU) && temp > +1e-5)
+ P->dbs_stat = GLP_INFEAS;
+#endif
+ }
+ for (j = 1; j <= P->n; j++)
+ { col = P->col[j];
+ if (col->stat == GLP_BS)
+ { col->dual = 0.0;
+ continue;
+ }
+ /* N[j] is (m+j)-th column of matrix (I|-A) */
+ col->dual = col->coef;
+ for (aij = col->ptr; aij != NULL; aij = aij->c_next)
+ col->dual += aij->val * work[aij->row->i];
+#if 0 /* 07/III-2013 */
+ type = col->type;
+ temp = (P->dir == GLP_MIN ? + col->dual : - col->dual);
+ if ((type == GLP_FR || type == GLP_LO) && temp < -1e-5 ||
+ (type == GLP_FR || type == GLP_UP) && temp > +1e-5)
+ P->dbs_stat = GLP_INFEAS;
+#else
+ stat = col->stat;
+ temp = (P->dir == GLP_MIN ? + col->dual : - col->dual);
+ if ((stat == GLP_NF || stat == GLP_NL) && temp < -1e-5 ||
+ (stat == GLP_NF || stat == GLP_NU) && temp > +1e-5)
+ P->dbs_stat = GLP_INFEAS;
+#endif
+ }
+ /* free working array */
+ xfree(work);
+ ret = 0;
+done: return ret;
+}
+
+/***********************************************************************
+* NAME
+*
+* glp_eval_tab_row - compute row of the simplex tableau
+*
+* SYNOPSIS
+*
+* int glp_eval_tab_row(glp_prob *lp, int k, int ind[], double val[]);
+*
+* DESCRIPTION
+*
+* The routine glp_eval_tab_row computes a row of the current simplex
+* tableau for the basic variable, which is specified by the number k:
+* if 1 <= k <= m, x[k] is k-th auxiliary variable; if m+1 <= k <= m+n,
+* x[k] is (k-m)-th structural variable, where m is number of rows, and
+* n is number of columns. The current basis must be available.
+*
+* The routine stores column indices and numerical values of non-zero
+* elements of the computed row using sparse format to the locations
+* ind[1], ..., ind[len] and val[1], ..., val[len], respectively, where
+* 0 <= len <= n is number of non-zeros returned on exit.
+*
+* Element indices stored in the array ind have the same sense as the
+* index k, i.e. indices 1 to m denote auxiliary variables and indices
+* m+1 to m+n denote structural ones (all these variables are obviously
+* non-basic by definition).
+*
+* The computed row shows how the specified basic variable x[k] = xB[i]
+* depends on non-basic variables:
+*
+* xB[i] = alfa[i,1]*xN[1] + alfa[i,2]*xN[2] + ... + alfa[i,n]*xN[n],
+*
+* where alfa[i,j] are elements of the simplex table row, xN[j] are
+* non-basic (auxiliary and structural) variables.
+*
+* RETURNS
+*
+* The routine returns number of non-zero elements in the simplex table
+* row stored in the arrays ind and val.
+*
+* BACKGROUND
+*
+* The system of equality constraints of the LP problem is:
+*
+* xR = A * xS, (1)
+*
+* where xR is the vector of auxliary variables, xS is the vector of
+* structural variables, A is the matrix of constraint coefficients.
+*
+* The system (1) can be written in homogenous form as follows:
+*
+* A~ * x = 0, (2)
+*
+* where A~ = (I | -A) is the augmented constraint matrix (has m rows
+* and m+n columns), x = (xR | xS) is the vector of all (auxiliary and
+* structural) variables.
+*
+* By definition for the current basis we have:
+*
+* A~ = (B | N), (3)
+*
+* where B is the basis matrix. Thus, the system (2) can be written as:
+*
+* B * xB + N * xN = 0. (4)
+*
+* From (4) it follows that:
+*
+* xB = A^ * xN, (5)
+*
+* where the matrix
+*
+* A^ = - inv(B) * N (6)
+*
+* is called the simplex table.
+*
+* It is understood that i-th row of the simplex table is:
+*
+* e * A^ = - e * inv(B) * N, (7)
+*
+* where e is a unity vector with e[i] = 1.
+*
+* To compute i-th row of the simplex table the routine first computes
+* i-th row of the inverse:
+*
+* rho = inv(B') * e, (8)
+*
+* where B' is a matrix transposed to B, and then computes elements of
+* i-th row of the simplex table as scalar products:
+*
+* alfa[i,j] = - rho * N[j] for all j, (9)
+*
+* where N[j] is a column of the augmented constraint matrix A~, which
+* corresponds to some non-basic auxiliary or structural variable. */
+
+int glp_eval_tab_row(glp_prob *lp, int k, int ind[], double val[])
+{ int m = lp->m;
+ int n = lp->n;
+ int i, t, len, lll, *iii;
+ double alfa, *rho, *vvv;
+ if (!(m == 0 || lp->valid))
+ xerror("glp_eval_tab_row: basis factorization does not exist\n"
+ );
+ if (!(1 <= k && k <= m+n))
+ xerror("glp_eval_tab_row: k = %d; variable number out of range"
+ , k);
+ /* determine xB[i] which corresponds to x[k] */
+ if (k <= m)
+ i = glp_get_row_bind(lp, k);
+ else
+ i = glp_get_col_bind(lp, k-m);
+ if (i == 0)
+ xerror("glp_eval_tab_row: k = %d; variable must be basic", k);
+ xassert(1 <= i && i <= m);
+ /* allocate working arrays */
+ rho = xcalloc(1+m, sizeof(double));
+ iii = xcalloc(1+m, sizeof(int));
+ vvv = xcalloc(1+m, sizeof(double));
+ /* compute i-th row of the inverse; see (8) */
+ for (t = 1; t <= m; t++) rho[t] = 0.0;
+ rho[i] = 1.0;
+ glp_btran(lp, rho);
+ /* compute i-th row of the simplex table */
+ len = 0;
+ for (k = 1; k <= m+n; k++)
+ { if (k <= m)
+ { /* x[k] is auxiliary variable, so N[k] is a unity column */
+ if (glp_get_row_stat(lp, k) == GLP_BS) continue;
+ /* compute alfa[i,j]; see (9) */
+ alfa = - rho[k];
+ }
+ else
+ { /* x[k] is structural variable, so N[k] is a column of the
+ original constraint matrix A with negative sign */
+ if (glp_get_col_stat(lp, k-m) == GLP_BS) continue;
+ /* compute alfa[i,j]; see (9) */
+ lll = glp_get_mat_col(lp, k-m, iii, vvv);
+ alfa = 0.0;
+ for (t = 1; t <= lll; t++) alfa += rho[iii[t]] * vvv[t];
+ }
+ /* store alfa[i,j] */
+ if (alfa != 0.0) len++, ind[len] = k, val[len] = alfa;
+ }
+ xassert(len <= n);
+ /* free working arrays */
+ xfree(rho);
+ xfree(iii);
+ xfree(vvv);
+ /* return to the calling program */
+ return len;
+}
+
+/***********************************************************************
+* NAME
+*
+* glp_eval_tab_col - compute column of the simplex tableau
+*
+* SYNOPSIS
+*
+* int glp_eval_tab_col(glp_prob *lp, int k, int ind[], double val[]);
+*
+* DESCRIPTION
+*
+* The routine glp_eval_tab_col computes a column of the current simplex
+* table for the non-basic variable, which is specified by the number k:
+* if 1 <= k <= m, x[k] is k-th auxiliary variable; if m+1 <= k <= m+n,
+* x[k] is (k-m)-th structural variable, where m is number of rows, and
+* n is number of columns. The current basis must be available.
+*
+* The routine stores row indices and numerical values of non-zero
+* elements of the computed column using sparse format to the locations
+* ind[1], ..., ind[len] and val[1], ..., val[len] respectively, where
+* 0 <= len <= m is number of non-zeros returned on exit.
+*
+* Element indices stored in the array ind have the same sense as the
+* index k, i.e. indices 1 to m denote auxiliary variables and indices
+* m+1 to m+n denote structural ones (all these variables are obviously
+* basic by the definition).
+*
+* The computed column shows how basic variables depend on the specified
+* non-basic variable x[k] = xN[j]:
+*
+* xB[1] = ... + alfa[1,j]*xN[j] + ...
+* xB[2] = ... + alfa[2,j]*xN[j] + ...
+* . . . . . .
+* xB[m] = ... + alfa[m,j]*xN[j] + ...
+*
+* where alfa[i,j] are elements of the simplex table column, xB[i] are
+* basic (auxiliary and structural) variables.
+*
+* RETURNS
+*
+* The routine returns number of non-zero elements in the simplex table
+* column stored in the arrays ind and val.
+*
+* BACKGROUND
+*
+* As it was explained in comments to the routine glp_eval_tab_row (see
+* above) the simplex table is the following matrix:
+*
+* A^ = - inv(B) * N. (1)
+*
+* Therefore j-th column of the simplex table is:
+*
+* A^ * e = - inv(B) * N * e = - inv(B) * N[j], (2)
+*
+* where e is a unity vector with e[j] = 1, B is the basis matrix, N[j]
+* is a column of the augmented constraint matrix A~, which corresponds
+* to the given non-basic auxiliary or structural variable. */
+
+int glp_eval_tab_col(glp_prob *lp, int k, int ind[], double val[])
+{ int m = lp->m;
+ int n = lp->n;
+ int t, len, stat;
+ double *col;
+ if (!(m == 0 || lp->valid))
+ xerror("glp_eval_tab_col: basis factorization does not exist\n"
+ );
+ if (!(1 <= k && k <= m+n))
+ xerror("glp_eval_tab_col: k = %d; variable number out of range"
+ , k);
+ if (k <= m)
+ stat = glp_get_row_stat(lp, k);
+ else
+ stat = glp_get_col_stat(lp, k-m);
+ if (stat == GLP_BS)
+ xerror("glp_eval_tab_col: k = %d; variable must be non-basic",
+ k);
+ /* obtain column N[k] with negative sign */
+ col = xcalloc(1+m, sizeof(double));
+ for (t = 1; t <= m; t++) col[t] = 0.0;
+ if (k <= m)
+ { /* x[k] is auxiliary variable, so N[k] is a unity column */
+ col[k] = -1.0;
+ }
+ else
+ { /* x[k] is structural variable, so N[k] is a column of the
+ original constraint matrix A with negative sign */
+ len = glp_get_mat_col(lp, k-m, ind, val);
+ for (t = 1; t <= len; t++) col[ind[t]] = val[t];
+ }
+ /* compute column of the simplex table, which corresponds to the
+ specified non-basic variable x[k] */
+ glp_ftran(lp, col);
+ len = 0;
+ for (t = 1; t <= m; t++)
+ { if (col[t] != 0.0)
+ { len++;
+ ind[len] = glp_get_bhead(lp, t);
+ val[len] = col[t];
+ }
+ }
+ xfree(col);
+ /* return to the calling program */
+ return len;
+}
+
+/***********************************************************************
+* NAME
+*
+* glp_transform_row - transform explicitly specified row
+*
+* SYNOPSIS
+*
+* int glp_transform_row(glp_prob *P, int len, int ind[], double val[]);
+*
+* DESCRIPTION
+*
+* The routine glp_transform_row performs the same operation as the
+* routine glp_eval_tab_row with exception that the row to be
+* transformed is specified explicitly as a sparse vector.
+*
+* The explicitly specified row may be thought as a linear form:
+*
+* x = a[1]*x[m+1] + a[2]*x[m+2] + ... + a[n]*x[m+n], (1)
+*
+* where x is an auxiliary variable for this row, a[j] are coefficients
+* of the linear form, x[m+j] are structural variables.
+*
+* On entry column indices and numerical values of non-zero elements of
+* the row should be stored in locations ind[1], ..., ind[len] and
+* val[1], ..., val[len], where len is the number of non-zero elements.
+*
+* This routine uses the system of equality constraints and the current
+* basis in order to express the auxiliary variable x in (1) through the
+* current non-basic variables (as if the transformed row were added to
+* the problem object and its auxiliary variable were basic), i.e. the
+* resultant row has the form:
+*
+* x = alfa[1]*xN[1] + alfa[2]*xN[2] + ... + alfa[n]*xN[n], (2)
+*
+* where xN[j] are non-basic (auxiliary or structural) variables, n is
+* the number of columns in the LP problem object.
+*
+* On exit the routine stores indices and numerical values of non-zero
+* elements of the resultant row (2) in locations ind[1], ..., ind[len']
+* and val[1], ..., val[len'], where 0 <= len' <= n is the number of
+* non-zero elements in the resultant row returned by the routine. Note
+* that indices (numbers) of non-basic variables stored in the array ind
+* correspond to original ordinal numbers of variables: indices 1 to m
+* mean auxiliary variables and indices m+1 to m+n mean structural ones.
+*
+* RETURNS
+*
+* The routine returns len', which is the number of non-zero elements in
+* the resultant row stored in the arrays ind and val.
+*
+* BACKGROUND
+*
+* The explicitly specified row (1) is transformed in the same way as it
+* were the objective function row.
+*
+* From (1) it follows that:
+*
+* x = aB * xB + aN * xN, (3)
+*
+* where xB is the vector of basic variables, xN is the vector of
+* non-basic variables.
+*
+* The simplex table, which corresponds to the current basis, is:
+*
+* xB = [-inv(B) * N] * xN. (4)
+*
+* Therefore substituting xB from (4) to (3) we have:
+*
+* x = aB * [-inv(B) * N] * xN + aN * xN =
+* (5)
+* = rho * (-N) * xN + aN * xN = alfa * xN,
+*
+* where:
+*
+* rho = inv(B') * aB, (6)
+*
+* and
+*
+* alfa = aN + rho * (-N) (7)
+*
+* is the resultant row computed by the routine. */
+
+int glp_transform_row(glp_prob *P, int len, int ind[], double val[])
+{ int i, j, k, m, n, t, lll, *iii;
+ double alfa, *a, *aB, *rho, *vvv;
+ if (!glp_bf_exists(P))
+ xerror("glp_transform_row: basis factorization does not exist "
+ "\n");
+ m = glp_get_num_rows(P);
+ n = glp_get_num_cols(P);
+ /* unpack the row to be transformed to the array a */
+ a = xcalloc(1+n, sizeof(double));
+ for (j = 1; j <= n; j++) a[j] = 0.0;
+ if (!(0 <= len && len <= n))
+ xerror("glp_transform_row: len = %d; invalid row length\n",
+ len);
+ for (t = 1; t <= len; t++)
+ { j = ind[t];
+ if (!(1 <= j && j <= n))
+ xerror("glp_transform_row: ind[%d] = %d; column index out o"
+ "f range\n", t, j);
+ if (val[t] == 0.0)
+ xerror("glp_transform_row: val[%d] = 0; zero coefficient no"
+ "t allowed\n", t);
+ if (a[j] != 0.0)
+ xerror("glp_transform_row: ind[%d] = %d; duplicate column i"
+ "ndices not allowed\n", t, j);
+ a[j] = val[t];
+ }
+ /* construct the vector aB */
+ aB = xcalloc(1+m, sizeof(double));
+ for (i = 1; i <= m; i++)
+ { k = glp_get_bhead(P, i);
+ /* xB[i] is k-th original variable */
+ xassert(1 <= k && k <= m+n);
+ aB[i] = (k <= m ? 0.0 : a[k-m]);
+ }
+ /* solve the system B'*rho = aB to compute the vector rho */
+ rho = aB, glp_btran(P, rho);
+ /* compute coefficients at non-basic auxiliary variables */
+ len = 0;
+ for (i = 1; i <= m; i++)
+ { if (glp_get_row_stat(P, i) != GLP_BS)
+ { alfa = - rho[i];
+ if (alfa != 0.0)
+ { len++;
+ ind[len] = i;
+ val[len] = alfa;
+ }
+ }
+ }
+ /* compute coefficients at non-basic structural variables */
+ iii = xcalloc(1+m, sizeof(int));
+ vvv = xcalloc(1+m, sizeof(double));
+ for (j = 1; j <= n; j++)
+ { if (glp_get_col_stat(P, j) != GLP_BS)
+ { alfa = a[j];
+ lll = glp_get_mat_col(P, j, iii, vvv);
+ for (t = 1; t <= lll; t++) alfa += vvv[t] * rho[iii[t]];
+ if (alfa != 0.0)
+ { len++;
+ ind[len] = m+j;
+ val[len] = alfa;
+ }
+ }
+ }
+ xassert(len <= n);
+ xfree(iii);
+ xfree(vvv);
+ xfree(aB);
+ xfree(a);
+ return len;
+}
+
+/***********************************************************************
+* NAME
+*
+* glp_transform_col - transform explicitly specified column
+*
+* SYNOPSIS
+*
+* int glp_transform_col(glp_prob *P, int len, int ind[], double val[]);
+*
+* DESCRIPTION
+*
+* The routine glp_transform_col performs the same operation as the
+* routine glp_eval_tab_col with exception that the column to be
+* transformed is specified explicitly as a sparse vector.
+*
+* The explicitly specified column may be thought as if it were added
+* to the original system of equality constraints:
+*
+* x[1] = a[1,1]*x[m+1] + ... + a[1,n]*x[m+n] + a[1]*x
+* x[2] = a[2,1]*x[m+1] + ... + a[2,n]*x[m+n] + a[2]*x (1)
+* . . . . . . . . . . . . . . .
+* x[m] = a[m,1]*x[m+1] + ... + a[m,n]*x[m+n] + a[m]*x
+*
+* where x[i] are auxiliary variables, x[m+j] are structural variables,
+* x is a structural variable for the explicitly specified column, a[i]
+* are constraint coefficients for x.
+*
+* On entry row indices and numerical values of non-zero elements of
+* the column should be stored in locations ind[1], ..., ind[len] and
+* val[1], ..., val[len], where len is the number of non-zero elements.
+*
+* This routine uses the system of equality constraints and the current
+* basis in order to express the current basic variables through the
+* structural variable x in (1) (as if the transformed column were added
+* to the problem object and the variable x were non-basic), i.e. the
+* resultant column has the form:
+*
+* xB[1] = ... + alfa[1]*x
+* xB[2] = ... + alfa[2]*x (2)
+* . . . . . .
+* xB[m] = ... + alfa[m]*x
+*
+* where xB are basic (auxiliary and structural) variables, m is the
+* number of rows in the problem object.
+*
+* On exit the routine stores indices and numerical values of non-zero
+* elements of the resultant column (2) in locations ind[1], ...,
+* ind[len'] and val[1], ..., val[len'], where 0 <= len' <= m is the
+* number of non-zero element in the resultant column returned by the
+* routine. Note that indices (numbers) of basic variables stored in
+* the array ind correspond to original ordinal numbers of variables:
+* indices 1 to m mean auxiliary variables and indices m+1 to m+n mean
+* structural ones.
+*
+* RETURNS
+*
+* The routine returns len', which is the number of non-zero elements
+* in the resultant column stored in the arrays ind and val.
+*
+* BACKGROUND
+*
+* The explicitly specified column (1) is transformed in the same way
+* as any other column of the constraint matrix using the formula:
+*
+* alfa = inv(B) * a, (3)
+*
+* where alfa is the resultant column computed by the routine. */
+
+int glp_transform_col(glp_prob *P, int len, int ind[], double val[])
+{ int i, m, t;
+ double *a, *alfa;
+ if (!glp_bf_exists(P))
+ xerror("glp_transform_col: basis factorization does not exist "
+ "\n");
+ m = glp_get_num_rows(P);
+ /* unpack the column to be transformed to the array a */
+ a = xcalloc(1+m, sizeof(double));
+ for (i = 1; i <= m; i++) a[i] = 0.0;
+ if (!(0 <= len && len <= m))
+ xerror("glp_transform_col: len = %d; invalid column length\n",
+ len);
+ for (t = 1; t <= len; t++)
+ { i = ind[t];
+ if (!(1 <= i && i <= m))
+ xerror("glp_transform_col: ind[%d] = %d; row index out of r"
+ "ange\n", t, i);
+ if (val[t] == 0.0)
+ xerror("glp_transform_col: val[%d] = 0; zero coefficient no"
+ "t allowed\n", t);
+ if (a[i] != 0.0)
+ xerror("glp_transform_col: ind[%d] = %d; duplicate row indi"
+ "ces not allowed\n", t, i);
+ a[i] = val[t];
+ }
+ /* solve the system B*a = alfa to compute the vector alfa */
+ alfa = a, glp_ftran(P, alfa);
+ /* store resultant coefficients */
+ len = 0;
+ for (i = 1; i <= m; i++)
+ { if (alfa[i] != 0.0)
+ { len++;
+ ind[len] = glp_get_bhead(P, i);
+ val[len] = alfa[i];
+ }
+ }
+ xfree(a);
+ return len;
+}
+
+/***********************************************************************
+* NAME
+*
+* glp_prim_rtest - perform primal ratio test
+*
+* SYNOPSIS
+*
+* int glp_prim_rtest(glp_prob *P, int len, const int ind[],
+* const double val[], int dir, double eps);
+*
+* DESCRIPTION
+*
+* The routine glp_prim_rtest performs the primal ratio test using an
+* explicitly specified column of the simplex table.
+*
+* The current basic solution associated with the LP problem object
+* must be primal feasible.
+*
+* The explicitly specified column of the simplex table shows how the
+* basic variables xB depend on some non-basic variable x (which is not
+* necessarily presented in the problem object):
+*
+* xB[1] = ... + alfa[1] * x + ...
+* xB[2] = ... + alfa[2] * x + ... (*)
+* . . . . . . . .
+* xB[m] = ... + alfa[m] * x + ...
+*
+* The column (*) is specifed on entry to the routine using the sparse
+* format. Ordinal numbers of basic variables xB[i] should be placed in
+* locations ind[1], ..., ind[len], where ordinal number 1 to m denote
+* auxiliary variables, and ordinal numbers m+1 to m+n denote structural
+* variables. The corresponding non-zero coefficients alfa[i] should be
+* placed in locations val[1], ..., val[len]. The arrays ind and val are
+* not changed on exit.
+*
+* The parameter dir specifies direction in which the variable x changes
+* on entering the basis: +1 means increasing, -1 means decreasing.
+*
+* The parameter eps is an absolute tolerance (small positive number)
+* used by the routine to skip small alfa[j] of the row (*).
+*
+* The routine determines which basic variable (among specified in
+* ind[1], ..., ind[len]) should leave the basis in order to keep primal
+* feasibility.
+*
+* RETURNS
+*
+* The routine glp_prim_rtest returns the index piv in the arrays ind
+* and val corresponding to the pivot element chosen, 1 <= piv <= len.
+* If the adjacent basic solution is primal unbounded and therefore the
+* choice cannot be made, the routine returns zero.
+*
+* COMMENTS
+*
+* If the non-basic variable x is presented in the LP problem object,
+* the column (*) can be computed with the routine glp_eval_tab_col;
+* otherwise it can be computed with the routine glp_transform_col. */
+
+int glp_prim_rtest(glp_prob *P, int len, const int ind[],
+ const double val[], int dir, double eps)
+{ int k, m, n, piv, t, type, stat;
+ double alfa, big, beta, lb, ub, temp, teta;
+ if (glp_get_prim_stat(P) != GLP_FEAS)
+ xerror("glp_prim_rtest: basic solution is not primal feasible "
+ "\n");
+ if (!(dir == +1 || dir == -1))
+ xerror("glp_prim_rtest: dir = %d; invalid parameter\n", dir);
+ if (!(0.0 < eps && eps < 1.0))
+ xerror("glp_prim_rtest: eps = %g; invalid parameter\n", eps);
+ m = glp_get_num_rows(P);
+ n = glp_get_num_cols(P);
+ /* initial settings */
+ piv = 0, teta = DBL_MAX, big = 0.0;
+ /* walk through the entries of the specified column */
+ for (t = 1; t <= len; t++)
+ { /* get the ordinal number of basic variable */
+ k = ind[t];
+ if (!(1 <= k && k <= m+n))
+ xerror("glp_prim_rtest: ind[%d] = %d; variable number out o"
+ "f range\n", t, k);
+ /* determine type, bounds, status and primal value of basic
+ variable xB[i] = x[k] in the current basic solution */
+ if (k <= m)
+ { type = glp_get_row_type(P, k);
+ lb = glp_get_row_lb(P, k);
+ ub = glp_get_row_ub(P, k);
+ stat = glp_get_row_stat(P, k);
+ beta = glp_get_row_prim(P, k);
+ }
+ else
+ { type = glp_get_col_type(P, k-m);
+ lb = glp_get_col_lb(P, k-m);
+ ub = glp_get_col_ub(P, k-m);
+ stat = glp_get_col_stat(P, k-m);
+ beta = glp_get_col_prim(P, k-m);
+ }
+ if (stat != GLP_BS)
+ xerror("glp_prim_rtest: ind[%d] = %d; non-basic variable no"
+ "t allowed\n", t, k);
+ /* determine influence coefficient at basic variable xB[i]
+ in the explicitly specified column and turn to the case of
+ increasing the variable x in order to simplify the program
+ logic */
+ alfa = (dir > 0 ? + val[t] : - val[t]);
+ /* analyze main cases */
+ if (type == GLP_FR)
+ { /* xB[i] is free variable */
+ continue;
+ }
+ else if (type == GLP_LO)
+lo: { /* xB[i] has an lower bound */
+ if (alfa > - eps) continue;
+ temp = (lb - beta) / alfa;
+ }
+ else if (type == GLP_UP)
+up: { /* xB[i] has an upper bound */
+ if (alfa < + eps) continue;
+ temp = (ub - beta) / alfa;
+ }
+ else if (type == GLP_DB)
+ { /* xB[i] has both lower and upper bounds */
+ if (alfa < 0.0) goto lo; else goto up;
+ }
+ else if (type == GLP_FX)
+ { /* xB[i] is fixed variable */
+ if (- eps < alfa && alfa < + eps) continue;
+ temp = 0.0;
+ }
+ else
+ xassert(type != type);
+ /* if the value of the variable xB[i] violates its lower or
+ upper bound (slightly, because the current basis is assumed
+ to be primal feasible), temp is negative; we can think this
+ happens due to round-off errors and the value is exactly on
+ the bound; this allows replacing temp by zero */
+ if (temp < 0.0) temp = 0.0;
+ /* apply the minimal ratio test */
+ if (teta > temp || teta == temp && big < fabs(alfa))
+ piv = t, teta = temp, big = fabs(alfa);
+ }
+ /* return index of the pivot element chosen */
+ return piv;
+}
+
+/***********************************************************************
+* NAME
+*
+* glp_dual_rtest - perform dual ratio test
+*
+* SYNOPSIS
+*
+* int glp_dual_rtest(glp_prob *P, int len, const int ind[],
+* const double val[], int dir, double eps);
+*
+* DESCRIPTION
+*
+* The routine glp_dual_rtest performs the dual ratio test using an
+* explicitly specified row of the simplex table.
+*
+* The current basic solution associated with the LP problem object
+* must be dual feasible.
+*
+* The explicitly specified row of the simplex table is a linear form
+* that shows how some basic variable x (which is not necessarily
+* presented in the problem object) depends on non-basic variables xN:
+*
+* x = alfa[1] * xN[1] + alfa[2] * xN[2] + ... + alfa[n] * xN[n]. (*)
+*
+* The row (*) is specified on entry to the routine using the sparse
+* format. Ordinal numbers of non-basic variables xN[j] should be placed
+* in locations ind[1], ..., ind[len], where ordinal numbers 1 to m
+* denote auxiliary variables, and ordinal numbers m+1 to m+n denote
+* structural variables. The corresponding non-zero coefficients alfa[j]
+* should be placed in locations val[1], ..., val[len]. The arrays ind
+* and val are not changed on exit.
+*
+* The parameter dir specifies direction in which the variable x changes
+* on leaving the basis: +1 means that x goes to its lower bound, and -1
+* means that x goes to its upper bound.
+*
+* The parameter eps is an absolute tolerance (small positive number)
+* used by the routine to skip small alfa[j] of the row (*).
+*
+* The routine determines which non-basic variable (among specified in
+* ind[1], ..., ind[len]) should enter the basis in order to keep dual
+* feasibility.
+*
+* RETURNS
+*
+* The routine glp_dual_rtest returns the index piv in the arrays ind
+* and val corresponding to the pivot element chosen, 1 <= piv <= len.
+* If the adjacent basic solution is dual unbounded and therefore the
+* choice cannot be made, the routine returns zero.
+*
+* COMMENTS
+*
+* If the basic variable x is presented in the LP problem object, the
+* row (*) can be computed with the routine glp_eval_tab_row; otherwise
+* it can be computed with the routine glp_transform_row. */
+
+int glp_dual_rtest(glp_prob *P, int len, const int ind[],
+ const double val[], int dir, double eps)
+{ int k, m, n, piv, t, stat;
+ double alfa, big, cost, obj, temp, teta;
+ if (glp_get_dual_stat(P) != GLP_FEAS)
+ xerror("glp_dual_rtest: basic solution is not dual feasible\n")
+ ;
+ if (!(dir == +1 || dir == -1))
+ xerror("glp_dual_rtest: dir = %d; invalid parameter\n", dir);
+ if (!(0.0 < eps && eps < 1.0))
+ xerror("glp_dual_rtest: eps = %g; invalid parameter\n", eps);
+ m = glp_get_num_rows(P);
+ n = glp_get_num_cols(P);
+ /* take into account optimization direction */
+ obj = (glp_get_obj_dir(P) == GLP_MIN ? +1.0 : -1.0);
+ /* initial settings */
+ piv = 0, teta = DBL_MAX, big = 0.0;
+ /* walk through the entries of the specified row */
+ for (t = 1; t <= len; t++)
+ { /* get ordinal number of non-basic variable */
+ k = ind[t];
+ if (!(1 <= k && k <= m+n))
+ xerror("glp_dual_rtest: ind[%d] = %d; variable number out o"
+ "f range\n", t, k);
+ /* determine status and reduced cost of non-basic variable
+ x[k] = xN[j] in the current basic solution */
+ if (k <= m)
+ { stat = glp_get_row_stat(P, k);
+ cost = glp_get_row_dual(P, k);
+ }
+ else
+ { stat = glp_get_col_stat(P, k-m);
+ cost = glp_get_col_dual(P, k-m);
+ }
+ if (stat == GLP_BS)
+ xerror("glp_dual_rtest: ind[%d] = %d; basic variable not al"
+ "lowed\n", t, k);
+ /* determine influence coefficient at non-basic variable xN[j]
+ in the explicitly specified row and turn to the case of
+ increasing the variable x in order to simplify the program
+ logic */
+ alfa = (dir > 0 ? + val[t] : - val[t]);
+ /* analyze main cases */
+ if (stat == GLP_NL)
+ { /* xN[j] is on its lower bound */
+ if (alfa < + eps) continue;
+ temp = (obj * cost) / alfa;
+ }
+ else if (stat == GLP_NU)
+ { /* xN[j] is on its upper bound */
+ if (alfa > - eps) continue;
+ temp = (obj * cost) / alfa;
+ }
+ else if (stat == GLP_NF)
+ { /* xN[j] is non-basic free variable */
+ if (- eps < alfa && alfa < + eps) continue;
+ temp = 0.0;
+ }
+ else if (stat == GLP_NS)
+ { /* xN[j] is non-basic fixed variable */
+ continue;
+ }
+ else
+ xassert(stat != stat);
+ /* if the reduced cost of the variable xN[j] violates its zero
+ bound (slightly, because the current basis is assumed to be
+ dual feasible), temp is negative; we can think this happens
+ due to round-off errors and the reduced cost is exact zero;
+ this allows replacing temp by zero */
+ if (temp < 0.0) temp = 0.0;
+ /* apply the minimal ratio test */
+ if (teta > temp || teta == temp && big < fabs(alfa))
+ piv = t, teta = temp, big = fabs(alfa);
+ }
+ /* return index of the pivot element chosen */
+ return piv;
+}
+
+/***********************************************************************
+* NAME
+*
+* glp_analyze_row - simulate one iteration of dual simplex method
+*
+* SYNOPSIS
+*
+* int glp_analyze_row(glp_prob *P, int len, const int ind[],
+* const double val[], int type, double rhs, double eps, int *piv,
+* double *x, double *dx, double *y, double *dy, double *dz);
+*
+* DESCRIPTION
+*
+* Let the current basis be optimal or dual feasible, and there be
+* specified a row (constraint), which is violated by the current basic
+* solution. The routine glp_analyze_row simulates one iteration of the
+* dual simplex method to determine some information on the adjacent
+* basis (see below), where the specified row becomes active constraint
+* (i.e. its auxiliary variable becomes non-basic).
+*
+* The current basic solution associated with the problem object passed
+* to the routine must be dual feasible, and its primal components must
+* be defined.
+*
+* The row to be analyzed must be previously transformed either with
+* the routine glp_eval_tab_row (if the row is in the problem object)
+* or with the routine glp_transform_row (if the row is external, i.e.
+* not in the problem object). This is needed to express the row only
+* through (auxiliary and structural) variables, which are non-basic in
+* the current basis:
+*
+* y = alfa[1] * xN[1] + alfa[2] * xN[2] + ... + alfa[n] * xN[n],
+*
+* where y is an auxiliary variable of the row, alfa[j] is an influence
+* coefficient, xN[j] is a non-basic variable.
+*
+* The row is passed to the routine in sparse format. Ordinal numbers
+* of non-basic variables are stored in locations ind[1], ..., ind[len],
+* where numbers 1 to m denote auxiliary variables while numbers m+1 to
+* m+n denote structural variables. Corresponding non-zero coefficients
+* alfa[j] are stored in locations val[1], ..., val[len]. The arrays
+* ind and val are ot changed on exit.
+*
+* The parameters type and rhs specify the row type and its right-hand
+* side as follows:
+*
+* type = GLP_LO: y = sum alfa[j] * xN[j] >= rhs
+*
+* type = GLP_UP: y = sum alfa[j] * xN[j] <= rhs
+*
+* The parameter eps is an absolute tolerance (small positive number)
+* used by the routine to skip small coefficients alfa[j] on performing
+* the dual ratio test.
+*
+* If the operation was successful, the routine stores the following
+* information to corresponding location (if some parameter is NULL,
+* its value is not stored):
+*
+* piv index in the array ind and val, 1 <= piv <= len, determining
+* the non-basic variable, which would enter the adjacent basis;
+*
+* x value of the non-basic variable in the current basis;
+*
+* dx difference between values of the non-basic variable in the
+* adjacent and current bases, dx = x.new - x.old;
+*
+* y value of the row (i.e. of its auxiliary variable) in the
+* current basis;
+*
+* dy difference between values of the row in the adjacent and
+* current bases, dy = y.new - y.old;
+*
+* dz difference between values of the objective function in the
+* adjacent and current bases, dz = z.new - z.old. Note that in
+* case of minimization dz >= 0, and in case of maximization
+* dz <= 0, i.e. in the adjacent basis the objective function
+* always gets worse (degrades). */
+
+int _glp_analyze_row(glp_prob *P, int len, const int ind[],
+ const double val[], int type, double rhs, double eps, int *_piv,
+ double *_x, double *_dx, double *_y, double *_dy, double *_dz)
+{ int t, k, dir, piv, ret = 0;
+ double x, dx, y, dy, dz;
+ if (P->pbs_stat == GLP_UNDEF)
+ xerror("glp_analyze_row: primal basic solution components are "
+ "undefined\n");
+ if (P->dbs_stat != GLP_FEAS)
+ xerror("glp_analyze_row: basic solution is not dual feasible\n"
+ );
+ /* compute the row value y = sum alfa[j] * xN[j] in the current
+ basis */
+ if (!(0 <= len && len <= P->n))
+ xerror("glp_analyze_row: len = %d; invalid row length\n", len);
+ y = 0.0;
+ for (t = 1; t <= len; t++)
+ { /* determine value of x[k] = xN[j] in the current basis */
+ k = ind[t];
+ if (!(1 <= k && k <= P->m+P->n))
+ xerror("glp_analyze_row: ind[%d] = %d; row/column index out"
+ " of range\n", t, k);
+ if (k <= P->m)
+ { /* x[k] is auxiliary variable */
+ if (P->row[k]->stat == GLP_BS)
+ xerror("glp_analyze_row: ind[%d] = %d; basic auxiliary v"
+ "ariable is not allowed\n", t, k);
+ x = P->row[k]->prim;
+ }
+ else
+ { /* x[k] is structural variable */
+ if (P->col[k-P->m]->stat == GLP_BS)
+ xerror("glp_analyze_row: ind[%d] = %d; basic structural "
+ "variable is not allowed\n", t, k);
+ x = P->col[k-P->m]->prim;
+ }
+ y += val[t] * x;
+ }
+ /* check if the row is primal infeasible in the current basis,
+ i.e. the constraint is violated at the current point */
+ if (type == GLP_LO)
+ { if (y >= rhs)
+ { /* the constraint is not violated */
+ ret = 1;
+ goto done;
+ }
+ /* in the adjacent basis y goes to its lower bound */
+ dir = +1;
+ }
+ else if (type == GLP_UP)
+ { if (y <= rhs)
+ { /* the constraint is not violated */
+ ret = 1;
+ goto done;
+ }
+ /* in the adjacent basis y goes to its upper bound */
+ dir = -1;
+ }
+ else
+ xerror("glp_analyze_row: type = %d; invalid parameter\n",
+ type);
+ /* compute dy = y.new - y.old */
+ dy = rhs - y;
+ /* perform dual ratio test to determine which non-basic variable
+ should enter the adjacent basis to keep it dual feasible */
+ piv = glp_dual_rtest(P, len, ind, val, dir, eps);
+ if (piv == 0)
+ { /* no dual feasible adjacent basis exists */
+ ret = 2;
+ goto done;
+ }
+ /* non-basic variable x[k] = xN[j] should enter the basis */
+ k = ind[piv];
+ xassert(1 <= k && k <= P->m+P->n);
+ /* determine its value in the current basis */
+ if (k <= P->m)
+ x = P->row[k]->prim;
+ else
+ x = P->col[k-P->m]->prim;
+ /* compute dx = x.new - x.old = dy / alfa[j] */
+ xassert(val[piv] != 0.0);
+ dx = dy / val[piv];
+ /* compute dz = z.new - z.old = d[j] * dx, where d[j] is reduced
+ cost of xN[j] in the current basis */
+ if (k <= P->m)
+ dz = P->row[k]->dual * dx;
+ else
+ dz = P->col[k-P->m]->dual * dx;
+ /* store the analysis results */
+ if (_piv != NULL) *_piv = piv;
+ if (_x != NULL) *_x = x;
+ if (_dx != NULL) *_dx = dx;
+ if (_y != NULL) *_y = y;
+ if (_dy != NULL) *_dy = dy;
+ if (_dz != NULL) *_dz = dz;
+done: return ret;
+}
+
+#if 0
+int main(void)
+{ /* example program for the routine glp_analyze_row */
+ glp_prob *P;
+ glp_smcp parm;
+ int i, k, len, piv, ret, ind[1+100];
+ double rhs, x, dx, y, dy, dz, val[1+100];
+ P = glp_create_prob();
+ /* read plan.mps (see glpk/examples) */
+ ret = glp_read_mps(P, GLP_MPS_DECK, NULL, "plan.mps");
+ glp_assert(ret == 0);
+ /* and solve it to optimality */
+ ret = glp_simplex(P, NULL);
+ glp_assert(ret == 0);
+ glp_assert(glp_get_status(P) == GLP_OPT);
+ /* the optimal objective value is 296.217 */
+ /* we would like to know what happens if we would add a new row
+ (constraint) to plan.mps:
+ .01 * bin1 + .01 * bin2 + .02 * bin4 + .02 * bin5 <= 12 */
+ /* first, we specify this new row */
+ glp_create_index(P);
+ len = 0;
+ ind[++len] = glp_find_col(P, "BIN1"), val[len] = .01;
+ ind[++len] = glp_find_col(P, "BIN2"), val[len] = .01;
+ ind[++len] = glp_find_col(P, "BIN4"), val[len] = .02;
+ ind[++len] = glp_find_col(P, "BIN5"), val[len] = .02;
+ rhs = 12;
+ /* then we can compute value of the row (i.e. of its auxiliary
+ variable) in the current basis to see if the constraint is
+ violated */
+ y = 0.0;
+ for (k = 1; k <= len; k++)
+ y += val[k] * glp_get_col_prim(P, ind[k]);
+ glp_printf("y = %g\n", y);
+ /* this prints y = 15.1372, so the constraint is violated, since
+ we require that y <= rhs = 12 */
+ /* now we transform the row to express it only through non-basic
+ (auxiliary and artificial) variables */
+ len = glp_transform_row(P, len, ind, val);
+ /* finally, we simulate one step of the dual simplex method to
+ obtain necessary information for the adjacent basis */
+ ret = _glp_analyze_row(P, len, ind, val, GLP_UP, rhs, 1e-9, &piv,
+ &x, &dx, &y, &dy, &dz);
+ glp_assert(ret == 0);
+ glp_printf("k = %d, x = %g; dx = %g; y = %g; dy = %g; dz = %g\n",
+ ind[piv], x, dx, y, dy, dz);
+ /* this prints dz = 5.64418 and means that in the adjacent basis
+ the objective function would be 296.217 + 5.64418 = 301.861 */
+ /* now we actually include the row into the problem object; note
+ that the arrays ind and val are clobbered, so we need to build
+ them once again */
+ len = 0;
+ ind[++len] = glp_find_col(P, "BIN1"), val[len] = .01;
+ ind[++len] = glp_find_col(P, "BIN2"), val[len] = .01;
+ ind[++len] = glp_find_col(P, "BIN4"), val[len] = .02;
+ ind[++len] = glp_find_col(P, "BIN5"), val[len] = .02;
+ rhs = 12;
+ i = glp_add_rows(P, 1);
+ glp_set_row_bnds(P, i, GLP_UP, 0, rhs);
+ glp_set_mat_row(P, i, len, ind, val);
+ /* and perform one dual simplex iteration */
+ glp_init_smcp(&parm);
+ parm.meth = GLP_DUAL;
+ parm.it_lim = 1;
+ glp_simplex(P, &parm);
+ /* the current objective value is 301.861 */
+ return 0;
+}
+#endif
+
+/***********************************************************************
+* NAME
+*
+* glp_analyze_bound - analyze active bound of non-basic variable
+*
+* SYNOPSIS
+*
+* void glp_analyze_bound(glp_prob *P, int k, double *limit1, int *var1,
+* double *limit2, int *var2);
+*
+* DESCRIPTION
+*
+* The routine glp_analyze_bound analyzes the effect of varying the
+* active bound of specified non-basic variable.
+*
+* The non-basic variable is specified by the parameter k, where
+* 1 <= k <= m means auxiliary variable of corresponding row while
+* m+1 <= k <= m+n means structural variable (column).
+*
+* Note that the current basic solution must be optimal, and the basis
+* factorization must exist.
+*
+* Results of the analysis have the following meaning.
+*
+* value1 is the minimal value of the active bound, at which the basis
+* still remains primal feasible and thus optimal. -DBL_MAX means that
+* the active bound has no lower limit.
+*
+* var1 is the ordinal number of an auxiliary (1 to m) or structural
+* (m+1 to n) basic variable, which reaches its bound first and thereby
+* limits further decreasing the active bound being analyzed.
+* if value1 = -DBL_MAX, var1 is set to 0.
+*
+* value2 is the maximal value of the active bound, at which the basis
+* still remains primal feasible and thus optimal. +DBL_MAX means that
+* the active bound has no upper limit.
+*
+* var2 is the ordinal number of an auxiliary (1 to m) or structural
+* (m+1 to n) basic variable, which reaches its bound first and thereby
+* limits further increasing the active bound being analyzed.
+* if value2 = +DBL_MAX, var2 is set to 0. */
+
+void glp_analyze_bound(glp_prob *P, int k, double *value1, int *var1,
+ double *value2, int *var2)
+{ GLPROW *row;
+ GLPCOL *col;
+ int m, n, stat, kase, p, len, piv, *ind;
+ double x, new_x, ll, uu, xx, delta, *val;
+#if 0 /* 04/IV-2016 */
+ /* sanity checks */
+ if (P == NULL || P->magic != GLP_PROB_MAGIC)
+ xerror("glp_analyze_bound: P = %p; invalid problem object\n",
+ P);
+#endif
+ m = P->m, n = P->n;
+ if (!(P->pbs_stat == GLP_FEAS && P->dbs_stat == GLP_FEAS))
+ xerror("glp_analyze_bound: optimal basic solution required\n");
+ if (!(m == 0 || P->valid))
+ xerror("glp_analyze_bound: basis factorization required\n");
+ if (!(1 <= k && k <= m+n))
+ xerror("glp_analyze_bound: k = %d; variable number out of rang"
+ "e\n", k);
+ /* retrieve information about the specified non-basic variable
+ x[k] whose active bound is to be analyzed */
+ if (k <= m)
+ { row = P->row[k];
+ stat = row->stat;
+ x = row->prim;
+ }
+ else
+ { col = P->col[k-m];
+ stat = col->stat;
+ x = col->prim;
+ }
+ if (stat == GLP_BS)
+ xerror("glp_analyze_bound: k = %d; basic variable not allowed "
+ "\n", k);
+ /* allocate working arrays */
+ ind = xcalloc(1+m, sizeof(int));
+ val = xcalloc(1+m, sizeof(double));
+ /* compute column of the simplex table corresponding to the
+ non-basic variable x[k] */
+ len = glp_eval_tab_col(P, k, ind, val);
+ xassert(0 <= len && len <= m);
+ /* perform analysis */
+ for (kase = -1; kase <= +1; kase += 2)
+ { /* kase < 0 means active bound of x[k] is decreasing;
+ kase > 0 means active bound of x[k] is increasing */
+ /* use the primal ratio test to determine some basic variable
+ x[p] which reaches its bound first */
+ piv = glp_prim_rtest(P, len, ind, val, kase, 1e-9);
+ if (piv == 0)
+ { /* nothing limits changing the active bound of x[k] */
+ p = 0;
+ new_x = (kase < 0 ? -DBL_MAX : +DBL_MAX);
+ goto store;
+ }
+ /* basic variable x[p] limits changing the active bound of
+ x[k]; determine its value in the current basis */
+ xassert(1 <= piv && piv <= len);
+ p = ind[piv];
+ if (p <= m)
+ { row = P->row[p];
+ ll = glp_get_row_lb(P, row->i);
+ uu = glp_get_row_ub(P, row->i);
+ stat = row->stat;
+ xx = row->prim;
+ }
+ else
+ { col = P->col[p-m];
+ ll = glp_get_col_lb(P, col->j);
+ uu = glp_get_col_ub(P, col->j);
+ stat = col->stat;
+ xx = col->prim;
+ }
+ xassert(stat == GLP_BS);
+ /* determine delta x[p] = bound of x[p] - value of x[p] */
+ if (kase < 0 && val[piv] > 0.0 ||
+ kase > 0 && val[piv] < 0.0)
+ { /* delta x[p] < 0, so x[p] goes toward its lower bound */
+ xassert(ll != -DBL_MAX);
+ delta = ll - xx;
+ }
+ else
+ { /* delta x[p] > 0, so x[p] goes toward its upper bound */
+ xassert(uu != +DBL_MAX);
+ delta = uu - xx;
+ }
+ /* delta x[p] = alfa[p,k] * delta x[k], so new x[k] = x[k] +
+ delta x[k] = x[k] + delta x[p] / alfa[p,k] is the value of
+ x[k] in the adjacent basis */
+ xassert(val[piv] != 0.0);
+ new_x = x + delta / val[piv];
+store: /* store analysis results */
+ if (kase < 0)
+ { if (value1 != NULL) *value1 = new_x;
+ if (var1 != NULL) *var1 = p;
+ }
+ else
+ { if (value2 != NULL) *value2 = new_x;
+ if (var2 != NULL) *var2 = p;
+ }
+ }
+ /* free working arrays */
+ xfree(ind);
+ xfree(val);
+ return;
+}
+
+/***********************************************************************
+* NAME
+*
+* glp_analyze_coef - analyze objective coefficient at basic variable
+*
+* SYNOPSIS
+*
+* void glp_analyze_coef(glp_prob *P, int k, double *coef1, int *var1,
+* double *value1, double *coef2, int *var2, double *value2);
+*
+* DESCRIPTION
+*
+* The routine glp_analyze_coef analyzes the effect of varying the
+* objective coefficient at specified basic variable.
+*
+* The basic variable is specified by the parameter k, where
+* 1 <= k <= m means auxiliary variable of corresponding row while
+* m+1 <= k <= m+n means structural variable (column).
+*
+* Note that the current basic solution must be optimal, and the basis
+* factorization must exist.
+*
+* Results of the analysis have the following meaning.
+*
+* coef1 is the minimal value of the objective coefficient, at which
+* the basis still remains dual feasible and thus optimal. -DBL_MAX
+* means that the objective coefficient has no lower limit.
+*
+* var1 is the ordinal number of an auxiliary (1 to m) or structural
+* (m+1 to n) non-basic variable, whose reduced cost reaches its zero
+* bound first and thereby limits further decreasing the objective
+* coefficient being analyzed. If coef1 = -DBL_MAX, var1 is set to 0.
+*
+* value1 is value of the basic variable being analyzed in an adjacent
+* basis, which is defined as follows. Let the objective coefficient
+* reaches its minimal value (coef1) and continues decreasing. Then the
+* reduced cost of the limiting non-basic variable (var1) becomes dual
+* infeasible and the current basis becomes non-optimal that forces the
+* limiting non-basic variable to enter the basis replacing there some
+* basic variable that leaves the basis to keep primal feasibility.
+* Should note that on determining the adjacent basis current bounds
+* of the basic variable being analyzed are ignored as if it were free
+* (unbounded) variable, so it cannot leave the basis. It may happen
+* that no dual feasible adjacent basis exists, in which case value1 is
+* set to -DBL_MAX or +DBL_MAX.
+*
+* coef2 is the maximal value of the objective coefficient, at which
+* the basis still remains dual feasible and thus optimal. +DBL_MAX
+* means that the objective coefficient has no upper limit.
+*
+* var2 is the ordinal number of an auxiliary (1 to m) or structural
+* (m+1 to n) non-basic variable, whose reduced cost reaches its zero
+* bound first and thereby limits further increasing the objective
+* coefficient being analyzed. If coef2 = +DBL_MAX, var2 is set to 0.
+*
+* value2 is value of the basic variable being analyzed in an adjacent
+* basis, which is defined exactly in the same way as value1 above with
+* exception that now the objective coefficient is increasing. */
+
+void glp_analyze_coef(glp_prob *P, int k, double *coef1, int *var1,
+ double *value1, double *coef2, int *var2, double *value2)
+{ GLPROW *row; GLPCOL *col;
+ int m, n, type, stat, kase, p, q, dir, clen, cpiv, rlen, rpiv,
+ *cind, *rind;
+ double lb, ub, coef, x, lim_coef, new_x, d, delta, ll, uu, xx,
+ *rval, *cval;
+#if 0 /* 04/IV-2016 */
+ /* sanity checks */
+ if (P == NULL || P->magic != GLP_PROB_MAGIC)
+ xerror("glp_analyze_coef: P = %p; invalid problem object\n",
+ P);
+#endif
+ m = P->m, n = P->n;
+ if (!(P->pbs_stat == GLP_FEAS && P->dbs_stat == GLP_FEAS))
+ xerror("glp_analyze_coef: optimal basic solution required\n");
+ if (!(m == 0 || P->valid))
+ xerror("glp_analyze_coef: basis factorization required\n");
+ if (!(1 <= k && k <= m+n))
+ xerror("glp_analyze_coef: k = %d; variable number out of range"
+ "\n", k);
+ /* retrieve information about the specified basic variable x[k]
+ whose objective coefficient c[k] is to be analyzed */
+ if (k <= m)
+ { row = P->row[k];
+ type = row->type;
+ lb = row->lb;
+ ub = row->ub;
+ coef = 0.0;
+ stat = row->stat;
+ x = row->prim;
+ }
+ else
+ { col = P->col[k-m];
+ type = col->type;
+ lb = col->lb;
+ ub = col->ub;
+ coef = col->coef;
+ stat = col->stat;
+ x = col->prim;
+ }
+ if (stat != GLP_BS)
+ xerror("glp_analyze_coef: k = %d; non-basic variable not allow"
+ "ed\n", k);
+ /* allocate working arrays */
+ cind = xcalloc(1+m, sizeof(int));
+ cval = xcalloc(1+m, sizeof(double));
+ rind = xcalloc(1+n, sizeof(int));
+ rval = xcalloc(1+n, sizeof(double));
+ /* compute row of the simplex table corresponding to the basic
+ variable x[k] */
+ rlen = glp_eval_tab_row(P, k, rind, rval);
+ xassert(0 <= rlen && rlen <= n);
+ /* perform analysis */
+ for (kase = -1; kase <= +1; kase += 2)
+ { /* kase < 0 means objective coefficient c[k] is decreasing;
+ kase > 0 means objective coefficient c[k] is increasing */
+ /* note that decreasing c[k] is equivalent to increasing dual
+ variable lambda[k] and vice versa; we need to correctly set
+ the dir flag as required by the routine glp_dual_rtest */
+ if (P->dir == GLP_MIN)
+ dir = - kase;
+ else if (P->dir == GLP_MAX)
+ dir = + kase;
+ else
+ xassert(P != P);
+ /* use the dual ratio test to determine non-basic variable
+ x[q] whose reduced cost d[q] reaches zero bound first */
+ rpiv = glp_dual_rtest(P, rlen, rind, rval, dir, 1e-9);
+ if (rpiv == 0)
+ { /* nothing limits changing c[k] */
+ lim_coef = (kase < 0 ? -DBL_MAX : +DBL_MAX);
+ q = 0;
+ /* x[k] keeps its current value */
+ new_x = x;
+ goto store;
+ }
+ /* non-basic variable x[q] limits changing coefficient c[k];
+ determine its status and reduced cost d[k] in the current
+ basis */
+ xassert(1 <= rpiv && rpiv <= rlen);
+ q = rind[rpiv];
+ xassert(1 <= q && q <= m+n);
+ if (q <= m)
+ { row = P->row[q];
+ stat = row->stat;
+ d = row->dual;
+ }
+ else
+ { col = P->col[q-m];
+ stat = col->stat;
+ d = col->dual;
+ }
+ /* note that delta d[q] = new d[q] - d[q] = - d[q], because
+ new d[q] = 0; delta d[q] = alfa[k,q] * delta c[k], so
+ delta c[k] = delta d[q] / alfa[k,q] = - d[q] / alfa[k,q] */
+ xassert(rval[rpiv] != 0.0);
+ delta = - d / rval[rpiv];
+ /* compute new c[k] = c[k] + delta c[k], which is the limiting
+ value of the objective coefficient c[k] */
+ lim_coef = coef + delta;
+ /* let c[k] continue decreasing/increasing that makes d[q]
+ dual infeasible and forces x[q] to enter the basis;
+ to perform the primal ratio test we need to know in which
+ direction x[q] changes on entering the basis; we determine
+ that analyzing the sign of delta d[q] (see above), since
+ d[q] may be close to zero having wrong sign */
+ /* let, for simplicity, the problem is minimization */
+ if (kase < 0 && rval[rpiv] > 0.0 ||
+ kase > 0 && rval[rpiv] < 0.0)
+ { /* delta d[q] < 0, so d[q] being non-negative will become
+ negative, so x[q] will increase */
+ dir = +1;
+ }
+ else
+ { /* delta d[q] > 0, so d[q] being non-positive will become
+ positive, so x[q] will decrease */
+ dir = -1;
+ }
+ /* if the problem is maximization, correct the direction */
+ if (P->dir == GLP_MAX) dir = - dir;
+ /* check that we didn't make a silly mistake */
+ if (dir > 0)
+ xassert(stat == GLP_NL || stat == GLP_NF);
+ else
+ xassert(stat == GLP_NU || stat == GLP_NF);
+ /* compute column of the simplex table corresponding to the
+ non-basic variable x[q] */
+ clen = glp_eval_tab_col(P, q, cind, cval);
+ /* make x[k] temporarily free (unbounded) */
+ if (k <= m)
+ { row = P->row[k];
+ row->type = GLP_FR;
+ row->lb = row->ub = 0.0;
+ }
+ else
+ { col = P->col[k-m];
+ col->type = GLP_FR;
+ col->lb = col->ub = 0.0;
+ }
+ /* use the primal ratio test to determine some basic variable
+ which leaves the basis */
+ cpiv = glp_prim_rtest(P, clen, cind, cval, dir, 1e-9);
+ /* restore original bounds of the basic variable x[k] */
+ if (k <= m)
+ { row = P->row[k];
+ row->type = type;
+ row->lb = lb, row->ub = ub;
+ }
+ else
+ { col = P->col[k-m];
+ col->type = type;
+ col->lb = lb, col->ub = ub;
+ }
+ if (cpiv == 0)
+ { /* non-basic variable x[q] can change unlimitedly */
+ if (dir < 0 && rval[rpiv] > 0.0 ||
+ dir > 0 && rval[rpiv] < 0.0)
+ { /* delta x[k] = alfa[k,q] * delta x[q] < 0 */
+ new_x = -DBL_MAX;
+ }
+ else
+ { /* delta x[k] = alfa[k,q] * delta x[q] > 0 */
+ new_x = +DBL_MAX;
+ }
+ goto store;
+ }
+ /* some basic variable x[p] limits changing non-basic variable
+ x[q] in the adjacent basis */
+ xassert(1 <= cpiv && cpiv <= clen);
+ p = cind[cpiv];
+ xassert(1 <= p && p <= m+n);
+ xassert(p != k);
+ if (p <= m)
+ { row = P->row[p];
+ xassert(row->stat == GLP_BS);
+ ll = glp_get_row_lb(P, row->i);
+ uu = glp_get_row_ub(P, row->i);
+ xx = row->prim;
+ }
+ else
+ { col = P->col[p-m];
+ xassert(col->stat == GLP_BS);
+ ll = glp_get_col_lb(P, col->j);
+ uu = glp_get_col_ub(P, col->j);
+ xx = col->prim;
+ }
+ /* determine delta x[p] = new x[p] - x[p] */
+ if (dir < 0 && cval[cpiv] > 0.0 ||
+ dir > 0 && cval[cpiv] < 0.0)
+ { /* delta x[p] < 0, so x[p] goes toward its lower bound */
+ xassert(ll != -DBL_MAX);
+ delta = ll - xx;
+ }
+ else
+ { /* delta x[p] > 0, so x[p] goes toward its upper bound */
+ xassert(uu != +DBL_MAX);
+ delta = uu - xx;
+ }
+ /* compute new x[k] = x[k] + alfa[k,q] * delta x[q], where
+ delta x[q] = delta x[p] / alfa[p,q] */
+ xassert(cval[cpiv] != 0.0);
+ new_x = x + (rval[rpiv] / cval[cpiv]) * delta;
+store: /* store analysis results */
+ if (kase < 0)
+ { if (coef1 != NULL) *coef1 = lim_coef;
+ if (var1 != NULL) *var1 = q;
+ if (value1 != NULL) *value1 = new_x;
+ }
+ else
+ { if (coef2 != NULL) *coef2 = lim_coef;
+ if (var2 != NULL) *var2 = q;
+ if (value2 != NULL) *value2 = new_x;
+ }
+ }
+ /* free working arrays */
+ xfree(cind);
+ xfree(cval);
+ xfree(rind);
+ xfree(rval);
+ return;
+}
+
+/* eof */