aboutsummaryrefslogtreecommitdiffstats
path: root/test/monniaux/glpk-4.65/src/misc/mt1.f
diff options
context:
space:
mode:
Diffstat (limited to 'test/monniaux/glpk-4.65/src/misc/mt1.f')
-rw-r--r--test/monniaux/glpk-4.65/src/misc/mt1.f277
1 files changed, 277 insertions, 0 deletions
diff --git a/test/monniaux/glpk-4.65/src/misc/mt1.f b/test/monniaux/glpk-4.65/src/misc/mt1.f
new file mode 100644
index 00000000..82cc4a1b
--- /dev/null
+++ b/test/monniaux/glpk-4.65/src/misc/mt1.f
@@ -0,0 +1,277 @@
+ SUBROUTINE MT1(N,P,W,C,Z,X,JDIM,JCK,XX,MIN,PSIGN,WSIGN,ZSIGN)
+C
+C THIS SUBROUTINE SOLVES THE 0-1 SINGLE KNAPSACK PROBLEM
+C
+C MAXIMIZE Z = P(1)*X(1) + ... + P(N)*X(N)
+C
+C SUBJECT TO: W(1)*X(1) + ... + W(N)*X(N) .LE. C ,
+C X(J) = 0 OR 1 FOR J=1,...,N.
+C
+C THE PROGRAM IS INCLUDED IN THE VOLUME
+C S. MARTELLO, P. TOTH, "KNAPSACK PROBLEMS: ALGORITHMS
+C AND COMPUTER IMPLEMENTATIONS", JOHN WILEY, 1990
+C AND IMPLEMENTS THE BRANCH-AND-BOUND ALGORITHM DESCRIBED IN
+C SECTION 2.5.2 .
+C THE PROGRAM DERIVES FROM AN EARLIER CODE PRESENTED IN
+C S. MARTELLO, P. TOTH, "ALGORITHM FOR THE SOLUTION OF THE 0-1 SINGLE
+C KNAPSACK PROBLEM", COMPUTING, 1978.
+C
+C THE INPUT PROBLEM MUST SATISFY THE CONDITIONS
+C
+C 1) 2 .LE. N .LE. JDIM - 1 ;
+C 2) P(J), W(J), C POSITIVE INTEGERS;
+C 3) MAX (W(J)) .LE. C ;
+C 4) W(1) + ... + W(N) .GT. C ;
+C 5) P(J)/W(J) .GE. P(J+1)/W(J+1) FOR J=1,...,N-1.
+C
+C MT1 CALLS 1 PROCEDURE: CHMT1.
+C
+C THE PROGRAM IS COMPLETELY SELF-CONTAINED AND COMMUNICATION TO IT IS
+C ACHIEVED SOLELY THROUGH THE PARAMETER LIST OF MT1.
+C NO MACHINE-DEPENDENT CONSTANT IS USED.
+C THE PROGRAM IS WRITTEN IN 1967 AMERICAN NATIONAL STANDARD FORTRAN
+C AND IS ACCEPTED BY THE PFORT VERIFIER (PFORT IS THE PORTABLE
+C SUBSET OF ANSI DEFINED BY THE ASSOCIATION FOR COMPUTING MACHINERY).
+C THE PROGRAM HAS BEEN TESTED ON A DIGITAL VAX 11/780 AND AN H.P.
+C 9000/840.
+C
+C MT1 NEEDS 8 ARRAYS ( P , W , X , XX , MIN , PSIGN , WSIGN
+C AND ZSIGN ) OF LENGTH AT LEAST N + 1 .
+C
+C MEANING OF THE INPUT PARAMETERS:
+C N = NUMBER OF ITEMS;
+C P(J) = PROFIT OF ITEM J (J=1,...,N);
+C W(J) = WEIGHT OF ITEM J (J=1,...,N);
+C C = CAPACITY OF THE KNAPSACK;
+C JDIM = DIMENSION OF THE 8 ARRAYS;
+C JCK = 1 IF CHECK ON THE INPUT DATA IS DESIRED,
+C = 0 OTHERWISE.
+C
+C MEANING OF THE OUTPUT PARAMETERS:
+C Z = VALUE OF THE OPTIMAL SOLUTION IF Z .GT. 0 ,
+C = ERROR IN THE INPUT DATA (WHEN JCK=1) IF Z .LT. 0 : CONDI-
+C TION - Z IS VIOLATED;
+C X(J) = 1 IF ITEM J IS IN THE OPTIMAL SOLUTION,
+C = 0 OTHERWISE.
+C
+C ARRAYS XX, MIN, PSIGN, WSIGN AND ZSIGN ARE DUMMY.
+C
+C ALL THE PARAMETERS ARE INTEGER. ON RETURN OF MT1 ALL THE INPUT
+C PARAMETERS ARE UNCHANGED.
+C
+ INTEGER P(JDIM),W(JDIM),X(JDIM),C,Z
+ INTEGER XX(JDIM),MIN(JDIM),PSIGN(JDIM),WSIGN(JDIM),ZSIGN(JDIM)
+ INTEGER CH,CHS,DIFF,PROFIT,R,T
+ Z = 0
+ IF ( JCK .EQ. 1 ) CALL CHMT1(N,P,W,C,Z,JDIM)
+ IF ( Z .LT. 0 ) RETURN
+C INITIALIZE.
+ CH = C
+ IP = 0
+ CHS = CH
+ DO 10 LL=1,N
+ IF ( W(LL) .GT. CHS ) GO TO 20
+ IP = IP + P(LL)
+ CHS = CHS - W(LL)
+ 10 CONTINUE
+ 20 LL = LL - 1
+ IF ( CHS .EQ. 0 ) GO TO 50
+ P(N+1) = 0
+ W(N+1) = CH + 1
+ LIM = IP + CHS*P(LL+2)/W(LL+2)
+ A = W(LL+1) - CHS
+ B = IP + P(LL+1)
+ LIM1 = B - A*FLOAT(P(LL))/FLOAT(W(LL))
+ IF ( LIM1 .GT. LIM ) LIM = LIM1
+ MINK = CH + 1
+ MIN(N) = MINK
+ DO 30 J=2,N
+ KK = N + 2 - J
+ IF ( W(KK) .LT. MINK ) MINK = W(KK)
+ MIN(KK-1) = MINK
+ 30 CONTINUE
+ DO 40 J=1,N
+ XX(J) = 0
+ 40 CONTINUE
+ Z = 0
+ PROFIT = 0
+ LOLD = N
+ II = 1
+ GO TO 170
+ 50 Z = IP
+ DO 60 J=1,LL
+ X(J) = 1
+ 60 CONTINUE
+ NN = LL + 1
+ DO 70 J=NN,N
+ X(J) = 0
+ 70 CONTINUE
+ RETURN
+C TRY TO INSERT THE II-TH ITEM INTO THE CURRENT SOLUTION.
+ 80 IF ( W(II) .LE. CH ) GO TO 90
+ II1 = II + 1
+ IF ( Z .GE. CH*P(II1)/W(II1) + PROFIT ) GO TO 280
+ II = II1
+ GO TO 80
+C BUILD A NEW CURRENT SOLUTION.
+ 90 IP = PSIGN(II)
+ CHS = CH - WSIGN(II)
+ IN = ZSIGN(II)
+ DO 100 LL=IN,N
+ IF ( W(LL) .GT. CHS ) GO TO 160
+ IP = IP + P(LL)
+ CHS = CHS - W(LL)
+ 100 CONTINUE
+ LL = N
+ 110 IF ( Z .GE. IP + PROFIT ) GO TO 280
+ Z = IP + PROFIT
+ NN = II - 1
+ DO 120 J=1,NN
+ X(J) = XX(J)
+ 120 CONTINUE
+ DO 130 J=II,LL
+ X(J) = 1
+ 130 CONTINUE
+ IF ( LL .EQ. N ) GO TO 150
+ NN = LL + 1
+ DO 140 J=NN,N
+ X(J) = 0
+ 140 CONTINUE
+ 150 IF ( Z .NE. LIM ) GO TO 280
+ RETURN
+ 160 IU = CHS*P(LL)/W(LL)
+ LL = LL - 1
+ IF ( IU .EQ. 0 ) GO TO 110
+ IF ( Z .GE. PROFIT + IP + IU ) GO TO 280
+C SAVE THE CURRENT SOLUTION.
+ 170 WSIGN(II) = CH - CHS
+ PSIGN(II) = IP
+ ZSIGN(II) = LL + 1
+ XX(II) = 1
+ NN = LL - 1
+ IF ( NN .LT. II) GO TO 190
+ DO 180 J=II,NN
+ WSIGN(J+1) = WSIGN(J) - W(J)
+ PSIGN(J+1) = PSIGN(J) - P(J)
+ ZSIGN(J+1) = LL + 1
+ XX(J+1) = 1
+ 180 CONTINUE
+ 190 J1 = LL + 1
+ DO 200 J=J1,LOLD
+ WSIGN(J) = 0
+ PSIGN(J) = 0
+ ZSIGN(J) = J
+ 200 CONTINUE
+ LOLD = LL
+ CH = CHS
+ PROFIT = PROFIT + IP
+ IF ( LL - (N - 2) ) 240, 220, 210
+ 210 II = N
+ GO TO 250
+ 220 IF ( CH .LT. W(N) ) GO TO 230
+ CH = CH - W(N)
+ PROFIT = PROFIT + P(N)
+ XX(N) = 1
+ 230 II = N - 1
+ GO TO 250
+ 240 II = LL + 2
+ IF ( CH .GE. MIN(II-1) ) GO TO 80
+C SAVE THE CURRENT OPTIMAL SOLUTION.
+ 250 IF ( Z .GE. PROFIT ) GO TO 270
+ Z = PROFIT
+ DO 260 J=1,N
+ X(J) = XX(J)
+ 260 CONTINUE
+ IF ( Z .EQ. LIM ) RETURN
+ 270 IF ( XX(N) .EQ. 0 ) GO TO 280
+ XX(N) = 0
+ CH = CH + W(N)
+ PROFIT = PROFIT - P(N)
+C BACKTRACK.
+ 280 NN = II - 1
+ IF ( NN .EQ. 0 ) RETURN
+ DO 290 J=1,NN
+ KK = II - J
+ IF ( XX(KK) .EQ. 1 ) GO TO 300
+ 290 CONTINUE
+ RETURN
+ 300 R = CH
+ CH = CH + W(KK)
+ PROFIT = PROFIT - P(KK)
+ XX(KK) = 0
+ IF ( R .LT. MIN(KK) ) GO TO 310
+ II = KK + 1
+ GO TO 80
+ 310 NN = KK + 1
+ II = KK
+C TRY TO SUBSTITUTE THE NN-TH ITEM FOR THE KK-TH.
+ 320 IF ( Z .GE. PROFIT + CH*P(NN)/W(NN) ) GO TO 280
+ DIFF = W(NN) - W(KK)
+ IF ( DIFF ) 370, 330, 340
+ 330 NN = NN + 1
+ GO TO 320
+ 340 IF ( DIFF .GT. R ) GO TO 330
+ IF ( Z .GE. PROFIT + P(NN) ) GO TO 330
+ Z = PROFIT + P(NN)
+ DO 350 J=1,KK
+ X(J) = XX(J)
+ 350 CONTINUE
+ JJ = KK + 1
+ DO 360 J=JJ,N
+ X(J) = 0
+ 360 CONTINUE
+ X(NN) = 1
+ IF ( Z .EQ. LIM ) RETURN
+ R = R - DIFF
+ KK = NN
+ NN = NN + 1
+ GO TO 320
+ 370 T = R - DIFF
+ IF ( T .LT. MIN(NN) ) GO TO 330
+ IF ( Z .GE. PROFIT + P(NN) + T*P(NN+1)/W(NN+1)) GO TO 280
+ CH = CH - W(NN)
+ PROFIT = PROFIT + P(NN)
+ XX(NN) = 1
+ II = NN + 1
+ WSIGN(NN) = W(NN)
+ PSIGN(NN) = P(NN)
+ ZSIGN(NN) = II
+ N1 = NN + 1
+ DO 380 J=N1,LOLD
+ WSIGN(J) = 0
+ PSIGN(J) = 0
+ ZSIGN(J) = J
+ 380 CONTINUE
+ LOLD = NN
+ GO TO 80
+ END
+ SUBROUTINE CHMT1(N,P,W,C,Z,JDIM)
+C
+C CHECK THE INPUT DATA.
+C
+ INTEGER P(JDIM),W(JDIM),C,Z
+ IF ( N .GE. 2 .AND. N .LE. JDIM - 1 ) GO TO 10
+ Z = - 1
+ RETURN
+ 10 IF ( C .GT. 0 ) GO TO 30
+ 20 Z = - 2
+ RETURN
+ 30 JSW = 0
+ RR = FLOAT(P(1))/FLOAT(W(1))
+ DO 50 J=1,N
+ R = RR
+ IF ( P(J) .LE. 0 ) GO TO 20
+ IF ( W(J) .LE. 0 ) GO TO 20
+ JSW = JSW + W(J)
+ IF ( W(J) .LE. C ) GO TO 40
+ Z = - 3
+ RETURN
+ 40 RR = FLOAT(P(J))/FLOAT(W(J))
+ IF ( RR .LE. R ) GO TO 50
+ Z = - 5
+ RETURN
+ 50 CONTINUE
+ IF ( JSW .GT. C ) RETURN
+ Z = - 4
+ RETURN
+ END