aboutsummaryrefslogtreecommitdiffstats
path: root/test/monniaux/glpk-4.65/src/draft/glpios02.c
diff options
context:
space:
mode:
Diffstat (limited to 'test/monniaux/glpk-4.65/src/draft/glpios02.c')
-rw-r--r--test/monniaux/glpk-4.65/src/draft/glpios02.c826
1 files changed, 826 insertions, 0 deletions
diff --git a/test/monniaux/glpk-4.65/src/draft/glpios02.c b/test/monniaux/glpk-4.65/src/draft/glpios02.c
new file mode 100644
index 00000000..a73458aa
--- /dev/null
+++ b/test/monniaux/glpk-4.65/src/draft/glpios02.c
@@ -0,0 +1,826 @@
+/* glpios02.c (preprocess current subproblem) */
+
+/***********************************************************************
+* This code is part of GLPK (GNU Linear Programming Kit).
+*
+* Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
+* 2009, 2010, 2011, 2013, 2018 Andrew Makhorin, Department for Applied
+* Informatics, Moscow Aviation Institute, Moscow, Russia. All rights
+* reserved. E-mail: <mao@gnu.org>.
+*
+* GLPK is free software: you can redistribute it and/or modify it
+* under the terms of the GNU General Public License as published by
+* the Free Software Foundation, either version 3 of the License, or
+* (at your option) any later version.
+*
+* GLPK is distributed in the hope that it will be useful, but WITHOUT
+* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
+* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
+* License for more details.
+*
+* You should have received a copy of the GNU General Public License
+* along with GLPK. If not, see <http://www.gnu.org/licenses/>.
+***********************************************************************/
+
+#include "env.h"
+#include "ios.h"
+
+/***********************************************************************
+* prepare_row_info - prepare row info to determine implied bounds
+*
+* Given a row (linear form)
+*
+* n
+* sum a[j] * x[j] (1)
+* j=1
+*
+* and bounds of columns (variables)
+*
+* l[j] <= x[j] <= u[j] (2)
+*
+* this routine computes f_min, j_min, f_max, j_max needed to determine
+* implied bounds.
+*
+* ALGORITHM
+*
+* Let J+ = {j : a[j] > 0} and J- = {j : a[j] < 0}.
+*
+* Parameters f_min and j_min are computed as follows:
+*
+* 1) if there is no x[k] such that k in J+ and l[k] = -inf or k in J-
+* and u[k] = +inf, then
+*
+* f_min := sum a[j] * l[j] + sum a[j] * u[j]
+* j in J+ j in J-
+* (3)
+* j_min := 0
+*
+* 2) if there is exactly one x[k] such that k in J+ and l[k] = -inf
+* or k in J- and u[k] = +inf, then
+*
+* f_min := sum a[j] * l[j] + sum a[j] * u[j]
+* j in J+\{k} j in J-\{k}
+* (4)
+* j_min := k
+*
+* 3) if there are two or more x[k] such that k in J+ and l[k] = -inf
+* or k in J- and u[k] = +inf, then
+*
+* f_min := -inf
+* (5)
+* j_min := 0
+*
+* Parameters f_max and j_max are computed in a similar way as follows:
+*
+* 1) if there is no x[k] such that k in J+ and u[k] = +inf or k in J-
+* and l[k] = -inf, then
+*
+* f_max := sum a[j] * u[j] + sum a[j] * l[j]
+* j in J+ j in J-
+* (6)
+* j_max := 0
+*
+* 2) if there is exactly one x[k] such that k in J+ and u[k] = +inf
+* or k in J- and l[k] = -inf, then
+*
+* f_max := sum a[j] * u[j] + sum a[j] * l[j]
+* j in J+\{k} j in J-\{k}
+* (7)
+* j_max := k
+*
+* 3) if there are two or more x[k] such that k in J+ and u[k] = +inf
+* or k in J- and l[k] = -inf, then
+*
+* f_max := +inf
+* (8)
+* j_max := 0 */
+
+struct f_info
+{ int j_min, j_max;
+ double f_min, f_max;
+};
+
+static void prepare_row_info(int n, const double a[], const double l[],
+ const double u[], struct f_info *f)
+{ int j, j_min, j_max;
+ double f_min, f_max;
+ xassert(n >= 0);
+ /* determine f_min and j_min */
+ f_min = 0.0, j_min = 0;
+ for (j = 1; j <= n; j++)
+ { if (a[j] > 0.0)
+ { if (l[j] == -DBL_MAX)
+ { if (j_min == 0)
+ j_min = j;
+ else
+ { f_min = -DBL_MAX, j_min = 0;
+ break;
+ }
+ }
+ else
+ f_min += a[j] * l[j];
+ }
+ else if (a[j] < 0.0)
+ { if (u[j] == +DBL_MAX)
+ { if (j_min == 0)
+ j_min = j;
+ else
+ { f_min = -DBL_MAX, j_min = 0;
+ break;
+ }
+ }
+ else
+ f_min += a[j] * u[j];
+ }
+ else
+ xassert(a != a);
+ }
+ f->f_min = f_min, f->j_min = j_min;
+ /* determine f_max and j_max */
+ f_max = 0.0, j_max = 0;
+ for (j = 1; j <= n; j++)
+ { if (a[j] > 0.0)
+ { if (u[j] == +DBL_MAX)
+ { if (j_max == 0)
+ j_max = j;
+ else
+ { f_max = +DBL_MAX, j_max = 0;
+ break;
+ }
+ }
+ else
+ f_max += a[j] * u[j];
+ }
+ else if (a[j] < 0.0)
+ { if (l[j] == -DBL_MAX)
+ { if (j_max == 0)
+ j_max = j;
+ else
+ { f_max = +DBL_MAX, j_max = 0;
+ break;
+ }
+ }
+ else
+ f_max += a[j] * l[j];
+ }
+ else
+ xassert(a != a);
+ }
+ f->f_max = f_max, f->j_max = j_max;
+ return;
+}
+
+/***********************************************************************
+* row_implied_bounds - determine row implied bounds
+*
+* Given a row (linear form)
+*
+* n
+* sum a[j] * x[j]
+* j=1
+*
+* and bounds of columns (variables)
+*
+* l[j] <= x[j] <= u[j]
+*
+* this routine determines implied bounds of the row.
+*
+* ALGORITHM
+*
+* Let J+ = {j : a[j] > 0} and J- = {j : a[j] < 0}.
+*
+* The implied lower bound of the row is computed as follows:
+*
+* L' := sum a[j] * l[j] + sum a[j] * u[j] (9)
+* j in J+ j in J-
+*
+* and as it follows from (3), (4), and (5):
+*
+* L' := if j_min = 0 then f_min else -inf (10)
+*
+* The implied upper bound of the row is computed as follows:
+*
+* U' := sum a[j] * u[j] + sum a[j] * l[j] (11)
+* j in J+ j in J-
+*
+* and as it follows from (6), (7), and (8):
+*
+* U' := if j_max = 0 then f_max else +inf (12)
+*
+* The implied bounds are stored in locations LL and UU. */
+
+static void row_implied_bounds(const struct f_info *f, double *LL,
+ double *UU)
+{ *LL = (f->j_min == 0 ? f->f_min : -DBL_MAX);
+ *UU = (f->j_max == 0 ? f->f_max : +DBL_MAX);
+ return;
+}
+
+/***********************************************************************
+* col_implied_bounds - determine column implied bounds
+*
+* Given a row (constraint)
+*
+* n
+* L <= sum a[j] * x[j] <= U (13)
+* j=1
+*
+* and bounds of columns (variables)
+*
+* l[j] <= x[j] <= u[j]
+*
+* this routine determines implied bounds of variable x[k].
+*
+* It is assumed that if L != -inf, the lower bound of the row can be
+* active, and if U != +inf, the upper bound of the row can be active.
+*
+* ALGORITHM
+*
+* From (13) it follows that
+*
+* L <= sum a[j] * x[j] + a[k] * x[k] <= U
+* j!=k
+* or
+*
+* L - sum a[j] * x[j] <= a[k] * x[k] <= U - sum a[j] * x[j]
+* j!=k j!=k
+*
+* Thus, if the row lower bound L can be active, implied lower bound of
+* term a[k] * x[k] can be determined as follows:
+*
+* ilb(a[k] * x[k]) = min(L - sum a[j] * x[j]) =
+* j!=k
+* (14)
+* = L - max sum a[j] * x[j]
+* j!=k
+*
+* where, as it follows from (6), (7), and (8)
+*
+* / f_max - a[k] * u[k], j_max = 0, a[k] > 0
+* |
+* | f_max - a[k] * l[k], j_max = 0, a[k] < 0
+* max sum a[j] * x[j] = {
+* j!=k | f_max, j_max = k
+* |
+* \ +inf, j_max != 0
+*
+* and if the upper bound U can be active, implied upper bound of term
+* a[k] * x[k] can be determined as follows:
+*
+* iub(a[k] * x[k]) = max(U - sum a[j] * x[j]) =
+* j!=k
+* (15)
+* = U - min sum a[j] * x[j]
+* j!=k
+*
+* where, as it follows from (3), (4), and (5)
+*
+* / f_min - a[k] * l[k], j_min = 0, a[k] > 0
+* |
+* | f_min - a[k] * u[k], j_min = 0, a[k] < 0
+* min sum a[j] * x[j] = {
+* j!=k | f_min, j_min = k
+* |
+* \ -inf, j_min != 0
+*
+* Since
+*
+* ilb(a[k] * x[k]) <= a[k] * x[k] <= iub(a[k] * x[k])
+*
+* implied lower and upper bounds of x[k] are determined as follows:
+*
+* l'[k] := if a[k] > 0 then ilb / a[k] else ulb / a[k] (16)
+*
+* u'[k] := if a[k] > 0 then ulb / a[k] else ilb / a[k] (17)
+*
+* The implied bounds are stored in locations ll and uu. */
+
+static void col_implied_bounds(const struct f_info *f, int n,
+ const double a[], double L, double U, const double l[],
+ const double u[], int k, double *ll, double *uu)
+{ double ilb, iub;
+ xassert(n >= 0);
+ xassert(1 <= k && k <= n);
+ /* determine implied lower bound of term a[k] * x[k] (14) */
+ if (L == -DBL_MAX || f->f_max == +DBL_MAX)
+ ilb = -DBL_MAX;
+ else if (f->j_max == 0)
+ { if (a[k] > 0.0)
+ { xassert(u[k] != +DBL_MAX);
+ ilb = L - (f->f_max - a[k] * u[k]);
+ }
+ else if (a[k] < 0.0)
+ { xassert(l[k] != -DBL_MAX);
+ ilb = L - (f->f_max - a[k] * l[k]);
+ }
+ else
+ xassert(a != a);
+ }
+ else if (f->j_max == k)
+ ilb = L - f->f_max;
+ else
+ ilb = -DBL_MAX;
+ /* determine implied upper bound of term a[k] * x[k] (15) */
+ if (U == +DBL_MAX || f->f_min == -DBL_MAX)
+ iub = +DBL_MAX;
+ else if (f->j_min == 0)
+ { if (a[k] > 0.0)
+ { xassert(l[k] != -DBL_MAX);
+ iub = U - (f->f_min - a[k] * l[k]);
+ }
+ else if (a[k] < 0.0)
+ { xassert(u[k] != +DBL_MAX);
+ iub = U - (f->f_min - a[k] * u[k]);
+ }
+ else
+ xassert(a != a);
+ }
+ else if (f->j_min == k)
+ iub = U - f->f_min;
+ else
+ iub = +DBL_MAX;
+ /* determine implied bounds of x[k] (16) and (17) */
+#if 1
+ /* do not use a[k] if it has small magnitude to prevent wrong
+ implied bounds; for example, 1e-15 * x1 >= x2 + x3, where
+ x1 >= -10, x2, x3 >= 0, would lead to wrong conclusion that
+ x1 >= 0 */
+ if (fabs(a[k]) < 1e-6)
+ *ll = -DBL_MAX, *uu = +DBL_MAX; else
+#endif
+ if (a[k] > 0.0)
+ { *ll = (ilb == -DBL_MAX ? -DBL_MAX : ilb / a[k]);
+ *uu = (iub == +DBL_MAX ? +DBL_MAX : iub / a[k]);
+ }
+ else if (a[k] < 0.0)
+ { *ll = (iub == +DBL_MAX ? -DBL_MAX : iub / a[k]);
+ *uu = (ilb == -DBL_MAX ? +DBL_MAX : ilb / a[k]);
+ }
+ else
+ xassert(a != a);
+ return;
+}
+
+/***********************************************************************
+* check_row_bounds - check and relax original row bounds
+*
+* Given a row (constraint)
+*
+* n
+* L <= sum a[j] * x[j] <= U
+* j=1
+*
+* and bounds of columns (variables)
+*
+* l[j] <= x[j] <= u[j]
+*
+* this routine checks the original row bounds L and U for feasibility
+* and redundancy. If the original lower bound L or/and upper bound U
+* cannot be active due to bounds of variables, the routine remove them
+* replacing by -inf or/and +inf, respectively.
+*
+* If no primal infeasibility is detected, the routine returns zero,
+* otherwise non-zero. */
+
+static int check_row_bounds(const struct f_info *f, double *L_,
+ double *U_)
+{ int ret = 0;
+ double L = *L_, U = *U_, LL, UU;
+ /* determine implied bounds of the row */
+ row_implied_bounds(f, &LL, &UU);
+ /* check if the original lower bound is infeasible */
+ if (L != -DBL_MAX)
+ { double eps = 1e-3 * (1.0 + fabs(L));
+ if (UU < L - eps)
+ { ret = 1;
+ goto done;
+ }
+ }
+ /* check if the original upper bound is infeasible */
+ if (U != +DBL_MAX)
+ { double eps = 1e-3 * (1.0 + fabs(U));
+ if (LL > U + eps)
+ { ret = 1;
+ goto done;
+ }
+ }
+ /* check if the original lower bound is redundant */
+ if (L != -DBL_MAX)
+ { double eps = 1e-12 * (1.0 + fabs(L));
+ if (LL > L - eps)
+ { /* it cannot be active, so remove it */
+ *L_ = -DBL_MAX;
+ }
+ }
+ /* check if the original upper bound is redundant */
+ if (U != +DBL_MAX)
+ { double eps = 1e-12 * (1.0 + fabs(U));
+ if (UU < U + eps)
+ { /* it cannot be active, so remove it */
+ *U_ = +DBL_MAX;
+ }
+ }
+done: return ret;
+}
+
+/***********************************************************************
+* check_col_bounds - check and tighten original column bounds
+*
+* Given a row (constraint)
+*
+* n
+* L <= sum a[j] * x[j] <= U
+* j=1
+*
+* and bounds of columns (variables)
+*
+* l[j] <= x[j] <= u[j]
+*
+* for column (variable) x[j] this routine checks the original column
+* bounds l[j] and u[j] for feasibility and redundancy. If the original
+* lower bound l[j] or/and upper bound u[j] cannot be active due to
+* bounds of the constraint and other variables, the routine tighten
+* them replacing by corresponding implied bounds, if possible.
+*
+* NOTE: It is assumed that if L != -inf, the row lower bound can be
+* active, and if U != +inf, the row upper bound can be active.
+*
+* The flag means that variable x[j] is required to be integer.
+*
+* New actual bounds for x[j] are stored in locations lj and uj.
+*
+* If no primal infeasibility is detected, the routine returns zero,
+* otherwise non-zero. */
+
+static int check_col_bounds(const struct f_info *f, int n,
+ const double a[], double L, double U, const double l[],
+ const double u[], int flag, int j, double *_lj, double *_uj)
+{ int ret = 0;
+ double lj, uj, ll, uu;
+ xassert(n >= 0);
+ xassert(1 <= j && j <= n);
+ lj = l[j], uj = u[j];
+ /* determine implied bounds of the column */
+ col_implied_bounds(f, n, a, L, U, l, u, j, &ll, &uu);
+ /* if x[j] is integral, round its implied bounds */
+ if (flag)
+ { if (ll != -DBL_MAX)
+ ll = (ll - floor(ll) < 1e-3 ? floor(ll) : ceil(ll));
+ if (uu != +DBL_MAX)
+ uu = (ceil(uu) - uu < 1e-3 ? ceil(uu) : floor(uu));
+ }
+ /* check if the original lower bound is infeasible */
+ if (lj != -DBL_MAX)
+ { double eps = 1e-3 * (1.0 + fabs(lj));
+ if (uu < lj - eps)
+ { ret = 1;
+ goto done;
+ }
+ }
+ /* check if the original upper bound is infeasible */
+ if (uj != +DBL_MAX)
+ { double eps = 1e-3 * (1.0 + fabs(uj));
+ if (ll > uj + eps)
+ { ret = 1;
+ goto done;
+ }
+ }
+ /* check if the original lower bound is redundant */
+ if (ll != -DBL_MAX)
+ { double eps = 1e-3 * (1.0 + fabs(ll));
+ if (lj < ll - eps)
+ { /* it cannot be active, so tighten it */
+ lj = ll;
+ }
+ }
+ /* check if the original upper bound is redundant */
+ if (uu != +DBL_MAX)
+ { double eps = 1e-3 * (1.0 + fabs(uu));
+ if (uj > uu + eps)
+ { /* it cannot be active, so tighten it */
+ uj = uu;
+ }
+ }
+ /* due to round-off errors it may happen that lj > uj (although
+ lj < uj + eps, since no primal infeasibility is detected), so
+ adjuct the new actual bounds to provide lj <= uj */
+ if (!(lj == -DBL_MAX || uj == +DBL_MAX))
+ { double t1 = fabs(lj), t2 = fabs(uj);
+ double eps = 1e-10 * (1.0 + (t1 <= t2 ? t1 : t2));
+ if (lj > uj - eps)
+ { if (lj == l[j])
+ uj = lj;
+ else if (uj == u[j])
+ lj = uj;
+ else if (t1 <= t2)
+ uj = lj;
+ else
+ lj = uj;
+ }
+ }
+ *_lj = lj, *_uj = uj;
+done: return ret;
+}
+
+/***********************************************************************
+* check_efficiency - check if change in column bounds is efficient
+*
+* Given the original bounds of a column l and u and its new actual
+* bounds l' and u' (possibly tighten by the routine check_col_bounds)
+* this routine checks if the change in the column bounds is efficient
+* enough. If so, the routine returns non-zero, otherwise zero.
+*
+* The flag means that the variable is required to be integer. */
+
+static int check_efficiency(int flag, double l, double u, double ll,
+ double uu)
+{ int eff = 0;
+ /* check efficiency for lower bound */
+ if (l < ll)
+ { if (flag || l == -DBL_MAX)
+ eff++;
+ else
+ { double r;
+ if (u == +DBL_MAX)
+ r = 1.0 + fabs(l);
+ else
+ r = 1.0 + (u - l);
+ if (ll - l >= 0.25 * r)
+ eff++;
+ }
+ }
+ /* check efficiency for upper bound */
+ if (u > uu)
+ { if (flag || u == +DBL_MAX)
+ eff++;
+ else
+ { double r;
+ if (l == -DBL_MAX)
+ r = 1.0 + fabs(u);
+ else
+ r = 1.0 + (u - l);
+ if (u - uu >= 0.25 * r)
+ eff++;
+ }
+ }
+ return eff;
+}
+
+/***********************************************************************
+* basic_preprocessing - perform basic preprocessing
+*
+* This routine performs basic preprocessing of the specified MIP that
+* includes relaxing some row bounds and tightening some column bounds.
+*
+* On entry the arrays L and U contains original row bounds, and the
+* arrays l and u contains original column bounds:
+*
+* L[0] is the lower bound of the objective row;
+* L[i], i = 1,...,m, is the lower bound of i-th row;
+* U[0] is the upper bound of the objective row;
+* U[i], i = 1,...,m, is the upper bound of i-th row;
+* l[0] is not used;
+* l[j], j = 1,...,n, is the lower bound of j-th column;
+* u[0] is not used;
+* u[j], j = 1,...,n, is the upper bound of j-th column.
+*
+* On exit the arrays L, U, l, and u contain new actual bounds of rows
+* and column in the same locations.
+*
+* The parameters nrs and num specify an initial list of rows to be
+* processed:
+*
+* nrs is the number of rows in the initial list, 0 <= nrs <= m+1;
+* num[0] is not used;
+* num[1,...,nrs] are row numbers (0 means the objective row).
+*
+* The parameter max_pass specifies the maximal number of times that
+* each row can be processed, max_pass > 0.
+*
+* If no primal infeasibility is detected, the routine returns zero,
+* otherwise non-zero. */
+
+static int basic_preprocessing(glp_prob *mip, double L[], double U[],
+ double l[], double u[], int nrs, const int num[], int max_pass)
+{ int m = mip->m;
+ int n = mip->n;
+ struct f_info f;
+ int i, j, k, len, size, ret = 0;
+ int *ind, *list, *mark, *pass;
+ double *val, *lb, *ub;
+ xassert(0 <= nrs && nrs <= m+1);
+ xassert(max_pass > 0);
+ /* allocate working arrays */
+ ind = xcalloc(1+n, sizeof(int));
+ list = xcalloc(1+m+1, sizeof(int));
+ mark = xcalloc(1+m+1, sizeof(int));
+ memset(&mark[0], 0, (m+1) * sizeof(int));
+ pass = xcalloc(1+m+1, sizeof(int));
+ memset(&pass[0], 0, (m+1) * sizeof(int));
+ val = xcalloc(1+n, sizeof(double));
+ lb = xcalloc(1+n, sizeof(double));
+ ub = xcalloc(1+n, sizeof(double));
+ /* initialize the list of rows to be processed */
+ size = 0;
+ for (k = 1; k <= nrs; k++)
+ { i = num[k];
+ xassert(0 <= i && i <= m);
+ /* duplicate row numbers are not allowed */
+ xassert(!mark[i]);
+ list[++size] = i, mark[i] = 1;
+ }
+ xassert(size == nrs);
+ /* process rows in the list until it becomes empty */
+ while (size > 0)
+ { /* get a next row from the list */
+ i = list[size--], mark[i] = 0;
+ /* increase the row processing count */
+ pass[i]++;
+ /* if the row is free, skip it */
+ if (L[i] == -DBL_MAX && U[i] == +DBL_MAX) continue;
+ /* obtain coefficients of the row */
+ len = 0;
+ if (i == 0)
+ { for (j = 1; j <= n; j++)
+ { GLPCOL *col = mip->col[j];
+ if (col->coef != 0.0)
+ len++, ind[len] = j, val[len] = col->coef;
+ }
+ }
+ else
+ { GLPROW *row = mip->row[i];
+ GLPAIJ *aij;
+ for (aij = row->ptr; aij != NULL; aij = aij->r_next)
+ len++, ind[len] = aij->col->j, val[len] = aij->val;
+ }
+ /* determine lower and upper bounds of columns corresponding
+ to non-zero row coefficients */
+ for (k = 1; k <= len; k++)
+ j = ind[k], lb[k] = l[j], ub[k] = u[j];
+ /* prepare the row info to determine implied bounds */
+ prepare_row_info(len, val, lb, ub, &f);
+ /* check and relax bounds of the row */
+ if (check_row_bounds(&f, &L[i], &U[i]))
+ { /* the feasible region is empty */
+ ret = 1;
+ goto done;
+ }
+ /* if the row became free, drop it */
+ if (L[i] == -DBL_MAX && U[i] == +DBL_MAX) continue;
+ /* process columns having non-zero coefficients in the row */
+ for (k = 1; k <= len; k++)
+ { GLPCOL *col;
+ int flag, eff;
+ double ll, uu;
+ /* take a next column in the row */
+ j = ind[k], col = mip->col[j];
+ flag = col->kind != GLP_CV;
+ /* check and tighten bounds of the column */
+ if (check_col_bounds(&f, len, val, L[i], U[i], lb, ub,
+ flag, k, &ll, &uu))
+ { /* the feasible region is empty */
+ ret = 1;
+ goto done;
+ }
+ /* check if change in the column bounds is efficient */
+ eff = check_efficiency(flag, l[j], u[j], ll, uu);
+ /* set new actual bounds of the column */
+ l[j] = ll, u[j] = uu;
+ /* if the change is efficient, add all rows affected by the
+ corresponding column, to the list */
+ if (eff > 0)
+ { GLPAIJ *aij;
+ for (aij = col->ptr; aij != NULL; aij = aij->c_next)
+ { int ii = aij->row->i;
+ /* if the row was processed maximal number of times,
+ skip it */
+ if (pass[ii] >= max_pass) continue;
+ /* if the row is free, skip it */
+ if (L[ii] == -DBL_MAX && U[ii] == +DBL_MAX) continue;
+ /* put the row into the list */
+ if (mark[ii] == 0)
+ { xassert(size <= m);
+ list[++size] = ii, mark[ii] = 1;
+ }
+ }
+ }
+ }
+ }
+done: /* free working arrays */
+ xfree(ind);
+ xfree(list);
+ xfree(mark);
+ xfree(pass);
+ xfree(val);
+ xfree(lb);
+ xfree(ub);
+ return ret;
+}
+
+/***********************************************************************
+* NAME
+*
+* ios_preprocess_node - preprocess current subproblem
+*
+* SYNOPSIS
+*
+* #include "glpios.h"
+* int ios_preprocess_node(glp_tree *tree, int max_pass);
+*
+* DESCRIPTION
+*
+* The routine ios_preprocess_node performs basic preprocessing of the
+* current subproblem.
+*
+* RETURNS
+*
+* If no primal infeasibility is detected, the routine returns zero,
+* otherwise non-zero. */
+
+int ios_preprocess_node(glp_tree *tree, int max_pass)
+{ glp_prob *mip = tree->mip;
+ int m = mip->m;
+ int n = mip->n;
+ int i, j, nrs, *num, ret = 0;
+ double *L, *U, *l, *u;
+ /* the current subproblem must exist */
+ xassert(tree->curr != NULL);
+ /* determine original row bounds */
+ L = xcalloc(1+m, sizeof(double));
+ U = xcalloc(1+m, sizeof(double));
+ switch (mip->mip_stat)
+ { case GLP_UNDEF:
+ L[0] = -DBL_MAX, U[0] = +DBL_MAX;
+ break;
+ case GLP_FEAS:
+ switch (mip->dir)
+ { case GLP_MIN:
+ L[0] = -DBL_MAX, U[0] = mip->mip_obj - mip->c0;
+ break;
+ case GLP_MAX:
+ L[0] = mip->mip_obj - mip->c0, U[0] = +DBL_MAX;
+ break;
+ default:
+ xassert(mip != mip);
+ }
+ break;
+ default:
+ xassert(mip != mip);
+ }
+ for (i = 1; i <= m; i++)
+ { L[i] = glp_get_row_lb(mip, i);
+ U[i] = glp_get_row_ub(mip, i);
+ }
+ /* determine original column bounds */
+ l = xcalloc(1+n, sizeof(double));
+ u = xcalloc(1+n, sizeof(double));
+ for (j = 1; j <= n; j++)
+ { l[j] = glp_get_col_lb(mip, j);
+ u[j] = glp_get_col_ub(mip, j);
+ }
+ /* build the initial list of rows to be analyzed */
+ nrs = m + 1;
+ num = xcalloc(1+nrs, sizeof(int));
+ for (i = 1; i <= nrs; i++) num[i] = i - 1;
+ /* perform basic preprocessing */
+ if (basic_preprocessing(mip , L, U, l, u, nrs, num, max_pass))
+ { ret = 1;
+ goto done;
+ }
+ /* set new actual (relaxed) row bounds */
+ for (i = 1; i <= m; i++)
+ { /* consider only non-active rows to keep dual feasibility */
+ if (glp_get_row_stat(mip, i) == GLP_BS)
+ { if (L[i] == -DBL_MAX && U[i] == +DBL_MAX)
+ glp_set_row_bnds(mip, i, GLP_FR, 0.0, 0.0);
+ else if (U[i] == +DBL_MAX)
+ glp_set_row_bnds(mip, i, GLP_LO, L[i], 0.0);
+ else if (L[i] == -DBL_MAX)
+ glp_set_row_bnds(mip, i, GLP_UP, 0.0, U[i]);
+ }
+ }
+ /* set new actual (tightened) column bounds */
+ for (j = 1; j <= n; j++)
+ { int type;
+ if (l[j] == -DBL_MAX && u[j] == +DBL_MAX)
+ type = GLP_FR;
+ else if (u[j] == +DBL_MAX)
+ type = GLP_LO;
+ else if (l[j] == -DBL_MAX)
+ type = GLP_UP;
+ else if (l[j] != u[j])
+ type = GLP_DB;
+ else
+ type = GLP_FX;
+ glp_set_col_bnds(mip, j, type, l[j], u[j]);
+ }
+done: /* free working arrays and return */
+ xfree(L);
+ xfree(U);
+ xfree(l);
+ xfree(u);
+ xfree(num);
+ return ret;
+}
+
+/* eof */