aboutsummaryrefslogtreecommitdiffstats
path: root/test/monniaux/glpk-4.65/src/draft/glpios11.c
diff options
context:
space:
mode:
Diffstat (limited to 'test/monniaux/glpk-4.65/src/draft/glpios11.c')
-rw-r--r--test/monniaux/glpk-4.65/src/draft/glpios11.c435
1 files changed, 435 insertions, 0 deletions
diff --git a/test/monniaux/glpk-4.65/src/draft/glpios11.c b/test/monniaux/glpk-4.65/src/draft/glpios11.c
new file mode 100644
index 00000000..09fccef6
--- /dev/null
+++ b/test/monniaux/glpk-4.65/src/draft/glpios11.c
@@ -0,0 +1,435 @@
+/* glpios11.c (process cuts stored in the local cut pool) */
+
+/***********************************************************************
+* This code is part of GLPK (GNU Linear Programming Kit).
+*
+* Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
+* 2009, 2010, 2011, 2013, 2017, 2018 Andrew Makhorin, Department for
+* Applied Informatics, Moscow Aviation Institute, Moscow, Russia. All
+* rights reserved. E-mail: <mao@gnu.org>.
+*
+* GLPK is free software: you can redistribute it and/or modify it
+* under the terms of the GNU General Public License as published by
+* the Free Software Foundation, either version 3 of the License, or
+* (at your option) any later version.
+*
+* GLPK is distributed in the hope that it will be useful, but WITHOUT
+* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
+* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
+* License for more details.
+*
+* You should have received a copy of the GNU General Public License
+* along with GLPK. If not, see <http://www.gnu.org/licenses/>.
+***********************************************************************/
+
+#include "draft.h"
+#include "env.h"
+#include "ios.h"
+
+/***********************************************************************
+* NAME
+*
+* ios_process_cuts - process cuts stored in the local cut pool
+*
+* SYNOPSIS
+*
+* #include "glpios.h"
+* void ios_process_cuts(glp_tree *T);
+*
+* DESCRIPTION
+*
+* The routine ios_process_cuts analyzes each cut currently stored in
+* the local cut pool, which must be non-empty, and either adds the cut
+* to the current subproblem or just discards it. All cuts are assumed
+* to be locally valid. On exit the local cut pool remains unchanged.
+*
+* REFERENCES
+*
+* 1. E.Balas, S.Ceria, G.Cornuejols, "Mixed 0-1 Programming by
+* Lift-and-Project in a Branch-and-Cut Framework", Management Sc.,
+* 42 (1996) 1229-1246.
+*
+* 2. G.Andreello, A.Caprara, and M.Fischetti, "Embedding Cuts in
+* a Branch&Cut Framework: a Computational Study with {0,1/2}-Cuts",
+* Preliminary Draft, October 28, 2003, pp.6-8. */
+
+struct info
+{ /* estimated cut efficiency */
+ IOSCUT *cut;
+ /* pointer to cut in the cut pool */
+ char flag;
+ /* if this flag is set, the cut is included into the current
+ subproblem */
+ double eff;
+ /* cut efficacy (normalized residual) */
+ double deg;
+ /* lower bound to objective degradation */
+};
+
+static int CDECL fcmp(const void *arg1, const void *arg2)
+{ const struct info *info1 = arg1, *info2 = arg2;
+ if (info1->deg == 0.0 && info2->deg == 0.0)
+ { if (info1->eff > info2->eff) return -1;
+ if (info1->eff < info2->eff) return +1;
+ }
+ else
+ { if (info1->deg > info2->deg) return -1;
+ if (info1->deg < info2->deg) return +1;
+ }
+ return 0;
+}
+
+static double parallel(IOSCUT *a, IOSCUT *b, double work[]);
+
+#ifdef NEW_LOCAL /* 02/II-2018 */
+void ios_process_cuts(glp_tree *T)
+{ IOSPOOL *pool;
+ IOSCUT *cut;
+ GLPAIJ *aij;
+ struct info *info;
+ int k, kk, max_cuts, len, ret, *ind;
+ double *val, *work, rhs;
+ /* the current subproblem must exist */
+ xassert(T->curr != NULL);
+ /* the pool must exist and be non-empty */
+ pool = T->local;
+ xassert(pool != NULL);
+ xassert(pool->m > 0);
+ /* allocate working arrays */
+ info = xcalloc(1+pool->m, sizeof(struct info));
+ ind = xcalloc(1+T->n, sizeof(int));
+ val = xcalloc(1+T->n, sizeof(double));
+ work = xcalloc(1+T->n, sizeof(double));
+ for (k = 1; k <= T->n; k++) work[k] = 0.0;
+ /* build the list of cuts stored in the cut pool */
+ for (k = 1; k <= pool->m; k++)
+ info[k].cut = pool->row[k], info[k].flag = 0;
+ /* estimate efficiency of all cuts in the cut pool */
+ for (k = 1; k <= pool->m; k++)
+ { double temp, dy, dz;
+ cut = info[k].cut;
+ /* build the vector of cut coefficients and compute its
+ Euclidean norm */
+ len = 0; temp = 0.0;
+ for (aij = cut->ptr; aij != NULL; aij = aij->r_next)
+ { xassert(1 <= aij->col->j && aij->col->j <= T->n);
+ len++, ind[len] = aij->col->j, val[len] = aij->val;
+ temp += aij->val * aij->val;
+ }
+ if (temp < DBL_EPSILON * DBL_EPSILON) temp = DBL_EPSILON;
+ /* transform the cut to express it only through non-basic
+ (auxiliary and structural) variables */
+ len = glp_transform_row(T->mip, len, ind, val);
+ /* determine change in the cut value and in the objective
+ value for the adjacent basis by simulating one step of the
+ dual simplex */
+ switch (cut->type)
+ { case GLP_LO: rhs = cut->lb; break;
+ case GLP_UP: rhs = cut->ub; break;
+ default: xassert(cut != cut);
+ }
+ ret = _glp_analyze_row(T->mip, len, ind, val, cut->type,
+ rhs, 1e-9, NULL, NULL, NULL, NULL, &dy, &dz);
+ /* determine normalized residual and lower bound to objective
+ degradation */
+ if (ret == 0)
+ { info[k].eff = fabs(dy) / sqrt(temp);
+ /* if some reduced costs violates (slightly) their zero
+ bounds (i.e. have wrong signs) due to round-off errors,
+ dz also may have wrong sign being close to zero */
+ if (T->mip->dir == GLP_MIN)
+ { if (dz < 0.0) dz = 0.0;
+ info[k].deg = + dz;
+ }
+ else /* GLP_MAX */
+ { if (dz > 0.0) dz = 0.0;
+ info[k].deg = - dz;
+ }
+ }
+ else if (ret == 1)
+ { /* the constraint is not violated at the current point */
+ info[k].eff = info[k].deg = 0.0;
+ }
+ else if (ret == 2)
+ { /* no dual feasible adjacent basis exists */
+ info[k].eff = 1.0;
+ info[k].deg = DBL_MAX;
+ }
+ else
+ xassert(ret != ret);
+ /* if the degradation is too small, just ignore it */
+ if (info[k].deg < 0.01) info[k].deg = 0.0;
+ }
+ /* sort the list of cuts by decreasing objective degradation and
+ then by decreasing efficacy */
+ qsort(&info[1], pool->m, sizeof(struct info), fcmp);
+ /* only first (most efficient) max_cuts in the list are qualified
+ as candidates to be added to the current subproblem */
+ max_cuts = (T->curr->level == 0 ? 90 : 10);
+ if (max_cuts > pool->m) max_cuts = pool->m;
+ /* add cuts to the current subproblem */
+#if 0
+ xprintf("*** adding cuts ***\n");
+#endif
+ for (k = 1; k <= max_cuts; k++)
+ { int i, len;
+ /* if this cut seems to be inefficient, skip it */
+ if (info[k].deg < 0.01 && info[k].eff < 0.01) continue;
+ /* if the angle between this cut and every other cut included
+ in the current subproblem is small, skip this cut */
+ for (kk = 1; kk < k; kk++)
+ { if (info[kk].flag)
+ { if (parallel(info[k].cut, info[kk].cut, work) > 0.90)
+ break;
+ }
+ }
+ if (kk < k) continue;
+ /* add this cut to the current subproblem */
+#if 0
+ xprintf("eff = %g; deg = %g\n", info[k].eff, info[k].deg);
+#endif
+ cut = info[k].cut, info[k].flag = 1;
+ i = glp_add_rows(T->mip, 1);
+ if (cut->name != NULL)
+ glp_set_row_name(T->mip, i, cut->name);
+ xassert(T->mip->row[i]->origin == GLP_RF_CUT);
+ T->mip->row[i]->klass = cut->klass;
+ len = 0;
+ for (aij = cut->ptr; aij != NULL; aij = aij->r_next)
+ len++, ind[len] = aij->col->j, val[len] = aij->val;
+ glp_set_mat_row(T->mip, i, len, ind, val);
+ switch (cut->type)
+ { case GLP_LO: rhs = cut->lb; break;
+ case GLP_UP: rhs = cut->ub; break;
+ default: xassert(cut != cut);
+ }
+ glp_set_row_bnds(T->mip, i, cut->type, rhs, rhs);
+ }
+ /* free working arrays */
+ xfree(info);
+ xfree(ind);
+ xfree(val);
+ xfree(work);
+ return;
+}
+#else
+void ios_process_cuts(glp_tree *T)
+{ IOSPOOL *pool;
+ IOSCUT *cut;
+ IOSAIJ *aij;
+ struct info *info;
+ int k, kk, max_cuts, len, ret, *ind;
+ double *val, *work;
+ /* the current subproblem must exist */
+ xassert(T->curr != NULL);
+ /* the pool must exist and be non-empty */
+ pool = T->local;
+ xassert(pool != NULL);
+ xassert(pool->size > 0);
+ /* allocate working arrays */
+ info = xcalloc(1+pool->size, sizeof(struct info));
+ ind = xcalloc(1+T->n, sizeof(int));
+ val = xcalloc(1+T->n, sizeof(double));
+ work = xcalloc(1+T->n, sizeof(double));
+ for (k = 1; k <= T->n; k++) work[k] = 0.0;
+ /* build the list of cuts stored in the cut pool */
+ for (k = 0, cut = pool->head; cut != NULL; cut = cut->next)
+ k++, info[k].cut = cut, info[k].flag = 0;
+ xassert(k == pool->size);
+ /* estimate efficiency of all cuts in the cut pool */
+ for (k = 1; k <= pool->size; k++)
+ { double temp, dy, dz;
+ cut = info[k].cut;
+ /* build the vector of cut coefficients and compute its
+ Euclidean norm */
+ len = 0; temp = 0.0;
+ for (aij = cut->ptr; aij != NULL; aij = aij->next)
+ { xassert(1 <= aij->j && aij->j <= T->n);
+ len++, ind[len] = aij->j, val[len] = aij->val;
+ temp += aij->val * aij->val;
+ }
+ if (temp < DBL_EPSILON * DBL_EPSILON) temp = DBL_EPSILON;
+ /* transform the cut to express it only through non-basic
+ (auxiliary and structural) variables */
+ len = glp_transform_row(T->mip, len, ind, val);
+ /* determine change in the cut value and in the objective
+ value for the adjacent basis by simulating one step of the
+ dual simplex */
+ ret = _glp_analyze_row(T->mip, len, ind, val, cut->type,
+ cut->rhs, 1e-9, NULL, NULL, NULL, NULL, &dy, &dz);
+ /* determine normalized residual and lower bound to objective
+ degradation */
+ if (ret == 0)
+ { info[k].eff = fabs(dy) / sqrt(temp);
+ /* if some reduced costs violates (slightly) their zero
+ bounds (i.e. have wrong signs) due to round-off errors,
+ dz also may have wrong sign being close to zero */
+ if (T->mip->dir == GLP_MIN)
+ { if (dz < 0.0) dz = 0.0;
+ info[k].deg = + dz;
+ }
+ else /* GLP_MAX */
+ { if (dz > 0.0) dz = 0.0;
+ info[k].deg = - dz;
+ }
+ }
+ else if (ret == 1)
+ { /* the constraint is not violated at the current point */
+ info[k].eff = info[k].deg = 0.0;
+ }
+ else if (ret == 2)
+ { /* no dual feasible adjacent basis exists */
+ info[k].eff = 1.0;
+ info[k].deg = DBL_MAX;
+ }
+ else
+ xassert(ret != ret);
+ /* if the degradation is too small, just ignore it */
+ if (info[k].deg < 0.01) info[k].deg = 0.0;
+ }
+ /* sort the list of cuts by decreasing objective degradation and
+ then by decreasing efficacy */
+ qsort(&info[1], pool->size, sizeof(struct info), fcmp);
+ /* only first (most efficient) max_cuts in the list are qualified
+ as candidates to be added to the current subproblem */
+ max_cuts = (T->curr->level == 0 ? 90 : 10);
+ if (max_cuts > pool->size) max_cuts = pool->size;
+ /* add cuts to the current subproblem */
+#if 0
+ xprintf("*** adding cuts ***\n");
+#endif
+ for (k = 1; k <= max_cuts; k++)
+ { int i, len;
+ /* if this cut seems to be inefficient, skip it */
+ if (info[k].deg < 0.01 && info[k].eff < 0.01) continue;
+ /* if the angle between this cut and every other cut included
+ in the current subproblem is small, skip this cut */
+ for (kk = 1; kk < k; kk++)
+ { if (info[kk].flag)
+ { if (parallel(info[k].cut, info[kk].cut, work) > 0.90)
+ break;
+ }
+ }
+ if (kk < k) continue;
+ /* add this cut to the current subproblem */
+#if 0
+ xprintf("eff = %g; deg = %g\n", info[k].eff, info[k].deg);
+#endif
+ cut = info[k].cut, info[k].flag = 1;
+ i = glp_add_rows(T->mip, 1);
+ if (cut->name != NULL)
+ glp_set_row_name(T->mip, i, cut->name);
+ xassert(T->mip->row[i]->origin == GLP_RF_CUT);
+ T->mip->row[i]->klass = cut->klass;
+ len = 0;
+ for (aij = cut->ptr; aij != NULL; aij = aij->next)
+ len++, ind[len] = aij->j, val[len] = aij->val;
+ glp_set_mat_row(T->mip, i, len, ind, val);
+ xassert(cut->type == GLP_LO || cut->type == GLP_UP);
+ glp_set_row_bnds(T->mip, i, cut->type, cut->rhs, cut->rhs);
+ }
+ /* free working arrays */
+ xfree(info);
+ xfree(ind);
+ xfree(val);
+ xfree(work);
+ return;
+}
+#endif
+
+#if 0
+/***********************************************************************
+* Given a cut a * x >= b (<= b) the routine efficacy computes the cut
+* efficacy as follows:
+*
+* eff = d * (a * x~ - b) / ||a||,
+*
+* where d is -1 (in case of '>= b') or +1 (in case of '<= b'), x~ is
+* the vector of values of structural variables in optimal solution to
+* LP relaxation of the current subproblem, ||a|| is the Euclidean norm
+* of the vector of cut coefficients.
+*
+* If the cut is violated at point x~, the efficacy eff is positive,
+* and its value is the Euclidean distance between x~ and the cut plane
+* a * x = b in the space of structural variables.
+*
+* Following geometrical intuition, it is quite natural to consider
+* this distance as a first-order measure of the expected efficacy of
+* the cut: the larger the distance the better the cut [1]. */
+
+static double efficacy(glp_tree *T, IOSCUT *cut)
+{ glp_prob *mip = T->mip;
+ IOSAIJ *aij;
+ double s = 0.0, t = 0.0, temp;
+ for (aij = cut->ptr; aij != NULL; aij = aij->next)
+ { xassert(1 <= aij->j && aij->j <= mip->n);
+ s += aij->val * mip->col[aij->j]->prim;
+ t += aij->val * aij->val;
+ }
+ temp = sqrt(t);
+ if (temp < DBL_EPSILON) temp = DBL_EPSILON;
+ if (cut->type == GLP_LO)
+ temp = (s >= cut->rhs ? 0.0 : (cut->rhs - s) / temp);
+ else if (cut->type == GLP_UP)
+ temp = (s <= cut->rhs ? 0.0 : (s - cut->rhs) / temp);
+ else
+ xassert(cut != cut);
+ return temp;
+}
+#endif
+
+/***********************************************************************
+* Given two cuts a1 * x >= b1 (<= b1) and a2 * x >= b2 (<= b2) the
+* routine parallel computes the cosine of angle between the cut planes
+* a1 * x = b1 and a2 * x = b2 (which is the acute angle between two
+* normals to these planes) in the space of structural variables as
+* follows:
+*
+* cos phi = (a1' * a2) / (||a1|| * ||a2||),
+*
+* where (a1' * a2) is a dot product of vectors of cut coefficients,
+* ||a1|| and ||a2|| are Euclidean norms of vectors a1 and a2.
+*
+* Note that requirement cos phi = 0 forces the cuts to be orthogonal,
+* i.e. with disjoint support, while requirement cos phi <= 0.999 means
+* only avoiding duplicate (parallel) cuts [1]. */
+
+#ifdef NEW_LOCAL /* 02/II-2018 */
+static double parallel(IOSCUT *a, IOSCUT *b, double work[])
+{ GLPAIJ *aij;
+ double s = 0.0, sa = 0.0, sb = 0.0, temp;
+ for (aij = a->ptr; aij != NULL; aij = aij->r_next)
+ { work[aij->col->j] = aij->val;
+ sa += aij->val * aij->val;
+ }
+ for (aij = b->ptr; aij != NULL; aij = aij->r_next)
+ { s += work[aij->col->j] * aij->val;
+ sb += aij->val * aij->val;
+ }
+ for (aij = a->ptr; aij != NULL; aij = aij->r_next)
+ work[aij->col->j] = 0.0;
+ temp = sqrt(sa) * sqrt(sb);
+ if (temp < DBL_EPSILON * DBL_EPSILON) temp = DBL_EPSILON;
+ return s / temp;
+}
+#else
+static double parallel(IOSCUT *a, IOSCUT *b, double work[])
+{ IOSAIJ *aij;
+ double s = 0.0, sa = 0.0, sb = 0.0, temp;
+ for (aij = a->ptr; aij != NULL; aij = aij->next)
+ { work[aij->j] = aij->val;
+ sa += aij->val * aij->val;
+ }
+ for (aij = b->ptr; aij != NULL; aij = aij->next)
+ { s += work[aij->j] * aij->val;
+ sb += aij->val * aij->val;
+ }
+ for (aij = a->ptr; aij != NULL; aij = aij->next)
+ work[aij->j] = 0.0;
+ temp = sqrt(sa) * sqrt(sb);
+ if (temp < DBL_EPSILON * DBL_EPSILON) temp = DBL_EPSILON;
+ return s / temp;
+}
+#endif
+
+/* eof */