aboutsummaryrefslogtreecommitdiffstats
path: root/test/monniaux/glpk-4.65/src/draft/lux.c
diff options
context:
space:
mode:
Diffstat (limited to 'test/monniaux/glpk-4.65/src/draft/lux.c')
-rw-r--r--test/monniaux/glpk-4.65/src/draft/lux.c1030
1 files changed, 1030 insertions, 0 deletions
diff --git a/test/monniaux/glpk-4.65/src/draft/lux.c b/test/monniaux/glpk-4.65/src/draft/lux.c
new file mode 100644
index 00000000..38cb758c
--- /dev/null
+++ b/test/monniaux/glpk-4.65/src/draft/lux.c
@@ -0,0 +1,1030 @@
+/* lux.c (LU-factorization, rational arithmetic) */
+
+/***********************************************************************
+* This code is part of GLPK (GNU Linear Programming Kit).
+*
+* Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
+* 2009, 2010, 2011, 2013 Andrew Makhorin, Department for Applied
+* Informatics, Moscow Aviation Institute, Moscow, Russia. All rights
+* reserved. E-mail: <mao@gnu.org>.
+*
+* GLPK is free software: you can redistribute it and/or modify it
+* under the terms of the GNU General Public License as published by
+* the Free Software Foundation, either version 3 of the License, or
+* (at your option) any later version.
+*
+* GLPK is distributed in the hope that it will be useful, but WITHOUT
+* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
+* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
+* License for more details.
+*
+* You should have received a copy of the GNU General Public License
+* along with GLPK. If not, see <http://www.gnu.org/licenses/>.
+***********************************************************************/
+
+#include "env.h"
+#include "lux.h"
+
+#define xfault xerror
+#define dmp_create_poolx(size) dmp_create_pool()
+
+/***********************************************************************
+* lux_create - create LU-factorization
+*
+* SYNOPSIS
+*
+* #include "lux.h"
+* LUX *lux_create(int n);
+*
+* DESCRIPTION
+*
+* The routine lux_create creates LU-factorization data structure for
+* a matrix of the order n. Initially the factorization corresponds to
+* the unity matrix (F = V = P = Q = I, so A = I).
+*
+* RETURNS
+*
+* The routine returns a pointer to the created LU-factorization data
+* structure, which represents the unity matrix of the order n. */
+
+LUX *lux_create(int n)
+{ LUX *lux;
+ int k;
+ if (n < 1)
+ xfault("lux_create: n = %d; invalid parameter\n", n);
+ lux = xmalloc(sizeof(LUX));
+ lux->n = n;
+ lux->pool = dmp_create_poolx(sizeof(LUXELM));
+ lux->F_row = xcalloc(1+n, sizeof(LUXELM *));
+ lux->F_col = xcalloc(1+n, sizeof(LUXELM *));
+ lux->V_piv = xcalloc(1+n, sizeof(mpq_t));
+ lux->V_row = xcalloc(1+n, sizeof(LUXELM *));
+ lux->V_col = xcalloc(1+n, sizeof(LUXELM *));
+ lux->P_row = xcalloc(1+n, sizeof(int));
+ lux->P_col = xcalloc(1+n, sizeof(int));
+ lux->Q_row = xcalloc(1+n, sizeof(int));
+ lux->Q_col = xcalloc(1+n, sizeof(int));
+ for (k = 1; k <= n; k++)
+ { lux->F_row[k] = lux->F_col[k] = NULL;
+ mpq_init(lux->V_piv[k]);
+ mpq_set_si(lux->V_piv[k], 1, 1);
+ lux->V_row[k] = lux->V_col[k] = NULL;
+ lux->P_row[k] = lux->P_col[k] = k;
+ lux->Q_row[k] = lux->Q_col[k] = k;
+ }
+ lux->rank = n;
+ return lux;
+}
+
+/***********************************************************************
+* initialize - initialize LU-factorization data structures
+*
+* This routine initializes data structures for subsequent computing
+* the LU-factorization of a given matrix A, which is specified by the
+* formal routine col. On exit V = A and F = P = Q = I, where I is the
+* unity matrix. */
+
+static void initialize(LUX *lux, int (*col)(void *info, int j,
+ int ind[], mpq_t val[]), void *info, LUXWKA *wka)
+{ int n = lux->n;
+ DMP *pool = lux->pool;
+ LUXELM **F_row = lux->F_row;
+ LUXELM **F_col = lux->F_col;
+ mpq_t *V_piv = lux->V_piv;
+ LUXELM **V_row = lux->V_row;
+ LUXELM **V_col = lux->V_col;
+ int *P_row = lux->P_row;
+ int *P_col = lux->P_col;
+ int *Q_row = lux->Q_row;
+ int *Q_col = lux->Q_col;
+ int *R_len = wka->R_len;
+ int *R_head = wka->R_head;
+ int *R_prev = wka->R_prev;
+ int *R_next = wka->R_next;
+ int *C_len = wka->C_len;
+ int *C_head = wka->C_head;
+ int *C_prev = wka->C_prev;
+ int *C_next = wka->C_next;
+ LUXELM *fij, *vij;
+ int i, j, k, len, *ind;
+ mpq_t *val;
+ /* F := I */
+ for (i = 1; i <= n; i++)
+ { while (F_row[i] != NULL)
+ { fij = F_row[i], F_row[i] = fij->r_next;
+ mpq_clear(fij->val);
+ dmp_free_atom(pool, fij, sizeof(LUXELM));
+ }
+ }
+ for (j = 1; j <= n; j++) F_col[j] = NULL;
+ /* V := 0 */
+ for (k = 1; k <= n; k++) mpq_set_si(V_piv[k], 0, 1);
+ for (i = 1; i <= n; i++)
+ { while (V_row[i] != NULL)
+ { vij = V_row[i], V_row[i] = vij->r_next;
+ mpq_clear(vij->val);
+ dmp_free_atom(pool, vij, sizeof(LUXELM));
+ }
+ }
+ for (j = 1; j <= n; j++) V_col[j] = NULL;
+ /* V := A */
+ ind = xcalloc(1+n, sizeof(int));
+ val = xcalloc(1+n, sizeof(mpq_t));
+ for (k = 1; k <= n; k++) mpq_init(val[k]);
+ for (j = 1; j <= n; j++)
+ { /* obtain j-th column of matrix A */
+ len = col(info, j, ind, val);
+ if (!(0 <= len && len <= n))
+ xfault("lux_decomp: j = %d: len = %d; invalid column length"
+ "\n", j, len);
+ /* copy elements of j-th column to matrix V */
+ for (k = 1; k <= len; k++)
+ { /* get row index of a[i,j] */
+ i = ind[k];
+ if (!(1 <= i && i <= n))
+ xfault("lux_decomp: j = %d: i = %d; row index out of ran"
+ "ge\n", j, i);
+ /* check for duplicate indices */
+ if (V_row[i] != NULL && V_row[i]->j == j)
+ xfault("lux_decomp: j = %d: i = %d; duplicate row indice"
+ "s not allowed\n", j, i);
+ /* check for zero value */
+ if (mpq_sgn(val[k]) == 0)
+ xfault("lux_decomp: j = %d: i = %d; zero elements not al"
+ "lowed\n", j, i);
+ /* add new element v[i,j] = a[i,j] to V */
+ vij = dmp_get_atom(pool, sizeof(LUXELM));
+ vij->i = i, vij->j = j;
+ mpq_init(vij->val);
+ mpq_set(vij->val, val[k]);
+ vij->r_prev = NULL;
+ vij->r_next = V_row[i];
+ vij->c_prev = NULL;
+ vij->c_next = V_col[j];
+ if (vij->r_next != NULL) vij->r_next->r_prev = vij;
+ if (vij->c_next != NULL) vij->c_next->c_prev = vij;
+ V_row[i] = V_col[j] = vij;
+ }
+ }
+ xfree(ind);
+ for (k = 1; k <= n; k++) mpq_clear(val[k]);
+ xfree(val);
+ /* P := Q := I */
+ for (k = 1; k <= n; k++)
+ P_row[k] = P_col[k] = Q_row[k] = Q_col[k] = k;
+ /* the rank of A and V is not determined yet */
+ lux->rank = -1;
+ /* initially the entire matrix V is active */
+ /* determine its row lengths */
+ for (i = 1; i <= n; i++)
+ { len = 0;
+ for (vij = V_row[i]; vij != NULL; vij = vij->r_next) len++;
+ R_len[i] = len;
+ }
+ /* build linked lists of active rows */
+ for (len = 0; len <= n; len++) R_head[len] = 0;
+ for (i = 1; i <= n; i++)
+ { len = R_len[i];
+ R_prev[i] = 0;
+ R_next[i] = R_head[len];
+ if (R_next[i] != 0) R_prev[R_next[i]] = i;
+ R_head[len] = i;
+ }
+ /* determine its column lengths */
+ for (j = 1; j <= n; j++)
+ { len = 0;
+ for (vij = V_col[j]; vij != NULL; vij = vij->c_next) len++;
+ C_len[j] = len;
+ }
+ /* build linked lists of active columns */
+ for (len = 0; len <= n; len++) C_head[len] = 0;
+ for (j = 1; j <= n; j++)
+ { len = C_len[j];
+ C_prev[j] = 0;
+ C_next[j] = C_head[len];
+ if (C_next[j] != 0) C_prev[C_next[j]] = j;
+ C_head[len] = j;
+ }
+ return;
+}
+
+/***********************************************************************
+* find_pivot - choose a pivot element
+*
+* This routine chooses a pivot element v[p,q] in the active submatrix
+* of matrix U = P*V*Q.
+*
+* It is assumed that on entry the matrix U has the following partially
+* triangularized form:
+*
+* 1 k n
+* 1 x x x x x x x x x x
+* . x x x x x x x x x
+* . . x x x x x x x x
+* . . . x x x x x x x
+* k . . . . * * * * * *
+* . . . . * * * * * *
+* . . . . * * * * * *
+* . . . . * * * * * *
+* . . . . * * * * * *
+* n . . . . * * * * * *
+*
+* where rows and columns k, k+1, ..., n belong to the active submatrix
+* (elements of the active submatrix are marked by '*').
+*
+* Since the matrix U = P*V*Q is not stored, the routine works with the
+* matrix V. It is assumed that the row-wise representation corresponds
+* to the matrix V, but the column-wise representation corresponds to
+* the active submatrix of the matrix V, i.e. elements of the matrix V,
+* which does not belong to the active submatrix, are missing from the
+* column linked lists. It is also assumed that each active row of the
+* matrix V is in the set R[len], where len is number of non-zeros in
+* the row, and each active column of the matrix V is in the set C[len],
+* where len is number of non-zeros in the column (in the latter case
+* only elements of the active submatrix are counted; such elements are
+* marked by '*' on the figure above).
+*
+* Due to exact arithmetic any non-zero element of the active submatrix
+* can be chosen as a pivot. However, to keep sparsity of the matrix V
+* the routine uses Markowitz strategy, trying to choose such element
+* v[p,q], which has smallest Markowitz cost (nr[p]-1) * (nc[q]-1),
+* where nr[p] and nc[q] are the number of non-zero elements, resp., in
+* p-th row and in q-th column of the active submatrix.
+*
+* In order to reduce the search, i.e. not to walk through all elements
+* of the active submatrix, the routine exploits a technique proposed by
+* I.Duff. This technique is based on using the sets R[len] and C[len]
+* of active rows and columns.
+*
+* On exit the routine returns a pointer to a pivot v[p,q] chosen, or
+* NULL, if the active submatrix is empty. */
+
+static LUXELM *find_pivot(LUX *lux, LUXWKA *wka)
+{ int n = lux->n;
+ LUXELM **V_row = lux->V_row;
+ LUXELM **V_col = lux->V_col;
+ int *R_len = wka->R_len;
+ int *R_head = wka->R_head;
+ int *R_next = wka->R_next;
+ int *C_len = wka->C_len;
+ int *C_head = wka->C_head;
+ int *C_next = wka->C_next;
+ LUXELM *piv, *some, *vij;
+ int i, j, len, min_len, ncand, piv_lim = 5;
+ double best, cost;
+ /* nothing is chosen so far */
+ piv = NULL, best = DBL_MAX, ncand = 0;
+ /* if in the active submatrix there is a column that has the only
+ non-zero (column singleton), choose it as a pivot */
+ j = C_head[1];
+ if (j != 0)
+ { xassert(C_len[j] == 1);
+ piv = V_col[j];
+ xassert(piv != NULL && piv->c_next == NULL);
+ goto done;
+ }
+ /* if in the active submatrix there is a row that has the only
+ non-zero (row singleton), choose it as a pivot */
+ i = R_head[1];
+ if (i != 0)
+ { xassert(R_len[i] == 1);
+ piv = V_row[i];
+ xassert(piv != NULL && piv->r_next == NULL);
+ goto done;
+ }
+ /* there are no singletons in the active submatrix; walk through
+ other non-empty rows and columns */
+ for (len = 2; len <= n; len++)
+ { /* consider active columns having len non-zeros */
+ for (j = C_head[len]; j != 0; j = C_next[j])
+ { /* j-th column has len non-zeros */
+ /* find an element in the row of minimal length */
+ some = NULL, min_len = INT_MAX;
+ for (vij = V_col[j]; vij != NULL; vij = vij->c_next)
+ { if (min_len > R_len[vij->i])
+ some = vij, min_len = R_len[vij->i];
+ /* if Markowitz cost of this element is not greater than
+ (len-1)**2, it can be chosen right now; this heuristic
+ reduces the search and works well in many cases */
+ if (min_len <= len)
+ { piv = some;
+ goto done;
+ }
+ }
+ /* j-th column has been scanned */
+ /* the minimal element found is a next pivot candidate */
+ xassert(some != NULL);
+ ncand++;
+ /* compute its Markowitz cost */
+ cost = (double)(min_len - 1) * (double)(len - 1);
+ /* choose between the current candidate and this element */
+ if (cost < best) piv = some, best = cost;
+ /* if piv_lim candidates have been considered, there is a
+ doubt that a much better candidate exists; therefore it
+ is the time to terminate the search */
+ if (ncand == piv_lim) goto done;
+ }
+ /* now consider active rows having len non-zeros */
+ for (i = R_head[len]; i != 0; i = R_next[i])
+ { /* i-th row has len non-zeros */
+ /* find an element in the column of minimal length */
+ some = NULL, min_len = INT_MAX;
+ for (vij = V_row[i]; vij != NULL; vij = vij->r_next)
+ { if (min_len > C_len[vij->j])
+ some = vij, min_len = C_len[vij->j];
+ /* if Markowitz cost of this element is not greater than
+ (len-1)**2, it can be chosen right now; this heuristic
+ reduces the search and works well in many cases */
+ if (min_len <= len)
+ { piv = some;
+ goto done;
+ }
+ }
+ /* i-th row has been scanned */
+ /* the minimal element found is a next pivot candidate */
+ xassert(some != NULL);
+ ncand++;
+ /* compute its Markowitz cost */
+ cost = (double)(len - 1) * (double)(min_len - 1);
+ /* choose between the current candidate and this element */
+ if (cost < best) piv = some, best = cost;
+ /* if piv_lim candidates have been considered, there is a
+ doubt that a much better candidate exists; therefore it
+ is the time to terminate the search */
+ if (ncand == piv_lim) goto done;
+ }
+ }
+done: /* bring the pivot v[p,q] to the factorizing routine */
+ return piv;
+}
+
+/***********************************************************************
+* eliminate - perform gaussian elimination
+*
+* This routine performs elementary gaussian transformations in order
+* to eliminate subdiagonal elements in the k-th column of the matrix
+* U = P*V*Q using the pivot element u[k,k], where k is the number of
+* the current elimination step.
+*
+* The parameter piv specifies the pivot element v[p,q] = u[k,k].
+*
+* Each time when the routine applies the elementary transformation to
+* a non-pivot row of the matrix V, it stores the corresponding element
+* to the matrix F in order to keep the main equality A = F*V.
+*
+* The routine assumes that on entry the matrices L = P*F*inv(P) and
+* U = P*V*Q are the following:
+*
+* 1 k 1 k n
+* 1 1 . . . . . . . . . 1 x x x x x x x x x x
+* x 1 . . . . . . . . . x x x x x x x x x
+* x x 1 . . . . . . . . . x x x x x x x x
+* x x x 1 . . . . . . . . . x x x x x x x
+* k x x x x 1 . . . . . k . . . . * * * * * *
+* x x x x _ 1 . . . . . . . . # * * * * *
+* x x x x _ . 1 . . . . . . . # * * * * *
+* x x x x _ . . 1 . . . . . . # * * * * *
+* x x x x _ . . . 1 . . . . . # * * * * *
+* n x x x x _ . . . . 1 n . . . . # * * * * *
+*
+* matrix L matrix U
+*
+* where rows and columns of the matrix U with numbers k, k+1, ..., n
+* form the active submatrix (eliminated elements are marked by '#' and
+* other elements of the active submatrix are marked by '*'). Note that
+* each eliminated non-zero element u[i,k] of the matrix U gives the
+* corresponding element l[i,k] of the matrix L (marked by '_').
+*
+* Actually all operations are performed on the matrix V. Should note
+* that the row-wise representation corresponds to the matrix V, but the
+* column-wise representation corresponds to the active submatrix of the
+* matrix V, i.e. elements of the matrix V, which doesn't belong to the
+* active submatrix, are missing from the column linked lists.
+*
+* Let u[k,k] = v[p,q] be the pivot. In order to eliminate subdiagonal
+* elements u[i',k] = v[i,q], i' = k+1, k+2, ..., n, the routine applies
+* the following elementary gaussian transformations:
+*
+* (i-th row of V) := (i-th row of V) - f[i,p] * (p-th row of V),
+*
+* where f[i,p] = v[i,q] / v[p,q] is a gaussian multiplier.
+*
+* Additionally, in order to keep the main equality A = F*V, each time
+* when the routine applies the transformation to i-th row of the matrix
+* V, it also adds f[i,p] as a new element to the matrix F.
+*
+* IMPORTANT: On entry the working arrays flag and work should contain
+* zeros. This status is provided by the routine on exit. */
+
+static void eliminate(LUX *lux, LUXWKA *wka, LUXELM *piv, int flag[],
+ mpq_t work[])
+{ DMP *pool = lux->pool;
+ LUXELM **F_row = lux->F_row;
+ LUXELM **F_col = lux->F_col;
+ mpq_t *V_piv = lux->V_piv;
+ LUXELM **V_row = lux->V_row;
+ LUXELM **V_col = lux->V_col;
+ int *R_len = wka->R_len;
+ int *R_head = wka->R_head;
+ int *R_prev = wka->R_prev;
+ int *R_next = wka->R_next;
+ int *C_len = wka->C_len;
+ int *C_head = wka->C_head;
+ int *C_prev = wka->C_prev;
+ int *C_next = wka->C_next;
+ LUXELM *fip, *vij, *vpj, *viq, *next;
+ mpq_t temp;
+ int i, j, p, q;
+ mpq_init(temp);
+ /* determine row and column indices of the pivot v[p,q] */
+ xassert(piv != NULL);
+ p = piv->i, q = piv->j;
+ /* remove p-th (pivot) row from the active set; it will never
+ return there */
+ if (R_prev[p] == 0)
+ R_head[R_len[p]] = R_next[p];
+ else
+ R_next[R_prev[p]] = R_next[p];
+ if (R_next[p] == 0)
+ ;
+ else
+ R_prev[R_next[p]] = R_prev[p];
+ /* remove q-th (pivot) column from the active set; it will never
+ return there */
+ if (C_prev[q] == 0)
+ C_head[C_len[q]] = C_next[q];
+ else
+ C_next[C_prev[q]] = C_next[q];
+ if (C_next[q] == 0)
+ ;
+ else
+ C_prev[C_next[q]] = C_prev[q];
+ /* store the pivot value in a separate array */
+ mpq_set(V_piv[p], piv->val);
+ /* remove the pivot from p-th row */
+ if (piv->r_prev == NULL)
+ V_row[p] = piv->r_next;
+ else
+ piv->r_prev->r_next = piv->r_next;
+ if (piv->r_next == NULL)
+ ;
+ else
+ piv->r_next->r_prev = piv->r_prev;
+ R_len[p]--;
+ /* remove the pivot from q-th column */
+ if (piv->c_prev == NULL)
+ V_col[q] = piv->c_next;
+ else
+ piv->c_prev->c_next = piv->c_next;
+ if (piv->c_next == NULL)
+ ;
+ else
+ piv->c_next->c_prev = piv->c_prev;
+ C_len[q]--;
+ /* free the space occupied by the pivot */
+ mpq_clear(piv->val);
+ dmp_free_atom(pool, piv, sizeof(LUXELM));
+ /* walk through p-th (pivot) row, which already does not contain
+ the pivot v[p,q], and do the following... */
+ for (vpj = V_row[p]; vpj != NULL; vpj = vpj->r_next)
+ { /* get column index of v[p,j] */
+ j = vpj->j;
+ /* store v[p,j] in the working array */
+ flag[j] = 1;
+ mpq_set(work[j], vpj->val);
+ /* remove j-th column from the active set; it will return there
+ later with a new length */
+ if (C_prev[j] == 0)
+ C_head[C_len[j]] = C_next[j];
+ else
+ C_next[C_prev[j]] = C_next[j];
+ if (C_next[j] == 0)
+ ;
+ else
+ C_prev[C_next[j]] = C_prev[j];
+ /* v[p,j] leaves the active submatrix, so remove it from j-th
+ column; however, v[p,j] is kept in p-th row */
+ if (vpj->c_prev == NULL)
+ V_col[j] = vpj->c_next;
+ else
+ vpj->c_prev->c_next = vpj->c_next;
+ if (vpj->c_next == NULL)
+ ;
+ else
+ vpj->c_next->c_prev = vpj->c_prev;
+ C_len[j]--;
+ }
+ /* now walk through q-th (pivot) column, which already does not
+ contain the pivot v[p,q], and perform gaussian elimination */
+ while (V_col[q] != NULL)
+ { /* element v[i,q] has to be eliminated */
+ viq = V_col[q];
+ /* get row index of v[i,q] */
+ i = viq->i;
+ /* remove i-th row from the active set; later it will return
+ there with a new length */
+ if (R_prev[i] == 0)
+ R_head[R_len[i]] = R_next[i];
+ else
+ R_next[R_prev[i]] = R_next[i];
+ if (R_next[i] == 0)
+ ;
+ else
+ R_prev[R_next[i]] = R_prev[i];
+ /* compute gaussian multiplier f[i,p] = v[i,q] / v[p,q] and
+ store it in the matrix F */
+ fip = dmp_get_atom(pool, sizeof(LUXELM));
+ fip->i = i, fip->j = p;
+ mpq_init(fip->val);
+ mpq_div(fip->val, viq->val, V_piv[p]);
+ fip->r_prev = NULL;
+ fip->r_next = F_row[i];
+ fip->c_prev = NULL;
+ fip->c_next = F_col[p];
+ if (fip->r_next != NULL) fip->r_next->r_prev = fip;
+ if (fip->c_next != NULL) fip->c_next->c_prev = fip;
+ F_row[i] = F_col[p] = fip;
+ /* v[i,q] has to be eliminated, so remove it from i-th row */
+ if (viq->r_prev == NULL)
+ V_row[i] = viq->r_next;
+ else
+ viq->r_prev->r_next = viq->r_next;
+ if (viq->r_next == NULL)
+ ;
+ else
+ viq->r_next->r_prev = viq->r_prev;
+ R_len[i]--;
+ /* and also from q-th column */
+ V_col[q] = viq->c_next;
+ C_len[q]--;
+ /* free the space occupied by v[i,q] */
+ mpq_clear(viq->val);
+ dmp_free_atom(pool, viq, sizeof(LUXELM));
+ /* perform gaussian transformation:
+ (i-th row) := (i-th row) - f[i,p] * (p-th row)
+ note that now p-th row, which is in the working array,
+ does not contain the pivot v[p,q], and i-th row does not
+ contain the element v[i,q] to be eliminated */
+ /* walk through i-th row and transform existing non-zero
+ elements */
+ for (vij = V_row[i]; vij != NULL; vij = next)
+ { next = vij->r_next;
+ /* get column index of v[i,j] */
+ j = vij->j;
+ /* v[i,j] := v[i,j] - f[i,p] * v[p,j] */
+ if (flag[j])
+ { /* v[p,j] != 0 */
+ flag[j] = 0;
+ mpq_mul(temp, fip->val, work[j]);
+ mpq_sub(vij->val, vij->val, temp);
+ if (mpq_sgn(vij->val) == 0)
+ { /* new v[i,j] is zero, so remove it from the active
+ submatrix */
+ /* remove v[i,j] from i-th row */
+ if (vij->r_prev == NULL)
+ V_row[i] = vij->r_next;
+ else
+ vij->r_prev->r_next = vij->r_next;
+ if (vij->r_next == NULL)
+ ;
+ else
+ vij->r_next->r_prev = vij->r_prev;
+ R_len[i]--;
+ /* remove v[i,j] from j-th column */
+ if (vij->c_prev == NULL)
+ V_col[j] = vij->c_next;
+ else
+ vij->c_prev->c_next = vij->c_next;
+ if (vij->c_next == NULL)
+ ;
+ else
+ vij->c_next->c_prev = vij->c_prev;
+ C_len[j]--;
+ /* free the space occupied by v[i,j] */
+ mpq_clear(vij->val);
+ dmp_free_atom(pool, vij, sizeof(LUXELM));
+ }
+ }
+ }
+ /* now flag is the pattern of the set v[p,*] \ v[i,*] */
+ /* walk through p-th (pivot) row and create new elements in
+ i-th row, which appear due to fill-in */
+ for (vpj = V_row[p]; vpj != NULL; vpj = vpj->r_next)
+ { j = vpj->j;
+ if (flag[j])
+ { /* create new non-zero v[i,j] = 0 - f[i,p] * v[p,j] and
+ add it to i-th row and j-th column */
+ vij = dmp_get_atom(pool, sizeof(LUXELM));
+ vij->i = i, vij->j = j;
+ mpq_init(vij->val);
+ mpq_mul(vij->val, fip->val, work[j]);
+ mpq_neg(vij->val, vij->val);
+ vij->r_prev = NULL;
+ vij->r_next = V_row[i];
+ vij->c_prev = NULL;
+ vij->c_next = V_col[j];
+ if (vij->r_next != NULL) vij->r_next->r_prev = vij;
+ if (vij->c_next != NULL) vij->c_next->c_prev = vij;
+ V_row[i] = V_col[j] = vij;
+ R_len[i]++, C_len[j]++;
+ }
+ else
+ { /* there is no fill-in, because v[i,j] already exists in
+ i-th row; restore the flag, which was reset before */
+ flag[j] = 1;
+ }
+ }
+ /* now i-th row has been completely transformed and can return
+ to the active set with a new length */
+ R_prev[i] = 0;
+ R_next[i] = R_head[R_len[i]];
+ if (R_next[i] != 0) R_prev[R_next[i]] = i;
+ R_head[R_len[i]] = i;
+ }
+ /* at this point q-th (pivot) column must be empty */
+ xassert(C_len[q] == 0);
+ /* walk through p-th (pivot) row again and do the following... */
+ for (vpj = V_row[p]; vpj != NULL; vpj = vpj->r_next)
+ { /* get column index of v[p,j] */
+ j = vpj->j;
+ /* erase v[p,j] from the working array */
+ flag[j] = 0;
+ mpq_set_si(work[j], 0, 1);
+ /* now j-th column has been completely transformed, so it can
+ return to the active list with a new length */
+ C_prev[j] = 0;
+ C_next[j] = C_head[C_len[j]];
+ if (C_next[j] != 0) C_prev[C_next[j]] = j;
+ C_head[C_len[j]] = j;
+ }
+ mpq_clear(temp);
+ /* return to the factorizing routine */
+ return;
+}
+
+/***********************************************************************
+* lux_decomp - compute LU-factorization
+*
+* SYNOPSIS
+*
+* #include "lux.h"
+* int lux_decomp(LUX *lux, int (*col)(void *info, int j, int ind[],
+* mpq_t val[]), void *info);
+*
+* DESCRIPTION
+*
+* The routine lux_decomp computes LU-factorization of a given square
+* matrix A.
+*
+* The parameter lux specifies LU-factorization data structure built by
+* means of the routine lux_create.
+*
+* The formal routine col specifies the original matrix A. In order to
+* obtain j-th column of the matrix A the routine lux_decomp calls the
+* routine col with the parameter j (1 <= j <= n, where n is the order
+* of A). In response the routine col should store row indices and
+* numerical values of non-zero elements of j-th column of A to the
+* locations ind[1], ..., ind[len] and val[1], ..., val[len], resp.,
+* where len is the number of non-zeros in j-th column, which should be
+* returned on exit. Neiter zero nor duplicate elements are allowed.
+*
+* The parameter info is a transit pointer passed to the formal routine
+* col; it can be used for various purposes.
+*
+* RETURNS
+*
+* The routine lux_decomp returns the singularity flag. Zero flag means
+* that the original matrix A is non-singular while non-zero flag means
+* that A is (exactly!) singular.
+*
+* Note that LU-factorization is valid in both cases, however, in case
+* of singularity some rows of the matrix V (including pivot elements)
+* will be empty.
+*
+* REPAIRING SINGULAR MATRIX
+*
+* If the routine lux_decomp returns non-zero flag, it provides all
+* necessary information that can be used for "repairing" the matrix A,
+* where "repairing" means replacing linearly dependent columns of the
+* matrix A by appropriate columns of the unity matrix. This feature is
+* needed when the routine lux_decomp is used for reinverting the basis
+* matrix within the simplex method procedure.
+*
+* On exit linearly dependent columns of the matrix U have the numbers
+* rank+1, rank+2, ..., n, where rank is the exact rank of the matrix A
+* stored by the routine to the member lux->rank. The correspondence
+* between columns of A and U is the same as between columns of V and U.
+* Thus, linearly dependent columns of the matrix A have the numbers
+* Q_col[rank+1], Q_col[rank+2], ..., Q_col[n], where Q_col is an array
+* representing the permutation matrix Q in column-like format. It is
+* understood that each j-th linearly dependent column of the matrix U
+* should be replaced by the unity vector, where all elements are zero
+* except the unity diagonal element u[j,j]. On the other hand j-th row
+* of the matrix U corresponds to the row of the matrix V (and therefore
+* of the matrix A) with the number P_row[j], where P_row is an array
+* representing the permutation matrix P in row-like format. Thus, each
+* j-th linearly dependent column of the matrix U should be replaced by
+* a column of the unity matrix with the number P_row[j].
+*
+* The code that repairs the matrix A may look like follows:
+*
+* for (j = rank+1; j <= n; j++)
+* { replace column Q_col[j] of the matrix A by column P_row[j] of
+* the unity matrix;
+* }
+*
+* where rank, P_row, and Q_col are members of the structure LUX. */
+
+int lux_decomp(LUX *lux, int (*col)(void *info, int j, int ind[],
+ mpq_t val[]), void *info)
+{ int n = lux->n;
+ LUXELM **V_row = lux->V_row;
+ LUXELM **V_col = lux->V_col;
+ int *P_row = lux->P_row;
+ int *P_col = lux->P_col;
+ int *Q_row = lux->Q_row;
+ int *Q_col = lux->Q_col;
+ LUXELM *piv, *vij;
+ LUXWKA *wka;
+ int i, j, k, p, q, t, *flag;
+ mpq_t *work;
+ /* allocate working area */
+ wka = xmalloc(sizeof(LUXWKA));
+ wka->R_len = xcalloc(1+n, sizeof(int));
+ wka->R_head = xcalloc(1+n, sizeof(int));
+ wka->R_prev = xcalloc(1+n, sizeof(int));
+ wka->R_next = xcalloc(1+n, sizeof(int));
+ wka->C_len = xcalloc(1+n, sizeof(int));
+ wka->C_head = xcalloc(1+n, sizeof(int));
+ wka->C_prev = xcalloc(1+n, sizeof(int));
+ wka->C_next = xcalloc(1+n, sizeof(int));
+ /* initialize LU-factorization data structures */
+ initialize(lux, col, info, wka);
+ /* allocate working arrays */
+ flag = xcalloc(1+n, sizeof(int));
+ work = xcalloc(1+n, sizeof(mpq_t));
+ for (k = 1; k <= n; k++)
+ { flag[k] = 0;
+ mpq_init(work[k]);
+ }
+ /* main elimination loop */
+ for (k = 1; k <= n; k++)
+ { /* choose a pivot element v[p,q] */
+ piv = find_pivot(lux, wka);
+ if (piv == NULL)
+ { /* no pivot can be chosen, because the active submatrix is
+ empty */
+ break;
+ }
+ /* determine row and column indices of the pivot element */
+ p = piv->i, q = piv->j;
+ /* let v[p,q] correspond to u[i',j']; permute k-th and i'-th
+ rows and k-th and j'-th columns of the matrix U = P*V*Q to
+ move the element u[i',j'] to the position u[k,k] */
+ i = P_col[p], j = Q_row[q];
+ xassert(k <= i && i <= n && k <= j && j <= n);
+ /* permute k-th and i-th rows of the matrix U */
+ t = P_row[k];
+ P_row[i] = t, P_col[t] = i;
+ P_row[k] = p, P_col[p] = k;
+ /* permute k-th and j-th columns of the matrix U */
+ t = Q_col[k];
+ Q_col[j] = t, Q_row[t] = j;
+ Q_col[k] = q, Q_row[q] = k;
+ /* eliminate subdiagonal elements of k-th column of the matrix
+ U = P*V*Q using the pivot element u[k,k] = v[p,q] */
+ eliminate(lux, wka, piv, flag, work);
+ }
+ /* determine the rank of A (and V) */
+ lux->rank = k - 1;
+ /* free working arrays */
+ xfree(flag);
+ for (k = 1; k <= n; k++) mpq_clear(work[k]);
+ xfree(work);
+ /* build column lists of the matrix V using its row lists */
+ for (j = 1; j <= n; j++)
+ xassert(V_col[j] == NULL);
+ for (i = 1; i <= n; i++)
+ { for (vij = V_row[i]; vij != NULL; vij = vij->r_next)
+ { j = vij->j;
+ vij->c_prev = NULL;
+ vij->c_next = V_col[j];
+ if (vij->c_next != NULL) vij->c_next->c_prev = vij;
+ V_col[j] = vij;
+ }
+ }
+ /* free working area */
+ xfree(wka->R_len);
+ xfree(wka->R_head);
+ xfree(wka->R_prev);
+ xfree(wka->R_next);
+ xfree(wka->C_len);
+ xfree(wka->C_head);
+ xfree(wka->C_prev);
+ xfree(wka->C_next);
+ xfree(wka);
+ /* return to the calling program */
+ return (lux->rank < n);
+}
+
+/***********************************************************************
+* lux_f_solve - solve system F*x = b or F'*x = b
+*
+* SYNOPSIS
+*
+* #include "lux.h"
+* void lux_f_solve(LUX *lux, int tr, mpq_t x[]);
+*
+* DESCRIPTION
+*
+* The routine lux_f_solve solves either the system F*x = b (if the
+* flag tr is zero) or the system F'*x = b (if the flag tr is non-zero),
+* where the matrix F is a component of LU-factorization specified by
+* the parameter lux, F' is a matrix transposed to F.
+*
+* On entry the array x should contain elements of the right-hand side
+* vector b in locations x[1], ..., x[n], where n is the order of the
+* matrix F. On exit this array will contain elements of the solution
+* vector x in the same locations. */
+
+void lux_f_solve(LUX *lux, int tr, mpq_t x[])
+{ int n = lux->n;
+ LUXELM **F_row = lux->F_row;
+ LUXELM **F_col = lux->F_col;
+ int *P_row = lux->P_row;
+ LUXELM *fik, *fkj;
+ int i, j, k;
+ mpq_t temp;
+ mpq_init(temp);
+ if (!tr)
+ { /* solve the system F*x = b */
+ for (j = 1; j <= n; j++)
+ { k = P_row[j];
+ if (mpq_sgn(x[k]) != 0)
+ { for (fik = F_col[k]; fik != NULL; fik = fik->c_next)
+ { mpq_mul(temp, fik->val, x[k]);
+ mpq_sub(x[fik->i], x[fik->i], temp);
+ }
+ }
+ }
+ }
+ else
+ { /* solve the system F'*x = b */
+ for (i = n; i >= 1; i--)
+ { k = P_row[i];
+ if (mpq_sgn(x[k]) != 0)
+ { for (fkj = F_row[k]; fkj != NULL; fkj = fkj->r_next)
+ { mpq_mul(temp, fkj->val, x[k]);
+ mpq_sub(x[fkj->j], x[fkj->j], temp);
+ }
+ }
+ }
+ }
+ mpq_clear(temp);
+ return;
+}
+
+/***********************************************************************
+* lux_v_solve - solve system V*x = b or V'*x = b
+*
+* SYNOPSIS
+*
+* #include "lux.h"
+* void lux_v_solve(LUX *lux, int tr, double x[]);
+*
+* DESCRIPTION
+*
+* The routine lux_v_solve solves either the system V*x = b (if the
+* flag tr is zero) or the system V'*x = b (if the flag tr is non-zero),
+* where the matrix V is a component of LU-factorization specified by
+* the parameter lux, V' is a matrix transposed to V.
+*
+* On entry the array x should contain elements of the right-hand side
+* vector b in locations x[1], ..., x[n], where n is the order of the
+* matrix V. On exit this array will contain elements of the solution
+* vector x in the same locations. */
+
+void lux_v_solve(LUX *lux, int tr, mpq_t x[])
+{ int n = lux->n;
+ mpq_t *V_piv = lux->V_piv;
+ LUXELM **V_row = lux->V_row;
+ LUXELM **V_col = lux->V_col;
+ int *P_row = lux->P_row;
+ int *Q_col = lux->Q_col;
+ LUXELM *vij;
+ int i, j, k;
+ mpq_t *b, temp;
+ b = xcalloc(1+n, sizeof(mpq_t));
+ for (k = 1; k <= n; k++)
+ mpq_init(b[k]), mpq_set(b[k], x[k]), mpq_set_si(x[k], 0, 1);
+ mpq_init(temp);
+ if (!tr)
+ { /* solve the system V*x = b */
+ for (k = n; k >= 1; k--)
+ { i = P_row[k], j = Q_col[k];
+ if (mpq_sgn(b[i]) != 0)
+ { mpq_set(x[j], b[i]);
+ mpq_div(x[j], x[j], V_piv[i]);
+ for (vij = V_col[j]; vij != NULL; vij = vij->c_next)
+ { mpq_mul(temp, vij->val, x[j]);
+ mpq_sub(b[vij->i], b[vij->i], temp);
+ }
+ }
+ }
+ }
+ else
+ { /* solve the system V'*x = b */
+ for (k = 1; k <= n; k++)
+ { i = P_row[k], j = Q_col[k];
+ if (mpq_sgn(b[j]) != 0)
+ { mpq_set(x[i], b[j]);
+ mpq_div(x[i], x[i], V_piv[i]);
+ for (vij = V_row[i]; vij != NULL; vij = vij->r_next)
+ { mpq_mul(temp, vij->val, x[i]);
+ mpq_sub(b[vij->j], b[vij->j], temp);
+ }
+ }
+ }
+ }
+ for (k = 1; k <= n; k++) mpq_clear(b[k]);
+ mpq_clear(temp);
+ xfree(b);
+ return;
+}
+
+/***********************************************************************
+* lux_solve - solve system A*x = b or A'*x = b
+*
+* SYNOPSIS
+*
+* #include "lux.h"
+* void lux_solve(LUX *lux, int tr, mpq_t x[]);
+*
+* DESCRIPTION
+*
+* The routine lux_solve solves either the system A*x = b (if the flag
+* tr is zero) or the system A'*x = b (if the flag tr is non-zero),
+* where the parameter lux specifies LU-factorization of the matrix A,
+* A' is a matrix transposed to A.
+*
+* On entry the array x should contain elements of the right-hand side
+* vector b in locations x[1], ..., x[n], where n is the order of the
+* matrix A. On exit this array will contain elements of the solution
+* vector x in the same locations. */
+
+void lux_solve(LUX *lux, int tr, mpq_t x[])
+{ if (lux->rank < lux->n)
+ xfault("lux_solve: LU-factorization has incomplete rank\n");
+ if (!tr)
+ { /* A = F*V, therefore inv(A) = inv(V)*inv(F) */
+ lux_f_solve(lux, 0, x);
+ lux_v_solve(lux, 0, x);
+ }
+ else
+ { /* A' = V'*F', therefore inv(A') = inv(F')*inv(V') */
+ lux_v_solve(lux, 1, x);
+ lux_f_solve(lux, 1, x);
+ }
+ return;
+}
+
+/***********************************************************************
+* lux_delete - delete LU-factorization
+*
+* SYNOPSIS
+*
+* #include "lux.h"
+* void lux_delete(LUX *lux);
+*
+* DESCRIPTION
+*
+* The routine lux_delete deletes LU-factorization data structure,
+* which the parameter lux points to, freeing all the memory allocated
+* to this object. */
+
+void lux_delete(LUX *lux)
+{ int n = lux->n;
+ LUXELM *fij, *vij;
+ int i;
+ for (i = 1; i <= n; i++)
+ { for (fij = lux->F_row[i]; fij != NULL; fij = fij->r_next)
+ mpq_clear(fij->val);
+ mpq_clear(lux->V_piv[i]);
+ for (vij = lux->V_row[i]; vij != NULL; vij = vij->r_next)
+ mpq_clear(vij->val);
+ }
+ dmp_delete_pool(lux->pool);
+ xfree(lux->F_row);
+ xfree(lux->F_col);
+ xfree(lux->V_piv);
+ xfree(lux->V_row);
+ xfree(lux->V_col);
+ xfree(lux->P_row);
+ xfree(lux->P_col);
+ xfree(lux->Q_row);
+ xfree(lux->Q_col);
+ xfree(lux);
+ return;
+}
+
+/* eof */