aboutsummaryrefslogtreecommitdiffstats
path: root/cparser/MenhirLib/Alphabet.v
diff options
context:
space:
mode:
authorJacques-Henri Jourdan <jacques-henri.jourdan@normalesup.org>2019-07-05 15:15:42 +0200
committerXavier Leroy <xavierleroy@users.noreply.github.com>2019-07-05 15:15:42 +0200
commit998f3c5ff90f6230b722b6094761f5989beea0a5 (patch)
treead107d40768bf6e40ba7d8493b2fa6f01c668231 /cparser/MenhirLib/Alphabet.v
parentda929bc61ccd67d2be2b1e5d3cd9f3cb60f56074 (diff)
downloadcompcert-998f3c5ff90f6230b722b6094761f5989beea0a5.tar.gz
compcert-998f3c5ff90f6230b722b6094761f5989beea0a5.zip
New parser based on new version of the Coq backend of Menhir (#276)
What's new: 1. A rewrite of the Coq interpreter of Menhir automaton, with dependent types removing the need for runtime checks for the well-formedness of the LR stack. This seem to cause some speedup on the parsing time (~10% for lexing + parsing). 2. Thanks to 1., it is now possible to avoid the use of int31 for comparing symbols: Since this is only used for validation, positives are enough. 3. Speedup of Validation: on my machine, the time needed for compiling Parser.v goes from about 2 minutes to about 1 minute. This seem to be related to a performance bug in the completeness validator and to the use of positive instead of int31. 3. Menhir now generates a dedicated inductive type for (semantic-value-carrying) tokens (in addition to the already existing inductive type for (non-semantic-value-carrying) terminals. The end result is that the OCaml support code for the parser no longer contain calls to Obj.magic. The bad side of this change is that the formal specification of the parser is perhaps harder to read. 4. The parser and its library are now free of axioms (I used to use axiom K and proof irrelevance for easing proofs involving dependent types). 5. Use of a dedicated custom negative coinductive type for the input stream of tokens, instead of Coq stdlib's `Stream`. `Stream` is a positive coinductive type, which are now deprecated by Coq. 6. The fuel of the parser is now specified using its logarithm instead of its actual value. This makes it possible to give large fuel values instead of using the `let rec fuel = S fuel` hack. 7. Some refactoring in the lexer, the parser and the Cabs syntax tree. The corresponding changes in Menhir have been released as part of version 20190626. The `MenhirLib` directory is identical to the content of the `src` directory of the corresponding `coq-menhirlib` opam package except that: - In order to try to make CompCert compatible with several Menhir versions without updates, we do not check the version of menhir is compatible with the version of coq-menhirlib. Hence the `Version.v` file is not present in CompCert's copy. - Build-system related files have been removed.
Diffstat (limited to 'cparser/MenhirLib/Alphabet.v')
-rw-r--r--cparser/MenhirLib/Alphabet.v320
1 files changed, 0 insertions, 320 deletions
diff --git a/cparser/MenhirLib/Alphabet.v b/cparser/MenhirLib/Alphabet.v
deleted file mode 100644
index a13f69b0..00000000
--- a/cparser/MenhirLib/Alphabet.v
+++ /dev/null
@@ -1,320 +0,0 @@
-(* *********************************************************************)
-(* *)
-(* The Compcert verified compiler *)
-(* *)
-(* Jacques-Henri Jourdan, INRIA Paris-Rocquencourt *)
-(* *)
-(* Copyright Institut National de Recherche en Informatique et en *)
-(* Automatique. All rights reserved. This file is distributed *)
-(* under the terms of the GNU General Public License as published by *)
-(* the Free Software Foundation, either version 2 of the License, or *)
-(* (at your option) any later version. This file is also distributed *)
-(* under the terms of the INRIA Non-Commercial License Agreement. *)
-(* *)
-(* *********************************************************************)
-
-Require Import Int31.
-Require Import Cyclic31.
-Require Import Omega.
-Require Import List.
-Require Import Syntax.
-Require Import Relations.
-Require Import RelationClasses.
-
-Local Obligation Tactic := intros.
-
-(** A comparable type is equiped with a [compare] function, that define an order
- relation. **)
-Class Comparable (A:Type) := {
- compare : A -> A -> comparison;
- compare_antisym : forall x y, CompOpp (compare x y) = compare y x;
- compare_trans : forall x y z c,
- (compare x y) = c -> (compare y z) = c -> (compare x z) = c
-}.
-
-Theorem compare_refl {A:Type} (C: Comparable A) :
- forall x, compare x x = Eq.
-Proof.
-intros.
-pose proof (compare_antisym x x).
-destruct (compare x x); intuition; try discriminate.
-Qed.
-
-(** The corresponding order is a strict order. **)
-Definition comparableLt {A:Type} (C: Comparable A) : relation A :=
- fun x y => compare x y = Lt.
-
-Instance ComparableLtStrictOrder {A:Type} (C: Comparable A) :
- StrictOrder (comparableLt C).
-Proof.
-apply Build_StrictOrder.
-unfold Irreflexive, Reflexive, complement, comparableLt.
-intros.
-pose proof H.
-rewrite <- compare_antisym in H.
-rewrite H0 in H.
-discriminate H.
-unfold Transitive, comparableLt.
-intros x y z.
-apply compare_trans.
-Qed.
-
-(** nat is comparable. **)
-Program Instance natComparable : Comparable nat :=
- { compare := Nat.compare }.
-Next Obligation.
-symmetry.
-destruct (Nat.compare x y) as [] eqn:?.
-rewrite Nat.compare_eq_iff in Heqc.
-destruct Heqc.
-rewrite Nat.compare_eq_iff.
-trivial.
-rewrite <- nat_compare_lt in *.
-rewrite <- nat_compare_gt in *.
-trivial.
-rewrite <- nat_compare_lt in *.
-rewrite <- nat_compare_gt in *.
-trivial.
-Qed.
-Next Obligation.
-destruct c.
-rewrite Nat.compare_eq_iff in *; destruct H; assumption.
-rewrite <- nat_compare_lt in *.
-apply (Nat.lt_trans _ _ _ H H0).
-rewrite <- nat_compare_gt in *.
-apply (gt_trans _ _ _ H H0).
-Qed.
-
-(** A pair of comparable is comparable. **)
-Program Instance PairComparable {A:Type} (CA:Comparable A) {B:Type} (CB:Comparable B) :
- Comparable (A*B) :=
- { compare := fun x y =>
- let (xa, xb) := x in let (ya, yb) := y in
- match compare xa ya return comparison with
- | Eq => compare xb yb
- | x => x
- end }.
-Next Obligation.
-destruct x, y.
-rewrite <- (compare_antisym a a0).
-rewrite <- (compare_antisym b b0).
-destruct (compare a a0); intuition.
-Qed.
-Next Obligation.
-destruct x, y, z.
-destruct (compare a a0) as [] eqn:?, (compare a0 a1) as [] eqn:?;
-try (rewrite <- H0 in H; discriminate);
-try (destruct (compare a a1) as [] eqn:?;
- try (rewrite <- compare_antisym in Heqc0;
- rewrite CompOpp_iff in Heqc0;
- rewrite (compare_trans _ _ _ _ Heqc0 Heqc2) in Heqc1;
- discriminate);
- try (rewrite <- compare_antisym in Heqc1;
- rewrite CompOpp_iff in Heqc1;
- rewrite (compare_trans _ _ _ _ Heqc2 Heqc1) in Heqc0;
- discriminate);
- assumption);
-rewrite (compare_trans _ _ _ _ Heqc0 Heqc1);
-try assumption.
-apply (compare_trans _ _ _ _ H H0).
-Qed.
-
-(** Special case of comparable, where equality is usual equality. **)
-Class ComparableUsualEq {A:Type} (C: Comparable A) :=
- compare_eq : forall x y, compare x y = Eq -> x = y.
-
-(** Boolean equality for a [Comparable]. **)
-Definition compare_eqb {A:Type} {C:Comparable A} (x y:A) :=
- match compare x y with
- | Eq => true
- | _ => false
- end.
-
-Theorem compare_eqb_iff {A:Type} {C:Comparable A} {U:ComparableUsualEq C} :
- forall x y, compare_eqb x y = true <-> x = y.
-Proof.
-unfold compare_eqb.
-intuition.
-apply compare_eq.
-destruct (compare x y); intuition; discriminate.
-destruct H.
-rewrite compare_refl; intuition.
-Qed.
-
-(** [Comparable] provides a decidable equality. **)
-Definition compare_eqdec {A:Type} {C:Comparable A} {U:ComparableUsualEq C} (x y:A):
- {x = y} + {x <> y}.
-Proof.
-destruct (compare x y) as [] eqn:?; [left; apply compare_eq; intuition | ..];
- right; intro; destruct H; rewrite compare_refl in Heqc; discriminate.
-Defined.
-
-Instance NComparableUsualEq : ComparableUsualEq natComparable := Nat.compare_eq.
-
-(** A pair of ComparableUsualEq is ComparableUsualEq **)
-Instance PairComparableUsualEq
- {A:Type} {CA:Comparable A} (UA:ComparableUsualEq CA)
- {B:Type} {CB:Comparable B} (UB:ComparableUsualEq CB) :
- ComparableUsualEq (PairComparable CA CB).
-Proof.
-intros x y; destruct x, y; simpl.
-pose proof (compare_eq a a0); pose proof (compare_eq b b0).
-destruct (compare a a0); try discriminate.
-intuition.
-destruct H2, H0.
-reflexivity.
-Qed.
-
-(** An [Finite] type is a type with the list of all elements. **)
-Class Finite (A:Type) := {
- all_list : list A;
- all_list_forall : forall x:A, In x all_list
-}.
-
-(** An alphabet is both [ComparableUsualEq] and [Finite]. **)
-Class Alphabet (A:Type) := {
- AlphabetComparable :> Comparable A;
- AlphabetComparableUsualEq :> ComparableUsualEq AlphabetComparable;
- AlphabetFinite :> Finite A
-}.
-
-(** The [Numbered] class provides a conveniant way to build [Alphabet] instances,
- with a good computationnal complexity. It is mainly a injection from it to
- [Int31] **)
-Class Numbered (A:Type) := {
- inj : A -> int31;
- surj : int31 -> A;
- surj_inj_compat : forall x, surj (inj x) = x;
- inj_bound : int31;
- inj_bound_spec : forall x, (phi (inj x) < phi inj_bound)%Z
-}.
-
-Program Instance NumberedAlphabet {A:Type} (N:Numbered A) : Alphabet A :=
- { AlphabetComparable :=
- {| compare := fun x y => compare31 (inj x) (inj y) |};
- AlphabetFinite :=
- {| all_list := fst (iter_int31 inj_bound _
- (fun p => (cons (surj (snd p)) (fst p), incr (snd p))) ([], 0%int31)) |} }.
-Next Obligation. apply Zcompare_antisym. Qed.
-Next Obligation.
-destruct c. unfold compare31 in *.
-rewrite Z.compare_eq_iff in *. congruence.
-eapply Zcompare_Lt_trans. apply H. apply H0.
-eapply Zcompare_Gt_trans. apply H. apply H0.
-Qed.
-Next Obligation.
-intros x y H. unfold compare, compare31 in H.
-rewrite Z.compare_eq_iff in *.
-rewrite <- surj_inj_compat, <- phi_inv_phi with (inj y), <- H.
-rewrite phi_inv_phi, surj_inj_compat; reflexivity.
-Qed.
-Next Obligation.
-rewrite iter_int31_iter_nat.
-pose proof (inj_bound_spec x).
-match goal with |- In x (fst ?p) => destruct p as [] eqn:? end.
-replace inj_bound with i in H.
-revert l i Heqp x H.
-induction (Z.abs_nat (phi inj_bound)); intros.
-inversion Heqp; clear Heqp; subst.
-rewrite spec_0 in H. pose proof (phi_bounded (inj x)). omega.
-simpl in Heqp.
-destruct nat_rect; specialize (IHn _ _ (eq_refl _) x); simpl in *.
-inversion Heqp. subst. clear Heqp.
-rewrite phi_incr in H.
-pose proof (phi_bounded i0).
-pose proof (phi_bounded (inj x)).
-destruct (Z_lt_le_dec (Z.succ (phi i0)) (2 ^ Z.of_nat size)%Z).
-rewrite Zmod_small in H by omega.
-apply Zlt_succ_le, Zle_lt_or_eq in H.
-destruct H; simpl; auto. left.
-rewrite <- surj_inj_compat, <- phi_inv_phi with (inj x), H, phi_inv_phi; reflexivity.
-replace (Z.succ (phi i0)) with (2 ^ Z.of_nat size)%Z in H by omega.
-rewrite Z_mod_same_full in H.
-exfalso; omega.
-rewrite <- phi_inv_phi with i, <- phi_inv_phi with inj_bound; f_equal.
-pose proof (phi_bounded inj_bound); pose proof (phi_bounded i).
-rewrite <- Z.abs_eq with (phi i), <- Z.abs_eq with (phi inj_bound) by omega.
-clear H H0 H1.
-do 2 rewrite <- Zabs2Nat.id_abs.
-f_equal.
-revert l i Heqp.
-assert (Z.abs_nat (phi inj_bound) < Z.abs_nat (2^31)).
-apply Zabs_nat_lt, phi_bounded.
-induction (Z.abs_nat (phi inj_bound)); intros.
-inversion Heqp; reflexivity.
-inversion Heqp; clear H1 H2 Heqp.
-match goal with |- _ (_ (_ (snd ?p))) = _ => destruct p end.
-pose proof (phi_bounded i0).
-erewrite <- IHn, <- Zabs2Nat.inj_succ in H |- *; eauto; try omega.
-rewrite phi_incr, Zmod_small; intuition; try omega.
-apply inj_lt in H.
-pose proof Z.le_le_succ_r.
-do 2 rewrite Zabs2Nat.id_abs, Z.abs_eq in H; now eauto.
-Qed.
-
-(** Previous class instances for [option A] **)
-Program Instance OptionComparable {A:Type} (C:Comparable A) : Comparable (option A) :=
- { compare := fun x y =>
- match x, y return comparison with
- | None, None => Eq
- | None, Some _ => Lt
- | Some _, None => Gt
- | Some x, Some y => compare x y
- end }.
-Next Obligation.
-destruct x, y; intuition.
-apply compare_antisym.
-Qed.
-Next Obligation.
-destruct x, y, z; try now intuition;
-try (rewrite <- H in H0; discriminate).
-apply (compare_trans _ _ _ _ H H0).
-Qed.
-
-Instance OptionComparableUsualEq {A:Type} {C:Comparable A} (U:ComparableUsualEq C) :
- ComparableUsualEq (OptionComparable C).
-Proof.
-intros x y.
-destruct x, y; intuition; try discriminate.
-rewrite (compare_eq a a0); intuition.
-Qed.
-
-Program Instance OptionFinite {A:Type} (E:Finite A) : Finite (option A) :=
- { all_list := None :: map Some all_list }.
-Next Obligation.
-destruct x; intuition.
-right.
-apply in_map.
-apply all_list_forall.
-Defined.
-
-(** Definitions of [FSet]/[FMap] from [Comparable] **)
-Require Import OrderedTypeAlt.
-Require FSetAVL.
-Require FMapAVL.
-Import OrderedType.
-
-Module Type ComparableM.
- Parameter t : Type.
- Declare Instance tComparable : Comparable t.
-End ComparableM.
-
-Module OrderedTypeAlt_from_ComparableM (C:ComparableM) <: OrderedTypeAlt.
- Definition t := C.t.
- Definition compare : t -> t -> comparison := compare.
-
- Infix "?=" := compare (at level 70, no associativity).
-
- Lemma compare_sym x y : (y?=x) = CompOpp (x?=y).
- Proof. exact (Logic.eq_sym (compare_antisym x y)). Qed.
- Lemma compare_trans c x y z :
- (x?=y) = c -> (y?=z) = c -> (x?=z) = c.
- Proof.
- apply compare_trans.
- Qed.
-End OrderedTypeAlt_from_ComparableM.
-
-Module OrderedType_from_ComparableM (C:ComparableM) <: OrderedType.
- Module Alt := OrderedTypeAlt_from_ComparableM C.
- Include (OrderedType_from_Alt Alt).
-End OrderedType_from_ComparableM.