aboutsummaryrefslogtreecommitdiffstats
path: root/test/monniaux/glpk-4.65/src/misc/ffalg.c
diff options
context:
space:
mode:
Diffstat (limited to 'test/monniaux/glpk-4.65/src/misc/ffalg.c')
-rw-r--r--test/monniaux/glpk-4.65/src/misc/ffalg.c221
1 files changed, 221 insertions, 0 deletions
diff --git a/test/monniaux/glpk-4.65/src/misc/ffalg.c b/test/monniaux/glpk-4.65/src/misc/ffalg.c
new file mode 100644
index 00000000..4ea2913d
--- /dev/null
+++ b/test/monniaux/glpk-4.65/src/misc/ffalg.c
@@ -0,0 +1,221 @@
+/* ffalg.c (Ford-Fulkerson algorithm) */
+
+/***********************************************************************
+* This code is part of GLPK (GNU Linear Programming Kit).
+*
+* Copyright (C) 2009-2013 Andrew Makhorin, Department for Applied
+* Informatics, Moscow Aviation Institute, Moscow, Russia. All rights
+* reserved. E-mail: <mao@gnu.org>.
+*
+* GLPK is free software: you can redistribute it and/or modify it
+* under the terms of the GNU General Public License as published by
+* the Free Software Foundation, either version 3 of the License, or
+* (at your option) any later version.
+*
+* GLPK is distributed in the hope that it will be useful, but WITHOUT
+* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
+* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
+* License for more details.
+*
+* You should have received a copy of the GNU General Public License
+* along with GLPK. If not, see <http://www.gnu.org/licenses/>.
+***********************************************************************/
+
+#include "env.h"
+#include "ffalg.h"
+
+/***********************************************************************
+* NAME
+*
+* ffalg - Ford-Fulkerson algorithm
+*
+* SYNOPSIS
+*
+* #include "ffalg.h"
+* void ffalg(int nv, int na, const int tail[], const int head[],
+* int s, int t, const int cap[], int x[], char cut[]);
+*
+* DESCRIPTION
+*
+* The routine ffalg implements the Ford-Fulkerson algorithm to find a
+* maximal flow in the specified flow network.
+*
+* INPUT PARAMETERS
+*
+* nv is the number of nodes, nv >= 2.
+*
+* na is the number of arcs, na >= 0.
+*
+* tail[a], a = 1,...,na, is the index of tail node of arc a.
+*
+* head[a], a = 1,...,na, is the index of head node of arc a.
+*
+* s is the source node index, 1 <= s <= nv.
+*
+* t is the sink node index, 1 <= t <= nv, t != s.
+*
+* cap[a], a = 1,...,na, is the capacity of arc a, cap[a] >= 0.
+*
+* NOTE: Multiple arcs are allowed, but self-loops are not allowed.
+*
+* OUTPUT PARAMETERS
+*
+* x[a], a = 1,...,na, is optimal value of the flow through arc a.
+*
+* cut[i], i = 1,...,nv, is 1 if node i is labelled, and 0 otherwise.
+* The set of arcs, whose one endpoint is labelled and other is not,
+* defines the minimal cut corresponding to the maximal flow found.
+* If the parameter cut is NULL, the cut information are not stored.
+*
+* REFERENCES
+*
+* L.R.Ford, Jr., and D.R.Fulkerson, "Flows in Networks," The RAND
+* Corp., Report R-375-PR (August 1962), Chap. I "Static Maximal Flow,"
+* pp.30-33. */
+
+void ffalg(int nv, int na, const int tail[], const int head[],
+ int s, int t, const int cap[], int x[], char cut[])
+{ int a, delta, i, j, k, pos1, pos2, temp,
+ *ptr, *arc, *link, *list;
+ /* sanity checks */
+ xassert(nv >= 2);
+ xassert(na >= 0);
+ xassert(1 <= s && s <= nv);
+ xassert(1 <= t && t <= nv);
+ xassert(s != t);
+ for (a = 1; a <= na; a++)
+ { i = tail[a], j = head[a];
+ xassert(1 <= i && i <= nv);
+ xassert(1 <= j && j <= nv);
+ xassert(i != j);
+ xassert(cap[a] >= 0);
+ }
+ /* allocate working arrays */
+ ptr = xcalloc(1+nv+1, sizeof(int));
+ arc = xcalloc(1+na+na, sizeof(int));
+ link = xcalloc(1+nv, sizeof(int));
+ list = xcalloc(1+nv, sizeof(int));
+ /* ptr[i] := (degree of node i) */
+ for (i = 1; i <= nv; i++)
+ ptr[i] = 0;
+ for (a = 1; a <= na; a++)
+ { ptr[tail[a]]++;
+ ptr[head[a]]++;
+ }
+ /* initialize arc pointers */
+ ptr[1]++;
+ for (i = 1; i < nv; i++)
+ ptr[i+1] += ptr[i];
+ ptr[nv+1] = ptr[nv];
+ /* build arc lists */
+ for (a = 1; a <= na; a++)
+ { arc[--ptr[tail[a]]] = a;
+ arc[--ptr[head[a]]] = a;
+ }
+ xassert(ptr[1] == 1);
+ xassert(ptr[nv+1] == na+na+1);
+ /* now the indices of arcs incident to node i are stored in
+ * locations arc[ptr[i]], arc[ptr[i]+1], ..., arc[ptr[i+1]-1] */
+ /* initialize arc flows */
+ for (a = 1; a <= na; a++)
+ x[a] = 0;
+loop: /* main loop starts here */
+ /* build augmenting tree rooted at s */
+ /* link[i] = 0 means that node i is not labelled yet;
+ * link[i] = a means that arc a immediately precedes node i */
+ /* initially node s is labelled as the root */
+ for (i = 1; i <= nv; i++)
+ link[i] = 0;
+ link[s] = -1, list[1] = s, pos1 = pos2 = 1;
+ /* breadth first search */
+ while (pos1 <= pos2)
+ { /* dequeue node i */
+ i = list[pos1++];
+ /* consider all arcs incident to node i */
+ for (k = ptr[i]; k < ptr[i+1]; k++)
+ { a = arc[k];
+ if (tail[a] == i)
+ { /* a = i->j is a forward arc from s to t */
+ j = head[a];
+ /* if node j has been labelled, skip the arc */
+ if (link[j] != 0) continue;
+ /* if the arc does not allow increasing the flow through
+ * it, skip the arc */
+ if (x[a] == cap[a]) continue;
+ }
+ else if (head[a] == i)
+ { /* a = i<-j is a backward arc from s to t */
+ j = tail[a];
+ /* if node j has been labelled, skip the arc */
+ if (link[j] != 0) continue;
+ /* if the arc does not allow decreasing the flow through
+ * it, skip the arc */
+ if (x[a] == 0) continue;
+ }
+ else
+ xassert(a != a);
+ /* label node j and enqueue it */
+ link[j] = a, list[++pos2] = j;
+ /* check for breakthrough */
+ if (j == t) goto brkt;
+ }
+ }
+ /* NONBREAKTHROUGH */
+ /* no augmenting path exists; current flow is maximal */
+ /* store minimal cut information, if necessary */
+ if (cut != NULL)
+ { for (i = 1; i <= nv; i++)
+ cut[i] = (char)(link[i] != 0);
+ }
+ goto done;
+brkt: /* BREAKTHROUGH */
+ /* walk through arcs of the augmenting path (s, ..., t) found in
+ * the reverse order and determine maximal change of the flow */
+ delta = 0;
+ for (j = t; j != s; j = i)
+ { /* arc a immediately precedes node j in the path */
+ a = link[j];
+ if (head[a] == j)
+ { /* a = i->j is a forward arc of the cycle */
+ i = tail[a];
+ /* x[a] may be increased until its upper bound */
+ temp = cap[a] - x[a];
+ }
+ else if (tail[a] == j)
+ { /* a = i<-j is a backward arc of the cycle */
+ i = head[a];
+ /* x[a] may be decreased until its lower bound */
+ temp = x[a];
+ }
+ else
+ xassert(a != a);
+ if (delta == 0 || delta > temp) delta = temp;
+ }
+ xassert(delta > 0);
+ /* increase the flow along the path */
+ for (j = t; j != s; j = i)
+ { /* arc a immediately precedes node j in the path */
+ a = link[j];
+ if (head[a] == j)
+ { /* a = i->j is a forward arc of the cycle */
+ i = tail[a];
+ x[a] += delta;
+ }
+ else if (tail[a] == j)
+ { /* a = i<-j is a backward arc of the cycle */
+ i = head[a];
+ x[a] -= delta;
+ }
+ else
+ xassert(a != a);
+ }
+ goto loop;
+done: /* free working arrays */
+ xfree(ptr);
+ xfree(arc);
+ xfree(link);
+ xfree(list);
+ return;
+}
+
+/* eof */