aboutsummaryrefslogtreecommitdiffstats
path: root/backend/Cmconstrproof.v
diff options
context:
space:
mode:
authorxleroy <xleroy@fca1b0fc-160b-0410-b1d3-a4f43f01ea2e>2007-08-04 07:27:50 +0000
committerxleroy <xleroy@fca1b0fc-160b-0410-b1d3-a4f43f01ea2e>2007-08-04 07:27:50 +0000
commit355b4abcee015c3fae9ac5653c25259e104a886c (patch)
treecfdb5b17f36b815bb358699cf420f64eba9dfe25 /backend/Cmconstrproof.v
parent22ff08b38616ceef336f5f974d4edc4d37d955e8 (diff)
downloadcompcert-355b4abcee015c3fae9ac5653c25259e104a886c.tar.gz
compcert-355b4abcee015c3fae9ac5653c25259e104a886c.zip
Fusion des modifications faites sur les branches "tailcalls" et "smallstep".
En particulier: - Semantiques small-step depuis RTL jusqu'a PPC - Cminor independant du processeur - Ajout passes Selection et Reload - Ajout des langages intermediaires CminorSel et LTLin correspondants - Ajout des tailcalls depuis Cminor jusqu'a PPC git-svn-id: https://yquem.inria.fr/compcert/svn/compcert/trunk@384 fca1b0fc-160b-0410-b1d3-a4f43f01ea2e
Diffstat (limited to 'backend/Cmconstrproof.v')
-rw-r--r--backend/Cmconstrproof.v1207
1 files changed, 0 insertions, 1207 deletions
diff --git a/backend/Cmconstrproof.v b/backend/Cmconstrproof.v
deleted file mode 100644
index 35b3d8a0..00000000
--- a/backend/Cmconstrproof.v
+++ /dev/null
@@ -1,1207 +0,0 @@
-(** Correctness of the Cminor smart constructors. This file states
- evaluation rules for the smart constructors, for instance that [add
- a b] evaluates to [Vint(Int.add i j)] if [a] evaluates to [Vint i]
- and [b] to [Vint j]. It then proves that these rules are
- admissible, that is, satisfied for all possible choices of [a] and
- [b]. The Cminor producer can then use these evaluation rules
- (theorems) to reason about the execution of terms produced by the
- smart constructors.
-*)
-
-Require Import Coqlib.
-Require Import Compare_dec.
-Require Import Maps.
-Require Import AST.
-Require Import Integers.
-Require Import Floats.
-Require Import Values.
-Require Import Mem.
-Require Import Events.
-Require Import Op.
-Require Import Globalenvs.
-Require Import Cminor.
-Require Import Cmconstr.
-
-Section CMCONSTR.
-
-Variable ge: Cminor.genv.
-
-(** * Lifting of let-bound variables *)
-
-Inductive insert_lenv: letenv -> nat -> val -> letenv -> Prop :=
- | insert_lenv_0:
- forall le v,
- insert_lenv le O v (v :: le)
- | insert_lenv_S:
- forall le p w le' v,
- insert_lenv le p w le' ->
- insert_lenv (v :: le) (S p) w (v :: le').
-
-Lemma insert_lenv_lookup1:
- forall le p w le',
- insert_lenv le p w le' ->
- forall n v,
- nth_error le n = Some v -> (p > n)%nat ->
- nth_error le' n = Some v.
-Proof.
- induction 1; intros.
- omegaContradiction.
- destruct n; simpl; simpl in H0. auto.
- apply IHinsert_lenv. auto. omega.
-Qed.
-
-Lemma insert_lenv_lookup2:
- forall le p w le',
- insert_lenv le p w le' ->
- forall n v,
- nth_error le n = Some v -> (p <= n)%nat ->
- nth_error le' (S n) = Some v.
-Proof.
- induction 1; intros.
- simpl. assumption.
- simpl. destruct n. omegaContradiction.
- apply IHinsert_lenv. exact H0. omega.
-Qed.
-
-Scheme eval_expr_ind_3 := Minimality for eval_expr Sort Prop
- with eval_condexpr_ind_3 := Minimality for eval_condexpr Sort Prop
- with eval_exprlist_ind_3 := Minimality for eval_exprlist Sort Prop.
-
-Hint Resolve eval_Evar eval_Eop eval_Eload eval_Estore
- eval_Ecall eval_Econdition eval_Ealloc
- eval_Elet eval_Eletvar
- eval_CEtrue eval_CEfalse eval_CEcond
- eval_CEcondition eval_Enil eval_Econs: evalexpr.
-
-Lemma eval_list_one:
- forall sp le e m1 a t m2 v,
- eval_expr ge sp le e m1 a t m2 v ->
- eval_exprlist ge sp le e m1 (a ::: Enil) t m2 (v :: nil).
-Proof.
- intros. econstructor. eauto. constructor. traceEq.
-Qed.
-
-Lemma eval_list_two:
- forall sp le e m1 a1 t1 m2 v1 a2 t2 m3 v2 t,
- eval_expr ge sp le e m1 a1 t1 m2 v1 ->
- eval_expr ge sp le e m2 a2 t2 m3 v2 ->
- t = t1 ** t2 ->
- eval_exprlist ge sp le e m1 (a1 ::: a2 ::: Enil) t m3 (v1 :: v2 :: nil).
-Proof.
- intros. econstructor. eauto. econstructor. eauto. constructor.
- reflexivity. traceEq.
-Qed.
-
-Lemma eval_list_three:
- forall sp le e m1 a1 t1 m2 v1 a2 t2 m3 v2 a3 t3 m4 v3 t,
- eval_expr ge sp le e m1 a1 t1 m2 v1 ->
- eval_expr ge sp le e m2 a2 t2 m3 v2 ->
- eval_expr ge sp le e m3 a3 t3 m4 v3 ->
- t = t1 ** t2 ** t3 ->
- eval_exprlist ge sp le e m1 (a1 ::: a2 ::: a3 ::: Enil) t m4 (v1 :: v2 :: v3 :: nil).
-Proof.
- intros. econstructor. eauto. econstructor. eauto. econstructor. eauto. constructor.
- reflexivity. reflexivity. traceEq.
-Qed.
-
-Hint Resolve eval_list_one eval_list_two eval_list_three: evalexpr.
-
-Lemma eval_lift_expr:
- forall w sp le e m1 a t m2 v,
- eval_expr ge sp le e m1 a t m2 v ->
- forall p le', insert_lenv le p w le' ->
- eval_expr ge sp le' e m1 (lift_expr p a) t m2 v.
-Proof.
- intros w.
- apply (eval_expr_ind_3 ge
- (fun sp le e m1 a t m2 v =>
- forall p le', insert_lenv le p w le' ->
- eval_expr ge sp le' e m1 (lift_expr p a) t m2 v)
- (fun sp le e m1 a t m2 vb =>
- forall p le', insert_lenv le p w le' ->
- eval_condexpr ge sp le' e m1 (lift_condexpr p a) t m2 vb)
- (fun sp le e m1 al t m2 vl =>
- forall p le', insert_lenv le p w le' ->
- eval_exprlist ge sp le' e m1 (lift_exprlist p al) t m2 vl));
- simpl; intros; eauto with evalexpr.
-
- destruct v1; eapply eval_Econdition;
- eauto with evalexpr; simpl; eauto with evalexpr.
-
- eapply eval_Elet. eauto. apply H2. apply insert_lenv_S; auto. auto.
-
- case (le_gt_dec p n); intro.
- apply eval_Eletvar. eapply insert_lenv_lookup2; eauto.
- apply eval_Eletvar. eapply insert_lenv_lookup1; eauto.
-
- destruct vb1; eapply eval_CEcondition;
- eauto with evalexpr; simpl; eauto with evalexpr.
-Qed.
-
-Lemma eval_lift:
- forall sp le e m1 a t m2 v w,
- eval_expr ge sp le e m1 a t m2 v ->
- eval_expr ge sp (w::le) e m1 (lift a) t m2 v.
-Proof.
- intros. unfold lift. eapply eval_lift_expr.
- eexact H. apply insert_lenv_0.
-Qed.
-Hint Resolve eval_lift: evalexpr.
-
-(** * Useful lemmas and tactics *)
-
-Ltac EvalOp := eapply eval_Eop; eauto with evalexpr.
-
-Ltac TrivialOp cstr :=
- unfold cstr; intros; EvalOp.
-
-(** The following are trivial lemmas and custom tactics that help
- perform backward (inversion) and forward reasoning over the evaluation
- of operator applications. *)
-
-Lemma inv_eval_Eop_0:
- forall sp le e m1 op t m2 v,
- eval_expr ge sp le e m1 (Eop op Enil) t m2 v ->
- t = E0 /\ m2 = m1 /\ eval_operation ge sp op nil = Some v.
-Proof.
- intros. inversion H. inversion H6.
- intuition. congruence.
-Qed.
-
-Lemma inv_eval_Eop_1:
- forall sp le e m1 op t a1 m2 v,
- eval_expr ge sp le e m1 (Eop op (a1 ::: Enil)) t m2 v ->
- exists v1,
- eval_expr ge sp le e m1 a1 t m2 v1 /\
- eval_operation ge sp op (v1 :: nil) = Some v.
-Proof.
- intros.
- inversion H. inversion H6. inversion H18.
- subst. exists v1; intuition. rewrite E0_right. auto.
-Qed.
-
-Lemma inv_eval_Eop_2:
- forall sp le e m1 op a1 a2 t3 m3 v,
- eval_expr ge sp le e m1 (Eop op (a1 ::: a2 ::: Enil)) t3 m3 v ->
- exists t1, exists t2, exists m2, exists v1, exists v2,
- eval_expr ge sp le e m1 a1 t1 m2 v1 /\
- eval_expr ge sp le e m2 a2 t2 m3 v2 /\
- t3 = t1 ** t2 /\
- eval_operation ge sp op (v1 :: v2 :: nil) = Some v.
-Proof.
- intros.
- inversion H. subst. inversion H6. subst. inversion H8. subst.
- inversion H11. subst.
- exists t1; exists t0; exists m0; exists v0; exists v1.
- intuition. traceEq.
-Qed.
-
-Ltac SimplEval :=
- match goal with
- | [ |- (eval_expr _ ?sp ?le ?e ?m1 (Eop ?op Enil) ?t ?m2 ?v) -> _] =>
- intro XX1;
- generalize (inv_eval_Eop_0 sp le e m1 op t m2 v XX1);
- clear XX1;
- intros [XX1 [XX2 XX3]];
- subst t m2; simpl in XX3;
- try (simplify_eq XX3; clear XX3;
- let EQ := fresh "EQ" in (intro EQ; rewrite EQ))
- | [ |- (eval_expr _ ?sp ?le ?e ?m1 (Eop ?op (?a1 ::: Enil)) ?t ?m2 ?v) -> _] =>
- intro XX1;
- generalize (inv_eval_Eop_1 sp le e m1 op t a1 m2 v XX1);
- clear XX1;
- let v1 := fresh "v" in let EV := fresh "EV" in
- let EQ := fresh "EQ" in
- (intros [v1 [EV EQ]]; simpl in EQ)
- | [ |- (eval_expr _ ?sp ?le ?e ?m1 (Eop ?op (?a1 ::: ?a2 ::: Enil)) ?t ?m2 ?v) -> _] =>
- intro XX1;
- generalize (inv_eval_Eop_2 sp le e m1 op a1 a2 t m2 v XX1);
- clear XX1;
- let t1 := fresh "t" in let t2 := fresh "t" in
- let m := fresh "m" in
- let v1 := fresh "v" in let v2 := fresh "v" in
- let EV1 := fresh "EV" in let EV2 := fresh "EV" in
- let EQ := fresh "EQ" in let TR := fresh "TR" in
- (intros [t1 [t2 [m [v1 [v2 [EV1 [EV2 [TR EQ]]]]]]]]; simpl in EQ)
- | _ => idtac
- end.
-
-Ltac InvEval H :=
- generalize H; SimplEval; clear H.
-
-(** ** Admissible evaluation rules for the smart constructors *)
-
-(** All proofs follow a common pattern:
-- Reasoning by case over the result of the classification functions
- (such as [add_match] for integer addition), gathering additional
- information on the shape of the argument expressions in the non-default
- cases.
-- Inversion of the evaluations of the arguments, exploiting the additional
- information thus gathered.
-- Equational reasoning over the arithmetic operations performed,
- using the lemmas from the [Int] and [Float] modules.
-- Construction of an evaluation derivation for the expression returned
- by the smart constructor.
-*)
-
-Theorem eval_negint:
- forall sp le e m1 a t m2 x,
- eval_expr ge sp le e m1 a t m2 (Vint x) ->
- eval_expr ge sp le e m1 (negint a) t m2 (Vint (Int.neg x)).
-Proof.
- TrivialOp negint.
-Qed.
-
-Theorem eval_negfloat:
- forall sp le e m1 a t m2 x,
- eval_expr ge sp le e m1 a t m2 (Vfloat x) ->
- eval_expr ge sp le e m1 (negfloat a) t m2 (Vfloat (Float.neg x)).
-Proof.
- TrivialOp negfloat.
-Qed.
-
-Theorem eval_absfloat:
- forall sp le e m1 a t m2 x,
- eval_expr ge sp le e m1 a t m2 (Vfloat x) ->
- eval_expr ge sp le e m1 (absfloat a) t m2 (Vfloat (Float.abs x)).
-Proof.
- TrivialOp absfloat.
-Qed.
-
-Theorem eval_intoffloat:
- forall sp le e m1 a t m2 x,
- eval_expr ge sp le e m1 a t m2 (Vfloat x) ->
- eval_expr ge sp le e m1 (intoffloat a) t m2 (Vint (Float.intoffloat x)).
-Proof.
- TrivialOp intoffloat.
-Qed.
-
-Theorem eval_floatofint:
- forall sp le e m1 a t m2 x,
- eval_expr ge sp le e m1 a t m2 (Vint x) ->
- eval_expr ge sp le e m1 (floatofint a) t m2 (Vfloat (Float.floatofint x)).
-Proof.
- TrivialOp floatofint.
-Qed.
-
-Theorem eval_floatofintu:
- forall sp le e m1 a t m2 x,
- eval_expr ge sp le e m1 a t m2 (Vint x) ->
- eval_expr ge sp le e m1 (floatofintu a) t m2 (Vfloat (Float.floatofintu x)).
-Proof.
- TrivialOp floatofintu.
-Qed.
-
-Theorem eval_notint:
- forall sp le e m1 a t m2 x,
- eval_expr ge sp le e m1 a t m2 (Vint x) ->
- eval_expr ge sp le e m1 (notint a) t m2 (Vint (Int.not x)).
-Proof.
- unfold notint; intros until x; case (notint_match a); intros.
- InvEval H. FuncInv. EvalOp. simpl. congruence.
- InvEval H. FuncInv. EvalOp. simpl. congruence.
- InvEval H. FuncInv. EvalOp. simpl. congruence.
- eapply eval_Elet. eexact H.
- eapply eval_Eop.
- eapply eval_Econs. apply eval_Eletvar. simpl. reflexivity.
- eapply eval_Econs. apply eval_Eletvar. simpl. reflexivity.
- apply eval_Enil. reflexivity. reflexivity.
- simpl. rewrite Int.or_idem. auto. traceEq.
-Qed.
-
-Lemma eval_notbool_base:
- forall sp le e m1 a t m2 v b,
- eval_expr ge sp le e m1 a t m2 v ->
- Val.bool_of_val v b ->
- eval_expr ge sp le e m1 (notbool_base a) t m2 (Val.of_bool (negb b)).
-Proof.
- TrivialOp notbool_base. simpl.
- inversion H0.
- rewrite Int.eq_false; auto.
- rewrite Int.eq_true; auto.
- reflexivity.
-Qed.
-
-Hint Resolve Val.bool_of_true_val Val.bool_of_false_val
- Val.bool_of_true_val_inv Val.bool_of_false_val_inv: valboolof.
-
-Theorem eval_notbool:
- forall a sp le e m1 t m2 v b,
- eval_expr ge sp le e m1 a t m2 v ->
- Val.bool_of_val v b ->
- eval_expr ge sp le e m1 (notbool a) t m2 (Val.of_bool (negb b)).
-Proof.
- assert (N1: forall v b, Val.is_false v -> Val.bool_of_val v b -> Val.is_true (Val.of_bool (negb b))).
- intros. inversion H0; simpl; auto; subst v; simpl in H.
- congruence. apply Int.one_not_zero. contradiction.
- assert (N2: forall v b, Val.is_true v -> Val.bool_of_val v b -> Val.is_false (Val.of_bool (negb b))).
- intros. inversion H0; simpl; auto; subst v; simpl in H.
- congruence.
-
- induction a; simpl; intros; try (eapply eval_notbool_base; eauto).
- destruct o; try (eapply eval_notbool_base; eauto).
-
- destruct e. InvEval H. injection XX3; clear XX3; intro; subst v.
- inversion H0. rewrite Int.eq_false; auto.
- simpl; eauto with evalexpr.
- rewrite Int.eq_true; simpl; eauto with evalexpr.
- eapply eval_notbool_base; eauto.
-
- inversion H. subst.
- simpl in H11. eapply eval_Eop; eauto.
- simpl. caseEq (eval_condition c vl); intros.
- rewrite H1 in H11.
- assert (b0 = b).
- destruct b0; inversion H11; subst v; inversion H0; auto.
- subst b0. rewrite (Op.eval_negate_condition _ _ H1).
- destruct b; reflexivity.
- rewrite H1 in H11; discriminate.
-
- inversion H; eauto 10 with evalexpr valboolof.
- inversion H; eauto 10 with evalexpr valboolof.
-
- inversion H. subst. eapply eval_Econdition with (t2 := t8). eexact H34.
- destruct v4; eauto. auto.
-Qed.
-
-Theorem eval_addimm:
- forall sp le e m1 n a t m2 x,
- eval_expr ge sp le e m1 a t m2 (Vint x) ->
- eval_expr ge sp le e m1 (addimm n a) t m2 (Vint (Int.add x n)).
-Proof.
- unfold addimm; intros until x.
- generalize (Int.eq_spec n Int.zero). case (Int.eq n Int.zero); intro.
- subst n. rewrite Int.add_zero. auto.
- case (addimm_match a); intros.
- InvEval H0. EvalOp. simpl. rewrite Int.add_commut. auto.
- InvEval H0. destruct (Genv.find_symbol ge s); discriminate.
- InvEval H0.
- destruct sp; simpl in XX3; discriminate.
- InvEval H0. FuncInv. EvalOp. simpl. subst x.
- rewrite Int.add_assoc. decEq; decEq; decEq. apply Int.add_commut.
- EvalOp.
-Qed.
-
-Theorem eval_addimm_ptr:
- forall sp le e m1 n t a m2 b ofs,
- eval_expr ge sp le e m1 a t m2 (Vptr b ofs) ->
- eval_expr ge sp le e m1 (addimm n a) t m2 (Vptr b (Int.add ofs n)).
-Proof.
- unfold addimm; intros until ofs.
- generalize (Int.eq_spec n Int.zero). case (Int.eq n Int.zero); intro.
- subst n. rewrite Int.add_zero. auto.
- case (addimm_match a); intros.
- InvEval H0.
- InvEval H0. EvalOp. simpl.
- destruct (Genv.find_symbol ge s).
- rewrite Int.add_commut. congruence.
- discriminate.
- InvEval H0. destruct sp; simpl in XX3; try discriminate.
- inversion XX3. EvalOp. simpl. decEq. decEq.
- rewrite Int.add_assoc. decEq. apply Int.add_commut.
- InvEval H0. FuncInv. subst b0; subst ofs. EvalOp. simpl.
- rewrite (Int.add_commut n m). rewrite Int.add_assoc. auto.
- EvalOp.
-Qed.
-
-Theorem eval_add:
- forall sp le e m1 a t1 m2 x b t2 m3 y,
- eval_expr ge sp le e m1 a t1 m2 (Vint x) ->
- eval_expr ge sp le e m2 b t2 m3 (Vint y) ->
- eval_expr ge sp le e m1 (add a b) (t1**t2) m3 (Vint (Int.add x y)).
-Proof.
- intros until y. unfold add; case (add_match a b); intros.
- InvEval H. rewrite Int.add_commut. apply eval_addimm.
- rewrite E0_left; assumption.
- InvEval H. FuncInv. InvEval H0. FuncInv.
- replace (Int.add x y) with (Int.add (Int.add i i0) (Int.add n1 n2)).
- apply eval_addimm. EvalOp.
- subst x; subst y.
- repeat rewrite Int.add_assoc. decEq. apply Int.add_permut.
- InvEval H. FuncInv.
- replace (Int.add x y) with (Int.add (Int.add i y) n1).
- apply eval_addimm. EvalOp.
- subst x. repeat rewrite Int.add_assoc. decEq. apply Int.add_commut.
- InvEval H0. FuncInv.
- apply eval_addimm. rewrite E0_right. auto.
- InvEval H0. FuncInv.
- replace (Int.add x y) with (Int.add (Int.add x i) n2).
- apply eval_addimm. EvalOp.
- subst y. rewrite Int.add_assoc. auto.
- EvalOp.
-Qed.
-
-Theorem eval_add_ptr:
- forall sp le e m1 a t1 m2 p x b t2 m3 y,
- eval_expr ge sp le e m1 a t1 m2 (Vptr p x) ->
- eval_expr ge sp le e m2 b t2 m3 (Vint y) ->
- eval_expr ge sp le e m1 (add a b) (t1**t2) m3 (Vptr p (Int.add x y)).
-Proof.
- intros until y. unfold add; case (add_match a b); intros.
- InvEval H.
- InvEval H. FuncInv. InvEval H0. FuncInv.
- replace (Int.add x y) with (Int.add (Int.add i i0) (Int.add n1 n2)).
- apply eval_addimm_ptr. subst b0. EvalOp.
- subst x; subst y.
- repeat rewrite Int.add_assoc. decEq. apply Int.add_permut.
- InvEval H. FuncInv.
- replace (Int.add x y) with (Int.add (Int.add i y) n1).
- apply eval_addimm_ptr. subst b0. EvalOp.
- subst x. repeat rewrite Int.add_assoc. decEq. apply Int.add_commut.
- InvEval H0. apply eval_addimm_ptr. rewrite E0_right. auto.
- InvEval H0. FuncInv.
- replace (Int.add x y) with (Int.add (Int.add x i) n2).
- apply eval_addimm_ptr. EvalOp.
- subst y. rewrite Int.add_assoc. auto.
- EvalOp.
-Qed.
-
-Theorem eval_add_ptr_2:
- forall sp le e m1 a t1 m2 p x b t2 m3 y,
- eval_expr ge sp le e m1 a t1 m2 (Vint x) ->
- eval_expr ge sp le e m2 b t2 m3 (Vptr p y) ->
- eval_expr ge sp le e m1 (add a b) (t1**t2) m3 (Vptr p (Int.add y x)).
-Proof.
- intros until y. unfold add; case (add_match a b); intros.
- InvEval H.
- apply eval_addimm_ptr. rewrite E0_left. auto.
- InvEval H. FuncInv. InvEval H0. FuncInv.
- replace (Int.add y x) with (Int.add (Int.add i0 i) (Int.add n1 n2)).
- apply eval_addimm_ptr. subst b0. EvalOp.
- subst x; subst y.
- repeat rewrite Int.add_assoc. decEq.
- rewrite (Int.add_commut n1 n2). apply Int.add_permut.
- InvEval H. FuncInv.
- replace (Int.add y x) with (Int.add (Int.add y i) n1).
- apply eval_addimm_ptr. EvalOp.
- subst x. repeat rewrite Int.add_assoc. auto.
- InvEval H0.
- InvEval H0. FuncInv.
- replace (Int.add y x) with (Int.add (Int.add i x) n2).
- apply eval_addimm_ptr. EvalOp. subst b0; reflexivity.
- subst y. repeat rewrite Int.add_assoc. decEq. apply Int.add_commut.
- EvalOp.
-Qed.
-
-Theorem eval_sub:
- forall sp le e m1 a t1 m2 x b t2 m3 y,
- eval_expr ge sp le e m1 a t1 m2 (Vint x) ->
- eval_expr ge sp le e m2 b t2 m3 (Vint y) ->
- eval_expr ge sp le e m1 (sub a b) (t1**t2) m3 (Vint (Int.sub x y)).
-Proof.
- intros until y.
- unfold sub; case (sub_match a b); intros.
- InvEval H0. rewrite Int.sub_add_opp.
- apply eval_addimm. rewrite E0_right. assumption.
- InvEval H. FuncInv. InvEval H0. FuncInv.
- replace (Int.sub x y) with (Int.add (Int.sub i i0) (Int.sub n1 n2)).
- apply eval_addimm. EvalOp.
- subst x; subst y.
- repeat rewrite Int.sub_add_opp.
- repeat rewrite Int.add_assoc. decEq.
- rewrite Int.add_permut. decEq. symmetry. apply Int.neg_add_distr.
- InvEval H. FuncInv.
- replace (Int.sub x y) with (Int.add (Int.sub i y) n1).
- apply eval_addimm. EvalOp.
- subst x. rewrite Int.sub_add_l. auto.
- InvEval H0. FuncInv.
- replace (Int.sub x y) with (Int.add (Int.sub x i) (Int.neg n2)).
- apply eval_addimm. EvalOp.
- subst y. rewrite (Int.add_commut i n2). symmetry. apply Int.sub_add_r.
- EvalOp.
-Qed.
-
-Theorem eval_sub_ptr_int:
- forall sp le e m1 a t1 m2 p x b t2 m3 y,
- eval_expr ge sp le e m1 a t1 m2 (Vptr p x) ->
- eval_expr ge sp le e m2 b t2 m3 (Vint y) ->
- eval_expr ge sp le e m1 (sub a b) (t1**t2) m3 (Vptr p (Int.sub x y)).
-Proof.
- intros until y.
- unfold sub; case (sub_match a b); intros.
- InvEval H0. rewrite Int.sub_add_opp.
- apply eval_addimm_ptr. rewrite E0_right. assumption.
- InvEval H. FuncInv. InvEval H0. FuncInv.
- subst b0.
- replace (Int.sub x y) with (Int.add (Int.sub i i0) (Int.sub n1 n2)).
- apply eval_addimm_ptr. EvalOp.
- subst x; subst y.
- repeat rewrite Int.sub_add_opp.
- repeat rewrite Int.add_assoc. decEq.
- rewrite Int.add_permut. decEq. symmetry. apply Int.neg_add_distr.
- InvEval H. FuncInv. subst b0.
- replace (Int.sub x y) with (Int.add (Int.sub i y) n1).
- apply eval_addimm_ptr. EvalOp.
- subst x. rewrite Int.sub_add_l. auto.
- InvEval H0. FuncInv.
- replace (Int.sub x y) with (Int.add (Int.sub x i) (Int.neg n2)).
- apply eval_addimm_ptr. EvalOp.
- subst y. rewrite (Int.add_commut i n2). symmetry. apply Int.sub_add_r.
- EvalOp.
-Qed.
-
-Theorem eval_sub_ptr_ptr:
- forall sp le e m1 a t1 m2 p x b t2 m3 y,
- eval_expr ge sp le e m1 a t1 m2 (Vptr p x) ->
- eval_expr ge sp le e m2 b t2 m3 (Vptr p y) ->
- eval_expr ge sp le e m1 (sub a b) (t1**t2) m3 (Vint (Int.sub x y)).
-Proof.
- intros until y.
- unfold sub; case (sub_match a b); intros.
- InvEval H0.
- InvEval H. FuncInv. InvEval H0. FuncInv.
- replace (Int.sub x y) with (Int.add (Int.sub i i0) (Int.sub n1 n2)).
- apply eval_addimm. EvalOp.
- simpl; unfold eq_block. subst b0; subst b1; rewrite zeq_true. auto.
- subst x; subst y.
- repeat rewrite Int.sub_add_opp.
- repeat rewrite Int.add_assoc. decEq.
- rewrite Int.add_permut. decEq. symmetry. apply Int.neg_add_distr.
- InvEval H. FuncInv. subst b0.
- replace (Int.sub x y) with (Int.add (Int.sub i y) n1).
- apply eval_addimm. EvalOp.
- simpl. unfold eq_block. rewrite zeq_true. auto.
- subst x. rewrite Int.sub_add_l. auto.
- InvEval H0. FuncInv. subst b0.
- replace (Int.sub x y) with (Int.add (Int.sub x i) (Int.neg n2)).
- apply eval_addimm. EvalOp.
- simpl. unfold eq_block. rewrite zeq_true. auto.
- subst y. rewrite (Int.add_commut i n2). symmetry. apply Int.sub_add_r.
- EvalOp. simpl. unfold eq_block. rewrite zeq_true. auto.
-Qed.
-
-Lemma eval_rolm:
- forall sp le e m1 a amount mask t m2 x,
- eval_expr ge sp le e m1 a t m2 (Vint x) ->
- eval_expr ge sp le e m1 (rolm a amount mask) t m2 (Vint (Int.rolm x amount mask)).
-Proof.
- intros until x. unfold rolm; case (rolm_match a); intros.
- InvEval H. eauto with evalexpr.
- case (Int.is_rlw_mask (Int.and (Int.rol mask1 amount) mask)).
- InvEval H. FuncInv. EvalOp. simpl. subst x.
- decEq. decEq.
- replace (Int.and (Int.add amount1 amount) (Int.repr 31))
- with (Int.modu (Int.add amount1 amount) (Int.repr 32)).
- symmetry. apply Int.rolm_rolm.
- change (Int.repr 31) with (Int.sub (Int.repr 32) Int.one).
- apply Int.modu_and with (Int.repr 5). reflexivity.
- EvalOp.
- EvalOp.
-Qed.
-
-Theorem eval_shlimm:
- forall sp le e m1 a n t m2 x,
- eval_expr ge sp le e m1 a t m2 (Vint x) ->
- Int.ltu n (Int.repr 32) = true ->
- eval_expr ge sp le e m1 (shlimm a n) t m2 (Vint (Int.shl x n)).
-Proof.
- intros. unfold shlimm.
- generalize (Int.eq_spec n Int.zero); case (Int.eq n Int.zero); intro.
- subst n. rewrite Int.shl_zero. auto.
- rewrite H0.
- replace (Int.shl x n) with (Int.rolm x n (Int.shl Int.mone n)).
- apply eval_rolm. auto. symmetry. apply Int.shl_rolm. exact H0.
-Qed.
-
-Theorem eval_shruimm:
- forall sp le e m1 a n t m2 x,
- eval_expr ge sp le e m1 a t m2 (Vint x) ->
- Int.ltu n (Int.repr 32) = true ->
- eval_expr ge sp le e m1 (shruimm a n) t m2 (Vint (Int.shru x n)).
-Proof.
- intros. unfold shruimm.
- generalize (Int.eq_spec n Int.zero); case (Int.eq n Int.zero); intro.
- subst n. rewrite Int.shru_zero. auto.
- rewrite H0.
- replace (Int.shru x n) with (Int.rolm x (Int.sub (Int.repr 32) n) (Int.shru Int.mone n)).
- apply eval_rolm. auto. symmetry. apply Int.shru_rolm. exact H0.
-Qed.
-
-Lemma eval_mulimm_base:
- forall sp le e m1 a t n m2 x,
- eval_expr ge sp le e m1 a t m2 (Vint x) ->
- eval_expr ge sp le e m1 (mulimm_base n a) t m2 (Vint (Int.mul x n)).
-Proof.
- intros; unfold mulimm_base.
- generalize (Int.one_bits_decomp n).
- generalize (Int.one_bits_range n).
- change (Z_of_nat wordsize) with 32.
- destruct (Int.one_bits n).
- intros. EvalOp.
- destruct l.
- intros. rewrite H1. simpl.
- rewrite Int.add_zero. rewrite <- Int.shl_mul.
- apply eval_shlimm. auto. auto with coqlib.
- destruct l.
- intros. apply eval_Elet with t m2 (Vint x) E0. auto.
- rewrite H1. simpl. rewrite Int.add_zero.
- rewrite Int.mul_add_distr_r.
- rewrite <- Int.shl_mul.
- rewrite <- Int.shl_mul.
- EvalOp. eapply eval_Econs.
- apply eval_shlimm. apply eval_Eletvar. simpl. reflexivity.
- auto with coqlib.
- eapply eval_Econs.
- apply eval_shlimm. apply eval_Eletvar. simpl. reflexivity.
- auto with coqlib.
- auto with evalexpr.
- reflexivity. traceEq. reflexivity. traceEq.
- intros. EvalOp.
-Qed.
-
-Theorem eval_mulimm:
- forall sp le e m1 a n t m2 x,
- eval_expr ge sp le e m1 a t m2 (Vint x) ->
- eval_expr ge sp le e m1 (mulimm n a) t m2 (Vint (Int.mul x n)).
-Proof.
- intros until x; unfold mulimm.
- generalize (Int.eq_spec n Int.zero); case (Int.eq n Int.zero); intro.
- subst n. rewrite Int.mul_zero.
- intro. eapply eval_Elet; eauto with evalexpr. traceEq.
- generalize (Int.eq_spec n Int.one); case (Int.eq n Int.one); intro.
- subst n. rewrite Int.mul_one. auto.
- case (mulimm_match a); intros.
- InvEval H1. EvalOp. rewrite Int.mul_commut. reflexivity.
- InvEval H1. FuncInv.
- replace (Int.mul x n) with (Int.add (Int.mul i n) (Int.mul n n2)).
- apply eval_addimm. apply eval_mulimm_base. auto.
- subst x. rewrite Int.mul_add_distr_l. decEq. apply Int.mul_commut.
- apply eval_mulimm_base. assumption.
-Qed.
-
-Theorem eval_mul:
- forall sp le e m1 a t1 m2 x b t2 m3 y,
- eval_expr ge sp le e m1 a t1 m2 (Vint x) ->
- eval_expr ge sp le e m2 b t2 m3 (Vint y) ->
- eval_expr ge sp le e m1 (mul a b) (t1**t2) m3 (Vint (Int.mul x y)).
-Proof.
- intros until y.
- unfold mul; case (mul_match a b); intros.
- InvEval H. rewrite Int.mul_commut. apply eval_mulimm.
- rewrite E0_left; auto.
- InvEval H0. rewrite E0_right. apply eval_mulimm. auto.
- EvalOp.
-Qed.
-
-Theorem eval_divs:
- forall sp le e m1 a t1 m2 x b t2 m3 y,
- eval_expr ge sp le e m1 a t1 m2 (Vint x) ->
- eval_expr ge sp le e m2 b t2 m3 (Vint y) ->
- y <> Int.zero ->
- eval_expr ge sp le e m1 (divs a b) (t1**t2) m3 (Vint (Int.divs x y)).
-Proof.
- TrivialOp divs. simpl.
- predSpec Int.eq Int.eq_spec y Int.zero. contradiction. auto.
-Qed.
-
-Lemma eval_mod_aux:
- forall divop semdivop,
- (forall sp x y,
- y <> Int.zero ->
- eval_operation ge sp divop (Vint x :: Vint y :: nil) =
- Some (Vint (semdivop x y))) ->
- forall sp le e m1 a t1 m2 x b t2 m3 y,
- eval_expr ge sp le e m1 a t1 m2 (Vint x) ->
- eval_expr ge sp le e m2 b t2 m3 (Vint y) ->
- y <> Int.zero ->
- eval_expr ge sp le e m1 (mod_aux divop a b) (t1**t2) m3
- (Vint (Int.sub x (Int.mul (semdivop x y) y))).
-Proof.
- intros; unfold mod_aux.
- eapply eval_Elet. eexact H0. eapply eval_Elet.
- apply eval_lift. eexact H1.
- eapply eval_Eop. eapply eval_Econs.
- eapply eval_Eletvar. simpl; reflexivity.
- eapply eval_Econs. eapply eval_Eop.
- eapply eval_Econs. eapply eval_Eop.
- eapply eval_Econs. apply eval_Eletvar. simpl; reflexivity.
- eapply eval_Econs. apply eval_Eletvar. simpl; reflexivity.
- apply eval_Enil. reflexivity. reflexivity.
- apply H. assumption.
- eapply eval_Econs. apply eval_Eletvar. simpl; reflexivity.
- apply eval_Enil. reflexivity. reflexivity.
- simpl; reflexivity. apply eval_Enil.
- reflexivity. reflexivity. reflexivity.
- reflexivity. traceEq.
-Qed.
-
-Theorem eval_mods:
- forall sp le e m1 a t1 m2 x b t2 m3 y,
- eval_expr ge sp le e m1 a t1 m2 (Vint x) ->
- eval_expr ge sp le e m2 b t2 m3 (Vint y) ->
- y <> Int.zero ->
- eval_expr ge sp le e m1 (mods a b) (t1**t2) m3 (Vint (Int.mods x y)).
-Proof.
- intros; unfold mods.
- rewrite Int.mods_divs.
- eapply eval_mod_aux; eauto.
- intros. simpl. predSpec Int.eq Int.eq_spec y0 Int.zero.
- contradiction. auto.
-Qed.
-
-Lemma eval_divu_base:
- forall sp le e m1 a t1 m2 x b t2 m3 y,
- eval_expr ge sp le e m1 a t1 m2 (Vint x) ->
- eval_expr ge sp le e m2 b t2 m3 (Vint y) ->
- y <> Int.zero ->
- eval_expr ge sp le e m1 (Eop Odivu (a ::: b ::: Enil)) (t1**t2) m3 (Vint (Int.divu x y)).
-Proof.
- intros. EvalOp. simpl.
- predSpec Int.eq Int.eq_spec y Int.zero. contradiction. auto.
-Qed.
-
-Theorem eval_divu:
- forall sp le e m1 a t1 m2 x b t2 m3 y,
- eval_expr ge sp le e m1 a t1 m2 (Vint x) ->
- eval_expr ge sp le e m2 b t2 m3 (Vint y) ->
- y <> Int.zero ->
- eval_expr ge sp le e m1 (divu a b) (t1**t2) m3 (Vint (Int.divu x y)).
-Proof.
- intros until y.
- unfold divu; case (divu_match b); intros.
- InvEval H0. caseEq (Int.is_power2 y).
- intros. rewrite (Int.divu_pow2 x y i H0).
- apply eval_shruimm. rewrite E0_right. auto.
- apply Int.is_power2_range with y. auto.
- intros. subst n2. eapply eval_divu_base. eexact H. EvalOp. auto.
- eapply eval_divu_base; eauto.
-Qed.
-
-Theorem eval_modu:
- forall sp le e m1 a t1 m2 x b t2 m3 y,
- eval_expr ge sp le e m1 a t1 m2 (Vint x) ->
- eval_expr ge sp le e m2 b t2 m3 (Vint y) ->
- y <> Int.zero ->
- eval_expr ge sp le e m1 (modu a b) (t1**t2) m3 (Vint (Int.modu x y)).
-Proof.
- intros until y; unfold modu; case (divu_match b); intros.
- InvEval H0. caseEq (Int.is_power2 y).
- intros. rewrite (Int.modu_and x y i H0).
- rewrite <- Int.rolm_zero. apply eval_rolm. rewrite E0_right; auto.
- intro. rewrite Int.modu_divu. eapply eval_mod_aux.
- intros. simpl. predSpec Int.eq Int.eq_spec y0 Int.zero.
- contradiction. auto.
- eexact H. EvalOp. auto. auto.
- rewrite Int.modu_divu. eapply eval_mod_aux.
- intros. simpl. predSpec Int.eq Int.eq_spec y0 Int.zero.
- contradiction. auto.
- eexact H. eexact H0. auto. auto.
-Qed.
-
-Theorem eval_andimm:
- forall sp le e m1 n a t m2 x,
- eval_expr ge sp le e m1 a t m2 (Vint x) ->
- eval_expr ge sp le e m1 (andimm n a) t m2 (Vint (Int.and x n)).
-Proof.
- intros. unfold andimm. case (Int.is_rlw_mask n).
- rewrite <- Int.rolm_zero. apply eval_rolm; auto.
- EvalOp.
-Qed.
-
-Theorem eval_and:
- forall sp le e m1 a t1 m2 x b t2 m3 y,
- eval_expr ge sp le e m1 a t1 m2 (Vint x) ->
- eval_expr ge sp le e m2 b t2 m3 (Vint y) ->
- eval_expr ge sp le e m1 (and a b) (t1**t2) m3 (Vint (Int.and x y)).
-Proof.
- intros until y; unfold and; case (mul_match a b); intros.
- InvEval H. rewrite Int.and_commut.
- rewrite E0_left; apply eval_andimm; auto.
- InvEval H0. rewrite E0_right; apply eval_andimm; auto.
- EvalOp.
-Qed.
-
-Remark eval_same_expr_pure:
- forall a1 a2 sp le e m1 t1 m2 v1 t2 m3 v2,
- same_expr_pure a1 a2 = true ->
- eval_expr ge sp le e m1 a1 t1 m2 v1 ->
- eval_expr ge sp le e m2 a2 t2 m3 v2 ->
- t1 = E0 /\ t2 = E0 /\ a2 = a1 /\ v2 = v1 /\ m2 = m1.
-Proof.
- intros until v2.
- destruct a1; simpl; try (intros; discriminate).
- destruct a2; simpl; try (intros; discriminate).
- case (ident_eq i i0); intros.
- subst i0. inversion H0. inversion H1.
- assert (v2 = v1). congruence. tauto.
- discriminate.
-Qed.
-
-Lemma eval_or:
- forall sp le e m1 a t1 m2 x b t2 m3 y,
- eval_expr ge sp le e m1 a t1 m2 (Vint x) ->
- eval_expr ge sp le e m2 b t2 m3 (Vint y) ->
- eval_expr ge sp le e m1 (or a b) (t1**t2) m3 (Vint (Int.or x y)).
-Proof.
- intros until y; unfold or; case (or_match a b); intros.
- generalize (Int.eq_spec amount1 amount2); case (Int.eq amount1 amount2); intro.
- case (Int.is_rlw_mask (Int.or mask1 mask2)).
- caseEq (same_expr_pure t0 t3); intro.
- simpl. InvEval H. FuncInv. InvEval H0. FuncInv.
- generalize (eval_same_expr_pure _ _ _ _ _ _ _ _ _ _ _ _ H2 EV EV0).
- intros [EQ1 [EQ2 [EQ3 [EQ4 EQ5]]]].
- injection EQ4; intro EQ7. subst.
- EvalOp. simpl. rewrite Int.or_rolm. auto.
- simpl. EvalOp.
- simpl. EvalOp.
- simpl. EvalOp.
- EvalOp.
-Qed.
-
-Theorem eval_xor:
- forall sp le e m1 a t1 m2 x b t2 m3 y,
- eval_expr ge sp le e m1 a t1 m2 (Vint x) ->
- eval_expr ge sp le e m2 b t2 m3 (Vint y) ->
- eval_expr ge sp le e m1 (xor a b) (t1**t2) m3 (Vint (Int.xor x y)).
-Proof. TrivialOp xor. Qed.
-
-Theorem eval_shl:
- forall sp le e m1 a t1 m2 x b t2 m3 y,
- eval_expr ge sp le e m1 a t1 m2 (Vint x) ->
- eval_expr ge sp le e m2 b t2 m3 (Vint y) ->
- Int.ltu y (Int.repr 32) = true ->
- eval_expr ge sp le e m1 (shl a b) (t1**t2) m3 (Vint (Int.shl x y)).
-Proof.
- intros until y; unfold shl; case (shift_match b); intros.
- InvEval H0. rewrite E0_right. apply eval_shlimm; auto.
- EvalOp. simpl. rewrite H1. auto.
-Qed.
-
-Theorem eval_shr:
- forall sp le e m1 a t1 m2 x b t2 m3 y,
- eval_expr ge sp le e m1 a t1 m2 (Vint x) ->
- eval_expr ge sp le e m2 b t2 m3 (Vint y) ->
- Int.ltu y (Int.repr 32) = true ->
- eval_expr ge sp le e m1 (shr a b) (t1**t2) m3 (Vint (Int.shr x y)).
-Proof.
- TrivialOp shr. simpl. rewrite H1. auto.
-Qed.
-
-Theorem eval_shru:
- forall sp le e m1 a t1 m2 x b t2 m3 y,
- eval_expr ge sp le e m1 a t1 m2 (Vint x) ->
- eval_expr ge sp le e m2 b t2 m3 (Vint y) ->
- Int.ltu y (Int.repr 32) = true ->
- eval_expr ge sp le e m1 (shru a b) (t1**t2) m3 (Vint (Int.shru x y)).
-Proof.
- intros until y; unfold shru; case (shift_match b); intros.
- InvEval H0. rewrite E0_right; apply eval_shruimm; auto.
- EvalOp. simpl. rewrite H1. auto.
-Qed.
-
-Theorem eval_addf:
- forall sp le e m1 a t1 m2 x b t2 m3 y,
- eval_expr ge sp le e m1 a t1 m2 (Vfloat x) ->
- eval_expr ge sp le e m2 b t2 m3 (Vfloat y) ->
- eval_expr ge sp le e m1 (addf a b) (t1**t2) m3 (Vfloat (Float.add x y)).
-Proof.
- intros until y; unfold addf; case (addf_match a b); intros.
- InvEval H. FuncInv. EvalOp.
- econstructor; eauto. econstructor; eauto. econstructor; eauto. constructor.
- traceEq. simpl. subst x. reflexivity.
- InvEval H0. FuncInv. eapply eval_Elet. eexact H. EvalOp.
- econstructor; eauto with evalexpr.
- econstructor; eauto with evalexpr.
- econstructor. apply eval_Eletvar. simpl; reflexivity.
- constructor. reflexivity. traceEq.
- subst y. rewrite Float.addf_commut. reflexivity. auto.
- EvalOp.
-Qed.
-
-Theorem eval_subf:
- forall sp le e m1 a t1 m2 x b t2 m3 y,
- eval_expr ge sp le e m1 a t1 m2 (Vfloat x) ->
- eval_expr ge sp le e m2 b t2 m3 (Vfloat y) ->
- eval_expr ge sp le e m1 (subf a b) (t1**t2) m3 (Vfloat (Float.sub x y)).
-Proof.
- intros until y; unfold subf; case (subf_match a b); intros.
- InvEval H. FuncInv. EvalOp.
- econstructor; eauto. econstructor; eauto. econstructor; eauto. constructor.
- traceEq. subst x. reflexivity.
- EvalOp.
-Qed.
-
-Theorem eval_mulf:
- forall sp le e m1 a t1 m2 x b t2 m3 y,
- eval_expr ge sp le e m1 a t1 m2 (Vfloat x) ->
- eval_expr ge sp le e m2 b t2 m3 (Vfloat y) ->
- eval_expr ge sp le e m1 (mulf a b) (t1**t2) m3 (Vfloat (Float.mul x y)).
-Proof. TrivialOp mulf. Qed.
-
-Theorem eval_divf:
- forall sp le e m1 a t1 m2 x b t2 m3 y,
- eval_expr ge sp le e m1 a t1 m2 (Vfloat x) ->
- eval_expr ge sp le e m2 b t2 m3 (Vfloat y) ->
- eval_expr ge sp le e m1 (divf a b) (t1**t2) m3 (Vfloat (Float.div x y)).
-Proof. TrivialOp divf. Qed.
-
-Theorem eval_cast8signed:
- forall sp le e m1 a t m2 v,
- eval_expr ge sp le e m1 a t m2 v ->
- eval_expr ge sp le e m1 (cast8signed a) t m2 (Val.cast8signed v).
-Proof.
- intros until v; unfold cast8signed; case (cast8signed_match a); intros.
- replace (Val.cast8signed v) with v. auto.
- InvEval H. inversion EQ. destruct v0; simpl; auto. rewrite Int.cast8_signed_idem. reflexivity.
- EvalOp.
-Qed.
-
-Theorem eval_cast8unsigned:
- forall sp le e m1 a t m2 v,
- eval_expr ge sp le e m1 a t m2 v ->
- eval_expr ge sp le e m1 (cast8unsigned a) t m2 (Val.cast8unsigned v).
-Proof.
- intros until v; unfold cast8unsigned; case (cast8unsigned_match a); intros.
- replace (Val.cast8unsigned v) with v. auto.
- InvEval H. inversion EQ. destruct v0; simpl; auto. rewrite Int.cast8_unsigned_idem. reflexivity.
- EvalOp.
-Qed.
-
-Theorem eval_cast16signed:
- forall sp le e m1 a t m2 v,
- eval_expr ge sp le e m1 a t m2 v ->
- eval_expr ge sp le e m1 (cast16signed a) t m2 (Val.cast16signed v).
-Proof.
- intros until v; unfold cast16signed; case (cast16signed_match a); intros.
- replace (Val.cast16signed v) with v. auto.
- InvEval H. inversion EQ. destruct v0; simpl; auto. rewrite Int.cast16_signed_idem. reflexivity.
- EvalOp.
-Qed.
-
-Theorem eval_cast16unsigned:
- forall sp le e m1 a t m2 v,
- eval_expr ge sp le e m1 a t m2 v ->
- eval_expr ge sp le e m1 (cast16unsigned a) t m2 (Val.cast16unsigned v).
-Proof.
- intros until v; unfold cast16unsigned; case (cast16unsigned_match a); intros.
- replace (Val.cast16unsigned v) with v. auto.
- InvEval H. inversion EQ. destruct v0; simpl; auto. rewrite Int.cast16_unsigned_idem. reflexivity.
- EvalOp.
-Qed.
-
-Theorem eval_singleoffloat:
- forall sp le e m1 a t m2 v,
- eval_expr ge sp le e m1 a t m2 v ->
- eval_expr ge sp le e m1 (singleoffloat a) t m2 (Val.singleoffloat v).
-Proof.
- intros until v; unfold singleoffloat; case (singleoffloat_match a); intros.
- replace (Val.singleoffloat v) with v. auto.
- InvEval H. inversion EQ. destruct v0; simpl; auto. rewrite Float.singleoffloat_idem. reflexivity.
- EvalOp.
-Qed.
-
-Theorem eval_cmp:
- forall sp le c e m1 a t1 m2 x b t2 m3 y,
- eval_expr ge sp le e m1 a t1 m2 (Vint x) ->
- eval_expr ge sp le e m2 b t2 m3 (Vint y) ->
- eval_expr ge sp le e m1 (cmp c a b) (t1**t2) m3 (Val.of_bool (Int.cmp c x y)).
-Proof.
- TrivialOp cmp.
- simpl. case (Int.cmp c x y); auto.
-Qed.
-
-Theorem eval_cmp_null_r:
- forall sp le c e m1 a t1 m2 p x b t2 m3 v,
- eval_expr ge sp le e m1 a t1 m2 (Vptr p x) ->
- eval_expr ge sp le e m2 b t2 m3 (Vint Int.zero) ->
- (c = Ceq /\ v = Vfalse) \/ (c = Cne /\ v = Vtrue) ->
- eval_expr ge sp le e m1 (cmp c a b) (t1**t2) m3 v.
-Proof.
- TrivialOp cmp.
- simpl. elim H1; intros [EQ1 EQ2]; subst c; subst v; reflexivity.
-Qed.
-
-Theorem eval_cmp_null_l:
- forall sp le c e m1 a t1 m2 p x b t2 m3 v,
- eval_expr ge sp le e m1 a t1 m2 (Vint Int.zero) ->
- eval_expr ge sp le e m2 b t2 m3 (Vptr p x) ->
- (c = Ceq /\ v = Vfalse) \/ (c = Cne /\ v = Vtrue) ->
- eval_expr ge sp le e m1 (cmp c a b) (t1**t2) m3 v.
-Proof.
- TrivialOp cmp.
- simpl. elim H1; intros [EQ1 EQ2]; subst c; subst v; reflexivity.
-Qed.
-
-Theorem eval_cmp_ptr:
- forall sp le c e m1 a t1 m2 p x b t2 m3 y,
- eval_expr ge sp le e m1 a t1 m2 (Vptr p x) ->
- eval_expr ge sp le e m2 b t2 m3 (Vptr p y) ->
- eval_expr ge sp le e m1 (cmp c a b) (t1**t2) m3 (Val.of_bool (Int.cmp c x y)).
-Proof.
- TrivialOp cmp.
- simpl. unfold eq_block. rewrite zeq_true.
- case (Int.cmp c x y); auto.
-Qed.
-
-Theorem eval_cmpu:
- forall sp le c e m1 a t1 m2 x b t2 m3 y,
- eval_expr ge sp le e m1 a t1 m2 (Vint x) ->
- eval_expr ge sp le e m2 b t2 m3 (Vint y) ->
- eval_expr ge sp le e m1 (cmpu c a b) (t1**t2) m3 (Val.of_bool (Int.cmpu c x y)).
-Proof.
- TrivialOp cmpu.
- simpl. case (Int.cmpu c x y); auto.
-Qed.
-
-Theorem eval_cmpf:
- forall sp le c e m1 a t1 m2 x b t2 m3 y,
- eval_expr ge sp le e m1 a t1 m2 (Vfloat x) ->
- eval_expr ge sp le e m2 b t2 m3 (Vfloat y) ->
- eval_expr ge sp le e m1 (cmpf c a b) (t1**t2) m3 (Val.of_bool (Float.cmp c x y)).
-Proof.
- TrivialOp cmpf.
- simpl. case (Float.cmp c x y); auto.
-Qed.
-
-Lemma eval_base_condition_of_expr:
- forall sp le a e m1 t m2 v (b: bool),
- eval_expr ge sp le e m1 a t m2 v ->
- Val.bool_of_val v b ->
- eval_condexpr ge sp le e m1
- (CEcond (Ccompuimm Cne Int.zero) (a ::: Enil))
- t m2 b.
-Proof.
- intros.
- eapply eval_CEcond. eauto with evalexpr.
- inversion H0; simpl. rewrite Int.eq_false; auto. auto. auto.
-Qed.
-
-Lemma eval_condition_of_expr:
- forall a sp le e m1 t m2 v (b: bool),
- eval_expr ge sp le e m1 a t m2 v ->
- Val.bool_of_val v b ->
- eval_condexpr ge sp le e m1 (condexpr_of_expr a) t m2 b.
-Proof.
- induction a; simpl; intros;
- try (eapply eval_base_condition_of_expr; eauto; fail).
- destruct o; try (eapply eval_base_condition_of_expr; eauto; fail).
-
- destruct e. InvEval H. inversion XX3; subst v.
- inversion H0.
- rewrite Int.eq_false; auto. constructor.
- subst i; rewrite Int.eq_true. constructor.
- eapply eval_base_condition_of_expr; eauto.
-
- inversion H. subst. eapply eval_CEcond; eauto. simpl in H11.
- destruct (eval_condition c vl); try discriminate.
- destruct b0; inversion H11; subst; inversion H0; congruence.
-
- inversion H. subst.
- destruct v1; eauto with evalexpr.
-Qed.
-
-Theorem eval_conditionalexpr_true:
- forall sp le e m1 a1 t1 m2 v1 t2 a2 m3 v2 a3,
- eval_expr ge sp le e m1 a1 t1 m2 v1 ->
- Val.is_true v1 ->
- eval_expr ge sp le e m2 a2 t2 m3 v2 ->
- eval_expr ge sp le e m1 (conditionalexpr a1 a2 a3) (t1**t2) m3 v2.
-Proof.
- intros; unfold conditionalexpr.
- apply eval_Econdition with t1 m2 true t2; auto.
- eapply eval_condition_of_expr; eauto with valboolof.
-Qed.
-
-Theorem eval_conditionalexpr_false:
- forall sp le e m1 a1 t1 m2 v1 a2 t2 m3 v2 a3,
- eval_expr ge sp le e m1 a1 t1 m2 v1 ->
- Val.is_false v1 ->
- eval_expr ge sp le e m2 a3 t2 m3 v2 ->
- eval_expr ge sp le e m1 (conditionalexpr a1 a2 a3) (t1**t2) m3 v2.
-Proof.
- intros; unfold conditionalexpr.
- apply eval_Econdition with t1 m2 false t2; auto.
- eapply eval_condition_of_expr; eauto with valboolof.
-Qed.
-
-Lemma eval_addressing:
- forall sp le e m1 a t m2 v b ofs,
- eval_expr ge sp le e m1 a t m2 v ->
- v = Vptr b ofs ->
- match addressing a with (mode, args) =>
- exists vl,
- eval_exprlist ge sp le e m1 args t m2 vl /\
- eval_addressing ge sp mode vl = Some v
- end.
-Proof.
- intros until v. unfold addressing; case (addressing_match a); intros.
- InvEval H. exists (@nil val). split. eauto with evalexpr.
- simpl. auto.
- InvEval H. exists (@nil val). split. eauto with evalexpr.
- simpl. auto.
- InvEval H. InvEval EV. rewrite E0_left in TR. subst t1. FuncInv.
- congruence.
- destruct (Genv.find_symbol ge s); congruence.
- exists (Vint i0 :: nil). split. eauto with evalexpr.
- simpl. subst v. destruct (Genv.find_symbol ge s). congruence.
- discriminate.
- InvEval H. FuncInv.
- congruence.
- exists (Vptr b0 i :: nil). split. eauto with evalexpr.
- simpl. congruence.
- InvEval H. FuncInv.
- congruence.
- exists (Vint i :: Vptr b0 i0 :: nil).
- split. eauto with evalexpr. simpl.
- rewrite Int.add_commut. congruence.
- exists (Vptr b0 i :: Vint i0 :: nil).
- split. eauto with evalexpr. simpl. congruence.
- exists (v :: nil). split. eauto with evalexpr.
- subst v. simpl. rewrite Int.add_zero. auto.
-Qed.
-
-Theorem eval_load:
- forall sp le e m1 a t m2 v chunk v',
- eval_expr ge sp le e m1 a t m2 v ->
- Mem.loadv chunk m2 v = Some v' ->
- eval_expr ge sp le e m1 (load chunk a) t m2 v'.
-Proof.
- intros. generalize H0; destruct v; simpl; intro; try discriminate.
- unfold load.
- generalize (eval_addressing _ _ _ _ _ _ _ _ _ _ H (refl_equal _)).
- destruct (addressing a). intros [vl [EV EQ]].
- eapply eval_Eload; eauto.
-Qed.
-
-Theorem eval_store:
- forall sp le e m1 a1 t1 m2 v1 a2 t2 m3 v2 chunk m4,
- eval_expr ge sp le e m1 a1 t1 m2 v1 ->
- eval_expr ge sp le e m2 a2 t2 m3 v2 ->
- Mem.storev chunk m3 v1 v2 = Some m4 ->
- eval_expr ge sp le e m1 (store chunk a1 a2) (t1**t2) m4 v2.
-Proof.
- intros. generalize H1; destruct v1; simpl; intro; try discriminate.
- unfold store.
- generalize (eval_addressing _ _ _ _ _ _ _ _ _ _ H (refl_equal _)).
- destruct (addressing a1). intros [vl [EV EQ]].
- eapply eval_Estore; eauto.
-Qed.
-
-Theorem exec_ifthenelse_true:
- forall sp e m1 a t1 m2 v ifso ifnot t2 e3 m3 out,
- eval_expr ge sp nil e m1 a t1 m2 v ->
- Val.is_true v ->
- exec_stmt ge sp e m2 ifso t2 e3 m3 out ->
- exec_stmt ge sp e m1 (ifthenelse a ifso ifnot) (t1**t2) e3 m3 out.
-Proof.
- intros. unfold ifthenelse.
- apply exec_Sifthenelse with t1 m2 true t2.
- eapply eval_condition_of_expr; eauto with valboolof.
- auto. auto.
-Qed.
-
-Theorem exec_ifthenelse_false:
- forall sp e m1 a t1 m2 v ifso ifnot t2 e3 m3 out,
- eval_expr ge sp nil e m1 a t1 m2 v ->
- Val.is_false v ->
- exec_stmt ge sp e m2 ifnot t2 e3 m3 out ->
- exec_stmt ge sp e m1 (ifthenelse a ifso ifnot) (t1**t2) e3 m3 out.
-Proof.
- intros. unfold ifthenelse.
- apply exec_Sifthenelse with t1 m2 false t2.
- eapply eval_condition_of_expr; eauto with valboolof.
- auto. auto.
-Qed.
-
-End CMCONSTR.
-