aboutsummaryrefslogtreecommitdiffstats
path: root/test/monniaux/glpk-4.65/src/misc/triang.c
diff options
context:
space:
mode:
Diffstat (limited to 'test/monniaux/glpk-4.65/src/misc/triang.c')
-rw-r--r--test/monniaux/glpk-4.65/src/misc/triang.c311
1 files changed, 311 insertions, 0 deletions
diff --git a/test/monniaux/glpk-4.65/src/misc/triang.c b/test/monniaux/glpk-4.65/src/misc/triang.c
new file mode 100644
index 00000000..99ba4d60
--- /dev/null
+++ b/test/monniaux/glpk-4.65/src/misc/triang.c
@@ -0,0 +1,311 @@
+/* triang.c (find maximal triangular part of rectangular matrix) */
+
+/***********************************************************************
+* This code is part of GLPK (GNU Linear Programming Kit).
+*
+* Copyright (C) 2012-2013 Andrew Makhorin, Department for Applied
+* Informatics, Moscow Aviation Institute, Moscow, Russia. All rights
+* reserved. E-mail: <mao@gnu.org>.
+*
+* GLPK is free software: you can redistribute it and/or modify it
+* under the terms of the GNU General Public License as published by
+* the Free Software Foundation, either version 3 of the License, or
+* (at your option) any later version.
+*
+* GLPK is distributed in the hope that it will be useful, but WITHOUT
+* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
+* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
+* License for more details.
+*
+* You should have received a copy of the GNU General Public License
+* along with GLPK. If not, see <http://www.gnu.org/licenses/>.
+***********************************************************************/
+
+#include "env.h"
+#include "triang.h"
+
+/***********************************************************************
+* triang - find maximal triangular part of rectangular matrix
+*
+* Given a mxn sparse matrix A this routine finds permutation matrices
+* P and Q such that matrix A' = P * A * Q has the following structure:
+*
+* 1 s n
+* 1 * . . . . . x x x x x
+* * * . . . . x x x x x
+* * * * . . . x x x x x
+* * * * * . . x x x x x
+* * * * * * . x x x x x
+* s * * * * * * x x x x x
+* x x x x x x x x x x x
+* x x x x x x x x x x x
+* m x x x x x x x x x x x
+*
+* where '*' are elements of the triangular part, '.' are structural
+* zeros, 'x' are other elements.
+*
+* The formal routine mat specifies the original matrix A in both row-
+* and column-wise format. If the routine mat is called with k = +i,
+* 1 <= i <= m, it should store column indices and values of non-zero
+* elements of i-th row of A in locations ind[1], ..., ind[len] and
+* val[1], ..., val[len], resp., where len is the returned number of
+* non-zeros in the row, 0 <= len <= n. Similarly, if the routine mat
+* is called with k = -j, 1 <= j <= n, it should store row indices and
+* values of non-zero elements of j-th column of A and return len, the
+* number of non-zeros in the column, 0 <= len <= m. Should note that
+* duplicate indices are not allowed.
+*
+* The parameter info is a transit pointer passed to the routine mat.
+*
+* The parameter tol is a tolerance. The routine triang guarantees that
+* each diagonal element in the triangular part of matrix A' is not
+* less in magnitude than tol * max, where max is the maximal magnitude
+* of elements in corresponding column.
+*
+* On exit the routine triang stores information on the triangular part
+* found in the arrays rn and cn. Elements rn[1], ..., rn[s] specify
+* row numbers and elements cn[1], ..., cn[s] specify column numbers
+* of the original matrix A, which correspond to rows/columns 1, ..., s
+* of matrix A', where s is the size of the triangular part returned by
+* the routine, 0 <= s <= min(m, n). The order of rows and columns that
+* are not included in the triangular part remains unspecified.
+*
+* ALGORITHM
+*
+* The routine triang uses a simple greedy heuristic.
+*
+* At some step the matrix A' = P * A * Q has the following structure:
+*
+* 1 n
+* 1 * . . . . . . . x x x
+* * * . . . . . . x x x
+* * * * . . . . . x x x
+* * * * * . . . . x x x
+* x x x x # # # # x x x
+* x x x x # # # # x x x
+* x x x x # # # # x x x
+* x x x x # # # # x x x
+* m x x x x # # # # x x x
+*
+* where '#' are elements of active submatrix. Initially P = Q = I, so
+* the active submatrix is the original matrix A = A'.
+*
+* If some row has exactly one non-zero in the active submatrix (row
+* singleton), the routine includes this row and corresponding column
+* in the triangular part, and removes the column from the active
+* submatrix. Otherwise, the routine simply removes a column having
+* maximal number of non-zeros from the active submatrix in the hope
+* that new row singleton(s) will appear.
+*
+* COMPLEXITY
+*
+* The time complexity of the routine triang is O(nnz), where nnz is
+* number of non-zeros in the original matrix A. */
+
+int triang(int m, int n, int (*mat)(void *info, int k, int ind[],
+ double val[]), void *info, double tol, int rn[], int cn[])
+{ int head, i, j, jj, k, kk, ks, len, len2, next_j, ns, size;
+ int *cind, *rind, *cnt, *ptr, *list, *prev, *next;
+ double *cval, *rval, *big;
+ char *flag;
+ /* allocate working arrays */
+ cind = talloc(1+m, int);
+ cval = talloc(1+m, double);
+ rind = talloc(1+n, int);
+ rval = talloc(1+n, double);
+ cnt = ptr = talloc(1+m, int);
+ list = talloc(1+n, int);
+ prev = talloc(1+n, int);
+ next = talloc(1+n, int);
+ big = talloc(1+n, double);
+ flag = talloc(1+n, char);
+ /*--------------------------------------------------------------*/
+ /* build linked lists of columns having equal lengths */
+ /*--------------------------------------------------------------*/
+ /* ptr[len], 0 <= len <= m, is number of first column of length
+ * len;
+ * next[j], 1 <= j <= n, is number of next column having the same
+ * length as column j;
+ * big[j], 1 <= j <= n, is maximal magnitude of elements in j-th
+ * column */
+ for (len = 0; len <= m; len++)
+ ptr[len] = 0;
+ for (j = 1; j <= n; j++)
+ { /* get j-th column */
+ len = mat(info, -j, cind, cval);
+ xassert(0 <= len && len <= m);
+ /* add this column to beginning of list ptr[len] */
+ next[j] = ptr[len];
+ ptr[len] = j;
+ /* determine maximal magnitude of elements in this column */
+ big[j] = 0.0;
+ for (k = 1; k <= len; k++)
+ { if (big[j] < fabs(cval[k]))
+ big[j] = fabs(cval[k]);
+ }
+ }
+ /*--------------------------------------------------------------*/
+ /* build doubly linked list of columns ordered by decreasing */
+ /* column lengths */
+ /*--------------------------------------------------------------*/
+ /* head is number of first column in the list;
+ * prev[j], 1 <= j <= n, is number of column that precedes j-th
+ * column in the list;
+ * next[j], 1 <= j <= n, is number of column that follows j-th
+ * column in the list */
+ head = 0;
+ for (len = 0; len <= m; len++)
+ { /* walk thru list of columns of length len */
+ for (j = ptr[len]; j != 0; j = next_j)
+ { next_j = next[j];
+ /* add j-th column to beginning of the column list */
+ prev[j] = 0;
+ next[j] = head;
+ if (head != 0)
+ prev[head] = j;
+ head = j;
+ }
+ }
+ /*--------------------------------------------------------------*/
+ /* build initial singleton list */
+ /*--------------------------------------------------------------*/
+ /* there are used two list of columns:
+ * 1) doubly linked list of active columns, in which all columns
+ * are ordered by decreasing column lengths;
+ * 2) singleton list; an active column is included in this list
+ * if it has at least one row singleton in active submatrix */
+ /* flag[j], 1 <= j <= n, is a flag of j-th column:
+ * 0 j-th column is inactive;
+ * 1 j-th column is active;
+ * 2 j-th column is active and has row singleton(s) */
+ /* initially all columns are active */
+ for (j = 1; j <= n; j++)
+ flag[j] = 1;
+ /* initialize row counts and build initial singleton list */
+ /* cnt[i], 1 <= i <= m, is number of non-zeros, which i-th row
+ * has in active submatrix;
+ * ns is size of singleton list;
+ * list[1], ..., list[ns] are numbers of active columns included
+ * in the singleton list */
+ ns = 0;
+ for (i = 1; i <= m; i++)
+ { /* get i-th row */
+ len = cnt[i] = mat(info, +i, rind, rval);
+ xassert(0 <= len && len <= n);
+ if (len == 1)
+ { /* a[i,j] is row singleton */
+ j = rind[1];
+ xassert(1 <= j && j <= n);
+ if (flag[j] != 2)
+ { /* include j-th column in singleton list */
+ flag[j] = 2;
+ list[++ns] = j;
+ }
+ }
+ }
+ /*--------------------------------------------------------------*/
+ /* main loop */
+ /*--------------------------------------------------------------*/
+ size = 0; /* size of triangular part */
+ /* loop until active column list is non-empty, i.e. until the
+ * active submatrix has at least one column */
+ while (head != 0)
+ { if (ns == 0)
+ { /* singleton list is empty */
+ /* remove from the active submatrix a column of maximal
+ * length in the hope that some row singletons appear */
+ j = head;
+ len = mat(info, -j, cind, cval);
+ xassert(0 <= len && len <= m);
+ goto drop;
+ }
+ /* take column j from the singleton list */
+ j = list[ns--];
+ xassert(flag[j] == 2);
+ /* j-th column has at least one row singleton in the active
+ * submatrix; choose one having maximal magnitude */
+ len = mat(info, -j, cind, cval);
+ xassert(0 <= len && len <= m);
+ kk = 0;
+ for (k = 1; k <= len; k++)
+ { i = cind[k];
+ xassert(1 <= i && i <= m);
+ if (cnt[i] == 1)
+ { /* a[i,j] is row singleton */
+ if (kk == 0 || fabs(cval[kk]) < fabs(cval[k]))
+ kk = k;
+ }
+ }
+ xassert(kk > 0);
+ /* check magnitude of the row singleton chosen */
+ if (fabs(cval[kk]) < tol * big[j])
+ { /* all row singletons are too small in magnitude; drop j-th
+ * column */
+ goto drop;
+ }
+ /* row singleton a[i,j] is ok; add i-th row and j-th column to
+ * the triangular part */
+ size++;
+ rn[size] = cind[kk];
+ cn[size] = j;
+drop: /* remove j-th column from the active submatrix */
+ xassert(flag[j]);
+ flag[j] = 0;
+ if (prev[j] == 0)
+ head = next[j];
+ else
+ next[prev[j]] = next[j];
+ if (next[j] == 0)
+ ;
+ else
+ prev[next[j]] = prev[j];
+ /* decrease row counts */
+ for (k = 1; k <= len; k++)
+ { i = cind[k];
+ xassert(1 <= i && i <= m);
+ xassert(cnt[i] > 0);
+ cnt[i]--;
+ if (cnt[i] == 1)
+ { /* new singleton appeared in i-th row; determine number
+ * of corresponding column (it is the only active column
+ * in this row) */
+ len2 = mat(info, +i, rind, rval);
+ xassert(0 <= len2 && len2 <= n);
+ ks = 0;
+ for (kk = 1; kk <= len2; kk++)
+ { jj = rind[kk];
+ xassert(1 <= jj && jj <= n);
+ if (flag[jj])
+ { xassert(ks == 0);
+ ks = kk;
+ }
+ }
+ xassert(ks > 0);
+ /* a[i,jj] is new row singleton */
+ jj = rind[ks];
+ if (flag[jj] != 2)
+ { /* include jj-th column in the singleton list */
+ flag[jj] = 2;
+ list[++ns] = jj;
+ }
+ }
+ }
+ }
+ /* now all row counts should be zero */
+ for (i = 1; i <= m; i++)
+ xassert(cnt[i] == 0);
+ /* deallocate working arrays */
+ tfree(cind);
+ tfree(cval);
+ tfree(rind);
+ tfree(rval);
+ tfree(ptr);
+ tfree(list);
+ tfree(prev);
+ tfree(next);
+ tfree(big);
+ tfree(flag);
+ return size;
+}
+
+/* eof */