aboutsummaryrefslogtreecommitdiffstats
path: root/test/monniaux/glpk-4.65/src/draft/glpmat.c
diff options
context:
space:
mode:
Diffstat (limited to 'test/monniaux/glpk-4.65/src/draft/glpmat.c')
-rw-r--r--test/monniaux/glpk-4.65/src/draft/glpmat.c924
1 files changed, 924 insertions, 0 deletions
diff --git a/test/monniaux/glpk-4.65/src/draft/glpmat.c b/test/monniaux/glpk-4.65/src/draft/glpmat.c
new file mode 100644
index 00000000..97d1c651
--- /dev/null
+++ b/test/monniaux/glpk-4.65/src/draft/glpmat.c
@@ -0,0 +1,924 @@
+/* glpmat.c */
+
+/***********************************************************************
+* This code is part of GLPK (GNU Linear Programming Kit).
+*
+* Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
+* 2009, 2010, 2011, 2013 Andrew Makhorin, Department for Applied
+* Informatics, Moscow Aviation Institute, Moscow, Russia. All rights
+* reserved. E-mail: <mao@gnu.org>.
+*
+* GLPK is free software: you can redistribute it and/or modify it
+* under the terms of the GNU General Public License as published by
+* the Free Software Foundation, either version 3 of the License, or
+* (at your option) any later version.
+*
+* GLPK is distributed in the hope that it will be useful, but WITHOUT
+* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
+* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
+* License for more details.
+*
+* You should have received a copy of the GNU General Public License
+* along with GLPK. If not, see <http://www.gnu.org/licenses/>.
+***********************************************************************/
+
+#include "env.h"
+#include "glpmat.h"
+#include "qmd.h"
+#include "amd.h"
+#include "colamd.h"
+
+/*----------------------------------------------------------------------
+-- check_fvs - check sparse vector in full-vector storage format.
+--
+-- SYNOPSIS
+--
+-- #include "glpmat.h"
+-- int check_fvs(int n, int nnz, int ind[], double vec[]);
+--
+-- DESCRIPTION
+--
+-- The routine check_fvs checks if a given vector of dimension n in
+-- full-vector storage format has correct representation.
+--
+-- RETURNS
+--
+-- The routine returns one of the following codes:
+--
+-- 0 - the vector is correct;
+-- 1 - the number of elements (n) is negative;
+-- 2 - the number of non-zero elements (nnz) is negative;
+-- 3 - some element index is out of range;
+-- 4 - some element index is duplicate;
+-- 5 - some non-zero element is out of pattern. */
+
+int check_fvs(int n, int nnz, int ind[], double vec[])
+{ int i, t, ret, *flag = NULL;
+ /* check the number of elements */
+ if (n < 0)
+ { ret = 1;
+ goto done;
+ }
+ /* check the number of non-zero elements */
+ if (nnz < 0)
+ { ret = 2;
+ goto done;
+ }
+ /* check vector indices */
+ flag = xcalloc(1+n, sizeof(int));
+ for (i = 1; i <= n; i++) flag[i] = 0;
+ for (t = 1; t <= nnz; t++)
+ { i = ind[t];
+ if (!(1 <= i && i <= n))
+ { ret = 3;
+ goto done;
+ }
+ if (flag[i])
+ { ret = 4;
+ goto done;
+ }
+ flag[i] = 1;
+ }
+ /* check vector elements */
+ for (i = 1; i <= n; i++)
+ { if (!flag[i] && vec[i] != 0.0)
+ { ret = 5;
+ goto done;
+ }
+ }
+ /* the vector is ok */
+ ret = 0;
+done: if (flag != NULL) xfree(flag);
+ return ret;
+}
+
+/*----------------------------------------------------------------------
+-- check_pattern - check pattern of sparse matrix.
+--
+-- SYNOPSIS
+--
+-- #include "glpmat.h"
+-- int check_pattern(int m, int n, int A_ptr[], int A_ind[]);
+--
+-- DESCRIPTION
+--
+-- The routine check_pattern checks the pattern of a given mxn matrix
+-- in storage-by-rows format.
+--
+-- RETURNS
+--
+-- The routine returns one of the following codes:
+--
+-- 0 - the pattern is correct;
+-- 1 - the number of rows (m) is negative;
+-- 2 - the number of columns (n) is negative;
+-- 3 - A_ptr[1] is not 1;
+-- 4 - some column index is out of range;
+-- 5 - some column indices are duplicate. */
+
+int check_pattern(int m, int n, int A_ptr[], int A_ind[])
+{ int i, j, ptr, ret, *flag = NULL;
+ /* check the number of rows */
+ if (m < 0)
+ { ret = 1;
+ goto done;
+ }
+ /* check the number of columns */
+ if (n < 0)
+ { ret = 2;
+ goto done;
+ }
+ /* check location A_ptr[1] */
+ if (A_ptr[1] != 1)
+ { ret = 3;
+ goto done;
+ }
+ /* check row patterns */
+ flag = xcalloc(1+n, sizeof(int));
+ for (j = 1; j <= n; j++) flag[j] = 0;
+ for (i = 1; i <= m; i++)
+ { /* check pattern of row i */
+ for (ptr = A_ptr[i]; ptr < A_ptr[i+1]; ptr++)
+ { j = A_ind[ptr];
+ /* check column index */
+ if (!(1 <= j && j <= n))
+ { ret = 4;
+ goto done;
+ }
+ /* check for duplication */
+ if (flag[j])
+ { ret = 5;
+ goto done;
+ }
+ flag[j] = 1;
+ }
+ /* clear flags */
+ for (ptr = A_ptr[i]; ptr < A_ptr[i+1]; ptr++)
+ { j = A_ind[ptr];
+ flag[j] = 0;
+ }
+ }
+ /* the pattern is ok */
+ ret = 0;
+done: if (flag != NULL) xfree(flag);
+ return ret;
+}
+
+/*----------------------------------------------------------------------
+-- transpose - transpose sparse matrix.
+--
+-- *Synopsis*
+--
+-- #include "glpmat.h"
+-- void transpose(int m, int n, int A_ptr[], int A_ind[],
+-- double A_val[], int AT_ptr[], int AT_ind[], double AT_val[]);
+--
+-- *Description*
+--
+-- For a given mxn sparse matrix A the routine transpose builds a nxm
+-- sparse matrix A' which is a matrix transposed to A.
+--
+-- The arrays A_ptr, A_ind, and A_val specify a given mxn matrix A to
+-- be transposed in storage-by-rows format. The parameter A_val can be
+-- NULL, in which case numeric values are not copied. The arrays A_ptr,
+-- A_ind, and A_val are not changed on exit.
+--
+-- On entry the arrays AT_ptr, AT_ind, and AT_val must be allocated,
+-- but their content is ignored. On exit the routine stores a resultant
+-- nxm matrix A' in these arrays in storage-by-rows format. Note that
+-- if the parameter A_val is NULL, the array AT_val is not used.
+--
+-- The routine transpose has a side effect that elements in rows of the
+-- resultant matrix A' follow in ascending their column indices. */
+
+void transpose(int m, int n, int A_ptr[], int A_ind[], double A_val[],
+ int AT_ptr[], int AT_ind[], double AT_val[])
+{ int i, j, t, beg, end, pos, len;
+ /* determine row lengths of resultant matrix */
+ for (j = 1; j <= n; j++) AT_ptr[j] = 0;
+ for (i = 1; i <= m; i++)
+ { beg = A_ptr[i], end = A_ptr[i+1];
+ for (t = beg; t < end; t++) AT_ptr[A_ind[t]]++;
+ }
+ /* set up row pointers of resultant matrix */
+ pos = 1;
+ for (j = 1; j <= n; j++)
+ len = AT_ptr[j], pos += len, AT_ptr[j] = pos;
+ AT_ptr[n+1] = pos;
+ /* build resultant matrix */
+ for (i = m; i >= 1; i--)
+ { beg = A_ptr[i], end = A_ptr[i+1];
+ for (t = beg; t < end; t++)
+ { pos = --AT_ptr[A_ind[t]];
+ AT_ind[pos] = i;
+ if (A_val != NULL) AT_val[pos] = A_val[t];
+ }
+ }
+ return;
+}
+
+/*----------------------------------------------------------------------
+-- adat_symbolic - compute S = P*A*D*A'*P' (symbolic phase).
+--
+-- *Synopsis*
+--
+-- #include "glpmat.h"
+-- int *adat_symbolic(int m, int n, int P_per[], int A_ptr[],
+-- int A_ind[], int S_ptr[]);
+--
+-- *Description*
+--
+-- The routine adat_symbolic implements the symbolic phase to compute
+-- symmetric matrix S = P*A*D*A'*P', where P is a permutation matrix,
+-- A is a given sparse matrix, D is a diagonal matrix, A' is a matrix
+-- transposed to A, P' is an inverse of P.
+--
+-- The parameter m is the number of rows in A and the order of P.
+--
+-- The parameter n is the number of columns in A and the order of D.
+--
+-- The array P_per specifies permutation matrix P. It is not changed on
+-- exit.
+--
+-- The arrays A_ptr and A_ind specify the pattern of matrix A. They are
+-- not changed on exit.
+--
+-- On exit the routine stores the pattern of upper triangular part of
+-- matrix S without diagonal elements in the arrays S_ptr and S_ind in
+-- storage-by-rows format. The array S_ptr should be allocated on entry,
+-- however, its content is ignored. The array S_ind is allocated by the
+-- routine itself which returns a pointer to it.
+--
+-- *Returns*
+--
+-- The routine returns a pointer to the array S_ind. */
+
+int *adat_symbolic(int m, int n, int P_per[], int A_ptr[], int A_ind[],
+ int S_ptr[])
+{ int i, j, t, ii, jj, tt, k, size, len;
+ int *S_ind, *AT_ptr, *AT_ind, *ind, *map, *temp;
+ /* build the pattern of A', which is a matrix transposed to A, to
+ efficiently access A in column-wise manner */
+ AT_ptr = xcalloc(1+n+1, sizeof(int));
+ AT_ind = xcalloc(A_ptr[m+1], sizeof(int));
+ transpose(m, n, A_ptr, A_ind, NULL, AT_ptr, AT_ind, NULL);
+ /* allocate the array S_ind */
+ size = A_ptr[m+1] - 1;
+ if (size < m) size = m;
+ S_ind = xcalloc(1+size, sizeof(int));
+ /* allocate and initialize working arrays */
+ ind = xcalloc(1+m, sizeof(int));
+ map = xcalloc(1+m, sizeof(int));
+ for (jj = 1; jj <= m; jj++) map[jj] = 0;
+ /* compute pattern of S; note that symbolically S = B*B', where
+ B = P*A, B' is matrix transposed to B */
+ S_ptr[1] = 1;
+ for (ii = 1; ii <= m; ii++)
+ { /* compute pattern of ii-th row of S */
+ len = 0;
+ i = P_per[ii]; /* i-th row of A = ii-th row of B */
+ for (t = A_ptr[i]; t < A_ptr[i+1]; t++)
+ { k = A_ind[t];
+ /* walk through k-th column of A */
+ for (tt = AT_ptr[k]; tt < AT_ptr[k+1]; tt++)
+ { j = AT_ind[tt];
+ jj = P_per[m+j]; /* j-th row of A = jj-th row of B */
+ /* a[i,k] != 0 and a[j,k] != 0 ergo s[ii,jj] != 0 */
+ if (ii < jj && !map[jj]) ind[++len] = jj, map[jj] = 1;
+ }
+ }
+ /* now (ind) is pattern of ii-th row of S */
+ S_ptr[ii+1] = S_ptr[ii] + len;
+ /* at least (S_ptr[ii+1] - 1) locations should be available in
+ the array S_ind */
+ if (S_ptr[ii+1] - 1 > size)
+ { temp = S_ind;
+ size += size;
+ S_ind = xcalloc(1+size, sizeof(int));
+ memcpy(&S_ind[1], &temp[1], (S_ptr[ii] - 1) * sizeof(int));
+ xfree(temp);
+ }
+ xassert(S_ptr[ii+1] - 1 <= size);
+ /* (ii-th row of S) := (ind) */
+ memcpy(&S_ind[S_ptr[ii]], &ind[1], len * sizeof(int));
+ /* clear the row pattern map */
+ for (t = 1; t <= len; t++) map[ind[t]] = 0;
+ }
+ /* free working arrays */
+ xfree(AT_ptr);
+ xfree(AT_ind);
+ xfree(ind);
+ xfree(map);
+ /* reallocate the array S_ind to free unused locations */
+ temp = S_ind;
+ size = S_ptr[m+1] - 1;
+ S_ind = xcalloc(1+size, sizeof(int));
+ memcpy(&S_ind[1], &temp[1], size * sizeof(int));
+ xfree(temp);
+ return S_ind;
+}
+
+/*----------------------------------------------------------------------
+-- adat_numeric - compute S = P*A*D*A'*P' (numeric phase).
+--
+-- *Synopsis*
+--
+-- #include "glpmat.h"
+-- void adat_numeric(int m, int n, int P_per[],
+-- int A_ptr[], int A_ind[], double A_val[], double D_diag[],
+-- int S_ptr[], int S_ind[], double S_val[], double S_diag[]);
+--
+-- *Description*
+--
+-- The routine adat_numeric implements the numeric phase to compute
+-- symmetric matrix S = P*A*D*A'*P', where P is a permutation matrix,
+-- A is a given sparse matrix, D is a diagonal matrix, A' is a matrix
+-- transposed to A, P' is an inverse of P.
+--
+-- The parameter m is the number of rows in A and the order of P.
+--
+-- The parameter n is the number of columns in A and the order of D.
+--
+-- The matrix P is specified in the array P_per, which is not changed
+-- on exit.
+--
+-- The matrix A is specified in the arrays A_ptr, A_ind, and A_val in
+-- storage-by-rows format. These arrays are not changed on exit.
+--
+-- Diagonal elements of the matrix D are specified in the array D_diag,
+-- where D_diag[0] is not used, D_diag[i] = d[i,i] for i = 1, ..., n.
+-- The array D_diag is not changed on exit.
+--
+-- The pattern of the upper triangular part of the matrix S without
+-- diagonal elements (previously computed by the routine adat_symbolic)
+-- is specified in the arrays S_ptr and S_ind, which are not changed on
+-- exit. Numeric values of non-diagonal elements of S are stored in
+-- corresponding locations of the array S_val, and values of diagonal
+-- elements of S are stored in locations S_diag[1], ..., S_diag[n]. */
+
+void adat_numeric(int m, int n, int P_per[],
+ int A_ptr[], int A_ind[], double A_val[], double D_diag[],
+ int S_ptr[], int S_ind[], double S_val[], double S_diag[])
+{ int i, j, t, ii, jj, tt, beg, end, beg1, end1, k;
+ double sum, *work;
+ work = xcalloc(1+n, sizeof(double));
+ for (j = 1; j <= n; j++) work[j] = 0.0;
+ /* compute S = B*D*B', where B = P*A, B' is a matrix transposed
+ to B */
+ for (ii = 1; ii <= m; ii++)
+ { i = P_per[ii]; /* i-th row of A = ii-th row of B */
+ /* (work) := (i-th row of A) */
+ beg = A_ptr[i], end = A_ptr[i+1];
+ for (t = beg; t < end; t++)
+ work[A_ind[t]] = A_val[t];
+ /* compute ii-th row of S */
+ beg = S_ptr[ii], end = S_ptr[ii+1];
+ for (t = beg; t < end; t++)
+ { jj = S_ind[t];
+ j = P_per[jj]; /* j-th row of A = jj-th row of B */
+ /* s[ii,jj] := sum a[i,k] * d[k,k] * a[j,k] */
+ sum = 0.0;
+ beg1 = A_ptr[j], end1 = A_ptr[j+1];
+ for (tt = beg1; tt < end1; tt++)
+ { k = A_ind[tt];
+ sum += work[k] * D_diag[k] * A_val[tt];
+ }
+ S_val[t] = sum;
+ }
+ /* s[ii,ii] := sum a[i,k] * d[k,k] * a[i,k] */
+ sum = 0.0;
+ beg = A_ptr[i], end = A_ptr[i+1];
+ for (t = beg; t < end; t++)
+ { k = A_ind[t];
+ sum += A_val[t] * D_diag[k] * A_val[t];
+ work[k] = 0.0;
+ }
+ S_diag[ii] = sum;
+ }
+ xfree(work);
+ return;
+}
+
+/*----------------------------------------------------------------------
+-- min_degree - minimum degree ordering.
+--
+-- *Synopsis*
+--
+-- #include "glpmat.h"
+-- void min_degree(int n, int A_ptr[], int A_ind[], int P_per[]);
+--
+-- *Description*
+--
+-- The routine min_degree uses the minimum degree ordering algorithm
+-- to find a permutation matrix P for a given sparse symmetric positive
+-- matrix A which minimizes the number of non-zeros in upper triangular
+-- factor U for Cholesky factorization P*A*P' = U'*U.
+--
+-- The parameter n is the order of matrices A and P.
+--
+-- The pattern of the given matrix A is specified on entry in the arrays
+-- A_ptr and A_ind in storage-by-rows format. Only the upper triangular
+-- part without diagonal elements (which all are assumed to be non-zero)
+-- should be specified as if A were upper triangular. The arrays A_ptr
+-- and A_ind are not changed on exit.
+--
+-- The permutation matrix P is stored by the routine in the array P_per
+-- on exit.
+--
+-- *Algorithm*
+--
+-- The routine min_degree is based on some subroutines from the package
+-- SPARSPAK (see comments in the module glpqmd). */
+
+void min_degree(int n, int A_ptr[], int A_ind[], int P_per[])
+{ int i, j, ne, t, pos, len;
+ int *xadj, *adjncy, *deg, *marker, *rchset, *nbrhd, *qsize,
+ *qlink, nofsub;
+ /* determine number of non-zeros in complete pattern */
+ ne = A_ptr[n+1] - 1;
+ ne += ne;
+ /* allocate working arrays */
+ xadj = xcalloc(1+n+1, sizeof(int));
+ adjncy = xcalloc(1+ne, sizeof(int));
+ deg = xcalloc(1+n, sizeof(int));
+ marker = xcalloc(1+n, sizeof(int));
+ rchset = xcalloc(1+n, sizeof(int));
+ nbrhd = xcalloc(1+n, sizeof(int));
+ qsize = xcalloc(1+n, sizeof(int));
+ qlink = xcalloc(1+n, sizeof(int));
+ /* determine row lengths in complete pattern */
+ for (i = 1; i <= n; i++) xadj[i] = 0;
+ for (i = 1; i <= n; i++)
+ { for (t = A_ptr[i]; t < A_ptr[i+1]; t++)
+ { j = A_ind[t];
+ xassert(i < j && j <= n);
+ xadj[i]++, xadj[j]++;
+ }
+ }
+ /* set up row pointers for complete pattern */
+ pos = 1;
+ for (i = 1; i <= n; i++)
+ len = xadj[i], pos += len, xadj[i] = pos;
+ xadj[n+1] = pos;
+ xassert(pos - 1 == ne);
+ /* construct complete pattern */
+ for (i = 1; i <= n; i++)
+ { for (t = A_ptr[i]; t < A_ptr[i+1]; t++)
+ { j = A_ind[t];
+ adjncy[--xadj[i]] = j, adjncy[--xadj[j]] = i;
+ }
+ }
+ /* call the main minimimum degree ordering routine */
+ genqmd(&n, xadj, adjncy, P_per, P_per + n, deg, marker, rchset,
+ nbrhd, qsize, qlink, &nofsub);
+ /* make sure that permutation matrix P is correct */
+ for (i = 1; i <= n; i++)
+ { j = P_per[i];
+ xassert(1 <= j && j <= n);
+ xassert(P_per[n+j] == i);
+ }
+ /* free working arrays */
+ xfree(xadj);
+ xfree(adjncy);
+ xfree(deg);
+ xfree(marker);
+ xfree(rchset);
+ xfree(nbrhd);
+ xfree(qsize);
+ xfree(qlink);
+ return;
+}
+
+/**********************************************************************/
+
+void amd_order1(int n, int A_ptr[], int A_ind[], int P_per[])
+{ /* approximate minimum degree ordering (AMD) */
+ int k, ret;
+ double Control[AMD_CONTROL], Info[AMD_INFO];
+ /* get the default parameters */
+ amd_defaults(Control);
+#if 0
+ /* and print them */
+ amd_control(Control);
+#endif
+ /* make all indices 0-based */
+ for (k = 1; k < A_ptr[n+1]; k++) A_ind[k]--;
+ for (k = 1; k <= n+1; k++) A_ptr[k]--;
+ /* call the ordering routine */
+ ret = amd_order(n, &A_ptr[1], &A_ind[1], &P_per[1], Control, Info)
+ ;
+#if 0
+ amd_info(Info);
+#endif
+ xassert(ret == AMD_OK || ret == AMD_OK_BUT_JUMBLED);
+ /* retsore 1-based indices */
+ for (k = 1; k <= n+1; k++) A_ptr[k]++;
+ for (k = 1; k < A_ptr[n+1]; k++) A_ind[k]++;
+ /* patch up permutation matrix */
+ memset(&P_per[n+1], 0, n * sizeof(int));
+ for (k = 1; k <= n; k++)
+ { P_per[k]++;
+ xassert(1 <= P_per[k] && P_per[k] <= n);
+ xassert(P_per[n+P_per[k]] == 0);
+ P_per[n+P_per[k]] = k;
+ }
+ return;
+}
+
+/**********************************************************************/
+
+static void *allocate(size_t n, size_t size)
+{ void *ptr;
+ ptr = xcalloc(n, size);
+ memset(ptr, 0, n * size);
+ return ptr;
+}
+
+static void release(void *ptr)
+{ xfree(ptr);
+ return;
+}
+
+void symamd_ord(int n, int A_ptr[], int A_ind[], int P_per[])
+{ /* approximate minimum degree ordering (SYMAMD) */
+ int k, ok;
+ int stats[COLAMD_STATS];
+ /* make all indices 0-based */
+ for (k = 1; k < A_ptr[n+1]; k++) A_ind[k]--;
+ for (k = 1; k <= n+1; k++) A_ptr[k]--;
+ /* call the ordering routine */
+ ok = symamd(n, &A_ind[1], &A_ptr[1], &P_per[1], NULL, stats,
+ allocate, release);
+#if 0
+ symamd_report(stats);
+#endif
+ xassert(ok);
+ /* restore 1-based indices */
+ for (k = 1; k <= n+1; k++) A_ptr[k]++;
+ for (k = 1; k < A_ptr[n+1]; k++) A_ind[k]++;
+ /* patch up permutation matrix */
+ memset(&P_per[n+1], 0, n * sizeof(int));
+ for (k = 1; k <= n; k++)
+ { P_per[k]++;
+ xassert(1 <= P_per[k] && P_per[k] <= n);
+ xassert(P_per[n+P_per[k]] == 0);
+ P_per[n+P_per[k]] = k;
+ }
+ return;
+}
+
+/*----------------------------------------------------------------------
+-- chol_symbolic - compute Cholesky factorization (symbolic phase).
+--
+-- *Synopsis*
+--
+-- #include "glpmat.h"
+-- int *chol_symbolic(int n, int A_ptr[], int A_ind[], int U_ptr[]);
+--
+-- *Description*
+--
+-- The routine chol_symbolic implements the symbolic phase of Cholesky
+-- factorization A = U'*U, where A is a given sparse symmetric positive
+-- definite matrix, U is a resultant upper triangular factor, U' is a
+-- matrix transposed to U.
+--
+-- The parameter n is the order of matrices A and U.
+--
+-- The pattern of the given matrix A is specified on entry in the arrays
+-- A_ptr and A_ind in storage-by-rows format. Only the upper triangular
+-- part without diagonal elements (which all are assumed to be non-zero)
+-- should be specified as if A were upper triangular. The arrays A_ptr
+-- and A_ind are not changed on exit.
+--
+-- The pattern of the matrix U without diagonal elements (which all are
+-- assumed to be non-zero) is stored on exit from the routine in the
+-- arrays U_ptr and U_ind in storage-by-rows format. The array U_ptr
+-- should be allocated on entry, however, its content is ignored. The
+-- array U_ind is allocated by the routine which returns a pointer to it
+-- on exit.
+--
+-- *Returns*
+--
+-- The routine returns a pointer to the array U_ind.
+--
+-- *Method*
+--
+-- The routine chol_symbolic computes the pattern of the matrix U in a
+-- row-wise manner. No pivoting is used.
+--
+-- It is known that to compute the pattern of row k of the matrix U we
+-- need to merge the pattern of row k of the matrix A and the patterns
+-- of each row i of U, where u[i,k] is non-zero (these rows are already
+-- computed and placed above row k).
+--
+-- However, to reduce the number of rows to be merged the routine uses
+-- an advanced algorithm proposed in:
+--
+-- D.J.Rose, R.E.Tarjan, and G.S.Lueker. Algorithmic aspects of vertex
+-- elimination on graphs. SIAM J. Comput. 5, 1976, 266-83.
+--
+-- The authors of the cited paper show that we have the same result if
+-- we merge row k of the matrix A and such rows of the matrix U (among
+-- rows 1, ..., k-1) whose leftmost non-diagonal non-zero element is
+-- placed in k-th column. This feature signficantly reduces the number
+-- of rows to be merged, especially on the final steps, where rows of
+-- the matrix U become quite dense.
+--
+-- To determine rows, which should be merged on k-th step, for a fixed
+-- time the routine uses linked lists of row numbers of the matrix U.
+-- Location head[k] contains the number of a first row, whose leftmost
+-- non-diagonal non-zero element is placed in column k, and location
+-- next[i] contains the number of a next row with the same property as
+-- row i. */
+
+int *chol_symbolic(int n, int A_ptr[], int A_ind[], int U_ptr[])
+{ int i, j, k, t, len, size, beg, end, min_j, *U_ind, *head, *next,
+ *ind, *map, *temp;
+ /* initially we assume that on computing the pattern of U fill-in
+ will double the number of non-zeros in A */
+ size = A_ptr[n+1] - 1;
+ if (size < n) size = n;
+ size += size;
+ U_ind = xcalloc(1+size, sizeof(int));
+ /* allocate and initialize working arrays */
+ head = xcalloc(1+n, sizeof(int));
+ for (i = 1; i <= n; i++) head[i] = 0;
+ next = xcalloc(1+n, sizeof(int));
+ ind = xcalloc(1+n, sizeof(int));
+ map = xcalloc(1+n, sizeof(int));
+ for (j = 1; j <= n; j++) map[j] = 0;
+ /* compute the pattern of matrix U */
+ U_ptr[1] = 1;
+ for (k = 1; k <= n; k++)
+ { /* compute the pattern of k-th row of U, which is the union of
+ k-th row of A and those rows of U (among 1, ..., k-1) whose
+ leftmost non-diagonal non-zero is placed in k-th column */
+ /* (ind) := (k-th row of A) */
+ len = A_ptr[k+1] - A_ptr[k];
+ memcpy(&ind[1], &A_ind[A_ptr[k]], len * sizeof(int));
+ for (t = 1; t <= len; t++)
+ { j = ind[t];
+ xassert(k < j && j <= n);
+ map[j] = 1;
+ }
+ /* walk through rows of U whose leftmost non-diagonal non-zero
+ is placed in k-th column */
+ for (i = head[k]; i != 0; i = next[i])
+ { /* (ind) := (ind) union (i-th row of U) */
+ beg = U_ptr[i], end = U_ptr[i+1];
+ for (t = beg; t < end; t++)
+ { j = U_ind[t];
+ if (j > k && !map[j]) ind[++len] = j, map[j] = 1;
+ }
+ }
+ /* now (ind) is the pattern of k-th row of U */
+ U_ptr[k+1] = U_ptr[k] + len;
+ /* at least (U_ptr[k+1] - 1) locations should be available in
+ the array U_ind */
+ if (U_ptr[k+1] - 1 > size)
+ { temp = U_ind;
+ size += size;
+ U_ind = xcalloc(1+size, sizeof(int));
+ memcpy(&U_ind[1], &temp[1], (U_ptr[k] - 1) * sizeof(int));
+ xfree(temp);
+ }
+ xassert(U_ptr[k+1] - 1 <= size);
+ /* (k-th row of U) := (ind) */
+ memcpy(&U_ind[U_ptr[k]], &ind[1], len * sizeof(int));
+ /* determine column index of leftmost non-diagonal non-zero in
+ k-th row of U and clear the row pattern map */
+ min_j = n + 1;
+ for (t = 1; t <= len; t++)
+ { j = ind[t], map[j] = 0;
+ if (min_j > j) min_j = j;
+ }
+ /* include k-th row into corresponding linked list */
+ if (min_j <= n) next[k] = head[min_j], head[min_j] = k;
+ }
+ /* free working arrays */
+ xfree(head);
+ xfree(next);
+ xfree(ind);
+ xfree(map);
+ /* reallocate the array U_ind to free unused locations */
+ temp = U_ind;
+ size = U_ptr[n+1] - 1;
+ U_ind = xcalloc(1+size, sizeof(int));
+ memcpy(&U_ind[1], &temp[1], size * sizeof(int));
+ xfree(temp);
+ return U_ind;
+}
+
+/*----------------------------------------------------------------------
+-- chol_numeric - compute Cholesky factorization (numeric phase).
+--
+-- *Synopsis*
+--
+-- #include "glpmat.h"
+-- int chol_numeric(int n,
+-- int A_ptr[], int A_ind[], double A_val[], double A_diag[],
+-- int U_ptr[], int U_ind[], double U_val[], double U_diag[]);
+--
+-- *Description*
+--
+-- The routine chol_symbolic implements the numeric phase of Cholesky
+-- factorization A = U'*U, where A is a given sparse symmetric positive
+-- definite matrix, U is a resultant upper triangular factor, U' is a
+-- matrix transposed to U.
+--
+-- The parameter n is the order of matrices A and U.
+--
+-- Upper triangular part of the matrix A without diagonal elements is
+-- specified in the arrays A_ptr, A_ind, and A_val in storage-by-rows
+-- format. Diagonal elements of A are specified in the array A_diag,
+-- where A_diag[0] is not used, A_diag[i] = a[i,i] for i = 1, ..., n.
+-- The arrays A_ptr, A_ind, A_val, and A_diag are not changed on exit.
+--
+-- The pattern of the matrix U without diagonal elements (previously
+-- computed with the routine chol_symbolic) is specified in the arrays
+-- U_ptr and U_ind, which are not changed on exit. Numeric values of
+-- non-diagonal elements of U are stored in corresponding locations of
+-- the array U_val, and values of diagonal elements of U are stored in
+-- locations U_diag[1], ..., U_diag[n].
+--
+-- *Returns*
+--
+-- The routine returns the number of non-positive diagonal elements of
+-- the matrix U which have been replaced by a huge positive number (see
+-- the method description below). Zero return code means the matrix A
+-- has been successfully factorized.
+--
+-- *Method*
+--
+-- The routine chol_numeric computes the matrix U in a row-wise manner
+-- using standard gaussian elimination technique. No pivoting is used.
+--
+-- Initially the routine sets U = A, and before k-th elimination step
+-- the matrix U is the following:
+--
+-- 1 k n
+-- 1 x x x x x x x x x x
+-- . x x x x x x x x x
+-- . . x x x x x x x x
+-- . . . x x x x x x x
+-- k . . . . * * * * * *
+-- . . . . * * * * * *
+-- . . . . * * * * * *
+-- . . . . * * * * * *
+-- . . . . * * * * * *
+-- n . . . . * * * * * *
+--
+-- where 'x' are elements of already computed rows, '*' are elements of
+-- the active submatrix. (Note that the lower triangular part of the
+-- active submatrix being symmetric is not stored and diagonal elements
+-- are stored separately in the array U_diag.)
+--
+-- The matrix A is assumed to be positive definite. However, if it is
+-- close to semi-definite, on some elimination step a pivot u[k,k] may
+-- happen to be non-positive due to round-off errors. In this case the
+-- routine uses a technique proposed in:
+--
+-- S.J.Wright. The Cholesky factorization in interior-point and barrier
+-- methods. Preprint MCS-P600-0596, Mathematics and Computer Science
+-- Division, Argonne National Laboratory, Argonne, Ill., May 1996.
+--
+-- The routine just replaces non-positive u[k,k] by a huge positive
+-- number. This involves non-diagonal elements in k-th row of U to be
+-- close to zero that, in turn, involves k-th component of a solution
+-- vector to be close to zero. Note, however, that this technique works
+-- only if the system A*x = b is consistent. */
+
+int chol_numeric(int n,
+ int A_ptr[], int A_ind[], double A_val[], double A_diag[],
+ int U_ptr[], int U_ind[], double U_val[], double U_diag[])
+{ int i, j, k, t, t1, beg, end, beg1, end1, count = 0;
+ double ukk, uki, *work;
+ work = xcalloc(1+n, sizeof(double));
+ for (j = 1; j <= n; j++) work[j] = 0.0;
+ /* U := (upper triangle of A) */
+ /* note that the upper traingle of A is a subset of U */
+ for (i = 1; i <= n; i++)
+ { beg = A_ptr[i], end = A_ptr[i+1];
+ for (t = beg; t < end; t++)
+ j = A_ind[t], work[j] = A_val[t];
+ beg = U_ptr[i], end = U_ptr[i+1];
+ for (t = beg; t < end; t++)
+ j = U_ind[t], U_val[t] = work[j], work[j] = 0.0;
+ U_diag[i] = A_diag[i];
+ }
+ /* main elimination loop */
+ for (k = 1; k <= n; k++)
+ { /* transform k-th row of U */
+ ukk = U_diag[k];
+ if (ukk > 0.0)
+ U_diag[k] = ukk = sqrt(ukk);
+ else
+ U_diag[k] = ukk = DBL_MAX, count++;
+ /* (work) := (transformed k-th row) */
+ beg = U_ptr[k], end = U_ptr[k+1];
+ for (t = beg; t < end; t++)
+ work[U_ind[t]] = (U_val[t] /= ukk);
+ /* transform other rows of U */
+ for (t = beg; t < end; t++)
+ { i = U_ind[t];
+ xassert(i > k);
+ /* (i-th row) := (i-th row) - u[k,i] * (k-th row) */
+ uki = work[i];
+ beg1 = U_ptr[i], end1 = U_ptr[i+1];
+ for (t1 = beg1; t1 < end1; t1++)
+ U_val[t1] -= uki * work[U_ind[t1]];
+ U_diag[i] -= uki * uki;
+ }
+ /* (work) := 0 */
+ for (t = beg; t < end; t++)
+ work[U_ind[t]] = 0.0;
+ }
+ xfree(work);
+ return count;
+}
+
+/*----------------------------------------------------------------------
+-- u_solve - solve upper triangular system U*x = b.
+--
+-- *Synopsis*
+--
+-- #include "glpmat.h"
+-- void u_solve(int n, int U_ptr[], int U_ind[], double U_val[],
+-- double U_diag[], double x[]);
+--
+-- *Description*
+--
+-- The routine u_solve solves an linear system U*x = b, where U is an
+-- upper triangular matrix.
+--
+-- The parameter n is the order of matrix U.
+--
+-- The matrix U without diagonal elements is specified in the arrays
+-- U_ptr, U_ind, and U_val in storage-by-rows format. Diagonal elements
+-- of U are specified in the array U_diag, where U_diag[0] is not used,
+-- U_diag[i] = u[i,i] for i = 1, ..., n. All these four arrays are not
+-- changed on exit.
+--
+-- The right-hand side vector b is specified on entry in the array x,
+-- where x[0] is not used, and x[i] = b[i] for i = 1, ..., n. On exit
+-- the routine stores computed components of the vector of unknowns x
+-- in the array x in the same manner. */
+
+void u_solve(int n, int U_ptr[], int U_ind[], double U_val[],
+ double U_diag[], double x[])
+{ int i, t, beg, end;
+ double temp;
+ for (i = n; i >= 1; i--)
+ { temp = x[i];
+ beg = U_ptr[i], end = U_ptr[i+1];
+ for (t = beg; t < end; t++)
+ temp -= U_val[t] * x[U_ind[t]];
+ xassert(U_diag[i] != 0.0);
+ x[i] = temp / U_diag[i];
+ }
+ return;
+}
+
+/*----------------------------------------------------------------------
+-- ut_solve - solve lower triangular system U'*x = b.
+--
+-- *Synopsis*
+--
+-- #include "glpmat.h"
+-- void ut_solve(int n, int U_ptr[], int U_ind[], double U_val[],
+-- double U_diag[], double x[]);
+--
+-- *Description*
+--
+-- The routine ut_solve solves an linear system U'*x = b, where U is a
+-- matrix transposed to an upper triangular matrix.
+--
+-- The parameter n is the order of matrix U.
+--
+-- The matrix U without diagonal elements is specified in the arrays
+-- U_ptr, U_ind, and U_val in storage-by-rows format. Diagonal elements
+-- of U are specified in the array U_diag, where U_diag[0] is not used,
+-- U_diag[i] = u[i,i] for i = 1, ..., n. All these four arrays are not
+-- changed on exit.
+--
+-- The right-hand side vector b is specified on entry in the array x,
+-- where x[0] is not used, and x[i] = b[i] for i = 1, ..., n. On exit
+-- the routine stores computed components of the vector of unknowns x
+-- in the array x in the same manner. */
+
+void ut_solve(int n, int U_ptr[], int U_ind[], double U_val[],
+ double U_diag[], double x[])
+{ int i, t, beg, end;
+ double temp;
+ for (i = 1; i <= n; i++)
+ { xassert(U_diag[i] != 0.0);
+ temp = (x[i] /= U_diag[i]);
+ if (temp == 0.0) continue;
+ beg = U_ptr[i], end = U_ptr[i+1];
+ for (t = beg; t < end; t++)
+ x[U_ind[t]] -= U_val[t] * temp;
+ }
+ return;
+}
+
+/* eof */