aboutsummaryrefslogtreecommitdiffstats
path: root/test/monniaux/glpk-4.65/src/npp/npp4.c
diff options
context:
space:
mode:
Diffstat (limited to 'test/monniaux/glpk-4.65/src/npp/npp4.c')
-rw-r--r--test/monniaux/glpk-4.65/src/npp/npp4.c1414
1 files changed, 1414 insertions, 0 deletions
diff --git a/test/monniaux/glpk-4.65/src/npp/npp4.c b/test/monniaux/glpk-4.65/src/npp/npp4.c
new file mode 100644
index 00000000..d7dd0e86
--- /dev/null
+++ b/test/monniaux/glpk-4.65/src/npp/npp4.c
@@ -0,0 +1,1414 @@
+/* npp4.c */
+
+/***********************************************************************
+* This code is part of GLPK (GNU Linear Programming Kit).
+*
+* Copyright (C) 2009-2017 Andrew Makhorin, Department for Applied
+* Informatics, Moscow Aviation Institute, Moscow, Russia. All rights
+* reserved. E-mail: <mao@gnu.org>.
+*
+* GLPK is free software: you can redistribute it and/or modify it
+* under the terms of the GNU General Public License as published by
+* the Free Software Foundation, either version 3 of the License, or
+* (at your option) any later version.
+*
+* GLPK is distributed in the hope that it will be useful, but WITHOUT
+* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
+* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
+* License for more details.
+*
+* You should have received a copy of the GNU General Public License
+* along with GLPK. If not, see <http://www.gnu.org/licenses/>.
+***********************************************************************/
+
+#include "env.h"
+#include "npp.h"
+
+/***********************************************************************
+* NAME
+*
+* npp_binarize_prob - binarize MIP problem
+*
+* SYNOPSIS
+*
+* #include "glpnpp.h"
+* int npp_binarize_prob(NPP *npp);
+*
+* DESCRIPTION
+*
+* The routine npp_binarize_prob replaces in the original MIP problem
+* every integer variable:
+*
+* l[q] <= x[q] <= u[q], (1)
+*
+* where l[q] < u[q], by an equivalent sum of binary variables.
+*
+* RETURNS
+*
+* The routine returns the number of integer variables for which the
+* transformation failed, because u[q] - l[q] > d_max.
+*
+* PROBLEM TRANSFORMATION
+*
+* If variable x[q] has non-zero lower bound, it is first processed
+* with the routine npp_lbnd_col. Thus, we can assume that:
+*
+* 0 <= x[q] <= u[q]. (2)
+*
+* If u[q] = 1, variable x[q] is already binary, so further processing
+* is not needed. Let, therefore, that 2 <= u[q] <= d_max, and n be a
+* smallest integer such that u[q] <= 2^n - 1 (n >= 2, since u[q] >= 2).
+* Then variable x[q] can be replaced by the following sum:
+*
+* n-1
+* x[q] = sum 2^k x[k], (3)
+* k=0
+*
+* where x[k] are binary columns (variables). If u[q] < 2^n - 1, the
+* following additional inequality constraint must be also included in
+* the transformed problem:
+*
+* n-1
+* sum 2^k x[k] <= u[q]. (4)
+* k=0
+*
+* Note: Assuming that in the transformed problem x[q] becomes binary
+* variable x[0], this transformation causes new n-1 binary variables
+* to appear.
+*
+* Substituting x[q] from (3) to the objective row gives:
+*
+* z = sum c[j] x[j] + c[0] =
+* j
+*
+* = sum c[j] x[j] + c[q] x[q] + c[0] =
+* j!=q
+* n-1
+* = sum c[j] x[j] + c[q] sum 2^k x[k] + c[0] =
+* j!=q k=0
+* n-1
+* = sum c[j] x[j] + sum c[k] x[k] + c[0],
+* j!=q k=0
+*
+* where:
+*
+* c[k] = 2^k c[q], k = 0, ..., n-1. (5)
+*
+* And substituting x[q] from (3) to i-th constraint row i gives:
+*
+* L[i] <= sum a[i,j] x[j] <= U[i] ==>
+* j
+*
+* L[i] <= sum a[i,j] x[j] + a[i,q] x[q] <= U[i] ==>
+* j!=q
+* n-1
+* L[i] <= sum a[i,j] x[j] + a[i,q] sum 2^k x[k] <= U[i] ==>
+* j!=q k=0
+* n-1
+* L[i] <= sum a[i,j] x[j] + sum a[i,k] x[k] <= U[i],
+* j!=q k=0
+*
+* where:
+*
+* a[i,k] = 2^k a[i,q], k = 0, ..., n-1. (6)
+*
+* RECOVERING SOLUTION
+*
+* Value of variable x[q] is computed with formula (3). */
+
+struct binarize
+{ int q;
+ /* column reference number for x[q] = x[0] */
+ int j;
+ /* column reference number for x[1]; x[2] has reference number
+ j+1, x[3] - j+2, etc. */
+ int n;
+ /* total number of binary variables, n >= 2 */
+};
+
+static int rcv_binarize_prob(NPP *npp, void *info);
+
+int npp_binarize_prob(NPP *npp)
+{ /* binarize MIP problem */
+ struct binarize *info;
+ NPPROW *row;
+ NPPCOL *col, *bin;
+ NPPAIJ *aij;
+ int u, n, k, temp, nfails, nvars, nbins, nrows;
+ /* new variables will be added to the end of the column list, so
+ we go from the end to beginning of the column list */
+ nfails = nvars = nbins = nrows = 0;
+ for (col = npp->c_tail; col != NULL; col = col->prev)
+ { /* skip continuous variable */
+ if (!col->is_int) continue;
+ /* skip fixed variable */
+ if (col->lb == col->ub) continue;
+ /* skip binary variable */
+ if (col->lb == 0.0 && col->ub == 1.0) continue;
+ /* check if the transformation is applicable */
+ if (col->lb < -1e6 || col->ub > +1e6 ||
+ col->ub - col->lb > 4095.0)
+ { /* unfortunately, not */
+ nfails++;
+ continue;
+ }
+ /* process integer non-binary variable x[q] */
+ nvars++;
+ /* make x[q] non-negative, if its lower bound is non-zero */
+ if (col->lb != 0.0)
+ npp_lbnd_col(npp, col);
+ /* now 0 <= x[q] <= u[q] */
+ xassert(col->lb == 0.0);
+ u = (int)col->ub;
+ xassert(col->ub == (double)u);
+ /* if x[q] is binary, further processing is not needed */
+ if (u == 1) continue;
+ /* determine smallest n such that u <= 2^n - 1 (thus, n is the
+ number of binary variables needed) */
+ n = 2, temp = 4;
+ while (u >= temp)
+ n++, temp += temp;
+ nbins += n;
+ /* create transformation stack entry */
+ info = npp_push_tse(npp,
+ rcv_binarize_prob, sizeof(struct binarize));
+ info->q = col->j;
+ info->j = 0; /* will be set below */
+ info->n = n;
+ /* if u < 2^n - 1, we need one additional row for (4) */
+ if (u < temp - 1)
+ { row = npp_add_row(npp), nrows++;
+ row->lb = -DBL_MAX, row->ub = u;
+ }
+ else
+ row = NULL;
+ /* in the transformed problem variable x[q] becomes binary
+ variable x[0], so its objective and constraint coefficients
+ are not changed */
+ col->ub = 1.0;
+ /* include x[0] into constraint (4) */
+ if (row != NULL)
+ npp_add_aij(npp, row, col, 1.0);
+ /* add other binary variables x[1], ..., x[n-1] */
+ for (k = 1, temp = 2; k < n; k++, temp += temp)
+ { /* add new binary variable x[k] */
+ bin = npp_add_col(npp);
+ bin->is_int = 1;
+ bin->lb = 0.0, bin->ub = 1.0;
+ bin->coef = (double)temp * col->coef;
+ /* store column reference number for x[1] */
+ if (info->j == 0)
+ info->j = bin->j;
+ else
+ xassert(info->j + (k-1) == bin->j);
+ /* duplicate constraint coefficients for x[k]; this also
+ automatically includes x[k] into constraint (4) */
+ for (aij = col->ptr; aij != NULL; aij = aij->c_next)
+ npp_add_aij(npp, aij->row, bin, (double)temp * aij->val);
+ }
+ }
+ if (nvars > 0)
+ xprintf("%d integer variable(s) were replaced by %d binary one"
+ "s\n", nvars, nbins);
+ if (nrows > 0)
+ xprintf("%d row(s) were added due to binarization\n", nrows);
+ if (nfails > 0)
+ xprintf("Binarization failed for %d integer variable(s)\n",
+ nfails);
+ return nfails;
+}
+
+static int rcv_binarize_prob(NPP *npp, void *_info)
+{ /* recovery binarized variable */
+ struct binarize *info = _info;
+ int k, temp;
+ double sum;
+ /* compute value of x[q]; see formula (3) */
+ sum = npp->c_value[info->q];
+ for (k = 1, temp = 2; k < info->n; k++, temp += temp)
+ sum += (double)temp * npp->c_value[info->j + (k-1)];
+ npp->c_value[info->q] = sum;
+ return 0;
+}
+
+/**********************************************************************/
+
+struct elem
+{ /* linear form element a[j] x[j] */
+ double aj;
+ /* non-zero coefficient value */
+ NPPCOL *xj;
+ /* pointer to variable (column) */
+ struct elem *next;
+ /* pointer to another term */
+};
+
+static struct elem *copy_form(NPP *npp, NPPROW *row, double s)
+{ /* copy linear form */
+ NPPAIJ *aij;
+ struct elem *ptr, *e;
+ ptr = NULL;
+ for (aij = row->ptr; aij != NULL; aij = aij->r_next)
+ { e = dmp_get_atom(npp->pool, sizeof(struct elem));
+ e->aj = s * aij->val;
+ e->xj = aij->col;
+ e->next = ptr;
+ ptr = e;
+ }
+ return ptr;
+}
+
+static void drop_form(NPP *npp, struct elem *ptr)
+{ /* drop linear form */
+ struct elem *e;
+ while (ptr != NULL)
+ { e = ptr;
+ ptr = e->next;
+ dmp_free_atom(npp->pool, e, sizeof(struct elem));
+ }
+ return;
+}
+
+/***********************************************************************
+* NAME
+*
+* npp_is_packing - test if constraint is packing inequality
+*
+* SYNOPSIS
+*
+* #include "glpnpp.h"
+* int npp_is_packing(NPP *npp, NPPROW *row);
+*
+* RETURNS
+*
+* If the specified row (constraint) is packing inequality (see below),
+* the routine npp_is_packing returns non-zero. Otherwise, it returns
+* zero.
+*
+* PACKING INEQUALITIES
+*
+* In canonical format the packing inequality is the following:
+*
+* sum x[j] <= 1, (1)
+* j in J
+*
+* where all variables x[j] are binary. This inequality expresses the
+* condition that in any integer feasible solution at most one variable
+* from set J can take non-zero (unity) value while other variables
+* must be equal to zero. W.l.o.g. it is assumed that |J| >= 2, because
+* if J is empty or |J| = 1, the inequality (1) is redundant.
+*
+* In general case the packing inequality may include original variables
+* x[j] as well as their complements x~[j]:
+*
+* sum x[j] + sum x~[j] <= 1, (2)
+* j in Jp j in Jn
+*
+* where Jp and Jn are not intersected. Therefore, using substitution
+* x~[j] = 1 - x[j] gives the packing inequality in generalized format:
+*
+* sum x[j] - sum x[j] <= 1 - |Jn|. (3)
+* j in Jp j in Jn */
+
+int npp_is_packing(NPP *npp, NPPROW *row)
+{ /* test if constraint is packing inequality */
+ NPPCOL *col;
+ NPPAIJ *aij;
+ int b;
+ xassert(npp == npp);
+ if (!(row->lb == -DBL_MAX && row->ub != +DBL_MAX))
+ return 0;
+ b = 1;
+ for (aij = row->ptr; aij != NULL; aij = aij->r_next)
+ { col = aij->col;
+ if (!(col->is_int && col->lb == 0.0 && col->ub == 1.0))
+ return 0;
+ if (aij->val == +1.0)
+ ;
+ else if (aij->val == -1.0)
+ b--;
+ else
+ return 0;
+ }
+ if (row->ub != (double)b) return 0;
+ return 1;
+}
+
+/***********************************************************************
+* NAME
+*
+* npp_hidden_packing - identify hidden packing inequality
+*
+* SYNOPSIS
+*
+* #include "glpnpp.h"
+* int npp_hidden_packing(NPP *npp, NPPROW *row);
+*
+* DESCRIPTION
+*
+* The routine npp_hidden_packing processes specified inequality
+* constraint, which includes only binary variables, and the number of
+* the variables is not less than two. If the original inequality is
+* equivalent to a packing inequality, the routine replaces it by this
+* equivalent inequality. If the original constraint is double-sided
+* inequality, it is replaced by a pair of single-sided inequalities,
+* if necessary.
+*
+* RETURNS
+*
+* If the original inequality constraint was replaced by equivalent
+* packing inequality, the routine npp_hidden_packing returns non-zero.
+* Otherwise, it returns zero.
+*
+* PROBLEM TRANSFORMATION
+*
+* Consider an inequality constraint:
+*
+* sum a[j] x[j] <= b, (1)
+* j in J
+*
+* where all variables x[j] are binary, and |J| >= 2. (In case of '>='
+* inequality it can be transformed to '<=' format by multiplying both
+* its sides by -1.)
+*
+* Let Jp = {j: a[j] > 0}, Jn = {j: a[j] < 0}. Performing substitution
+* x[j] = 1 - x~[j] for all j in Jn, we have:
+*
+* sum a[j] x[j] <= b ==>
+* j in J
+*
+* sum a[j] x[j] + sum a[j] x[j] <= b ==>
+* j in Jp j in Jn
+*
+* sum a[j] x[j] + sum a[j] (1 - x~[j]) <= b ==>
+* j in Jp j in Jn
+*
+* sum a[j] x[j] - sum a[j] x~[j] <= b - sum a[j].
+* j in Jp j in Jn j in Jn
+*
+* Thus, meaning the transformation above, we can assume that in
+* inequality (1) all coefficients a[j] are positive. Moreover, we can
+* assume that a[j] <= b. In fact, let a[j] > b; then the following
+* three cases are possible:
+*
+* 1) b < 0. In this case inequality (1) is infeasible, so the problem
+* has no feasible solution (see the routine npp_analyze_row);
+*
+* 2) b = 0. In this case inequality (1) is a forcing inequality on its
+* upper bound (see the routine npp_forcing row), from which it
+* follows that all variables x[j] should be fixed at zero;
+*
+* 3) b > 0. In this case inequality (1) defines an implied zero upper
+* bound for variable x[j] (see the routine npp_implied_bounds), from
+* which it follows that x[j] should be fixed at zero.
+*
+* It is assumed that all three cases listed above have been recognized
+* by the routine npp_process_prob, which performs basic MIP processing
+* prior to a call the routine npp_hidden_packing. So, if one of these
+* cases occurs, we should just skip processing such constraint.
+*
+* Thus, let 0 < a[j] <= b. Then it is obvious that constraint (1) is
+* equivalent to packing inquality only if:
+*
+* a[j] + a[k] > b + eps (2)
+*
+* for all j, k in J, j != k, where eps is an absolute tolerance for
+* row (linear form) value. Checking the condition (2) for all j and k,
+* j != k, requires time O(|J|^2). However, this time can be reduced to
+* O(|J|), if use minimal a[j] and a[k], in which case it is sufficient
+* to check the condition (2) only once.
+*
+* Once the original inequality (1) is replaced by equivalent packing
+* inequality, we need to perform back substitution x~[j] = 1 - x[j] for
+* all j in Jn (see above).
+*
+* RECOVERING SOLUTION
+*
+* None needed. */
+
+static int hidden_packing(NPP *npp, struct elem *ptr, double *_b)
+{ /* process inequality constraint: sum a[j] x[j] <= b;
+ 0 - specified row is NOT hidden packing inequality;
+ 1 - specified row is packing inequality;
+ 2 - specified row is hidden packing inequality. */
+ struct elem *e, *ej, *ek;
+ int neg;
+ double b = *_b, eps;
+ xassert(npp == npp);
+ /* a[j] must be non-zero, x[j] must be binary, for all j in J */
+ for (e = ptr; e != NULL; e = e->next)
+ { xassert(e->aj != 0.0);
+ xassert(e->xj->is_int);
+ xassert(e->xj->lb == 0.0 && e->xj->ub == 1.0);
+ }
+ /* check if the specified inequality constraint already has the
+ form of packing inequality */
+ neg = 0; /* neg is |Jn| */
+ for (e = ptr; e != NULL; e = e->next)
+ { if (e->aj == +1.0)
+ ;
+ else if (e->aj == -1.0)
+ neg++;
+ else
+ break;
+ }
+ if (e == NULL)
+ { /* all coefficients a[j] are +1 or -1; check rhs b */
+ if (b == (double)(1 - neg))
+ { /* it is packing inequality; no processing is needed */
+ return 1;
+ }
+ }
+ /* substitute x[j] = 1 - x~[j] for all j in Jn to make all a[j]
+ positive; the result is a~[j] = |a[j]| and new rhs b */
+ for (e = ptr; e != NULL; e = e->next)
+ if (e->aj < 0) b -= e->aj;
+ /* now a[j] > 0 for all j in J (actually |a[j]| are used) */
+ /* if a[j] > b, skip processing--this case must not appear */
+ for (e = ptr; e != NULL; e = e->next)
+ if (fabs(e->aj) > b) return 0;
+ /* now 0 < a[j] <= b for all j in J */
+ /* find two minimal coefficients a[j] and a[k], j != k */
+ ej = NULL;
+ for (e = ptr; e != NULL; e = e->next)
+ if (ej == NULL || fabs(ej->aj) > fabs(e->aj)) ej = e;
+ xassert(ej != NULL);
+ ek = NULL;
+ for (e = ptr; e != NULL; e = e->next)
+ if (e != ej)
+ if (ek == NULL || fabs(ek->aj) > fabs(e->aj)) ek = e;
+ xassert(ek != NULL);
+ /* the specified constraint is equivalent to packing inequality
+ iff a[j] + a[k] > b + eps */
+ eps = 1e-3 + 1e-6 * fabs(b);
+ if (fabs(ej->aj) + fabs(ek->aj) <= b + eps) return 0;
+ /* perform back substitution x~[j] = 1 - x[j] and construct the
+ final equivalent packing inequality in generalized format */
+ b = 1.0;
+ for (e = ptr; e != NULL; e = e->next)
+ { if (e->aj > 0.0)
+ e->aj = +1.0;
+ else /* e->aj < 0.0 */
+ e->aj = -1.0, b -= 1.0;
+ }
+ *_b = b;
+ return 2;
+}
+
+int npp_hidden_packing(NPP *npp, NPPROW *row)
+{ /* identify hidden packing inequality */
+ NPPROW *copy;
+ NPPAIJ *aij;
+ struct elem *ptr, *e;
+ int kase, ret, count = 0;
+ double b;
+ /* the row must be inequality constraint */
+ xassert(row->lb < row->ub);
+ for (kase = 0; kase <= 1; kase++)
+ { if (kase == 0)
+ { /* process row upper bound */
+ if (row->ub == +DBL_MAX) continue;
+ ptr = copy_form(npp, row, +1.0);
+ b = + row->ub;
+ }
+ else
+ { /* process row lower bound */
+ if (row->lb == -DBL_MAX) continue;
+ ptr = copy_form(npp, row, -1.0);
+ b = - row->lb;
+ }
+ /* now the inequality has the form "sum a[j] x[j] <= b" */
+ ret = hidden_packing(npp, ptr, &b);
+ xassert(0 <= ret && ret <= 2);
+ if (kase == 1 && ret == 1 || ret == 2)
+ { /* the original inequality has been identified as hidden
+ packing inequality */
+ count++;
+#ifdef GLP_DEBUG
+ xprintf("Original constraint:\n");
+ for (aij = row->ptr; aij != NULL; aij = aij->r_next)
+ xprintf(" %+g x%d", aij->val, aij->col->j);
+ if (row->lb != -DBL_MAX) xprintf(", >= %g", row->lb);
+ if (row->ub != +DBL_MAX) xprintf(", <= %g", row->ub);
+ xprintf("\n");
+ xprintf("Equivalent packing inequality:\n");
+ for (e = ptr; e != NULL; e = e->next)
+ xprintf(" %sx%d", e->aj > 0.0 ? "+" : "-", e->xj->j);
+ xprintf(", <= %g\n", b);
+#endif
+ if (row->lb == -DBL_MAX || row->ub == +DBL_MAX)
+ { /* the original row is single-sided inequality; no copy
+ is needed */
+ copy = NULL;
+ }
+ else
+ { /* the original row is double-sided inequality; we need
+ to create its copy for other bound before replacing it
+ with the equivalent inequality */
+ copy = npp_add_row(npp);
+ if (kase == 0)
+ { /* the copy is for lower bound */
+ copy->lb = row->lb, copy->ub = +DBL_MAX;
+ }
+ else
+ { /* the copy is for upper bound */
+ copy->lb = -DBL_MAX, copy->ub = row->ub;
+ }
+ /* copy original row coefficients */
+ for (aij = row->ptr; aij != NULL; aij = aij->r_next)
+ npp_add_aij(npp, copy, aij->col, aij->val);
+ }
+ /* replace the original inequality by equivalent one */
+ npp_erase_row(npp, row);
+ row->lb = -DBL_MAX, row->ub = b;
+ for (e = ptr; e != NULL; e = e->next)
+ npp_add_aij(npp, row, e->xj, e->aj);
+ /* continue processing lower bound for the copy */
+ if (copy != NULL) row = copy;
+ }
+ drop_form(npp, ptr);
+ }
+ return count;
+}
+
+/***********************************************************************
+* NAME
+*
+* npp_implied_packing - identify implied packing inequality
+*
+* SYNOPSIS
+*
+* #include "glpnpp.h"
+* int npp_implied_packing(NPP *npp, NPPROW *row, int which,
+* NPPCOL *var[], char set[]);
+*
+* DESCRIPTION
+*
+* The routine npp_implied_packing processes specified row (constraint)
+* of general format:
+*
+* L <= sum a[j] x[j] <= U. (1)
+* j
+*
+* If which = 0, only lower bound L, which must exist, is considered,
+* while upper bound U is ignored. Similarly, if which = 1, only upper
+* bound U, which must exist, is considered, while lower bound L is
+* ignored. Thus, if the specified row is a double-sided inequality or
+* equality constraint, this routine should be called twice for both
+* lower and upper bounds.
+*
+* The routine npp_implied_packing attempts to find a non-trivial (i.e.
+* having not less than two binary variables) packing inequality:
+*
+* sum x[j] - sum x[j] <= 1 - |Jn|, (2)
+* j in Jp j in Jn
+*
+* which is relaxation of the constraint (1) in the sense that any
+* solution satisfying to that constraint also satisfies to the packing
+* inequality (2). If such relaxation exists, the routine stores
+* pointers to descriptors of corresponding binary variables and their
+* flags, resp., to locations var[1], var[2], ..., var[len] and set[1],
+* set[2], ..., set[len], where set[j] = 0 means that j in Jp and
+* set[j] = 1 means that j in Jn.
+*
+* RETURNS
+*
+* The routine npp_implied_packing returns len, which is the total
+* number of binary variables in the packing inequality found, len >= 2.
+* However, if the relaxation does not exist, the routine returns zero.
+*
+* ALGORITHM
+*
+* If which = 0, the constraint coefficients (1) are multiplied by -1
+* and b is assigned -L; if which = 1, the constraint coefficients (1)
+* are not changed and b is assigned +U. In both cases the specified
+* constraint gets the following format:
+*
+* sum a[j] x[j] <= b. (3)
+* j
+*
+* (Note that (3) is a relaxation of (1), because one of bounds L or U
+* is ignored.)
+*
+* Let J be set of binary variables, Kp be set of non-binary (integer
+* or continuous) variables with a[j] > 0, and Kn be set of non-binary
+* variables with a[j] < 0. Then the inequality (3) can be written as
+* follows:
+*
+* sum a[j] x[j] <= b - sum a[j] x[j] - sum a[j] x[j]. (4)
+* j in J j in Kp j in Kn
+*
+* To get rid of non-binary variables we can replace the inequality (4)
+* by the following relaxed inequality:
+*
+* sum a[j] x[j] <= b~, (5)
+* j in J
+*
+* where:
+*
+* b~ = sup(b - sum a[j] x[j] - sum a[j] x[j]) =
+* j in Kp j in Kn
+*
+* = b - inf sum a[j] x[j] - inf sum a[j] x[j] = (6)
+* j in Kp j in Kn
+*
+* = b - sum a[j] l[j] - sum a[j] u[j].
+* j in Kp j in Kn
+*
+* Note that if lower bound l[j] (if j in Kp) or upper bound u[j]
+* (if j in Kn) of some non-binary variable x[j] does not exist, then
+* formally b = +oo, in which case further analysis is not performed.
+*
+* Let Bp = {j in J: a[j] > 0}, Bn = {j in J: a[j] < 0}. To make all
+* the inequality coefficients in (5) positive, we replace all x[j] in
+* Bn by their complementaries, substituting x[j] = 1 - x~[j] for all
+* j in Bn, that gives:
+*
+* sum a[j] x[j] - sum a[j] x~[j] <= b~ - sum a[j]. (7)
+* j in Bp j in Bn j in Bn
+*
+* This inequality is a relaxation of the original constraint (1), and
+* it is a binary knapsack inequality. Writing it in the standard format
+* we have:
+*
+* sum alfa[j] z[j] <= beta, (8)
+* j in J
+*
+* where:
+* ( + a[j], if j in Bp,
+* alfa[j] = < (9)
+* ( - a[j], if j in Bn,
+*
+* ( x[j], if j in Bp,
+* z[j] = < (10)
+* ( 1 - x[j], if j in Bn,
+*
+* beta = b~ - sum a[j]. (11)
+* j in Bn
+*
+* In the inequality (8) all coefficients are positive, therefore, the
+* packing relaxation to be found for this inequality is the following:
+*
+* sum z[j] <= 1. (12)
+* j in P
+*
+* It is obvious that set P within J, which we would like to find, must
+* satisfy to the following condition:
+*
+* alfa[j] + alfa[k] > beta + eps for all j, k in P, j != k, (13)
+*
+* where eps is an absolute tolerance for value of the linear form.
+* Thus, it is natural to take P = {j: alpha[j] > (beta + eps) / 2}.
+* Moreover, if in the equality (8) there exist coefficients alfa[k],
+* for which alfa[k] <= (beta + eps) / 2, but which, nevertheless,
+* satisfies to the condition (13) for all j in P, *one* corresponding
+* variable z[k] (having, for example, maximal coefficient alfa[k]) can
+* be included in set P, that allows increasing the number of binary
+* variables in (12) by one.
+*
+* Once the set P has been built, for the inequality (12) we need to
+* perform back substitution according to (10) in order to express it
+* through the original binary variables. As the result of such back
+* substitution the relaxed packing inequality get its final format (2),
+* where Jp = J intersect Bp, and Jn = J intersect Bn. */
+
+int npp_implied_packing(NPP *npp, NPPROW *row, int which,
+ NPPCOL *var[], char set[])
+{ struct elem *ptr, *e, *i, *k;
+ int len = 0;
+ double b, eps;
+ /* build inequality (3) */
+ if (which == 0)
+ { ptr = copy_form(npp, row, -1.0);
+ xassert(row->lb != -DBL_MAX);
+ b = - row->lb;
+ }
+ else if (which == 1)
+ { ptr = copy_form(npp, row, +1.0);
+ xassert(row->ub != +DBL_MAX);
+ b = + row->ub;
+ }
+ /* remove non-binary variables to build relaxed inequality (5);
+ compute its right-hand side b~ with formula (6) */
+ for (e = ptr; e != NULL; e = e->next)
+ { if (!(e->xj->is_int && e->xj->lb == 0.0 && e->xj->ub == 1.0))
+ { /* x[j] is non-binary variable */
+ if (e->aj > 0.0)
+ { if (e->xj->lb == -DBL_MAX) goto done;
+ b -= e->aj * e->xj->lb;
+ }
+ else /* e->aj < 0.0 */
+ { if (e->xj->ub == +DBL_MAX) goto done;
+ b -= e->aj * e->xj->ub;
+ }
+ /* a[j] = 0 means that variable x[j] is removed */
+ e->aj = 0.0;
+ }
+ }
+ /* substitute x[j] = 1 - x~[j] to build knapsack inequality (8);
+ compute its right-hand side beta with formula (11) */
+ for (e = ptr; e != NULL; e = e->next)
+ if (e->aj < 0.0) b -= e->aj;
+ /* if beta is close to zero, the knapsack inequality is either
+ infeasible or forcing inequality; this must never happen, so
+ we skip further analysis */
+ if (b < 1e-3) goto done;
+ /* build set P as well as sets Jp and Jn, and determine x[k] as
+ explained above in comments to the routine */
+ eps = 1e-3 + 1e-6 * b;
+ i = k = NULL;
+ for (e = ptr; e != NULL; e = e->next)
+ { /* note that alfa[j] = |a[j]| */
+ if (fabs(e->aj) > 0.5 * (b + eps))
+ { /* alfa[j] > (b + eps) / 2; include x[j] in set P, i.e. in
+ set Jp or Jn */
+ var[++len] = e->xj;
+ set[len] = (char)(e->aj > 0.0 ? 0 : 1);
+ /* alfa[i] = min alfa[j] over all j included in set P */
+ if (i == NULL || fabs(i->aj) > fabs(e->aj)) i = e;
+ }
+ else if (fabs(e->aj) >= 1e-3)
+ { /* alfa[k] = max alfa[j] over all j not included in set P;
+ we skip coefficient a[j] if it is close to zero to avoid
+ numerically unreliable results */
+ if (k == NULL || fabs(k->aj) < fabs(e->aj)) k = e;
+ }
+ }
+ /* if alfa[k] satisfies to condition (13) for all j in P, include
+ x[k] in P */
+ if (i != NULL && k != NULL && fabs(i->aj) + fabs(k->aj) > b + eps)
+ { var[++len] = k->xj;
+ set[len] = (char)(k->aj > 0.0 ? 0 : 1);
+ }
+ /* trivial packing inequality being redundant must never appear,
+ so we just ignore it */
+ if (len < 2) len = 0;
+done: drop_form(npp, ptr);
+ return len;
+}
+
+/***********************************************************************
+* NAME
+*
+* npp_is_covering - test if constraint is covering inequality
+*
+* SYNOPSIS
+*
+* #include "glpnpp.h"
+* int npp_is_covering(NPP *npp, NPPROW *row);
+*
+* RETURNS
+*
+* If the specified row (constraint) is covering inequality (see below),
+* the routine npp_is_covering returns non-zero. Otherwise, it returns
+* zero.
+*
+* COVERING INEQUALITIES
+*
+* In canonical format the covering inequality is the following:
+*
+* sum x[j] >= 1, (1)
+* j in J
+*
+* where all variables x[j] are binary. This inequality expresses the
+* condition that in any integer feasible solution variables in set J
+* cannot be all equal to zero at the same time, i.e. at least one
+* variable must take non-zero (unity) value. W.l.o.g. it is assumed
+* that |J| >= 2, because if J is empty, the inequality (1) is
+* infeasible, and if |J| = 1, the inequality (1) is a forcing row.
+*
+* In general case the covering inequality may include original
+* variables x[j] as well as their complements x~[j]:
+*
+* sum x[j] + sum x~[j] >= 1, (2)
+* j in Jp j in Jn
+*
+* where Jp and Jn are not intersected. Therefore, using substitution
+* x~[j] = 1 - x[j] gives the packing inequality in generalized format:
+*
+* sum x[j] - sum x[j] >= 1 - |Jn|. (3)
+* j in Jp j in Jn
+*
+* (May note that the inequality (3) cuts off infeasible solutions,
+* where x[j] = 0 for all j in Jp and x[j] = 1 for all j in Jn.)
+*
+* NOTE: If |J| = 2, the inequality (3) is equivalent to packing
+* inequality (see the routine npp_is_packing). */
+
+int npp_is_covering(NPP *npp, NPPROW *row)
+{ /* test if constraint is covering inequality */
+ NPPCOL *col;
+ NPPAIJ *aij;
+ int b;
+ xassert(npp == npp);
+ if (!(row->lb != -DBL_MAX && row->ub == +DBL_MAX))
+ return 0;
+ b = 1;
+ for (aij = row->ptr; aij != NULL; aij = aij->r_next)
+ { col = aij->col;
+ if (!(col->is_int && col->lb == 0.0 && col->ub == 1.0))
+ return 0;
+ if (aij->val == +1.0)
+ ;
+ else if (aij->val == -1.0)
+ b--;
+ else
+ return 0;
+ }
+ if (row->lb != (double)b) return 0;
+ return 1;
+}
+
+/***********************************************************************
+* NAME
+*
+* npp_hidden_covering - identify hidden covering inequality
+*
+* SYNOPSIS
+*
+* #include "glpnpp.h"
+* int npp_hidden_covering(NPP *npp, NPPROW *row);
+*
+* DESCRIPTION
+*
+* The routine npp_hidden_covering processes specified inequality
+* constraint, which includes only binary variables, and the number of
+* the variables is not less than three. If the original inequality is
+* equivalent to a covering inequality (see below), the routine
+* replaces it by the equivalent inequality. If the original constraint
+* is double-sided inequality, it is replaced by a pair of single-sided
+* inequalities, if necessary.
+*
+* RETURNS
+*
+* If the original inequality constraint was replaced by equivalent
+* covering inequality, the routine npp_hidden_covering returns
+* non-zero. Otherwise, it returns zero.
+*
+* PROBLEM TRANSFORMATION
+*
+* Consider an inequality constraint:
+*
+* sum a[j] x[j] >= b, (1)
+* j in J
+*
+* where all variables x[j] are binary, and |J| >= 3. (In case of '<='
+* inequality it can be transformed to '>=' format by multiplying both
+* its sides by -1.)
+*
+* Let Jp = {j: a[j] > 0}, Jn = {j: a[j] < 0}. Performing substitution
+* x[j] = 1 - x~[j] for all j in Jn, we have:
+*
+* sum a[j] x[j] >= b ==>
+* j in J
+*
+* sum a[j] x[j] + sum a[j] x[j] >= b ==>
+* j in Jp j in Jn
+*
+* sum a[j] x[j] + sum a[j] (1 - x~[j]) >= b ==>
+* j in Jp j in Jn
+*
+* sum m a[j] x[j] - sum a[j] x~[j] >= b - sum a[j].
+* j in Jp j in Jn j in Jn
+*
+* Thus, meaning the transformation above, we can assume that in
+* inequality (1) all coefficients a[j] are positive. Moreover, we can
+* assume that b > 0, because otherwise the inequality (1) would be
+* redundant (see the routine npp_analyze_row). It is then obvious that
+* constraint (1) is equivalent to covering inequality only if:
+*
+* a[j] >= b, (2)
+*
+* for all j in J.
+*
+* Once the original inequality (1) is replaced by equivalent covering
+* inequality, we need to perform back substitution x~[j] = 1 - x[j] for
+* all j in Jn (see above).
+*
+* RECOVERING SOLUTION
+*
+* None needed. */
+
+static int hidden_covering(NPP *npp, struct elem *ptr, double *_b)
+{ /* process inequality constraint: sum a[j] x[j] >= b;
+ 0 - specified row is NOT hidden covering inequality;
+ 1 - specified row is covering inequality;
+ 2 - specified row is hidden covering inequality. */
+ struct elem *e;
+ int neg;
+ double b = *_b, eps;
+ xassert(npp == npp);
+ /* a[j] must be non-zero, x[j] must be binary, for all j in J */
+ for (e = ptr; e != NULL; e = e->next)
+ { xassert(e->aj != 0.0);
+ xassert(e->xj->is_int);
+ xassert(e->xj->lb == 0.0 && e->xj->ub == 1.0);
+ }
+ /* check if the specified inequality constraint already has the
+ form of covering inequality */
+ neg = 0; /* neg is |Jn| */
+ for (e = ptr; e != NULL; e = e->next)
+ { if (e->aj == +1.0)
+ ;
+ else if (e->aj == -1.0)
+ neg++;
+ else
+ break;
+ }
+ if (e == NULL)
+ { /* all coefficients a[j] are +1 or -1; check rhs b */
+ if (b == (double)(1 - neg))
+ { /* it is covering inequality; no processing is needed */
+ return 1;
+ }
+ }
+ /* substitute x[j] = 1 - x~[j] for all j in Jn to make all a[j]
+ positive; the result is a~[j] = |a[j]| and new rhs b */
+ for (e = ptr; e != NULL; e = e->next)
+ if (e->aj < 0) b -= e->aj;
+ /* now a[j] > 0 for all j in J (actually |a[j]| are used) */
+ /* if b <= 0, skip processing--this case must not appear */
+ if (b < 1e-3) return 0;
+ /* now a[j] > 0 for all j in J, and b > 0 */
+ /* the specified constraint is equivalent to covering inequality
+ iff a[j] >= b for all j in J */
+ eps = 1e-9 + 1e-12 * fabs(b);
+ for (e = ptr; e != NULL; e = e->next)
+ if (fabs(e->aj) < b - eps) return 0;
+ /* perform back substitution x~[j] = 1 - x[j] and construct the
+ final equivalent covering inequality in generalized format */
+ b = 1.0;
+ for (e = ptr; e != NULL; e = e->next)
+ { if (e->aj > 0.0)
+ e->aj = +1.0;
+ else /* e->aj < 0.0 */
+ e->aj = -1.0, b -= 1.0;
+ }
+ *_b = b;
+ return 2;
+}
+
+int npp_hidden_covering(NPP *npp, NPPROW *row)
+{ /* identify hidden covering inequality */
+ NPPROW *copy;
+ NPPAIJ *aij;
+ struct elem *ptr, *e;
+ int kase, ret, count = 0;
+ double b;
+ /* the row must be inequality constraint */
+ xassert(row->lb < row->ub);
+ for (kase = 0; kase <= 1; kase++)
+ { if (kase == 0)
+ { /* process row lower bound */
+ if (row->lb == -DBL_MAX) continue;
+ ptr = copy_form(npp, row, +1.0);
+ b = + row->lb;
+ }
+ else
+ { /* process row upper bound */
+ if (row->ub == +DBL_MAX) continue;
+ ptr = copy_form(npp, row, -1.0);
+ b = - row->ub;
+ }
+ /* now the inequality has the form "sum a[j] x[j] >= b" */
+ ret = hidden_covering(npp, ptr, &b);
+ xassert(0 <= ret && ret <= 2);
+ if (kase == 1 && ret == 1 || ret == 2)
+ { /* the original inequality has been identified as hidden
+ covering inequality */
+ count++;
+#ifdef GLP_DEBUG
+ xprintf("Original constraint:\n");
+ for (aij = row->ptr; aij != NULL; aij = aij->r_next)
+ xprintf(" %+g x%d", aij->val, aij->col->j);
+ if (row->lb != -DBL_MAX) xprintf(", >= %g", row->lb);
+ if (row->ub != +DBL_MAX) xprintf(", <= %g", row->ub);
+ xprintf("\n");
+ xprintf("Equivalent covering inequality:\n");
+ for (e = ptr; e != NULL; e = e->next)
+ xprintf(" %sx%d", e->aj > 0.0 ? "+" : "-", e->xj->j);
+ xprintf(", >= %g\n", b);
+#endif
+ if (row->lb == -DBL_MAX || row->ub == +DBL_MAX)
+ { /* the original row is single-sided inequality; no copy
+ is needed */
+ copy = NULL;
+ }
+ else
+ { /* the original row is double-sided inequality; we need
+ to create its copy for other bound before replacing it
+ with the equivalent inequality */
+ copy = npp_add_row(npp);
+ if (kase == 0)
+ { /* the copy is for upper bound */
+ copy->lb = -DBL_MAX, copy->ub = row->ub;
+ }
+ else
+ { /* the copy is for lower bound */
+ copy->lb = row->lb, copy->ub = +DBL_MAX;
+ }
+ /* copy original row coefficients */
+ for (aij = row->ptr; aij != NULL; aij = aij->r_next)
+ npp_add_aij(npp, copy, aij->col, aij->val);
+ }
+ /* replace the original inequality by equivalent one */
+ npp_erase_row(npp, row);
+ row->lb = b, row->ub = +DBL_MAX;
+ for (e = ptr; e != NULL; e = e->next)
+ npp_add_aij(npp, row, e->xj, e->aj);
+ /* continue processing upper bound for the copy */
+ if (copy != NULL) row = copy;
+ }
+ drop_form(npp, ptr);
+ }
+ return count;
+}
+
+/***********************************************************************
+* NAME
+*
+* npp_is_partitioning - test if constraint is partitioning equality
+*
+* SYNOPSIS
+*
+* #include "glpnpp.h"
+* int npp_is_partitioning(NPP *npp, NPPROW *row);
+*
+* RETURNS
+*
+* If the specified row (constraint) is partitioning equality (see
+* below), the routine npp_is_partitioning returns non-zero. Otherwise,
+* it returns zero.
+*
+* PARTITIONING EQUALITIES
+*
+* In canonical format the partitioning equality is the following:
+*
+* sum x[j] = 1, (1)
+* j in J
+*
+* where all variables x[j] are binary. This equality expresses the
+* condition that in any integer feasible solution exactly one variable
+* in set J must take non-zero (unity) value while other variables must
+* be equal to zero. W.l.o.g. it is assumed that |J| >= 2, because if
+* J is empty, the inequality (1) is infeasible, and if |J| = 1, the
+* inequality (1) is a fixing row.
+*
+* In general case the partitioning equality may include original
+* variables x[j] as well as their complements x~[j]:
+*
+* sum x[j] + sum x~[j] = 1, (2)
+* j in Jp j in Jn
+*
+* where Jp and Jn are not intersected. Therefore, using substitution
+* x~[j] = 1 - x[j] leads to the partitioning equality in generalized
+* format:
+*
+* sum x[j] - sum x[j] = 1 - |Jn|. (3)
+* j in Jp j in Jn */
+
+int npp_is_partitioning(NPP *npp, NPPROW *row)
+{ /* test if constraint is partitioning equality */
+ NPPCOL *col;
+ NPPAIJ *aij;
+ int b;
+ xassert(npp == npp);
+ if (row->lb != row->ub) return 0;
+ b = 1;
+ for (aij = row->ptr; aij != NULL; aij = aij->r_next)
+ { col = aij->col;
+ if (!(col->is_int && col->lb == 0.0 && col->ub == 1.0))
+ return 0;
+ if (aij->val == +1.0)
+ ;
+ else if (aij->val == -1.0)
+ b--;
+ else
+ return 0;
+ }
+ if (row->lb != (double)b) return 0;
+ return 1;
+}
+
+/***********************************************************************
+* NAME
+*
+* npp_reduce_ineq_coef - reduce inequality constraint coefficients
+*
+* SYNOPSIS
+*
+* #include "glpnpp.h"
+* int npp_reduce_ineq_coef(NPP *npp, NPPROW *row);
+*
+* DESCRIPTION
+*
+* The routine npp_reduce_ineq_coef processes specified inequality
+* constraint attempting to replace it by an equivalent constraint,
+* where magnitude of coefficients at binary variables is smaller than
+* in the original constraint. If the inequality is double-sided, it is
+* replaced by a pair of single-sided inequalities, if necessary.
+*
+* RETURNS
+*
+* The routine npp_reduce_ineq_coef returns the number of coefficients
+* reduced.
+*
+* BACKGROUND
+*
+* Consider an inequality constraint:
+*
+* sum a[j] x[j] >= b. (1)
+* j in J
+*
+* (In case of '<=' inequality it can be transformed to '>=' format by
+* multiplying both its sides by -1.) Let x[k] be a binary variable;
+* other variables can be integer as well as continuous. We can write
+* constraint (1) as follows:
+*
+* a[k] x[k] + t[k] >= b, (2)
+*
+* where:
+*
+* t[k] = sum a[j] x[j]. (3)
+* j in J\{k}
+*
+* Since x[k] is binary, constraint (2) is equivalent to disjunction of
+* the following two constraints:
+*
+* x[k] = 0, t[k] >= b (4)
+*
+* OR
+*
+* x[k] = 1, t[k] >= b - a[k]. (5)
+*
+* Let also that for the partial sum t[k] be known some its implied
+* lower bound inf t[k].
+*
+* Case a[k] > 0. Let inf t[k] < b, since otherwise both constraints
+* (4) and (5) and therefore constraint (2) are redundant.
+* If inf t[k] > b - a[k], only constraint (5) is redundant, in which
+* case it can be replaced with the following redundant and therefore
+* equivalent constraint:
+*
+* t[k] >= b - a'[k] = inf t[k], (6)
+*
+* where:
+*
+* a'[k] = b - inf t[k]. (7)
+*
+* Thus, the original constraint (2) is equivalent to the following
+* constraint with coefficient at variable x[k] changed:
+*
+* a'[k] x[k] + t[k] >= b. (8)
+*
+* From inf t[k] < b it follows that a'[k] > 0, i.e. the coefficient
+* at x[k] keeps its sign. And from inf t[k] > b - a[k] it follows that
+* a'[k] < a[k], i.e. the coefficient reduces in magnitude.
+*
+* Case a[k] < 0. Let inf t[k] < b - a[k], since otherwise both
+* constraints (4) and (5) and therefore constraint (2) are redundant.
+* If inf t[k] > b, only constraint (4) is redundant, in which case it
+* can be replaced with the following redundant and therefore equivalent
+* constraint:
+*
+* t[k] >= b' = inf t[k]. (9)
+*
+* Rewriting constraint (5) as follows:
+*
+* t[k] >= b - a[k] = b' - a'[k], (10)
+*
+* where:
+*
+* a'[k] = a[k] + b' - b = a[k] + inf t[k] - b, (11)
+*
+* we can see that disjunction of constraint (9) and (10) is equivalent
+* to disjunction of constraint (4) and (5), from which it follows that
+* the original constraint (2) is equivalent to the following constraint
+* with both coefficient at variable x[k] and right-hand side changed:
+*
+* a'[k] x[k] + t[k] >= b'. (12)
+*
+* From inf t[k] < b - a[k] it follows that a'[k] < 0, i.e. the
+* coefficient at x[k] keeps its sign. And from inf t[k] > b it follows
+* that a'[k] > a[k], i.e. the coefficient reduces in magnitude.
+*
+* PROBLEM TRANSFORMATION
+*
+* In the routine npp_reduce_ineq_coef the following implied lower
+* bound of the partial sum (3) is used:
+*
+* inf t[k] = sum a[j] l[j] + sum a[j] u[j], (13)
+* j in Jp\{k} k in Jn\{k}
+*
+* where Jp = {j : a[j] > 0}, Jn = {j : a[j] < 0}, l[j] and u[j] are
+* lower and upper bounds, resp., of variable x[j].
+*
+* In order to compute inf t[k] more efficiently, the following formula,
+* which is equivalent to (13), is actually used:
+*
+* ( h - a[k] l[k] = h, if a[k] > 0,
+* inf t[k] = < (14)
+* ( h - a[k] u[k] = h - a[k], if a[k] < 0,
+*
+* where:
+*
+* h = sum a[j] l[j] + sum a[j] u[j] (15)
+* j in Jp j in Jn
+*
+* is the implied lower bound of row (1).
+*
+* Reduction of positive coefficient (a[k] > 0) does not change value
+* of h, since l[k] = 0. In case of reduction of negative coefficient
+* (a[k] < 0) from (11) it follows that:
+*
+* delta a[k] = a'[k] - a[k] = inf t[k] - b (> 0), (16)
+*
+* so new value of h (accounting that u[k] = 1) can be computed as
+* follows:
+*
+* h := h + delta a[k] = h + (inf t[k] - b). (17)
+*
+* RECOVERING SOLUTION
+*
+* None needed. */
+
+static int reduce_ineq_coef(NPP *npp, struct elem *ptr, double *_b)
+{ /* process inequality constraint: sum a[j] x[j] >= b */
+ /* returns: the number of coefficients reduced */
+ struct elem *e;
+ int count = 0;
+ double h, inf_t, new_a, b = *_b;
+ xassert(npp == npp);
+ /* compute h; see (15) */
+ h = 0.0;
+ for (e = ptr; e != NULL; e = e->next)
+ { if (e->aj > 0.0)
+ { if (e->xj->lb == -DBL_MAX) goto done;
+ h += e->aj * e->xj->lb;
+ }
+ else /* e->aj < 0.0 */
+ { if (e->xj->ub == +DBL_MAX) goto done;
+ h += e->aj * e->xj->ub;
+ }
+ }
+ /* perform reduction of coefficients at binary variables */
+ for (e = ptr; e != NULL; e = e->next)
+ { /* skip non-binary variable */
+ if (!(e->xj->is_int && e->xj->lb == 0.0 && e->xj->ub == 1.0))
+ continue;
+ if (e->aj > 0.0)
+ { /* compute inf t[k]; see (14) */
+ inf_t = h;
+ if (b - e->aj < inf_t && inf_t < b)
+ { /* compute reduced coefficient a'[k]; see (7) */
+ new_a = b - inf_t;
+ if (new_a >= +1e-3 &&
+ e->aj - new_a >= 0.01 * (1.0 + e->aj))
+ { /* accept a'[k] */
+#ifdef GLP_DEBUG
+ xprintf("+");
+#endif
+ e->aj = new_a;
+ count++;
+ }
+ }
+ }
+ else /* e->aj < 0.0 */
+ { /* compute inf t[k]; see (14) */
+ inf_t = h - e->aj;
+ if (b < inf_t && inf_t < b - e->aj)
+ { /* compute reduced coefficient a'[k]; see (11) */
+ new_a = e->aj + (inf_t - b);
+ if (new_a <= -1e-3 &&
+ new_a - e->aj >= 0.01 * (1.0 - e->aj))
+ { /* accept a'[k] */
+#ifdef GLP_DEBUG
+ xprintf("-");
+#endif
+ e->aj = new_a;
+ /* update h; see (17) */
+ h += (inf_t - b);
+ /* compute b'; see (9) */
+ b = inf_t;
+ count++;
+ }
+ }
+ }
+ }
+ *_b = b;
+done: return count;
+}
+
+int npp_reduce_ineq_coef(NPP *npp, NPPROW *row)
+{ /* reduce inequality constraint coefficients */
+ NPPROW *copy;
+ NPPAIJ *aij;
+ struct elem *ptr, *e;
+ int kase, count[2];
+ double b;
+ /* the row must be inequality constraint */
+ xassert(row->lb < row->ub);
+ count[0] = count[1] = 0;
+ for (kase = 0; kase <= 1; kase++)
+ { if (kase == 0)
+ { /* process row lower bound */
+ if (row->lb == -DBL_MAX) continue;
+#ifdef GLP_DEBUG
+ xprintf("L");
+#endif
+ ptr = copy_form(npp, row, +1.0);
+ b = + row->lb;
+ }
+ else
+ { /* process row upper bound */
+ if (row->ub == +DBL_MAX) continue;
+#ifdef GLP_DEBUG
+ xprintf("U");
+#endif
+ ptr = copy_form(npp, row, -1.0);
+ b = - row->ub;
+ }
+ /* now the inequality has the form "sum a[j] x[j] >= b" */
+ count[kase] = reduce_ineq_coef(npp, ptr, &b);
+ if (count[kase] > 0)
+ { /* the original inequality has been replaced by equivalent
+ one with coefficients reduced */
+ if (row->lb == -DBL_MAX || row->ub == +DBL_MAX)
+ { /* the original row is single-sided inequality; no copy
+ is needed */
+ copy = NULL;
+ }
+ else
+ { /* the original row is double-sided inequality; we need
+ to create its copy for other bound before replacing it
+ with the equivalent inequality */
+#ifdef GLP_DEBUG
+ xprintf("*");
+#endif
+ copy = npp_add_row(npp);
+ if (kase == 0)
+ { /* the copy is for upper bound */
+ copy->lb = -DBL_MAX, copy->ub = row->ub;
+ }
+ else
+ { /* the copy is for lower bound */
+ copy->lb = row->lb, copy->ub = +DBL_MAX;
+ }
+ /* copy original row coefficients */
+ for (aij = row->ptr; aij != NULL; aij = aij->r_next)
+ npp_add_aij(npp, copy, aij->col, aij->val);
+ }
+ /* replace the original inequality by equivalent one */
+ npp_erase_row(npp, row);
+ row->lb = b, row->ub = +DBL_MAX;
+ for (e = ptr; e != NULL; e = e->next)
+ npp_add_aij(npp, row, e->xj, e->aj);
+ /* continue processing upper bound for the copy */
+ if (copy != NULL) row = copy;
+ }
+ drop_form(npp, ptr);
+ }
+ return count[0] + count[1];
+}
+
+/* eof */