aboutsummaryrefslogtreecommitdiffstats
path: root/mppa_k1c/Machblockgenproof.v
blob: 838f7977f989c41537e07b973fbc4befa52e5c7f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
Require Import Coqlib.
Require Import Maps.
Require Import AST.
Require Import Integers.
Require Import Values.
Require Import Memory.
Require Import Globalenvs.
Require Import Events.
Require Import Smallstep.
Require Import Op.
Require Import Locations.
Require Import Conventions.
Require Stacklayout.
Require Import Mach.
Require Import Linking.
Require Import Machblock.
Require Import Machblockgen.
Require Import ForwardSimulationBlock.

(* FIXME: put this section somewhere else. 
   In "Smallstep" ? 

TODO: also move "starN_last_step" in the same section ?

*)

Section starN_lemma.
(* Auxiliary Lemma on starN *)

Import Smallstep.
Local Open Scope nat_scope.


Variable L: semantics.

Local Hint Resolve starN_refl starN_step Eapp_assoc.

Lemma starN_split n s t s': 
  starN (step L) (globalenv L) n s t s' ->
  forall m k, n=m+k -> 
  exists (t1 t2:trace) s0, starN (step L) (globalenv L) m s t1 s0 /\ starN (step L) (globalenv L) k s0 t2 s' /\ t=t1**t2.
Proof.
  induction 1; simpl.
  + intros m k H; assert (X: m=0); try omega.
    assert (X0: k=0); try omega.
    subst; repeat (eapply ex_intro); intuition eauto.
  + intros m; destruct m as [| m']; simpl. 
    - intros k H2; subst; repeat (eapply ex_intro); intuition eauto.
    - intros k H2. inversion H2.
      exploit (IHstarN m' k); eauto. intro.
      destruct H3 as (t5 & t6 & s0 & H5 & H6 & H7).
      repeat (eapply ex_intro).
      instantiate (1 := t6); instantiate (1 := t1 ** t5); instantiate (1 := s0).
      intuition eauto. subst. auto.
Qed.

End starN_lemma.


Definition inv_trans_rao (rao: function -> code -> ptrofs -> Prop) (f: Mach.function) (c: Mach.code) :=
  rao (trans_function f) (trans_code c).

Definition match_prog (p: Mach.program) (tp: Machblock.program) :=
  match_program (fun _ f tf => tf = trans_fundef f) eq p tp.

Lemma trans_program_match: forall p, match_prog p (trans_prog p).
Proof.
  intros. eapply match_transform_program; eauto.
Qed.

Definition trans_stackframe (msf: Mach.stackframe) : stackframe :=
  match msf with
  | Mach.Stackframe f sp retaddr c => Stackframe f sp retaddr (trans_code c)
  end.

Fixpoint trans_stack (mst: list Mach.stackframe) : list stackframe :=
  match mst with
  | nil => nil
  | msf :: mst0 => (trans_stackframe msf) :: (trans_stack mst0)
  end.

Definition trans_state (ms: Mach.state) : state :=
  match ms with
  | Mach.State        s f sp c rs m => State        (trans_stack s) f sp (trans_code c) rs m
  | Mach.Callstate    s f rs m      => Callstate    (trans_stack s) f rs m
  | Mach.Returnstate  s rs m        => Returnstate  (trans_stack s) rs m
  end.

Section PRESERVATION.

Variable prog: Mach.program.
Variable tprog: Machblock.program.
Hypothesis TRANSF: match_prog prog tprog.
Let ge := Genv.globalenv prog.
Let tge := Genv.globalenv tprog.

Lemma symbols_preserved:
  forall (s: ident), Genv.find_symbol tge s = Genv.find_symbol ge s.
Proof (Genv.find_symbol_match TRANSF).

Lemma senv_preserved:
  Senv.equiv ge tge.
Proof (Genv.senv_match TRANSF).

Lemma init_mem_preserved:
  forall m,
  Genv.init_mem prog = Some m -> 
  Genv.init_mem tprog = Some m.
Proof (Genv.init_mem_transf TRANSF).

Lemma prog_main_preserved:
  prog_main tprog = prog_main prog.
Proof (match_program_main TRANSF).

Lemma functions_translated:
  forall b f,
  Genv.find_funct_ptr ge b = Some f ->
  exists tf, Genv.find_funct_ptr tge b = Some tf /\ trans_fundef f = tf.
Proof.
  intros.
  exploit (Genv.find_funct_ptr_match TRANSF); eauto. intro.
  destruct H0 as (cunit & tf & A & B & C).
  eapply ex_intro. intuition; eauto. subst. eapply A.
Qed.

Lemma find_function_ptr_same:
  forall s rs,
  Mach.find_function_ptr ge s rs = find_function_ptr tge s rs.
Proof.
  intros. unfold Mach.find_function_ptr. unfold find_function_ptr.
  destruct s; auto.
  rewrite symbols_preserved; auto.
Qed.

Lemma find_funct_ptr_same:
  forall f f0,
  Genv.find_funct_ptr ge f = Some (Internal f0) ->
  Genv.find_funct_ptr tge f = Some (Internal (trans_function f0)).
Proof.
  intros. exploit (Genv.find_funct_ptr_transf TRANSF); eauto.
Qed.

Lemma find_funct_ptr_same_external:
  forall f f0,
  Genv.find_funct_ptr ge f = Some (External f0) ->
  Genv.find_funct_ptr tge f = Some (External f0).
Proof.
  intros. exploit (Genv.find_funct_ptr_transf TRANSF); eauto.
Qed.

Lemma parent_sp_preserved:
  forall s,
  Mach.parent_sp s = parent_sp (trans_stack s).
Proof.
  unfold parent_sp. unfold Mach.parent_sp. destruct s; simpl; auto.
  unfold trans_stackframe. destruct s; simpl; auto.
Qed.

Lemma parent_ra_preserved:
  forall s,
  Mach.parent_ra s = parent_ra (trans_stack s).
Proof.
  unfold parent_ra. unfold Mach.parent_ra. destruct s; simpl; auto.
  unfold trans_stackframe. destruct s; simpl; auto.
Qed.

Lemma external_call_preserved:
  forall ef args m t res m',
  external_call ef ge args m t res m' ->
  external_call ef tge args m t res m'.
Proof.
  intros. eapply external_call_symbols_preserved; eauto.
  apply senv_preserved.
Qed.

Lemma Mach_find_label_split l i c c':
  Mach.find_label l (i :: c) = Some c' -> 
   (i=Mlabel l /\ c' = c) \/ (i <> Mlabel l /\ Mach.find_label l c = Some c').
Proof.
  intros H.
  destruct i; try (constructor 2; split; auto; discriminate ).
  destruct (peq l0 l) as [P|P].
  - constructor. subst l0; split; auto.
    revert H. unfold Mach.find_label. simpl. rewrite peq_true.
    intros H; injection H; auto.
  - constructor 2. split.
    + intro F. injection F. intros. contradict P; auto.
    + revert H. unfold Mach.find_label. simpl. rewrite peq_false; auto.
Qed.

Lemma find_label_stop l b c c0:
 to_bblock (Mlabel l :: c) = (b, c0) -> find_label l (b :: trans_code c0) = Some (trans_code c).
Proof.
  intros H.
  unfold find_label.
  assert (X: b=(fst (to_bblock (Mlabel l :: c)))).
  { rewrite H; simpl; auto. }
  subst b; rewrite to_bblock_islabel.
  remember ({| header := None; body := _ ; exit := _ |}) as b'.
  remember (fst (to_bblock _)) as b.
  destruct (size b') eqn:SIZE.
  - destruct (size_null b') as (Hh & Hb & He); auto.
    subst b'; simpl in *. clear Hh SIZE.
    erewrite <- (to_bblock_label_then_nil b l c c0); eauto.
  - assert (X: exists b0 lb0, trans_code c = b0::lb0 /\ c <> nil).
    { induction c, (trans_code c) using trans_code_ind.
      + subst. simpl in * |-. inversion SIZE.
      + (repeat econstructor 1).  intro; subst; try tauto.
    }
    destruct X as (b0 & lb0 & X0 & X1).
    unfold to_bblock in * |-.
    remember (to_bblock_header _) as bh; destruct bh as [h c1].
    remember (to_bblock_body _) as bb; destruct bb as [bdy c2].
    remember (to_bblock_exit _) as be; destruct be as [ext c3].
    unfold size in SIZE; subst b b'; simpl in * |-.
    injection H; clear H; intro; subst c3.
    injection Heqbh; clear Heqbh; intros; subst.
    cut (to_bblock_header c = (None, c)).
    * intros X2; exploit trans_code_step; eauto.
      simpl; rewrite X0; clear X0.
      intros (Y1 & Y2 & Y3 & Y4). subst.
      rewrite Y1; clear X1; destruct b0; simpl; auto.
    * destruct (cn_eqdec (get_code_nature c) IsLabel) as [ Y | Y ].
      + destruct c; simpl; try discriminate.
        destruct i; simpl; try discriminate.
        simpl in * |-.
        inversion Heqbb; subst. simpl in * |-.
        inversion Heqbe; subst; simpl in * |-.
        discriminate.
      + destruct c; simpl; discriminate || auto.
        destruct i; simpl; auto.
        destruct Y. simpl; auto.
Qed.

Lemma find_label_next l i b c c':
 to_bblock (i :: c) = (b, c') -> i <> Mlabel l -> find_label l (b :: trans_code c') = find_label l (trans_code c').
Proof.
  intros H H1.
  destruct b as [hd bd ex].
  destruct (cn_eqdec (get_code_nature (i::c)) IsLabel) as [ X | X ].
  - destruct i; try discriminate.
    exploit to_bblock_label; eauto.
    intros (bdy & c1 & Y1 & Y2 & Y3 & Y4).
    simpl in *|-. subst. clear X.
    simpl. unfold is_label; simpl.
    assert (l0 <> l); [ intro; subst; contradict H1; auto |].
    rewrite peq_false; auto.
  - exploit to_bblock_no_label; eauto.
    intro Y. apply (f_equal fst) in H as Y1. simpl in Y1. rewrite Y in Y1. clear Y.
    inversion Y1; subst; clear Y1.
    simpl. auto.
Qed.

Lemma to_bblock_header_split i c h c1:
  to_bblock_header (i::c)=(h, c1)
  -> (exists l, i=Mlabel l /\ h=Some l /\ c1=c) \/ (forall l, i<>Mlabel l /\ h=None /\ c1=(i::c)).
Proof.
  destruct i; simpl; intros H; inversion H; try (constructor 2; intuition auto; discriminate).
  constructor 1; eapply ex_intro; intuition eauto.
Qed.

Lemma to_bblock_header_find_label i c1 l c h:
  i <> Mlabel l
  -> to_bblock_header (i :: c) = (h, c1) -> Mach.find_label l c = Mach.find_label l c1.
Proof.
  intros H1 H2; exploit to_bblock_header_split; eauto.
  intros [ ( l0 & X1 & X2 & X3 ) | X ].
  - subst. auto.
  - destruct (X l) as (X1 & X2 & X3). subst. clear X X1.
    symmetry. destruct i; try (simpl; auto).
    assert (l0 <> l); [ intro; subst; contradict H1; auto |].
    rewrite peq_false; auto.
Qed. 

Lemma to_bblock_body_find_label c2 bdy l c1:
  (bdy, c2) = to_bblock_body c1 ->
  Mach.find_label l c1 = Mach.find_label l c2.
Proof.
  generalize bdy c2.
  induction c1 as [|i c1].
  - intros bdy0 c0 H. simpl in H. inversion H; subst; clear H. auto.
  - intros bdy' c2' H. simpl in H. destruct i; try (
      simpl in H; remember (to_bblock_body c1) as tbb; destruct tbb as [p c''];
      inversion H; subst; clear H; simpl; erewrite IHc1; eauto; fail).
Qed.

Lemma to_bblock_exit_find_label c2 ext l c1:
 (ext, c2) = to_bblock_exit c1
 -> Mach.find_label l c1 = Mach.find_label l c2.
Proof.
  intros H. destruct c1 as [|i c1].
  - simpl in H. inversion H; subst; clear H. auto.
  - destruct i; try (
      simpl in H; inversion H; subst; clear H; auto; fail).
Qed.

Lemma Mach_find_label_to_bblock i c l b c0:
 i <> Mlabel l
 -> to_bblock (i :: c) = (b, c0)
 -> Mach.find_label l c = Mach.find_label l c0.
Proof.
  intro H.
  unfold to_bblock.
  remember (to_bblock_header _) as bh; destruct bh as [h c1].
  remember (to_bblock_body _) as bb; destruct bb as [bdy c2].
  remember (to_bblock_exit _) as be; destruct be as [ext c3].
  intros X; injection X. clear X; intros; subst.
  erewrite (to_bblock_header_find_label i c1); eauto.
  erewrite (to_bblock_body_find_label c2); eauto.
  erewrite to_bblock_exit_find_label; eauto.
Qed.

Local Hint Resolve find_label_next.

Lemma find_label_transcode_preserved:
  forall l c c',
  Mach.find_label l c = Some c' ->
  find_label l (trans_code c) = Some (trans_code c').
Proof.
  intros l c; induction c, (trans_code c) using trans_code_ind.
  - intros c' H; inversion H.
  - intros c' H. subst _x. destruct c as [| i c]; try tauto.
    exploit Mach_find_label_split; eauto. clear H.
    intros [  [H1 H2] | [H1 H2] ].
    + subst. erewrite find_label_stop; eauto.
    + rewrite <- IHc0. eauto.
      erewrite <- (Mach_find_label_to_bblock i c); eauto.
Qed.

Lemma find_label_preserved:
  forall l f c,
  Mach.find_label l (Mach.fn_code f) = Some c ->
  find_label l (fn_code (trans_function f)) = Some (trans_code c).
Proof.
  intros. cutrewrite ((fn_code (trans_function f)) = trans_code (Mach.fn_code f)); eauto.
  apply find_label_transcode_preserved; auto.
Qed.

Lemma mem_free_preserved:
  forall m stk f,
  Mem.free m stk 0 (Mach.fn_stacksize f) = Mem.free m stk 0 (fn_stacksize (trans_function f)).
Proof.
  intros. auto.
Qed.

Local Hint Resolve symbols_preserved senv_preserved init_mem_preserved prog_main_preserved functions_translated
                   parent_sp_preserved.

Definition dist_end_block_code (c: Mach.code) := (size (fst (to_bblock c))-1)%nat.


Definition dist_end_block (s: Mach.state): nat :=
  match s with
  | Mach.State _ _ _ c _ _ => dist_end_block_code c
  | _ => 0
  end.

Local Hint Resolve exec_nil_body exec_cons_body.
Local Hint Resolve exec_MBgetstack exec_MBsetstack exec_MBgetparam exec_MBop exec_MBload exec_MBstore.

Variable rao: function -> code -> ptrofs -> Prop.

(*
Lemma minus_diff_0 n: (n-1<>0)%nat -> (n >= 2)%nat.
Proof.
  omega.
Qed.
*)

Ltac ExploitDistEndBlockCode :=
  match goal with
  | [ H : dist_end_block_code (Mlabel ?l :: ?c) <> 0%nat |- _ ] =>
      exploit (to_bblock_size_single_label c (Mlabel l)); eauto
  | [ H : dist_end_block_code (?i0 :: ?c) <> 0%nat |- _ ] =>
      exploit (to_bblock_size_single_basicinst c i0); eauto
  | _ => idtac
  end.

(* FIXME - refactoriser avec get_code_nature pour que ce soit plus joli *)
Lemma dist_end_block_code_simu_mid_block i c:
  dist_end_block_code (i::c) <> 0%nat ->
  (dist_end_block_code (i::c) = Datatypes.S (dist_end_block_code c))%nat.
Proof.
  intros.
  remember (get_code_nature c) as gcnc; destruct gcnc.
  (* when c is nil *)
  - contradict H. rewrite get_code_nature_nil_contra with (c := c); auto. destruct i; simpl; auto.
  (* when c is IsLabel *)
  - remember i as i0; remember (to_basic_inst i) as sbi; remember (to_cfi i) as scfi;
    remember (get_code_nature (i::c)) as gcnic;
    destruct i.
    (* when i is a basic instruction *)
    1-6: try (( contradict H; unfold dist_end_block_code; exploit to_bblock_basic_inst_then_label; eauto;
       [ totologize Heqgcnic; eapply Htoto
       | totologize Heqsbi; try eapply Htoto
       | intro; subst; rewrite H; simpl; auto
       ] ); fail).
    (* when i is a control flow instruction *)
    1-8: try (( contradict H; unfold dist_end_block_code; exploit to_bblock_cf_inst_then_label; eauto;
       [ totologize Heqgcnic; eapply Htoto
       | totologize Heqscfi; try eapply Htoto
       | intro; subst; rewrite H; simpl; auto
       ] ); fail).
    (* when i is a label *)
    contradict H. unfold dist_end_block_code. exploit to_bblock_double_label; eauto.
    intro. subst. rewrite H. simpl. auto.
  (* when c is IsBasicInst or IsCFI *)
  - destruct i; try (contradict H; auto; fail); (* getting rid of the non basic inst *)
       ( ExploitDistEndBlockCode; [ rewrite <- Heqgcnc; discriminate |
         unfold dist_end_block_code in *; intro; rewrite H0 in *; omega ] ).
  - destruct i; try (contradict H; auto; fail); (* getting rid of the non basic inst *)
       ( ExploitDistEndBlockCode; [ rewrite <- Heqgcnc; discriminate |
         unfold dist_end_block_code in *; intro; rewrite H0 in *; omega ] ).
Qed.

Local Hint Resolve dist_end_block_code_simu_mid_block.

Lemma step_simu_basic_step (i: Mach.instruction) (bi: basic_inst) (c: Mach.code) s f sp rs m (t:trace) (s':Mach.state):
  to_basic_inst i = Some bi ->
  Mach.step (inv_trans_rao rao) ge (Mach.State s f sp (i::c) rs m) t s' ->
  exists rs' m', s'=Mach.State s f sp c rs' m' /\ t=E0 /\ basic_step tge (trans_stack s) f sp rs m bi rs' m'.
Proof.
  destruct i; simpl in * |-; 
   (discriminate
    || (intro H; inversion_clear H; intro X; inversion_clear X; eapply ex_intro; eapply ex_intro; intuition eauto)).
  - eapply exec_MBgetparam; eauto. exploit (functions_translated); eauto. intro.
    destruct H3 as (tf & A & B). subst. eapply A.
    all: simpl; rewrite <- parent_sp_preserved; auto.
  - eapply exec_MBop; eauto. rewrite <- H. destruct o; simpl; auto. destruct (rs ## l); simpl; auto.
    unfold Genv.symbol_address; rewrite symbols_preserved; auto.
  - eapply exec_MBload; eauto; rewrite <- H; destruct a; simpl; auto; destruct (rs ## l); simpl; auto;
    unfold Genv.symbol_address; rewrite symbols_preserved; auto.
  - eapply exec_MBstore; eauto; rewrite <- H; destruct a; simpl; auto; destruct (rs ## l); simpl; auto;
    unfold Genv.symbol_address; rewrite symbols_preserved; auto.
Qed.


Lemma star_step_simu_body_step s f sp c: 
 forall (p:bblock_body) c' rs m t s',
  to_bblock_body c = (p, c') ->
  starN (Mach.step (inv_trans_rao rao)) ge (length p) (Mach.State s f sp c rs m) t s' -> 
  exists rs' m', s'=Mach.State s f sp c' rs' m' /\ t=E0 /\ body_step tge (trans_stack s) f sp p rs m rs' m'.
Proof.
  induction c as [ | i0 c0 Hc0]; simpl; intros p c' rs m t s' H. 
  * (* nil *) 
    inversion_clear H; simpl; intros X; inversion_clear X.
    eapply ex_intro; eapply ex_intro; intuition eauto.
  * (* cons *)
    remember (to_basic_inst i0) as o eqn:Ho.
    destruct o as [bi |].
    + (* to_basic_inst i0 = Some bi *)
      remember (to_bblock_body c0) as r eqn:Hr.
      destruct r as [p1 c1]; inversion H; simpl; subst; clear H.
      intros X; inversion_clear X.
      exploit step_simu_basic_step; eauto.
      intros [rs' [m' [H2 [H3 H4]]]]; subst.
      exploit Hc0; eauto.
      intros [rs'' [m'' [H5 [H6 H7]]]]; subst.
      refine (ex_intro _ rs'' (ex_intro _ m'' _)); intuition eauto.
   + (* to_basic_inst i0 = None *)
     inversion_clear H; simpl.
     intros X; inversion_clear X. intuition eauto.
Qed.

Lemma step_simu_cfi_step:
  forall c e c' stk f sp rs m t s' b lb',
  to_bblock_exit c = (Some e, c') ->
  trans_code c' = lb' ->
  Mach.step (inv_trans_rao rao) ge (Mach.State stk f sp c rs m) t s' ->
  cfi_step rao tge e (State (trans_stack stk) f sp (b::lb') rs m) t (trans_state s').
Proof.
  intros c e c' stk f sp rs m t s' b lb'.
  intros Hexit Htc Hstep.
  destruct c as [|ei c]; try (contradict Hexit; discriminate).
  destruct ei; (contradict Hexit; discriminate) || (
    inversion Hexit; subst; inversion Hstep; subst; simpl
  ).
  * unfold inv_trans_rao in H11.
    apply exec_MBcall with (f := (trans_function f0)); auto.
    rewrite find_function_ptr_same in H9; auto.
    apply find_funct_ptr_same. auto.
  * apply exec_MBtailcall with (f := (trans_function f0)); auto.
    rewrite find_function_ptr_same in H9; auto.
    apply find_funct_ptr_same; auto.
    rewrite parent_sp_preserved in H11; subst; auto.
    rewrite parent_ra_preserved in H12; subst; auto.
  * eapply exec_MBbuiltin; eauto.
    eapply eval_builtin_args_preserved; eauto.
    eapply external_call_symbols_preserved; eauto.
  * eapply exec_MBgoto; eauto.
    apply find_funct_ptr_same; eauto.
    apply find_label_preserved; auto.
  * eapply exec_MBcond_true; eauto.
    erewrite find_funct_ptr_same; eauto.
    apply find_label_preserved; auto.
  * eapply exec_MBcond_false; eauto.
  * eapply exec_MBjumptable; eauto.
    erewrite find_funct_ptr_same; eauto.
    apply find_label_preserved; auto.
  * eapply exec_MBreturn; eauto.
    apply find_funct_ptr_same; eauto.
    rewrite parent_sp_preserved in H8; subst; auto.
    rewrite parent_ra_preserved in H9; subst; auto.
    rewrite mem_free_preserved in H10; subst; auto.
Qed.

Lemma simu_end_block:
  forall s1 t s1',
  starN (Mach.step (inv_trans_rao rao)) ge (Datatypes.S (dist_end_block s1)) s1 t s1' ->
  step rao tge (trans_state s1) t (trans_state s1').
Proof.
  destruct s1; simpl.
  + (* State *) 
    (* c cannot be nil *)
    destruct c as [|i c]; simpl; try ( (* nil => absurd *) 
      unfold dist_end_block_code; simpl; 
      intros t s1' H; inversion_clear H;
      inversion_clear H0; fail
    ).

    intros t s1' H.
    remember (_::_) as c0. remember (trans_code c0) as tc0.

    (* tc0 cannot be nil *)
    destruct tc0; try
    ( exploit (trans_code_nonil c0); subst; auto; try discriminate; intro H0; contradict H0 ).

    assert (X: Datatypes.S (dist_end_block_code c0) = (size (fst (to_bblock c0)))).
    { 
      unfold dist_end_block_code. remember (size _) as siz.
      assert (siz <> 0%nat). rewrite Heqsiz; apply to_bblock_nonil with (c0 := c) (i := i) (c := c0); auto.
      omega.
    }

    (* decomposition of starN in 3 parts: header + body + exit *)
    rewrite X in H; unfold size in H.
    destruct (starN_split (Mach.semantics (inv_trans_rao rao) prog) _ _ _ _ H _ _ refl_equal) as [t3 [t4 [s1 [H0 [H3 H4]]]]].
    subst t; clear X H.
    destruct (starN_split (Mach.semantics (inv_trans_rao rao) prog) _ _ _ _ H0 _ _ refl_equal) as [t1 [t2 [s0 [H [H1 H2]]]]].
    subst t3; clear H0.

    (* Making the hypothesis more readable *)
    remember (Smallstep.step _) as Machstep. remember (globalenv _) as mge.
    remember (Mach.State _ _ _ _ _ _) as si.

    unfold to_bblock in * |- *.
    (* naming parts of block "b" *)
    remember (to_bblock_header c0) as hd. destruct hd as [hb c1].
    remember (to_bblock_body c1) as bb. destruct bb as [bb c2].
    remember (to_bblock_exit c2) as exb. destruct exb as [exb c3].
    simpl in * |- *.

    exploit trans_code_step; eauto. intro EQ. destruct EQ as (EQH & EQB & EQE & EQTB0).
    subst hb bb exb.

    (* header opt step *)
    assert (X: s0 = (Mach.State stack f sp c1 rs m) /\ t1 = E0).
    {
      destruct (header b) eqn:EQHB.
      - inversion_clear H. inversion H2. subst.
        destruct i; try (contradict EQHB; inversion Heqhd; fail).
        inversion H0. subst. inversion Heqhd. auto.
      - simpl in H. inversion H. subst.
        destruct i; try (inversion Heqhd; auto; fail).
    }
    clear H; destruct X as [X1 X2]; subst s0 t1.
    autorewrite with trace_rewrite.

    (* body steps *)
    subst mge Machstep.
    exploit (star_step_simu_body_step); eauto.
    clear H1; intros [rs' [m' [H0 [H1 H2]]]].
    subst s1 t2. autorewrite with trace_rewrite.
    (* preparing exit step *)
    eapply exec_bblock; eauto.
    clear H2.

    (* exit step *)
    destruct (exit b) as [e|] eqn:EQEB.
    - constructor.
      simpl in H3. inversion H3. subst. clear H3.
      inversion H1. subst. clear H1.
      destruct c2 as [|ei c2']; try (contradict Heqexb; discriminate).
      rewrite E0_right.
      destruct ei; try (contradict Heqexb; discriminate).
      all: eapply step_simu_cfi_step; eauto.
    - simpl in H3. inversion H3; subst. simpl.
      destruct c2 as [|ei c2']; inversion Heqexb; subst; try eapply exec_None_exit.
      clear H3. destruct (to_cfi ei) as [cfi|] eqn:TOCFI; inversion H0.
      subst. eapply exec_None_exit. 

  + (* Callstate *)
    intros t s1' H; inversion_clear H.
    inversion H1; subst; clear H1.
    inversion_clear H0; simpl.
    - (* function_internal*)
      cutrewrite (trans_code (Mach.fn_code f0) = fn_code (trans_function f0)); eauto.
      eapply exec_function_internal; eauto.
      apply find_funct_ptr_same; auto.
      rewrite <- parent_sp_preserved; eauto.
      rewrite <- parent_ra_preserved; eauto.
    - (* function_external *)
      autorewrite with trace_rewrite.
      eapply exec_function_external; eauto.
      apply find_funct_ptr_same_external; auto.
      rewrite <- parent_sp_preserved; eauto.
      apply external_call_preserved; auto.
  +  (* Returnstate *)
    intros t s1' H; inversion_clear H.
    inversion H1; subst; clear H1.
    inversion_clear H0; simpl.
    eapply exec_return.
Qed.

Theorem simulation: forward_simulation (Mach.semantics (inv_trans_rao rao) prog) (Machblock.semantics rao tprog).
Proof.
  apply forward_simulation_block with (dist_end_block := dist_end_block) (build_block := trans_state).
(* simu_mid_block *)
  - intros s1 t s1' H1.
    destruct H1; simpl; omega || (intuition auto).
(* public_preserved *)
  - apply senv_preserved.
(* match_initial_states *)
  - intros. simpl. destruct H. split.
    apply init_mem_preserved; auto.
    rewrite prog_main_preserved. rewrite <- H0. apply symbols_preserved.
(* match_final_states *)
  - intros. simpl. destruct H. split with (r := r); auto.
(* final_states_end_block *)
  - intros. simpl in H0. inversion H0.
    inversion H; simpl; auto.
    (* the remaining instructions cannot lead to a Returnstate *)
    all: subst; discriminate.
(* simu_end_block *)
  - apply simu_end_block.
Qed.

End PRESERVATION.