aboutsummaryrefslogtreecommitdiffstats
path: root/test/monniaux/glpk-4.65/src/npp/npp6.c
diff options
context:
space:
mode:
Diffstat (limited to 'test/monniaux/glpk-4.65/src/npp/npp6.c')
-rw-r--r--test/monniaux/glpk-4.65/src/npp/npp6.c1500
1 files changed, 1500 insertions, 0 deletions
diff --git a/test/monniaux/glpk-4.65/src/npp/npp6.c b/test/monniaux/glpk-4.65/src/npp/npp6.c
new file mode 100644
index 00000000..b57f8615
--- /dev/null
+++ b/test/monniaux/glpk-4.65/src/npp/npp6.c
@@ -0,0 +1,1500 @@
+/* npp6.c (translate feasibility problem to CNF-SAT) */
+
+/***********************************************************************
+* This code is part of GLPK (GNU Linear Programming Kit).
+*
+* Copyright (C) 2011-2017 Andrew Makhorin, Department for Applied
+* Informatics, Moscow Aviation Institute, Moscow, Russia. All rights
+* reserved. E-mail: <mao@gnu.org>.
+*
+* GLPK is free software: you can redistribute it and/or modify it
+* under the terms of the GNU General Public License as published by
+* the Free Software Foundation, either version 3 of the License, or
+* (at your option) any later version.
+*
+* GLPK is distributed in the hope that it will be useful, but WITHOUT
+* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
+* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
+* License for more details.
+*
+* You should have received a copy of the GNU General Public License
+* along with GLPK. If not, see <http://www.gnu.org/licenses/>.
+***********************************************************************/
+
+#include "env.h"
+#include "npp.h"
+
+/***********************************************************************
+* npp_sat_free_row - process free (unbounded) row
+*
+* This routine processes row p, which is free (i.e. has no finite
+* bounds):
+*
+* -inf < sum a[p,j] x[j] < +inf. (1)
+*
+* The constraint (1) cannot be active and therefore it is redundant,
+* so the routine simply removes it from the original problem. */
+
+void npp_sat_free_row(NPP *npp, NPPROW *p)
+{ /* the row should be free */
+ xassert(p->lb == -DBL_MAX && p->ub == +DBL_MAX);
+ /* remove the row from the problem */
+ npp_del_row(npp, p);
+ return;
+}
+
+/***********************************************************************
+* npp_sat_fixed_col - process fixed column
+*
+* This routine processes column q, which is fixed:
+*
+* x[q] = s[q], (1)
+*
+* where s[q] is a fixed column value.
+*
+* The routine substitutes fixed value s[q] into constraint rows and
+* then removes column x[q] from the original problem.
+*
+* Substitution of x[q] = s[q] into row i gives:
+*
+* L[i] <= sum a[i,j] x[j] <= U[i] ==>
+* j
+*
+* L[i] <= sum a[i,j] x[j] + a[i,q] x[q] <= U[i] ==>
+* j!=q
+*
+* L[i] <= sum a[i,j] x[j] + a[i,q] s[q] <= U[i] ==>
+* j!=q
+*
+* L~[i] <= sum a[i,j] x[j] <= U~[i],
+* j!=q
+*
+* where
+*
+* L~[i] = L[i] - a[i,q] s[q], (2)
+*
+* U~[i] = U[i] - a[i,q] s[q] (3)
+*
+* are, respectively, lower and upper bound of row i in the transformed
+* problem.
+*
+* On recovering solution x[q] is assigned the value of s[q]. */
+
+struct sat_fixed_col
+{ /* fixed column */
+ int q;
+ /* column reference number for variable x[q] */
+ int s;
+ /* value, at which x[q] is fixed */
+};
+
+static int rcv_sat_fixed_col(NPP *, void *);
+
+int npp_sat_fixed_col(NPP *npp, NPPCOL *q)
+{ struct sat_fixed_col *info;
+ NPPROW *i;
+ NPPAIJ *aij;
+ int temp;
+ /* the column should be fixed */
+ xassert(q->lb == q->ub);
+ /* create transformation stack entry */
+ info = npp_push_tse(npp,
+ rcv_sat_fixed_col, sizeof(struct sat_fixed_col));
+ info->q = q->j;
+ info->s = (int)q->lb;
+ xassert((double)info->s == q->lb);
+ /* substitute x[q] = s[q] into constraint rows */
+ if (info->s == 0)
+ goto skip;
+ for (aij = q->ptr; aij != NULL; aij = aij->c_next)
+ { i = aij->row;
+ if (i->lb != -DBL_MAX)
+ { i->lb -= aij->val * (double)info->s;
+ temp = (int)i->lb;
+ if ((double)temp != i->lb)
+ return 1; /* integer arithmetic error */
+ }
+ if (i->ub != +DBL_MAX)
+ { i->ub -= aij->val * (double)info->s;
+ temp = (int)i->ub;
+ if ((double)temp != i->ub)
+ return 2; /* integer arithmetic error */
+ }
+ }
+skip: /* remove the column from the problem */
+ npp_del_col(npp, q);
+ return 0;
+}
+
+static int rcv_sat_fixed_col(NPP *npp, void *info_)
+{ struct sat_fixed_col *info = info_;
+ npp->c_value[info->q] = (double)info->s;
+ return 0;
+}
+
+/***********************************************************************
+* npp_sat_is_bin_comb - test if row is binary combination
+*
+* This routine tests if the specified row is a binary combination,
+* i.e. all its constraint coefficients are +1 and -1 and all variables
+* are binary. If the test was passed, the routine returns non-zero,
+* otherwise zero. */
+
+int npp_sat_is_bin_comb(NPP *npp, NPPROW *row)
+{ NPPCOL *col;
+ NPPAIJ *aij;
+ xassert(npp == npp);
+ for (aij = row->ptr; aij != NULL; aij = aij->r_next)
+ { if (!(aij->val == +1.0 || aij->val == -1.0))
+ return 0; /* non-unity coefficient */
+ col = aij->col;
+ if (!(col->is_int && col->lb == 0.0 && col->ub == 1.0))
+ return 0; /* non-binary column */
+ }
+ return 1; /* test was passed */
+}
+
+/***********************************************************************
+* npp_sat_num_pos_coef - determine number of positive coefficients
+*
+* This routine returns the number of positive coefficients in the
+* specified row. */
+
+int npp_sat_num_pos_coef(NPP *npp, NPPROW *row)
+{ NPPAIJ *aij;
+ int num = 0;
+ xassert(npp == npp);
+ for (aij = row->ptr; aij != NULL; aij = aij->r_next)
+ { if (aij->val > 0.0)
+ num++;
+ }
+ return num;
+}
+
+/***********************************************************************
+* npp_sat_num_neg_coef - determine number of negative coefficients
+*
+* This routine returns the number of negative coefficients in the
+* specified row. */
+
+int npp_sat_num_neg_coef(NPP *npp, NPPROW *row)
+{ NPPAIJ *aij;
+ int num = 0;
+ xassert(npp == npp);
+ for (aij = row->ptr; aij != NULL; aij = aij->r_next)
+ { if (aij->val < 0.0)
+ num++;
+ }
+ return num;
+}
+
+/***********************************************************************
+* npp_sat_is_cover_ineq - test if row is covering inequality
+*
+* The canonical form of a covering inequality is the following:
+*
+* sum x[j] >= 1, (1)
+* j in J
+*
+* where all x[j] are binary variables.
+*
+* In general case a covering inequality may have one of the following
+* two forms:
+*
+* sum x[j] - sum x[j] >= 1 - |J-|, (2)
+* j in J+ j in J-
+*
+*
+* sum x[j] - sum x[j] <= |J+| - 1. (3)
+* j in J+ j in J-
+*
+* Obviously, the inequality (2) can be transformed to the form (1) by
+* substitution x[j] = 1 - x'[j] for all j in J-, where x'[j] is the
+* negation of variable x[j]. And the inequality (3) can be transformed
+* to (2) by multiplying both left- and right-hand sides by -1.
+*
+* This routine returns one of the following codes:
+*
+* 0, if the specified row is not a covering inequality;
+*
+* 1, if the specified row has the form (2);
+*
+* 2, if the specified row has the form (3). */
+
+int npp_sat_is_cover_ineq(NPP *npp, NPPROW *row)
+{ xassert(npp == npp);
+ if (row->lb != -DBL_MAX && row->ub == +DBL_MAX)
+ { /* row is inequality of '>=' type */
+ if (npp_sat_is_bin_comb(npp, row))
+ { /* row is a binary combination */
+ if (row->lb == 1.0 - npp_sat_num_neg_coef(npp, row))
+ { /* row has the form (2) */
+ return 1;
+ }
+ }
+ }
+ else if (row->lb == -DBL_MAX && row->ub != +DBL_MAX)
+ { /* row is inequality of '<=' type */
+ if (npp_sat_is_bin_comb(npp, row))
+ { /* row is a binary combination */
+ if (row->ub == npp_sat_num_pos_coef(npp, row) - 1.0)
+ { /* row has the form (3) */
+ return 2;
+ }
+ }
+ }
+ /* row is not a covering inequality */
+ return 0;
+}
+
+/***********************************************************************
+* npp_sat_is_pack_ineq - test if row is packing inequality
+*
+* The canonical form of a packing inequality is the following:
+*
+* sum x[j] <= 1, (1)
+* j in J
+*
+* where all x[j] are binary variables.
+*
+* In general case a packing inequality may have one of the following
+* two forms:
+*
+* sum x[j] - sum x[j] <= 1 - |J-|, (2)
+* j in J+ j in J-
+*
+*
+* sum x[j] - sum x[j] >= |J+| - 1. (3)
+* j in J+ j in J-
+*
+* Obviously, the inequality (2) can be transformed to the form (1) by
+* substitution x[j] = 1 - x'[j] for all j in J-, where x'[j] is the
+* negation of variable x[j]. And the inequality (3) can be transformed
+* to (2) by multiplying both left- and right-hand sides by -1.
+*
+* This routine returns one of the following codes:
+*
+* 0, if the specified row is not a packing inequality;
+*
+* 1, if the specified row has the form (2);
+*
+* 2, if the specified row has the form (3). */
+
+int npp_sat_is_pack_ineq(NPP *npp, NPPROW *row)
+{ xassert(npp == npp);
+ if (row->lb == -DBL_MAX && row->ub != +DBL_MAX)
+ { /* row is inequality of '<=' type */
+ if (npp_sat_is_bin_comb(npp, row))
+ { /* row is a binary combination */
+ if (row->ub == 1.0 - npp_sat_num_neg_coef(npp, row))
+ { /* row has the form (2) */
+ return 1;
+ }
+ }
+ }
+ else if (row->lb != -DBL_MAX && row->ub == +DBL_MAX)
+ { /* row is inequality of '>=' type */
+ if (npp_sat_is_bin_comb(npp, row))
+ { /* row is a binary combination */
+ if (row->lb == npp_sat_num_pos_coef(npp, row) - 1.0)
+ { /* row has the form (3) */
+ return 2;
+ }
+ }
+ }
+ /* row is not a packing inequality */
+ return 0;
+}
+
+/***********************************************************************
+* npp_sat_is_partn_eq - test if row is partitioning equality
+*
+* The canonical form of a partitioning equality is the following:
+*
+* sum x[j] = 1, (1)
+* j in J
+*
+* where all x[j] are binary variables.
+*
+* In general case a partitioning equality may have one of the following
+* two forms:
+*
+* sum x[j] - sum x[j] = 1 - |J-|, (2)
+* j in J+ j in J-
+*
+*
+* sum x[j] - sum x[j] = |J+| - 1. (3)
+* j in J+ j in J-
+*
+* Obviously, the equality (2) can be transformed to the form (1) by
+* substitution x[j] = 1 - x'[j] for all j in J-, where x'[j] is the
+* negation of variable x[j]. And the equality (3) can be transformed
+* to (2) by multiplying both left- and right-hand sides by -1.
+*
+* This routine returns one of the following codes:
+*
+* 0, if the specified row is not a partitioning equality;
+*
+* 1, if the specified row has the form (2);
+*
+* 2, if the specified row has the form (3). */
+
+int npp_sat_is_partn_eq(NPP *npp, NPPROW *row)
+{ xassert(npp == npp);
+ if (row->lb == row->ub)
+ { /* row is equality constraint */
+ if (npp_sat_is_bin_comb(npp, row))
+ { /* row is a binary combination */
+ if (row->lb == 1.0 - npp_sat_num_neg_coef(npp, row))
+ { /* row has the form (2) */
+ return 1;
+ }
+ if (row->ub == npp_sat_num_pos_coef(npp, row) - 1.0)
+ { /* row has the form (3) */
+ return 2;
+ }
+ }
+ }
+ /* row is not a partitioning equality */
+ return 0;
+}
+
+/***********************************************************************
+* npp_sat_reverse_row - multiply both sides of row by -1
+*
+* This routines multiplies by -1 both left- and right-hand sides of
+* the specified row:
+*
+* L <= sum x[j] <= U,
+*
+* that results in the following row:
+*
+* -U <= sum (-x[j]) <= -L.
+*
+* If no integer overflow occured, the routine returns zero, otherwise
+* non-zero. */
+
+int npp_sat_reverse_row(NPP *npp, NPPROW *row)
+{ NPPAIJ *aij;
+ int temp, ret = 0;
+ double old_lb, old_ub;
+ xassert(npp == npp);
+ for (aij = row->ptr; aij != NULL; aij = aij->r_next)
+ { aij->val = -aij->val;
+ temp = (int)aij->val;
+ if ((double)temp != aij->val)
+ ret = 1;
+ }
+ old_lb = row->lb, old_ub = row->ub;
+ if (old_ub == +DBL_MAX)
+ row->lb = -DBL_MAX;
+ else
+ { row->lb = -old_ub;
+ temp = (int)row->lb;
+ if ((double)temp != row->lb)
+ ret = 2;
+ }
+ if (old_lb == -DBL_MAX)
+ row->ub = +DBL_MAX;
+ else
+ { row->ub = -old_lb;
+ temp = (int)row->ub;
+ if ((double)temp != row->ub)
+ ret = 3;
+ }
+ return ret;
+}
+
+/***********************************************************************
+* npp_sat_split_pack - split packing inequality
+*
+* Let there be given a packing inequality in canonical form:
+*
+* sum t[j] <= 1, (1)
+* j in J
+*
+* where t[j] = x[j] or t[j] = 1 - x[j], x[j] is a binary variable.
+* And let J = J1 U J2 is a partition of the set of literals. Then the
+* inequality (1) is obviously equivalent to the following two packing
+* inequalities:
+*
+* sum t[j] <= y <--> sum t[j] + (1 - y) <= 1, (2)
+* j in J1 j in J1
+*
+* sum t[j] <= 1 - y <--> sum t[j] + y <= 1, (3)
+* j in J2 j in J2
+*
+* where y is a new binary variable added to the transformed problem.
+*
+* Assuming that the specified row is a packing inequality (1), this
+* routine constructs the set J1 by including there first nlit literals
+* (terms) from the specified row, and the set J2 = J \ J1. Then the
+* routine creates a new row, which corresponds to inequality (2), and
+* replaces the specified row with inequality (3). */
+
+NPPROW *npp_sat_split_pack(NPP *npp, NPPROW *row, int nlit)
+{ NPPROW *rrr;
+ NPPCOL *col;
+ NPPAIJ *aij;
+ int k;
+ /* original row should be packing inequality (1) */
+ xassert(npp_sat_is_pack_ineq(npp, row) == 1);
+ /* and nlit should be less than the number of literals (terms)
+ in the original row */
+ xassert(0 < nlit && nlit < npp_row_nnz(npp, row));
+ /* create new row corresponding to inequality (2) */
+ rrr = npp_add_row(npp);
+ rrr->lb = -DBL_MAX, rrr->ub = 1.0;
+ /* move first nlit literals (terms) from the original row to the
+ new row; the original row becomes inequality (3) */
+ for (k = 1; k <= nlit; k++)
+ { aij = row->ptr;
+ xassert(aij != NULL);
+ /* add literal to the new row */
+ npp_add_aij(npp, rrr, aij->col, aij->val);
+ /* correct rhs */
+ if (aij->val < 0.0)
+ rrr->ub -= 1.0, row->ub += 1.0;
+ /* remove literal from the original row */
+ npp_del_aij(npp, aij);
+ }
+ /* create new binary variable y */
+ col = npp_add_col(npp);
+ col->is_int = 1, col->lb = 0.0, col->ub = 1.0;
+ /* include literal (1 - y) in the new row */
+ npp_add_aij(npp, rrr, col, -1.0);
+ rrr->ub -= 1.0;
+ /* include literal y in the original row */
+ npp_add_aij(npp, row, col, +1.0);
+ return rrr;
+}
+
+/***********************************************************************
+* npp_sat_encode_pack - encode packing inequality
+*
+* Given a packing inequality in canonical form:
+*
+* sum t[j] <= 1, (1)
+* j in J
+*
+* where t[j] = x[j] or t[j] = 1 - x[j], x[j] is a binary variable,
+* this routine translates it to CNF by replacing it with the following
+* equivalent set of edge packing inequalities:
+*
+* t[j] + t[k] <= 1 for all j, k in J, j != k. (2)
+*
+* Then the routine transforms each edge packing inequality (2) to
+* corresponding covering inequality (that encodes two-literal clause)
+* by multiplying both its part by -1:
+*
+* - t[j] - t[k] >= -1 <--> (1 - t[j]) + (1 - t[k]) >= 1. (3)
+*
+* On exit the routine removes the original row from the problem. */
+
+void npp_sat_encode_pack(NPP *npp, NPPROW *row)
+{ NPPROW *rrr;
+ NPPAIJ *aij, *aik;
+ /* original row should be packing inequality (1) */
+ xassert(npp_sat_is_pack_ineq(npp, row) == 1);
+ /* create equivalent system of covering inequalities (3) */
+ for (aij = row->ptr; aij != NULL; aij = aij->r_next)
+ { /* due to symmetry only one of inequalities t[j] + t[k] <= 1
+ and t[k] <= t[j] <= 1 can be considered */
+ for (aik = aij->r_next; aik != NULL; aik = aik->r_next)
+ { /* create edge packing inequality (2) */
+ rrr = npp_add_row(npp);
+ rrr->lb = -DBL_MAX, rrr->ub = 1.0;
+ npp_add_aij(npp, rrr, aij->col, aij->val);
+ if (aij->val < 0.0)
+ rrr->ub -= 1.0;
+ npp_add_aij(npp, rrr, aik->col, aik->val);
+ if (aik->val < 0.0)
+ rrr->ub -= 1.0;
+ /* and transform it to covering inequality (3) */
+ npp_sat_reverse_row(npp, rrr);
+ xassert(npp_sat_is_cover_ineq(npp, rrr) == 1);
+ }
+ }
+ /* remove the original row from the problem */
+ npp_del_row(npp, row);
+ return;
+}
+
+/***********************************************************************
+* npp_sat_encode_sum2 - encode 2-bit summation
+*
+* Given a set containing two literals x and y this routine encodes
+* the equality
+*
+* x + y = s + 2 * c, (1)
+*
+* where
+*
+* s = (x + y) % 2 (2)
+*
+* is a binary variable modeling the low sum bit, and
+*
+* c = (x + y) / 2 (3)
+*
+* is a binary variable modeling the high (carry) sum bit. */
+
+void npp_sat_encode_sum2(NPP *npp, NPPLSE *set, NPPSED *sed)
+{ NPPROW *row;
+ int x, y, s, c;
+ /* the set should contain exactly two literals */
+ xassert(set != NULL);
+ xassert(set->next != NULL);
+ xassert(set->next->next == NULL);
+ sed->x = set->lit;
+ xassert(sed->x.neg == 0 || sed->x.neg == 1);
+ sed->y = set->next->lit;
+ xassert(sed->y.neg == 0 || sed->y.neg == 1);
+ sed->z.col = NULL, sed->z.neg = 0;
+ /* perform encoding s = (x + y) % 2 */
+ sed->s = npp_add_col(npp);
+ sed->s->is_int = 1, sed->s->lb = 0.0, sed->s->ub = 1.0;
+ for (x = 0; x <= 1; x++)
+ { for (y = 0; y <= 1; y++)
+ { for (s = 0; s <= 1; s++)
+ { if ((x + y) % 2 != s)
+ { /* generate CNF clause to disable infeasible
+ combination */
+ row = npp_add_row(npp);
+ row->lb = 1.0, row->ub = +DBL_MAX;
+ if (x == sed->x.neg)
+ npp_add_aij(npp, row, sed->x.col, +1.0);
+ else
+ { npp_add_aij(npp, row, sed->x.col, -1.0);
+ row->lb -= 1.0;
+ }
+ if (y == sed->y.neg)
+ npp_add_aij(npp, row, sed->y.col, +1.0);
+ else
+ { npp_add_aij(npp, row, sed->y.col, -1.0);
+ row->lb -= 1.0;
+ }
+ if (s == 0)
+ npp_add_aij(npp, row, sed->s, +1.0);
+ else
+ { npp_add_aij(npp, row, sed->s, -1.0);
+ row->lb -= 1.0;
+ }
+ }
+ }
+ }
+ }
+ /* perform encoding c = (x + y) / 2 */
+ sed->c = npp_add_col(npp);
+ sed->c->is_int = 1, sed->c->lb = 0.0, sed->c->ub = 1.0;
+ for (x = 0; x <= 1; x++)
+ { for (y = 0; y <= 1; y++)
+ { for (c = 0; c <= 1; c++)
+ { if ((x + y) / 2 != c)
+ { /* generate CNF clause to disable infeasible
+ combination */
+ row = npp_add_row(npp);
+ row->lb = 1.0, row->ub = +DBL_MAX;
+ if (x == sed->x.neg)
+ npp_add_aij(npp, row, sed->x.col, +1.0);
+ else
+ { npp_add_aij(npp, row, sed->x.col, -1.0);
+ row->lb -= 1.0;
+ }
+ if (y == sed->y.neg)
+ npp_add_aij(npp, row, sed->y.col, +1.0);
+ else
+ { npp_add_aij(npp, row, sed->y.col, -1.0);
+ row->lb -= 1.0;
+ }
+ if (c == 0)
+ npp_add_aij(npp, row, sed->c, +1.0);
+ else
+ { npp_add_aij(npp, row, sed->c, -1.0);
+ row->lb -= 1.0;
+ }
+ }
+ }
+ }
+ }
+ return;
+}
+
+/***********************************************************************
+* npp_sat_encode_sum3 - encode 3-bit summation
+*
+* Given a set containing at least three literals this routine chooses
+* some literals x, y, z from that set and encodes the equality
+*
+* x + y + z = s + 2 * c, (1)
+*
+* where
+*
+* s = (x + y + z) % 2 (2)
+*
+* is a binary variable modeling the low sum bit, and
+*
+* c = (x + y + z) / 2 (3)
+*
+* is a binary variable modeling the high (carry) sum bit. */
+
+void npp_sat_encode_sum3(NPP *npp, NPPLSE *set, NPPSED *sed)
+{ NPPROW *row;
+ int x, y, z, s, c;
+ /* the set should contain at least three literals */
+ xassert(set != NULL);
+ xassert(set->next != NULL);
+ xassert(set->next->next != NULL);
+ sed->x = set->lit;
+ xassert(sed->x.neg == 0 || sed->x.neg == 1);
+ sed->y = set->next->lit;
+ xassert(sed->y.neg == 0 || sed->y.neg == 1);
+ sed->z = set->next->next->lit;
+ xassert(sed->z.neg == 0 || sed->z.neg == 1);
+ /* perform encoding s = (x + y + z) % 2 */
+ sed->s = npp_add_col(npp);
+ sed->s->is_int = 1, sed->s->lb = 0.0, sed->s->ub = 1.0;
+ for (x = 0; x <= 1; x++)
+ { for (y = 0; y <= 1; y++)
+ { for (z = 0; z <= 1; z++)
+ { for (s = 0; s <= 1; s++)
+ { if ((x + y + z) % 2 != s)
+ { /* generate CNF clause to disable infeasible
+ combination */
+ row = npp_add_row(npp);
+ row->lb = 1.0, row->ub = +DBL_MAX;
+ if (x == sed->x.neg)
+ npp_add_aij(npp, row, sed->x.col, +1.0);
+ else
+ { npp_add_aij(npp, row, sed->x.col, -1.0);
+ row->lb -= 1.0;
+ }
+ if (y == sed->y.neg)
+ npp_add_aij(npp, row, sed->y.col, +1.0);
+ else
+ { npp_add_aij(npp, row, sed->y.col, -1.0);
+ row->lb -= 1.0;
+ }
+ if (z == sed->z.neg)
+ npp_add_aij(npp, row, sed->z.col, +1.0);
+ else
+ { npp_add_aij(npp, row, sed->z.col, -1.0);
+ row->lb -= 1.0;
+ }
+ if (s == 0)
+ npp_add_aij(npp, row, sed->s, +1.0);
+ else
+ { npp_add_aij(npp, row, sed->s, -1.0);
+ row->lb -= 1.0;
+ }
+ }
+ }
+ }
+ }
+ }
+ /* perform encoding c = (x + y + z) / 2 */
+ sed->c = npp_add_col(npp);
+ sed->c->is_int = 1, sed->c->lb = 0.0, sed->c->ub = 1.0;
+ for (x = 0; x <= 1; x++)
+ { for (y = 0; y <= 1; y++)
+ { for (z = 0; z <= 1; z++)
+ { for (c = 0; c <= 1; c++)
+ { if ((x + y + z) / 2 != c)
+ { /* generate CNF clause to disable infeasible
+ combination */
+ row = npp_add_row(npp);
+ row->lb = 1.0, row->ub = +DBL_MAX;
+ if (x == sed->x.neg)
+ npp_add_aij(npp, row, sed->x.col, +1.0);
+ else
+ { npp_add_aij(npp, row, sed->x.col, -1.0);
+ row->lb -= 1.0;
+ }
+ if (y == sed->y.neg)
+ npp_add_aij(npp, row, sed->y.col, +1.0);
+ else
+ { npp_add_aij(npp, row, sed->y.col, -1.0);
+ row->lb -= 1.0;
+ }
+ if (z == sed->z.neg)
+ npp_add_aij(npp, row, sed->z.col, +1.0);
+ else
+ { npp_add_aij(npp, row, sed->z.col, -1.0);
+ row->lb -= 1.0;
+ }
+ if (c == 0)
+ npp_add_aij(npp, row, sed->c, +1.0);
+ else
+ { npp_add_aij(npp, row, sed->c, -1.0);
+ row->lb -= 1.0;
+ }
+ }
+ }
+ }
+ }
+ }
+ return;
+}
+
+/***********************************************************************
+* npp_sat_encode_sum_ax - encode linear combination of 0-1 variables
+*
+* PURPOSE
+*
+* Given a linear combination of binary variables:
+*
+* sum a[j] x[j], (1)
+* j
+*
+* which is the linear form of the specified row, this routine encodes
+* (i.e. translates to CNF) the following equality:
+*
+* n
+* sum |a[j]| t[j] = sum 2**(k-1) * y[k], (2)
+* j k=1
+*
+* where t[j] = x[j] (if a[j] > 0) or t[j] = 1 - x[j] (if a[j] < 0),
+* and y[k] is either t[j] or a new literal created by the routine or
+* a constant zero. Note that the sum in the right-hand side of (2) can
+* be thought as a n-bit representation of the sum in the left-hand
+* side, which is a non-negative integer number.
+*
+* ALGORITHM
+*
+* First, the number of bits, n, sufficient to represent any value in
+* the left-hand side of (2) is determined. Obviously, n is the number
+* of bits sufficient to represent the sum (sum |a[j]|).
+*
+* Let
+*
+* n
+* |a[j]| = sum 2**(k-1) b[j,k], (3)
+* k=1
+*
+* where b[j,k] is k-th bit in a n-bit representation of |a[j]|. Then
+*
+* m n
+* sum |a[j]| * t[j] = sum 2**(k-1) sum b[j,k] * t[j]. (4)
+* j k=1 j=1
+*
+* Introducing the set
+*
+* J[k] = { j : b[j,k] = 1 } (5)
+*
+* allows rewriting (4) as follows:
+*
+* n
+* sum |a[j]| * t[j] = sum 2**(k-1) sum t[j]. (6)
+* j k=1 j in J[k]
+*
+* Thus, our goal is to provide |J[k]| <= 1 for all k, in which case
+* we will have the representation (1).
+*
+* Let |J[k]| = 2, i.e. J[k] has exactly two literals u and v. In this
+* case we can apply the following transformation:
+*
+* u + v = s + 2 * c, (7)
+*
+* where s and c are, respectively, low (sum) and high (carry) bits of
+* the sum of two bits. This allows to replace two literals u and v in
+* J[k] by one literal s, and carry out literal c to J[k+1].
+*
+* If |J[k]| >= 3, i.e. J[k] has at least three literals u, v, and w,
+* we can apply the following transformation:
+*
+* u + v + w = s + 2 * c. (8)
+*
+* Again, literal s replaces literals u, v, and w in J[k], and literal
+* c goes into J[k+1].
+*
+* On exit the routine stores each literal from J[k] in element y[k],
+* 1 <= k <= n. If J[k] is empty, y[k] is set to constant false.
+*
+* RETURNS
+*
+* The routine returns n, the number of literals in the right-hand side
+* of (2), 0 <= n <= NBIT_MAX. If the sum (sum |a[j]|) is too large, so
+* more than NBIT_MAX (= 31) literals are needed to encode the original
+* linear combination, the routine returns a negative value. */
+
+#define NBIT_MAX 31
+/* maximal number of literals in the right hand-side of (2) */
+
+static NPPLSE *remove_lse(NPP *npp, NPPLSE *set, NPPCOL *col)
+{ /* remove specified literal from specified literal set */
+ NPPLSE *lse, *prev = NULL;
+ for (lse = set; lse != NULL; prev = lse, lse = lse->next)
+ if (lse->lit.col == col) break;
+ xassert(lse != NULL);
+ if (prev == NULL)
+ set = lse->next;
+ else
+ prev->next = lse->next;
+ dmp_free_atom(npp->pool, lse, sizeof(NPPLSE));
+ return set;
+}
+
+int npp_sat_encode_sum_ax(NPP *npp, NPPROW *row, NPPLIT y[])
+{ NPPAIJ *aij;
+ NPPLSE *set[1+NBIT_MAX], *lse;
+ NPPSED sed;
+ int k, n, temp;
+ double sum;
+ /* compute the sum (sum |a[j]|) */
+ sum = 0.0;
+ for (aij = row->ptr; aij != NULL; aij = aij->r_next)
+ sum += fabs(aij->val);
+ /* determine n, the number of bits in the sum */
+ temp = (int)sum;
+ if ((double)temp != sum)
+ return -1; /* integer arithmetic error */
+ for (n = 0; temp > 0; n++, temp >>= 1);
+ xassert(0 <= n && n <= NBIT_MAX);
+ /* build initial sets J[k], 1 <= k <= n; see (5) */
+ /* set[k] is a pointer to the list of literals in J[k] */
+ for (k = 1; k <= n; k++)
+ set[k] = NULL;
+ for (aij = row->ptr; aij != NULL; aij = aij->r_next)
+ { temp = (int)fabs(aij->val);
+ xassert((int)temp == fabs(aij->val));
+ for (k = 1; temp > 0; k++, temp >>= 1)
+ { if (temp & 1)
+ { xassert(k <= n);
+ lse = dmp_get_atom(npp->pool, sizeof(NPPLSE));
+ lse->lit.col = aij->col;
+ lse->lit.neg = (aij->val > 0.0 ? 0 : 1);
+ lse->next = set[k];
+ set[k] = lse;
+ }
+ }
+ }
+ /* main transformation loop */
+ for (k = 1; k <= n; k++)
+ { /* reduce J[k] and set y[k] */
+ for (;;)
+ { if (set[k] == NULL)
+ { /* J[k] is empty */
+ /* set y[k] to constant false */
+ y[k].col = NULL, y[k].neg = 0;
+ break;
+ }
+ if (set[k]->next == NULL)
+ { /* J[k] contains one literal */
+ /* set y[k] to that literal */
+ y[k] = set[k]->lit;
+ dmp_free_atom(npp->pool, set[k], sizeof(NPPLSE));
+ break;
+ }
+ if (set[k]->next->next == NULL)
+ { /* J[k] contains two literals */
+ /* apply transformation (7) */
+ npp_sat_encode_sum2(npp, set[k], &sed);
+ }
+ else
+ { /* J[k] contains at least three literals */
+ /* apply transformation (8) */
+ npp_sat_encode_sum3(npp, set[k], &sed);
+ /* remove third literal from set[k] */
+ set[k] = remove_lse(npp, set[k], sed.z.col);
+ }
+ /* remove second literal from set[k] */
+ set[k] = remove_lse(npp, set[k], sed.y.col);
+ /* remove first literal from set[k] */
+ set[k] = remove_lse(npp, set[k], sed.x.col);
+ /* include new literal s to set[k] */
+ lse = dmp_get_atom(npp->pool, sizeof(NPPLSE));
+ lse->lit.col = sed.s, lse->lit.neg = 0;
+ lse->next = set[k];
+ set[k] = lse;
+ /* include new literal c to set[k+1] */
+ xassert(k < n); /* FIXME: can "overflow" happen? */
+ lse = dmp_get_atom(npp->pool, sizeof(NPPLSE));
+ lse->lit.col = sed.c, lse->lit.neg = 0;
+ lse->next = set[k+1];
+ set[k+1] = lse;
+ }
+ }
+ return n;
+}
+
+/***********************************************************************
+* npp_sat_normalize_clause - normalize clause
+*
+* This routine normalizes the specified clause, which is a disjunction
+* of literals, by replacing multiple literals, which refer to the same
+* binary variable, with a single literal.
+*
+* On exit the routine returns the number of literals in the resulting
+* clause. However, if the specified clause includes both a literal and
+* its negation, the routine returns a negative value meaning that the
+* clause is equivalent to the value true. */
+
+int npp_sat_normalize_clause(NPP *npp, int size, NPPLIT lit[])
+{ int j, k, new_size;
+ xassert(npp == npp);
+ xassert(size >= 0);
+ new_size = 0;
+ for (k = 1; k <= size; k++)
+ { for (j = 1; j <= new_size; j++)
+ { if (lit[k].col == lit[j].col)
+ { /* lit[k] refers to the same variable as lit[j], which
+ is already included in the resulting clause */
+ if (lit[k].neg == lit[j].neg)
+ { /* ignore lit[k] due to the idempotent law */
+ goto skip;
+ }
+ else
+ { /* lit[k] is NOT lit[j]; the clause is equivalent to
+ the value true */
+ return -1;
+ }
+ }
+ }
+ /* include lit[k] in the resulting clause */
+ lit[++new_size] = lit[k];
+skip: ;
+ }
+ return new_size;
+}
+
+/***********************************************************************
+* npp_sat_encode_clause - translate clause to cover inequality
+*
+* Given a clause
+*
+* OR t[j], (1)
+* j in J
+*
+* where t[j] is a literal, i.e. t[j] = x[j] or t[j] = NOT x[j], this
+* routine translates it to the following equivalent cover inequality,
+* which is added to the transformed problem:
+*
+* sum t[j] >= 1, (2)
+* j in J
+*
+* where t[j] = x[j] or t[j] = 1 - x[j].
+*
+* If necessary, the clause should be normalized before a call to this
+* routine. */
+
+NPPROW *npp_sat_encode_clause(NPP *npp, int size, NPPLIT lit[])
+{ NPPROW *row;
+ int k;
+ xassert(size >= 1);
+ row = npp_add_row(npp);
+ row->lb = 1.0, row->ub = +DBL_MAX;
+ for (k = 1; k <= size; k++)
+ { xassert(lit[k].col != NULL);
+ if (lit[k].neg == 0)
+ npp_add_aij(npp, row, lit[k].col, +1.0);
+ else if (lit[k].neg == 1)
+ { npp_add_aij(npp, row, lit[k].col, -1.0);
+ row->lb -= 1.0;
+ }
+ else
+ xassert(lit != lit);
+ }
+ return row;
+}
+
+/***********************************************************************
+* npp_sat_encode_geq - encode "not less than" constraint
+*
+* PURPOSE
+*
+* This routine translates to CNF the following constraint:
+*
+* n
+* sum 2**(k-1) * y[k] >= b, (1)
+* k=1
+*
+* where y[k] is either a literal (i.e. y[k] = x[k] or y[k] = 1 - x[k])
+* or constant false (zero), b is a given lower bound.
+*
+* ALGORITHM
+*
+* If b < 0, the constraint is redundant, so assume that b >= 0. Let
+*
+* n
+* b = sum 2**(k-1) b[k], (2)
+* k=1
+*
+* where b[k] is k-th binary digit of b. (Note that if b >= 2**n and
+* therefore cannot be represented in the form (2), the constraint (1)
+* is infeasible.) In this case the condition (1) is equivalent to the
+* following condition:
+*
+* y[n] y[n-1] ... y[2] y[1] >= b[n] b[n-1] ... b[2] b[1], (3)
+*
+* where ">=" is understood lexicographically.
+*
+* Algorithmically the condition (3) can be tested as follows:
+*
+* for (k = n; k >= 1; k--)
+* { if (y[k] < b[k])
+* y is less than b;
+* if (y[k] > b[k])
+* y is greater than b;
+* }
+* y is equal to b;
+*
+* Thus, y is less than b iff there exists k, 1 <= k <= n, for which
+* the following condition is satisfied:
+*
+* y[n] = b[n] AND ... AND y[k+1] = b[k+1] AND y[k] < b[k]. (4)
+*
+* Negating the condition (4) we have that y is not less than b iff for
+* all k, 1 <= k <= n, the following condition is satisfied:
+*
+* y[n] != b[n] OR ... OR y[k+1] != b[k+1] OR y[k] >= b[k]. (5)
+*
+* Note that if b[k] = 0, the literal y[k] >= b[k] is always true, in
+* which case the entire clause (5) is true and can be omitted.
+*
+* RETURNS
+*
+* Normally the routine returns zero. However, if the constraint (1) is
+* infeasible, the routine returns non-zero. */
+
+int npp_sat_encode_geq(NPP *npp, int n, NPPLIT y[], int rhs)
+{ NPPLIT lit[1+NBIT_MAX];
+ int j, k, size, temp, b[1+NBIT_MAX];
+ xassert(0 <= n && n <= NBIT_MAX);
+ /* if the constraint (1) is redundant, do nothing */
+ if (rhs < 0)
+ return 0;
+ /* determine binary digits of b according to (2) */
+ for (k = 1, temp = rhs; k <= n; k++, temp >>= 1)
+ b[k] = temp & 1;
+ if (temp != 0)
+ { /* b >= 2**n; the constraint (1) is infeasible */
+ return 1;
+ }
+ /* main transformation loop */
+ for (k = 1; k <= n; k++)
+ { /* build the clause (5) for current k */
+ size = 0; /* clause size = number of literals */
+ /* add literal y[k] >= b[k] */
+ if (b[k] == 0)
+ { /* b[k] = 0 -> the literal is true */
+ goto skip;
+ }
+ else if (y[k].col == NULL)
+ { /* y[k] = 0, b[k] = 1 -> the literal is false */
+ xassert(y[k].neg == 0);
+ }
+ else
+ { /* add literal y[k] = 1 */
+ lit[++size] = y[k];
+ }
+ for (j = k+1; j <= n; j++)
+ { /* add literal y[j] != b[j] */
+ if (y[j].col == NULL)
+ { xassert(y[j].neg == 0);
+ if (b[j] == 0)
+ { /* y[j] = 0, b[j] = 0 -> the literal is false */
+ continue;
+ }
+ else
+ { /* y[j] = 0, b[j] = 1 -> the literal is true */
+ goto skip;
+ }
+ }
+ else
+ { lit[++size] = y[j];
+ if (b[j] != 0)
+ lit[size].neg = 1 - lit[size].neg;
+ }
+ }
+ /* normalize the clause */
+ size = npp_sat_normalize_clause(npp, size, lit);
+ if (size < 0)
+ { /* the clause is equivalent to the value true */
+ goto skip;
+ }
+ if (size == 0)
+ { /* the clause is equivalent to the value false; this means
+ that the constraint (1) is infeasible */
+ return 2;
+ }
+ /* translate the clause to corresponding cover inequality */
+ npp_sat_encode_clause(npp, size, lit);
+skip: ;
+ }
+ return 0;
+}
+
+/***********************************************************************
+* npp_sat_encode_leq - encode "not greater than" constraint
+*
+* PURPOSE
+*
+* This routine translates to CNF the following constraint:
+*
+* n
+* sum 2**(k-1) * y[k] <= b, (1)
+* k=1
+*
+* where y[k] is either a literal (i.e. y[k] = x[k] or y[k] = 1 - x[k])
+* or constant false (zero), b is a given upper bound.
+*
+* ALGORITHM
+*
+* If b < 0, the constraint is infeasible, so assume that b >= 0. Let
+*
+* n
+* b = sum 2**(k-1) b[k], (2)
+* k=1
+*
+* where b[k] is k-th binary digit of b. (Note that if b >= 2**n and
+* therefore cannot be represented in the form (2), the constraint (1)
+* is redundant.) In this case the condition (1) is equivalent to the
+* following condition:
+*
+* y[n] y[n-1] ... y[2] y[1] <= b[n] b[n-1] ... b[2] b[1], (3)
+*
+* where "<=" is understood lexicographically.
+*
+* Algorithmically the condition (3) can be tested as follows:
+*
+* for (k = n; k >= 1; k--)
+* { if (y[k] < b[k])
+* y is less than b;
+* if (y[k] > b[k])
+* y is greater than b;
+* }
+* y is equal to b;
+*
+* Thus, y is greater than b iff there exists k, 1 <= k <= n, for which
+* the following condition is satisfied:
+*
+* y[n] = b[n] AND ... AND y[k+1] = b[k+1] AND y[k] > b[k]. (4)
+*
+* Negating the condition (4) we have that y is not greater than b iff
+* for all k, 1 <= k <= n, the following condition is satisfied:
+*
+* y[n] != b[n] OR ... OR y[k+1] != b[k+1] OR y[k] <= b[k]. (5)
+*
+* Note that if b[k] = 1, the literal y[k] <= b[k] is always true, in
+* which case the entire clause (5) is true and can be omitted.
+*
+* RETURNS
+*
+* Normally the routine returns zero. However, if the constraint (1) is
+* infeasible, the routine returns non-zero. */
+
+int npp_sat_encode_leq(NPP *npp, int n, NPPLIT y[], int rhs)
+{ NPPLIT lit[1+NBIT_MAX];
+ int j, k, size, temp, b[1+NBIT_MAX];
+ xassert(0 <= n && n <= NBIT_MAX);
+ /* check if the constraint (1) is infeasible */
+ if (rhs < 0)
+ return 1;
+ /* determine binary digits of b according to (2) */
+ for (k = 1, temp = rhs; k <= n; k++, temp >>= 1)
+ b[k] = temp & 1;
+ if (temp != 0)
+ { /* b >= 2**n; the constraint (1) is redundant */
+ return 0;
+ }
+ /* main transformation loop */
+ for (k = 1; k <= n; k++)
+ { /* build the clause (5) for current k */
+ size = 0; /* clause size = number of literals */
+ /* add literal y[k] <= b[k] */
+ if (b[k] == 1)
+ { /* b[k] = 1 -> the literal is true */
+ goto skip;
+ }
+ else if (y[k].col == NULL)
+ { /* y[k] = 0, b[k] = 0 -> the literal is true */
+ xassert(y[k].neg == 0);
+ goto skip;
+ }
+ else
+ { /* add literal y[k] = 0 */
+ lit[++size] = y[k];
+ lit[size].neg = 1 - lit[size].neg;
+ }
+ for (j = k+1; j <= n; j++)
+ { /* add literal y[j] != b[j] */
+ if (y[j].col == NULL)
+ { xassert(y[j].neg == 0);
+ if (b[j] == 0)
+ { /* y[j] = 0, b[j] = 0 -> the literal is false */
+ continue;
+ }
+ else
+ { /* y[j] = 0, b[j] = 1 -> the literal is true */
+ goto skip;
+ }
+ }
+ else
+ { lit[++size] = y[j];
+ if (b[j] != 0)
+ lit[size].neg = 1 - lit[size].neg;
+ }
+ }
+ /* normalize the clause */
+ size = npp_sat_normalize_clause(npp, size, lit);
+ if (size < 0)
+ { /* the clause is equivalent to the value true */
+ goto skip;
+ }
+ if (size == 0)
+ { /* the clause is equivalent to the value false; this means
+ that the constraint (1) is infeasible */
+ return 2;
+ }
+ /* translate the clause to corresponding cover inequality */
+ npp_sat_encode_clause(npp, size, lit);
+skip: ;
+ }
+ return 0;
+}
+
+/***********************************************************************
+* npp_sat_encode_row - encode constraint (row) of general type
+*
+* PURPOSE
+*
+* This routine translates to CNF the following constraint (row):
+*
+* L <= sum a[j] x[j] <= U, (1)
+* j
+*
+* where all x[j] are binary variables.
+*
+* ALGORITHM
+*
+* First, the routine performs substitution x[j] = t[j] for j in J+
+* and x[j] = 1 - t[j] for j in J-, where J+ = { j : a[j] > 0 } and
+* J- = { j : a[j] < 0 }. This gives:
+*
+* L <= sum a[j] t[j] + sum a[j] (1 - t[j]) <= U ==>
+* j in J+ j in J-
+*
+* L' <= sum |a[j]| t[j] <= U', (2)
+* j
+*
+* where
+*
+* L' = L - sum a[j], U' = U - sum a[j]. (3)
+* j in J- j in J-
+*
+* (Actually only new bounds L' and U' are computed.)
+*
+* Then the routine translates to CNF the following equality:
+*
+* n
+* sum |a[j]| t[j] = sum 2**(k-1) * y[k], (4)
+* j k=1
+*
+* where y[k] is either some t[j] or a new literal or a constant zero
+* (see the routine npp_sat_encode_sum_ax).
+*
+* Finally, the routine translates to CNF the following conditions:
+*
+* n
+* sum 2**(k-1) * y[k] >= L' (5)
+* k=1
+*
+* and
+*
+* n
+* sum 2**(k-1) * y[k] <= U' (6)
+* k=1
+*
+* (see the routines npp_sat_encode_geq and npp_sat_encode_leq).
+*
+* All resulting clauses are encoded as cover inequalities and included
+* into the transformed problem.
+*
+* Note that on exit the routine removes the specified constraint (row)
+* from the original problem.
+*
+* RETURNS
+*
+* The routine returns one of the following codes:
+*
+* 0 - translation was successful;
+* 1 - constraint (1) was found infeasible;
+* 2 - integer arithmetic error occured. */
+
+int npp_sat_encode_row(NPP *npp, NPPROW *row)
+{ NPPAIJ *aij;
+ NPPLIT y[1+NBIT_MAX];
+ int n, rhs;
+ double lb, ub;
+ /* the row should not be free */
+ xassert(!(row->lb == -DBL_MAX && row->ub == +DBL_MAX));
+ /* compute new bounds L' and U' (3) */
+ lb = row->lb;
+ ub = row->ub;
+ for (aij = row->ptr; aij != NULL; aij = aij->r_next)
+ { if (aij->val < 0.0)
+ { if (lb != -DBL_MAX)
+ lb -= aij->val;
+ if (ub != -DBL_MAX)
+ ub -= aij->val;
+ }
+ }
+ /* encode the equality (4) */
+ n = npp_sat_encode_sum_ax(npp, row, y);
+ if (n < 0)
+ return 2; /* integer arithmetic error */
+ /* encode the condition (5) */
+ if (lb != -DBL_MAX)
+ { rhs = (int)lb;
+ if ((double)rhs != lb)
+ return 2; /* integer arithmetic error */
+ if (npp_sat_encode_geq(npp, n, y, rhs) != 0)
+ return 1; /* original constraint is infeasible */
+ }
+ /* encode the condition (6) */
+ if (ub != +DBL_MAX)
+ { rhs = (int)ub;
+ if ((double)rhs != ub)
+ return 2; /* integer arithmetic error */
+ if (npp_sat_encode_leq(npp, n, y, rhs) != 0)
+ return 1; /* original constraint is infeasible */
+ }
+ /* remove the specified row from the problem */
+ npp_del_row(npp, row);
+ return 0;
+}
+
+/***********************************************************************
+* npp_sat_encode_prob - encode 0-1 feasibility problem
+*
+* This routine translates the specified 0-1 feasibility problem to an
+* equivalent SAT-CNF problem.
+*
+* N.B. Currently this is a very crude implementation.
+*
+* RETURNS
+*
+* 0 success;
+*
+* GLP_ENOPFS primal/integer infeasibility detected;
+*
+* GLP_ERANGE integer overflow occured. */
+
+int npp_sat_encode_prob(NPP *npp)
+{ NPPROW *row, *next_row, *prev_row;
+ NPPCOL *col, *next_col;
+ int cover = 0, pack = 0, partn = 0, ret;
+ /* process and remove free rows */
+ for (row = npp->r_head; row != NULL; row = next_row)
+ { next_row = row->next;
+ if (row->lb == -DBL_MAX && row->ub == +DBL_MAX)
+ npp_sat_free_row(npp, row);
+ }
+ /* process and remove fixed columns */
+ for (col = npp->c_head; col != NULL; col = next_col)
+ { next_col = col->next;
+ if (col->lb == col->ub)
+ xassert(npp_sat_fixed_col(npp, col) == 0);
+ }
+ /* only binary variables should remain */
+ for (col = npp->c_head; col != NULL; col = col->next)
+ xassert(col->is_int && col->lb == 0.0 && col->ub == 1.0);
+ /* new rows may be added to the end of the row list, so we walk
+ from the end to beginning of the list */
+ for (row = npp->r_tail; row != NULL; row = prev_row)
+ { prev_row = row->prev;
+ /* process special cases */
+ ret = npp_sat_is_cover_ineq(npp, row);
+ if (ret != 0)
+ { /* row is covering inequality */
+ cover++;
+ /* since it already encodes a clause, just transform it to
+ canonical form */
+ if (ret == 2)
+ { xassert(npp_sat_reverse_row(npp, row) == 0);
+ ret = npp_sat_is_cover_ineq(npp, row);
+ }
+ xassert(ret == 1);
+ continue;
+ }
+ ret = npp_sat_is_partn_eq(npp, row);
+ if (ret != 0)
+ { /* row is partitioning equality */
+ NPPROW *cov;
+ NPPAIJ *aij;
+ partn++;
+ /* transform it to canonical form */
+ if (ret == 2)
+ { xassert(npp_sat_reverse_row(npp, row) == 0);
+ ret = npp_sat_is_partn_eq(npp, row);
+ }
+ xassert(ret == 1);
+ /* and split it into covering and packing inequalities,
+ both in canonical forms */
+ cov = npp_add_row(npp);
+ cov->lb = row->lb, cov->ub = +DBL_MAX;
+ for (aij = row->ptr; aij != NULL; aij = aij->r_next)
+ npp_add_aij(npp, cov, aij->col, aij->val);
+ xassert(npp_sat_is_cover_ineq(npp, cov) == 1);
+ /* the cover inequality already encodes a clause and do
+ not need any further processing */
+ row->lb = -DBL_MAX;
+ xassert(npp_sat_is_pack_ineq(npp, row) == 1);
+ /* the packing inequality will be processed below */
+ pack--;
+ }
+ ret = npp_sat_is_pack_ineq(npp, row);
+ if (ret != 0)
+ { /* row is packing inequality */
+ NPPROW *rrr;
+ int nlit, desired_nlit = 4;
+ pack++;
+ /* transform it to canonical form */
+ if (ret == 2)
+ { xassert(npp_sat_reverse_row(npp, row) == 0);
+ ret = npp_sat_is_pack_ineq(npp, row);
+ }
+ xassert(ret == 1);
+ /* process the packing inequality */
+ for (;;)
+ { /* determine the number of literals in the remaining
+ inequality */
+ nlit = npp_row_nnz(npp, row);
+ if (nlit <= desired_nlit)
+ break;
+ /* split the current inequality into one having not more
+ than desired_nlit literals and remaining one */
+ rrr = npp_sat_split_pack(npp, row, desired_nlit-1);
+ /* translate the former inequality to CNF and remove it
+ from the original problem */
+ npp_sat_encode_pack(npp, rrr);
+ }
+ /* translate the remaining inequality to CNF and remove it
+ from the original problem */
+ npp_sat_encode_pack(npp, row);
+ continue;
+ }
+ /* translate row of general type to CNF and remove it from the
+ original problem */
+ ret = npp_sat_encode_row(npp, row);
+ if (ret == 0)
+ ;
+ else if (ret == 1)
+ ret = GLP_ENOPFS;
+ else if (ret == 2)
+ ret = GLP_ERANGE;
+ else
+ xassert(ret != ret);
+ if (ret != 0)
+ goto done;
+ }
+ ret = 0;
+ if (cover != 0)
+ xprintf("%d covering inequalities\n", cover);
+ if (pack != 0)
+ xprintf("%d packing inequalities\n", pack);
+ if (partn != 0)
+ xprintf("%d partitioning equalities\n", partn);
+done: return ret;
+}
+
+/* eof */