aboutsummaryrefslogtreecommitdiffstats
path: root/flocq/Appli/Fappli_double_round.v
diff options
context:
space:
mode:
authorGuillaume Melquiond <guillaume.melquiond@inria.fr>2019-02-13 18:53:17 +0100
committerXavier Leroy <xavierleroy@users.noreply.github.com>2019-03-27 11:38:25 +0100
commit0f919eb26c68d3882e612a1b3a9df45bee6d3624 (patch)
treeb8bcf57e06d761be09b8d2cf2f80741acb1e4949 /flocq/Appli/Fappli_double_round.v
parentd5c0b4054c8490bda3b3d191724c58d5d4002e58 (diff)
downloadcompcert-0f919eb26c68d3882e612a1b3a9df45bee6d3624.tar.gz
compcert-0f919eb26c68d3882e612a1b3a9df45bee6d3624.zip
Upgrade embedded version of Flocq to 3.1.
Main changes to CompCert outside of Flocq are as follows: - Minimal supported version of Coq is now 8.7, due to Flocq requirements. - Most modifications are due to Z2R being dropped in favor of IZR and to the way Flocq now handles NaNs. - CompCert now correctly handles NaNs for the Risc-V architecture (hopefully).
Diffstat (limited to 'flocq/Appli/Fappli_double_round.v')
-rw-r--r--flocq/Appli/Fappli_double_round.v4591
1 files changed, 0 insertions, 4591 deletions
diff --git a/flocq/Appli/Fappli_double_round.v b/flocq/Appli/Fappli_double_round.v
deleted file mode 100644
index 82f61da3..00000000
--- a/flocq/Appli/Fappli_double_round.v
+++ /dev/null
@@ -1,4591 +0,0 @@
-(** * Conditions for innocuous double rounding. *)
-
-Require Import Fcore_Raux.
-Require Import Fcore_defs.
-Require Import Fcore_generic_fmt.
-Require Import Fcalc_ops.
-Require Import Fcore_ulp.
-Require Fcore_FLX Fcore_FLT Fcore_FTZ.
-
-Require Import Psatz.
-
-Open Scope R_scope.
-
-Section Double_round.
-
-Variable beta : radix.
-Notation bpow e := (bpow beta e).
-Notation ln_beta x := (ln_beta beta x).
-
-Definition double_round_eq fexp1 fexp2 choice1 choice2 x :=
- round beta fexp1 (Znearest choice1) (round beta fexp2 (Znearest choice2) x)
- = round beta fexp1 (Znearest choice1) x.
-
-(** A little tactic to simplify terms of the form [bpow a * bpow b]. *)
-Ltac bpow_simplify :=
- (* bpow ex * bpow ey ~~> bpow (ex + ey) *)
- repeat
- match goal with
- | |- context [(Fcore_Raux.bpow _ _ * Fcore_Raux.bpow _ _)] =>
- rewrite <- bpow_plus
- | |- context [(?X1 * Fcore_Raux.bpow _ _ * Fcore_Raux.bpow _ _)] =>
- rewrite (Rmult_assoc X1); rewrite <- bpow_plus
- | |- context [(?X1 * (?X2 * Fcore_Raux.bpow _ _) * Fcore_Raux.bpow _ _)] =>
- rewrite <- (Rmult_assoc X1 X2); rewrite (Rmult_assoc (X1 * X2));
- rewrite <- bpow_plus
- end;
- (* ring_simplify arguments of bpow *)
- repeat
- match goal with
- | |- context [(Fcore_Raux.bpow _ ?X)] =>
- progress ring_simplify X
- end;
- (* bpow 0 ~~> 1 *)
- change (Fcore_Raux.bpow _ 0) with 1;
- repeat
- match goal with
- | |- context [(_ * 1)] =>
- rewrite Rmult_1_r
- end.
-
-Definition midp (fexp : Z -> Z) (x : R) :=
- round beta fexp Zfloor x + / 2 * ulp beta fexp x.
-
-Definition midp' (fexp : Z -> Z) (x : R) :=
- round beta fexp Zceil x - / 2 * ulp beta fexp x.
-
-Lemma double_round_lt_mid_further_place' :
- forall (fexp1 fexp2 : Z -> Z),
- Valid_exp fexp1 -> Valid_exp fexp2 ->
- forall (choice1 choice2 : Z -> bool),
- forall x,
- 0 < x ->
- (fexp2 (ln_beta x) <= fexp1 (ln_beta x) - 1)%Z ->
- x < bpow (ln_beta x) - / 2 * ulp beta fexp2 x ->
- x < midp fexp1 x - / 2 * ulp beta fexp2 x ->
- double_round_eq fexp1 fexp2 choice1 choice2 x.
-Proof.
-intros fexp1 fexp2 Vfexp1 Vfexp2 choice1 choice2 x Px Hf2f1 Hx1.
-unfold double_round_eq.
-set (x' := round beta fexp1 Zfloor x).
-intro Hx2'.
-assert (Hx2 : x - round beta fexp1 Zfloor x
- < / 2 * (ulp beta fexp1 x - ulp beta fexp2 x)).
-{ now apply (Rplus_lt_reg_r (round beta fexp1 Zfloor x)); ring_simplify. }
-set (x'' := round beta fexp2 (Znearest choice2) x).
-assert (Hr1 : Rabs (x'' - x) <= / 2 * bpow (fexp2 (ln_beta x))).
-apply Rle_trans with (/ 2 * ulp beta fexp2 x).
-now unfold x''; apply error_le_half_ulp...
-rewrite ulp_neq_0;[now right|now apply Rgt_not_eq].
-assert (Pxx' : 0 <= x - x').
-{ apply Rle_0_minus.
- apply round_DN_pt.
- exact Vfexp1. }
-rewrite 2!ulp_neq_0 in Hx2; try (apply Rgt_not_eq; assumption).
-assert (Hr2 : Rabs (x'' - x') < / 2 * bpow (fexp1 (ln_beta x))).
-{ replace (x'' - x') with (x'' - x + (x - x')) by ring.
- apply (Rle_lt_trans _ _ _ (Rabs_triang _ _)).
- replace (/ 2 * _) with (/ 2 * bpow (fexp2 (ln_beta x))
- + (/ 2 * (bpow (fexp1 (ln_beta x))
- - bpow (fexp2 (ln_beta x))))) by ring.
- apply Rplus_le_lt_compat.
- - exact Hr1.
- - now rewrite Rabs_right; [|now apply Rle_ge]; apply Hx2. }
-destruct (Req_dec x'' 0) as [Zx''|Nzx''].
-- (* x'' = 0 *)
- rewrite Zx'' in Hr1 |- *.
- rewrite round_0; [|now apply valid_rnd_N].
- unfold round, F2R, scaled_mantissa, canonic_exp; simpl.
- rewrite (Znearest_imp _ _ 0); [now simpl; rewrite Rmult_0_l|].
- apply (Rmult_lt_reg_r (bpow (fexp1 (ln_beta x)))); [now apply bpow_gt_0|].
- rewrite <- (Rabs_right (bpow (fexp1 _))) at 1;
- [|now apply Rle_ge; apply bpow_ge_0].
- rewrite <- Rabs_mult; rewrite Rmult_minus_distr_r.
- rewrite Rmult_0_l.
- bpow_simplify.
- rewrite Rabs_minus_sym.
- apply (Rle_lt_trans _ _ _ Hr1).
- apply Rmult_lt_compat_l; [lra|].
- apply bpow_lt.
- omega.
-- (* x'' <> 0 *)
- assert (Lx'' : ln_beta x'' = ln_beta x :> Z).
- { apply Zle_antisym.
- - apply ln_beta_le_bpow; [exact Nzx''|].
- replace x'' with (x'' - x + x) by ring.
- apply (Rle_lt_trans _ _ _ (Rabs_triang _ _)).
- replace (bpow _) with (/ 2 * bpow (fexp2 (ln_beta x))
- + (bpow (ln_beta x)
- - / 2 * bpow (fexp2 (ln_beta x)))) by ring.
- apply Rplus_le_lt_compat; [exact Hr1|].
- rewrite ulp_neq_0 in Hx1;[idtac| now apply Rgt_not_eq].
- now rewrite Rabs_right; [|apply Rle_ge; apply Rlt_le].
- - unfold x'' in Nzx'' |- *.
- now apply ln_beta_round_ge; [|apply valid_rnd_N|]. }
- unfold round, F2R, scaled_mantissa, canonic_exp; simpl.
- rewrite Lx''.
- rewrite (Znearest_imp _ _ (Zfloor (scaled_mantissa beta fexp1 x))).
- + rewrite (Znearest_imp _ _ (Zfloor (scaled_mantissa beta fexp1 x)));
- [reflexivity|].
- apply (Rmult_lt_reg_r (bpow (fexp1 (ln_beta x)))); [now apply bpow_gt_0|].
- rewrite <- (Rabs_right (bpow (fexp1 _))) at 1;
- [|now apply Rle_ge; apply bpow_ge_0].
- rewrite <- Rabs_mult.
- rewrite Rmult_minus_distr_r.
- fold x'.
- bpow_simplify.
- rewrite Rabs_right; [|now apply Rle_ge].
- apply (Rlt_le_trans _ _ _ Hx2).
- apply Rmult_le_compat_l; [lra|].
- generalize (bpow_ge_0 beta (fexp2 (ln_beta x))).
- unfold ulp, canonic_exp; lra.
- + apply (Rmult_lt_reg_r (bpow (fexp1 (ln_beta x)))); [now apply bpow_gt_0|].
- rewrite <- (Rabs_right (bpow (fexp1 _))) at 1;
- [|now apply Rle_ge; apply bpow_ge_0].
- rewrite <- Rabs_mult.
- rewrite Rmult_minus_distr_r.
- fold x'.
- now bpow_simplify.
-Qed.
-
-Lemma double_round_lt_mid_further_place :
- forall (fexp1 fexp2 : Z -> Z),
- Valid_exp fexp1 -> Valid_exp fexp2 ->
- forall (choice1 choice2 : Z -> bool),
- forall x,
- 0 < x ->
- (fexp2 (ln_beta x) <= fexp1 (ln_beta x) - 1)%Z ->
- (fexp1 (ln_beta x) <= ln_beta x)%Z ->
- x < midp fexp1 x - / 2 * ulp beta fexp2 x ->
- double_round_eq fexp1 fexp2 choice1 choice2 x.
-Proof.
-intros fexp1 fexp2 Vfexp1 Vfexp2 choice1 choice2 x Px Hf2f1 Hf1.
-intro Hx2'.
-assert (Hx2 : x - round beta fexp1 Zfloor x
- < / 2 * (ulp beta fexp1 x - ulp beta fexp2 x)).
-{ now apply (Rplus_lt_reg_r (round beta fexp1 Zfloor x)); ring_simplify. }
-revert Hx2.
-unfold double_round_eq.
-set (x' := round beta fexp1 Zfloor x).
-intro Hx2.
-assert (Pxx' : 0 <= x - x').
-{ apply Rle_0_minus.
- apply round_DN_pt.
- exact Vfexp1. }
-assert (x < bpow (ln_beta x) - / 2 * bpow (fexp2 (ln_beta x)));
- [|apply double_round_lt_mid_further_place'; try assumption]...
-2: rewrite ulp_neq_0;[assumption|now apply Rgt_not_eq].
-destruct (Req_dec x' 0) as [Zx'|Nzx'].
-- (* x' = 0 *)
- rewrite Zx' in Hx2; rewrite Rminus_0_r in Hx2.
- apply (Rlt_le_trans _ _ _ Hx2).
- rewrite Rmult_minus_distr_l.
- rewrite 2!ulp_neq_0;[idtac|now apply Rgt_not_eq|now apply Rgt_not_eq].
- apply Rplus_le_compat_r.
- apply (Rmult_le_reg_r (bpow (- ln_beta x))); [now apply bpow_gt_0|].
- unfold ulp, canonic_exp; bpow_simplify.
- apply Rmult_le_reg_l with (1 := Rlt_0_2).
- replace (2 * (/ 2 * _)) with (bpow (fexp1 (ln_beta x) - ln_beta x)) by field.
- apply Rle_trans with 1; [|lra].
- change 1 with (bpow 0); apply bpow_le.
- omega.
-- (* x' <> 0 *)
- assert (Px' : 0 < x').
- { assert (0 <= x'); [|lra].
- unfold x'.
- apply (Rmult_le_reg_r (bpow (- fexp1 (ln_beta x))));
- [now apply bpow_gt_0|].
- rewrite Rmult_0_l.
- unfold round, F2R, canonic_exp; simpl; bpow_simplify.
- change 0 with (Z2R 0); apply Z2R_le.
- apply Zfloor_lub.
- rewrite <- (Rabs_right x); [|now apply Rle_ge; apply Rlt_le].
- rewrite scaled_mantissa_abs.
- apply Rabs_pos. }
- assert (Hx' : x' <= bpow (ln_beta x) - ulp beta fexp1 x).
- { apply (Rplus_le_reg_r (ulp beta fexp1 x)); ring_simplify.
- rewrite <- ulp_DN.
- - change (round _ _ _ _) with x'.
- apply id_p_ulp_le_bpow.
- + exact Px'.
- + change x' with (round beta fexp1 Zfloor x).
- now apply generic_format_round; [|apply valid_rnd_DN].
- + apply Rle_lt_trans with x.
- * now apply round_DN_pt.
- * rewrite <- (Rabs_right x) at 1; [|now apply Rle_ge; apply Rlt_le].
- apply bpow_ln_beta_gt.
- - exact Vfexp1.
- - exact Px'. }
- fold (canonic_exp beta fexp2 x); fold (ulp beta fexp2 x).
- assert (/ 2 * ulp beta fexp1 x <= ulp beta fexp1 x).
- rewrite <- (Rmult_1_l (ulp _ _ _)) at 2.
- apply Rmult_le_compat_r; [|lra].
- apply ulp_ge_0.
- rewrite 2!ulp_neq_0 in Hx2;[|now apply Rgt_not_eq|now apply Rgt_not_eq].
- rewrite ulp_neq_0 in Hx';[|now apply Rgt_not_eq].
- rewrite ulp_neq_0 in H;[|now apply Rgt_not_eq].
- lra.
-Qed.
-
-Lemma double_round_lt_mid_same_place :
- forall (fexp1 fexp2 : Z -> Z),
- Valid_exp fexp1 ->
- forall (choice1 choice2 : Z -> bool),
- forall x,
- 0 < x ->
- (fexp2 (ln_beta x) = fexp1 (ln_beta x))%Z ->
- x < midp fexp1 x ->
- double_round_eq fexp1 fexp2 choice1 choice2 x.
-Proof.
-intros fexp1 fexp2 Vfexp1 choice1 choice2 x Px Hf2f1.
-intro Hx'.
-assert (Hx : x - round beta fexp1 Zfloor x < / 2 * ulp beta fexp1 x).
-{ now apply (Rplus_lt_reg_r (round beta fexp1 Zfloor x)); ring_simplify. }
-revert Hx.
-unfold double_round_eq.
-set (x' := round beta fexp1 Zfloor x).
-intro Hx.
-assert (Pxx' : 0 <= x - x').
-{ apply Rle_0_minus.
- apply round_DN_pt.
- exact Vfexp1. }
-assert (H : Rabs (x * bpow (- fexp1 (ln_beta x)) -
- Z2R (Zfloor (x * bpow (- fexp1 (ln_beta x))))) < / 2).
-{ apply (Rmult_lt_reg_r (bpow (fexp1 (ln_beta x)))); [now apply bpow_gt_0|].
- unfold scaled_mantissa, canonic_exp in Hx.
- rewrite <- (Rabs_right (bpow (fexp1 _))) at 1;
- [|now apply Rle_ge; apply bpow_ge_0].
- rewrite <- Rabs_mult.
- rewrite Rmult_minus_distr_r.
- bpow_simplify.
- apply Rabs_lt.
- change (Z2R _ * _) with x'.
- split.
- - apply Rlt_le_trans with 0; [|exact Pxx'].
- rewrite <- Ropp_0.
- apply Ropp_lt_contravar.
- rewrite <- (Rmult_0_r (/ 2)).
- apply Rmult_lt_compat_l; [lra|].
- apply bpow_gt_0.
- - rewrite ulp_neq_0 in Hx;try apply Rgt_not_eq; assumption. }
-unfold round at 2.
-unfold F2R, scaled_mantissa, canonic_exp; simpl.
-rewrite Hf2f1.
-rewrite (Znearest_imp _ _ (Zfloor (scaled_mantissa beta fexp1 x))).
-- rewrite round_generic.
- + unfold round, F2R, scaled_mantissa, canonic_exp; simpl.
- now rewrite (Znearest_imp _ _ (Zfloor (x * bpow (- fexp1 (ln_beta x))))).
- + now apply valid_rnd_N.
- + fold (canonic_exp beta fexp1 x).
- change (Z2R _ * bpow _) with (round beta fexp1 Zfloor x).
- apply generic_format_round.
- exact Vfexp1.
- now apply valid_rnd_DN.
-- now unfold scaled_mantissa, canonic_exp.
-Qed.
-
-Lemma double_round_lt_mid :
- forall (fexp1 fexp2 : Z -> Z),
- Valid_exp fexp1 -> Valid_exp fexp2 ->
- forall (choice1 choice2 : Z -> bool),
- forall x,
- 0 < x ->
- (fexp2 (ln_beta x) <= fexp1 (ln_beta x))%Z ->
- (fexp1 (ln_beta x) <= ln_beta x)%Z ->
- x < midp fexp1 x ->
- ((fexp2 (ln_beta x) <= fexp1 (ln_beta x) - 1)%Z ->
- x < midp fexp1 x - / 2 * ulp beta fexp2 x) ->
- double_round_eq fexp1 fexp2 choice1 choice2 x.
-Proof.
-intros fexp1 fexp2 Vfexp1 Vfexp2 choice1 choice2 x Px Hf2f1 Hf1 Hx Hx'.
-destruct (Zle_or_lt (fexp1 (ln_beta x)) (fexp2 (ln_beta x))) as [Hf2'|Hf2'].
-- (* fexp1 (ln_beta x) <= fexp2 (ln_beta x) *)
- assert (Hf2'' : (fexp2 (ln_beta x) = fexp1 (ln_beta x) :> Z)%Z); [omega|].
- now apply double_round_lt_mid_same_place.
-- (* fexp2 (ln_beta x) < fexp1 (ln_beta x) *)
- assert (Hf2'' : (fexp2 (ln_beta x) <= fexp1 (ln_beta x) - 1)%Z); [omega|].
- generalize (Hx' Hf2''); intro Hx''.
- now apply double_round_lt_mid_further_place.
-Qed.
-
-Lemma double_round_gt_mid_further_place' :
- forall (fexp1 fexp2 : Z -> Z),
- Valid_exp fexp1 -> Valid_exp fexp2 ->
- forall (choice1 choice2 : Z -> bool),
- forall x,
- 0 < x ->
- (fexp2 (ln_beta x) <= fexp1 (ln_beta x) - 1)%Z ->
- round beta fexp2 (Znearest choice2) x < bpow (ln_beta x) ->
- midp' fexp1 x + / 2 * ulp beta fexp2 x < x ->
- double_round_eq fexp1 fexp2 choice1 choice2 x.
-Proof.
-intros fexp1 fexp2 Vfexp1 Vfexp2 choice1 choice2 x Px Hf2f1.
-intros Hx1 Hx2'.
-assert (Hx2 : round beta fexp1 Zceil x - x
- < / 2 * (ulp beta fexp1 x - ulp beta fexp2 x)).
-{ apply (Rplus_lt_reg_r (- / 2 * ulp beta fexp1 x + x
- + / 2 * ulp beta fexp2 x)); ring_simplify.
- now unfold midp' in Hx2'. }
-revert Hx1 Hx2.
-unfold double_round_eq.
-set (x' := round beta fexp1 Zceil x).
-set (x'' := round beta fexp2 (Znearest choice2) x).
-intros Hx1 Hx2.
-assert (Hr1 : Rabs (x'' - x) <= / 2 * bpow (fexp2 (ln_beta x))).
- apply Rle_trans with (/2* ulp beta fexp2 x).
- now unfold x''; apply error_le_half_ulp...
- rewrite ulp_neq_0;[now right|now apply Rgt_not_eq].
-assert (Px'x : 0 <= x' - x).
-{ apply Rle_0_minus.
- apply round_UP_pt.
- exact Vfexp1. }
-assert (Hr2 : Rabs (x'' - x') < / 2 * bpow (fexp1 (ln_beta x))).
-{ replace (x'' - x') with (x'' - x + (x - x')) by ring.
- apply (Rle_lt_trans _ _ _ (Rabs_triang _ _)).
- replace (/ 2 * _) with (/ 2 * bpow (fexp2 (ln_beta x))
- + (/ 2 * (bpow (fexp1 (ln_beta x))
- - bpow (fexp2 (ln_beta x))))) by ring.
- apply Rplus_le_lt_compat.
- - exact Hr1.
- - rewrite Rabs_minus_sym.
- rewrite 2!ulp_neq_0 in Hx2; try (apply Rgt_not_eq; assumption).
- now rewrite Rabs_right; [|now apply Rle_ge]; apply Hx2. }
-destruct (Req_dec x'' 0) as [Zx''|Nzx''].
-- (* x'' = 0 *)
- rewrite Zx'' in Hr1 |- *.
- rewrite round_0; [|now apply valid_rnd_N].
- unfold round, F2R, scaled_mantissa, canonic_exp; simpl.
- rewrite (Znearest_imp _ _ 0); [now simpl; rewrite Rmult_0_l|].
- apply (Rmult_lt_reg_r (bpow (fexp1 (ln_beta x)))); [now apply bpow_gt_0|].
- rewrite <- (Rabs_right (bpow (fexp1 _))) at 1;
- [|now apply Rle_ge; apply bpow_ge_0].
- rewrite <- Rabs_mult; rewrite Rmult_minus_distr_r.
- rewrite Rmult_0_l.
- bpow_simplify.
- rewrite Rabs_minus_sym.
- apply (Rle_lt_trans _ _ _ Hr1).
- apply Rmult_lt_compat_l; [lra|].
- apply bpow_lt.
- omega.
-- (* x'' <> 0 *)
- assert (Lx'' : ln_beta x'' = ln_beta x :> Z).
- { apply Zle_antisym.
- - apply ln_beta_le_bpow; [exact Nzx''|].
- rewrite Rabs_right; [exact Hx1|apply Rle_ge].
- apply round_ge_generic.
- + exact Vfexp2.
- + now apply valid_rnd_N.
- + apply generic_format_0.
- + now apply Rlt_le.
- - unfold x'' in Nzx'' |- *.
- now apply ln_beta_round_ge; [|apply valid_rnd_N|]. }
- unfold round, F2R, scaled_mantissa, canonic_exp; simpl.
- rewrite Lx''.
- rewrite (Znearest_imp _ _ (Zceil (scaled_mantissa beta fexp1 x))).
- + rewrite (Znearest_imp _ _ (Zceil (scaled_mantissa beta fexp1 x)));
- [reflexivity|].
- apply (Rmult_lt_reg_r (bpow (fexp1 (ln_beta x)))); [now apply bpow_gt_0|].
- rewrite <- (Rabs_right (bpow (fexp1 _))) at 1;
- [|now apply Rle_ge; apply bpow_ge_0].
- rewrite <- Rabs_mult.
- rewrite Rmult_minus_distr_r.
- fold x'.
- bpow_simplify.
- rewrite Rabs_minus_sym.
- rewrite Rabs_right; [|now apply Rle_ge].
- apply (Rlt_le_trans _ _ _ Hx2).
- apply Rmult_le_compat_l; [lra|].
- generalize (bpow_ge_0 beta (fexp2 (ln_beta x))).
- rewrite 2!ulp_neq_0; try (apply Rgt_not_eq; assumption).
- unfold canonic_exp; lra.
- + apply (Rmult_lt_reg_r (bpow (fexp1 (ln_beta x)))); [now apply bpow_gt_0|].
- rewrite <- (Rabs_right (bpow (fexp1 _))) at 1;
- [|now apply Rle_ge; apply bpow_ge_0].
- rewrite <- Rabs_mult.
- rewrite Rmult_minus_distr_r.
- fold x'.
- now bpow_simplify.
-Qed.
-
-Lemma double_round_gt_mid_further_place :
- forall (fexp1 fexp2 : Z -> Z),
- Valid_exp fexp1 -> Valid_exp fexp2 ->
- forall (choice1 choice2 : Z -> bool),
- forall x,
- 0 < x ->
- (fexp2 (ln_beta x) <= fexp1 (ln_beta x) - 1)%Z ->
- (fexp1 (ln_beta x) <= ln_beta x)%Z ->
- midp' fexp1 x + / 2 * ulp beta fexp2 x < x ->
- double_round_eq fexp1 fexp2 choice1 choice2 x.
-Proof.
-intros fexp1 fexp2 Vfexp1 Vfexp2 choice1 choice2 x Px Hf2f1 Hf1 Hx2'.
-assert (Hx2 : round beta fexp1 Zceil x - x
- < / 2 * (ulp beta fexp1 x - ulp beta fexp2 x)).
-{ apply (Rplus_lt_reg_r (- / 2 * ulp beta fexp1 x + x
- + / 2 * ulp beta fexp2 x)); ring_simplify.
- now unfold midp' in Hx2'. }
-revert Hx2.
-unfold double_round_eq.
-set (x' := round beta fexp1 Zfloor x).
-intro Hx2.
-set (x'' := round beta fexp2 (Znearest choice2) x).
-destruct (Rlt_or_le x'' (bpow (ln_beta x))) as [Hx''|Hx''];
- [now apply double_round_gt_mid_further_place'|].
-(* bpow (ln_beta x) <= x'' *)
-assert (Hx''pow : x'' = bpow (ln_beta x)).
-{ assert (H'x'' : x'' < bpow (ln_beta x) + / 2 * ulp beta fexp2 x).
- { apply Rle_lt_trans with (x + / 2 * ulp beta fexp2 x).
- - apply (Rplus_le_reg_r (- x)); ring_simplify.
- apply Rabs_le_inv.
- apply error_le_half_ulp.
- exact Vfexp2.
- - apply Rplus_lt_compat_r.
- rewrite <- Rabs_right at 1; [|now apply Rle_ge; apply Rlt_le].
- apply bpow_ln_beta_gt. }
- apply Rle_antisym; [|exact Hx''].
- unfold x'', round, F2R, scaled_mantissa, canonic_exp; simpl.
- apply (Rmult_le_reg_r (bpow (- fexp2 (ln_beta x)))); [now apply bpow_gt_0|].
- bpow_simplify.
- rewrite <- (Z2R_Zpower _ (_ - _)); [|omega].
- apply Z2R_le.
- apply Zlt_succ_le; unfold Z.succ.
- apply lt_Z2R.
- rewrite Z2R_plus; rewrite Z2R_Zpower; [|omega].
- apply (Rmult_lt_reg_r (bpow (fexp2 (ln_beta x)))); [now apply bpow_gt_0|].
- rewrite Rmult_plus_distr_r; rewrite Rmult_1_l.
- bpow_simplify.
- apply (Rlt_le_trans _ _ _ H'x'').
- apply Rplus_le_compat_l.
- rewrite <- (Rmult_1_l (Fcore_Raux.bpow _ _)).
- rewrite ulp_neq_0;[idtac|now apply Rgt_not_eq].
- apply Rmult_le_compat_r; [now apply bpow_ge_0|].
- lra. }
-assert (Hr : Rabs (x - x'') < / 2 * ulp beta fexp1 x).
-{ apply Rle_lt_trans with (/ 2 * ulp beta fexp2 x).
- - rewrite Rabs_minus_sym.
- apply error_le_half_ulp.
- exact Vfexp2.
- - apply Rmult_lt_compat_l; [lra|].
- rewrite 2!ulp_neq_0; try now apply Rgt_not_eq.
- unfold canonic_exp; apply bpow_lt.
- omega. }
-unfold round, F2R, scaled_mantissa, canonic_exp; simpl.
-assert (Hf : (0 <= ln_beta x - fexp1 (ln_beta x''))%Z).
-{ rewrite Hx''pow.
- rewrite ln_beta_bpow.
- assert (fexp1 (ln_beta x + 1) <= ln_beta x)%Z; [|omega].
- destruct (Zle_or_lt (ln_beta x) (fexp1 (ln_beta x))) as [Hle|Hlt];
- [|now apply Vfexp1].
- assert (H : (ln_beta x = fexp1 (ln_beta x) :> Z)%Z);
- [now apply Zle_antisym|].
- rewrite H.
- now apply Vfexp1. }
-rewrite (Znearest_imp _ _ (beta ^ (ln_beta x - fexp1 (ln_beta x'')))%Z).
-- rewrite (Znearest_imp _ _ (beta ^ (ln_beta x - fexp1 (ln_beta x)))%Z).
- + rewrite Z2R_Zpower; [|exact Hf].
- rewrite Z2R_Zpower; [|omega].
- now bpow_simplify.
- + rewrite Z2R_Zpower; [|omega].
- apply (Rmult_lt_reg_r (bpow (fexp1 (ln_beta x)))); [now apply bpow_gt_0|].
- rewrite <- (Rabs_right (bpow (fexp1 _))) at 1;
- [|now apply Rle_ge; apply bpow_ge_0].
- rewrite <- Rabs_mult.
- rewrite Rmult_minus_distr_r.
- bpow_simplify.
- rewrite ulp_neq_0 in Hr;[idtac|now apply Rgt_not_eq].
- rewrite <- Hx''pow; exact Hr.
-- rewrite Z2R_Zpower; [|exact Hf].
- apply (Rmult_lt_reg_r (bpow (fexp1 (ln_beta x'')))); [now apply bpow_gt_0|].
- rewrite <- (Rabs_right (bpow (fexp1 _))) at 1;
- [|now apply Rle_ge; apply bpow_ge_0].
- rewrite <- Rabs_mult.
- rewrite Rmult_minus_distr_r.
- bpow_simplify.
- rewrite Rminus_diag_eq; [|exact Hx''pow].
- rewrite Rabs_R0.
- rewrite <- (Rmult_0_r (/ 2)).
- apply Rmult_lt_compat_l; [lra|apply bpow_gt_0].
-Qed.
-
-Lemma double_round_gt_mid_same_place :
- forall (fexp1 fexp2 : Z -> Z),
- Valid_exp fexp1 ->
- forall (choice1 choice2 : Z -> bool),
- forall x,
- 0 < x ->
- (fexp2 (ln_beta x) = fexp1 (ln_beta x))%Z ->
- midp' fexp1 x < x ->
- double_round_eq fexp1 fexp2 choice1 choice2 x.
-Proof.
-intros fexp1 fexp2 Vfexp1 choice1 choice2 x Px Hf2f1 Hx'.
-assert (Hx : round beta fexp1 Zceil x - x < / 2 * ulp beta fexp1 x).
-{ apply (Rplus_lt_reg_r (- / 2 * ulp beta fexp1 x + x)); ring_simplify.
- now unfold midp' in Hx'. }
-assert (H : Rabs (Z2R (Zceil (x * bpow (- fexp1 (ln_beta x))))
- - x * bpow (- fexp1 (ln_beta x))) < / 2).
-{ apply (Rmult_lt_reg_r (bpow (fexp1 (ln_beta x)))); [now apply bpow_gt_0|].
- unfold scaled_mantissa, canonic_exp in Hx.
- rewrite <- (Rabs_right (bpow (fexp1 _))) at 1;
- [|now apply Rle_ge; apply bpow_ge_0].
- rewrite <- Rabs_mult.
- rewrite Rmult_minus_distr_r.
- bpow_simplify.
- apply Rabs_lt.
- split.
- - apply Rlt_le_trans with 0.
- + rewrite <- Ropp_0; apply Ropp_lt_contravar.
- rewrite <- (Rmult_0_r (/ 2)).
- apply Rmult_lt_compat_l; [lra|].
- apply bpow_gt_0.
- + apply Rle_0_minus.
- apply round_UP_pt.
- exact Vfexp1.
- - rewrite ulp_neq_0 in Hx;[exact Hx|now apply Rgt_not_eq]. }
-unfold double_round_eq, round at 2.
-unfold F2R, scaled_mantissa, canonic_exp; simpl.
-rewrite Hf2f1.
-rewrite (Znearest_imp _ _ (Zceil (scaled_mantissa beta fexp1 x))).
-- rewrite round_generic.
- + unfold round, F2R, scaled_mantissa, canonic_exp; simpl.
- now rewrite (Znearest_imp _ _ (Zceil (x * bpow (- fexp1 (ln_beta x)))));
- [|rewrite Rabs_minus_sym].
- + now apply valid_rnd_N.
- + fold (canonic_exp beta fexp1 x).
- change (Z2R _ * bpow _) with (round beta fexp1 Zceil x).
- apply generic_format_round.
- exact Vfexp1.
- now apply valid_rnd_UP.
-- now rewrite Rabs_minus_sym.
-Qed.
-
-Lemma double_round_gt_mid :
- forall (fexp1 fexp2 : Z -> Z),
- Valid_exp fexp1 -> Valid_exp fexp2 ->
- forall (choice1 choice2 : Z -> bool),
- forall x,
- 0 < x ->
- (fexp2 (ln_beta x) <= fexp1 (ln_beta x))%Z ->
- (fexp1 (ln_beta x) <= ln_beta x)%Z ->
- midp' fexp1 x < x ->
- ((fexp2 (ln_beta x) <= fexp1 (ln_beta x) - 1)%Z ->
- midp' fexp1 x + / 2 * ulp beta fexp2 x < x) ->
- double_round_eq fexp1 fexp2 choice1 choice2 x.
-Proof.
-intros fexp1 fexp2 Vfexp1 Vfexp2 choice1 choice2 x Px Hf2f1 Hf1 Hx Hx'.
-destruct (Zle_or_lt (fexp1 (ln_beta x)) (fexp2 (ln_beta x))) as [Hf2'|Hf2'].
-- (* fexp1 (ln_beta x) <= fexp2 (ln_beta x) *)
- assert (Hf2'' : (fexp2 (ln_beta x) = fexp1 (ln_beta x) :> Z)%Z); [omega|].
- now apply double_round_gt_mid_same_place.
-- (* fexp2 (ln_beta x) < fexp1 (ln_beta x) *)
- assert (Hf2'' : (fexp2 (ln_beta x) <= fexp1 (ln_beta x) - 1)%Z); [omega|].
- generalize (Hx' Hf2''); intro Hx''.
- now apply double_round_gt_mid_further_place.
-Qed.
-
-Section Double_round_mult.
-
-Lemma ln_beta_mult_disj :
- forall x y,
- x <> 0 -> y <> 0 ->
- ((ln_beta (x * y) = (ln_beta x + ln_beta y - 1)%Z :> Z)
- \/ (ln_beta (x * y) = (ln_beta x + ln_beta y)%Z :> Z)).
-Proof.
-intros x y Zx Zy.
-destruct (ln_beta_mult beta x y Zx Zy).
-omega.
-Qed.
-
-Definition double_round_mult_hyp fexp1 fexp2 :=
- (forall ex ey, (fexp2 (ex + ey) <= fexp1 ex + fexp1 ey)%Z)
- /\ (forall ex ey, (fexp2 (ex + ey - 1) <= fexp1 ex + fexp1 ey)%Z).
-
-Lemma double_round_mult_aux :
- forall (fexp1 fexp2 : Z -> Z),
- double_round_mult_hyp fexp1 fexp2 ->
- forall x y,
- generic_format beta fexp1 x -> generic_format beta fexp1 y ->
- generic_format beta fexp2 (x * y).
-Proof.
-intros fexp1 fexp2 Hfexp x y Fx Fy.
-destruct (Req_dec x 0) as [Zx|Zx].
-- (* x = 0 *)
- rewrite Zx.
- rewrite Rmult_0_l.
- now apply generic_format_0.
-- (* x <> 0 *)
- destruct (Req_dec y 0) as [Zy|Zy].
- + (* y = 0 *)
- rewrite Zy.
- rewrite Rmult_0_r.
- now apply generic_format_0.
- + (* y <> 0 *)
- revert Fx Fy.
- unfold generic_format.
- unfold canonic_exp.
- set (mx := Ztrunc (scaled_mantissa beta fexp1 x)).
- set (my := Ztrunc (scaled_mantissa beta fexp1 y)).
- unfold F2R; simpl.
- intros Fx Fy.
- set (fxy := Float beta (mx * my) (fexp1 (ln_beta x) + fexp1 (ln_beta y))).
- assert (Hxy : x * y = F2R fxy).
- { unfold fxy, F2R; simpl.
- rewrite bpow_plus.
- rewrite Z2R_mult.
- rewrite Fx, Fy at 1.
- ring. }
- apply generic_format_F2R' with (f := fxy); [now rewrite Hxy|].
- intros _.
- unfold canonic_exp, fxy; simpl.
- destruct Hfexp as (Hfexp1, Hfexp2).
- now destruct (ln_beta_mult_disj x y Zx Zy) as [Lxy|Lxy]; rewrite Lxy.
-Qed.
-
-Variable rnd : R -> Z.
-Context { valid_rnd : Valid_rnd rnd }.
-
-Theorem double_round_mult :
- forall (fexp1 fexp2 : Z -> Z),
- double_round_mult_hyp fexp1 fexp2 ->
- forall x y,
- generic_format beta fexp1 x -> generic_format beta fexp1 y ->
- round beta fexp1 rnd (round beta fexp2 rnd (x * y))
- = round beta fexp1 rnd (x * y).
-Proof.
-intros fexp1 fexp2 Hfexp x y Fx Fy.
-assert (Hxy : round beta fexp2 rnd (x * y) = x * y).
-{ apply round_generic; [assumption|].
- now apply (double_round_mult_aux fexp1 fexp2). }
-now rewrite Hxy at 1.
-Qed.
-
-Section Double_round_mult_FLX.
-
-Import Fcore_FLX.
-
-Variable prec : Z.
-Variable prec' : Z.
-
-Context { prec_gt_0_ : Prec_gt_0 prec }.
-Context { prec_gt_0_' : Prec_gt_0 prec' }.
-
-Theorem double_round_mult_FLX :
- (2 * prec <= prec')%Z ->
- forall x y,
- FLX_format beta prec x -> FLX_format beta prec y ->
- round beta (FLX_exp prec) rnd (round beta (FLX_exp prec') rnd (x * y))
- = round beta (FLX_exp prec) rnd (x * y).
-Proof.
-intros Hprec x y Fx Fy.
-apply double_round_mult;
- [|now apply generic_format_FLX|now apply generic_format_FLX].
-unfold double_round_mult_hyp; split; intros ex ey; unfold FLX_exp;
-omega.
-Qed.
-
-End Double_round_mult_FLX.
-
-Section Double_round_mult_FLT.
-
-Import Fcore_FLX.
-Import Fcore_FLT.
-
-Variable emin prec : Z.
-Variable emin' prec' : Z.
-
-Context { prec_gt_0_ : Prec_gt_0 prec }.
-Context { prec_gt_0_' : Prec_gt_0 prec' }.
-
-Theorem double_round_mult_FLT :
- (emin' <= 2 * emin)%Z -> (2 * prec <= prec')%Z ->
- forall x y,
- FLT_format beta emin prec x -> FLT_format beta emin prec y ->
- round beta (FLT_exp emin prec) rnd
- (round beta (FLT_exp emin' prec') rnd (x * y))
- = round beta (FLT_exp emin prec) rnd (x * y).
-Proof.
-intros Hemin Hprec x y Fx Fy.
-apply double_round_mult;
- [|now apply generic_format_FLT|now apply generic_format_FLT].
-unfold double_round_mult_hyp; split; intros ex ey;
-unfold FLT_exp;
-generalize (Zmax_spec (ex + ey - prec') emin');
-generalize (Zmax_spec (ex + ey - 1 - prec') emin');
-generalize (Zmax_spec (ex - prec) emin);
-generalize (Zmax_spec (ey - prec) emin);
-omega.
-Qed.
-
-End Double_round_mult_FLT.
-
-Section Double_round_mult_FTZ.
-
-Import Fcore_FLX.
-Import Fcore_FTZ.
-
-Variable emin prec : Z.
-Variable emin' prec' : Z.
-
-Context { prec_gt_0_ : Prec_gt_0 prec }.
-Context { prec_gt_0_' : Prec_gt_0 prec' }.
-
-Theorem double_round_mult_FTZ :
- (emin' + prec' <= 2 * emin + prec)%Z ->
- (2 * prec <= prec')%Z ->
- forall x y,
- FTZ_format beta emin prec x -> FTZ_format beta emin prec y ->
- round beta (FTZ_exp emin prec) rnd
- (round beta (FTZ_exp emin' prec') rnd (x * y))
- = round beta (FTZ_exp emin prec) rnd (x * y).
-Proof.
-intros Hemin Hprec x y Fx Fy.
-apply double_round_mult;
- [|now apply generic_format_FTZ|now apply generic_format_FTZ].
-unfold double_round_mult_hyp; split; intros ex ey;
-unfold FTZ_exp;
-unfold Prec_gt_0 in *;
-destruct (Z.ltb_spec (ex + ey - prec') emin');
-destruct (Z.ltb_spec (ex - prec) emin);
-destruct (Z.ltb_spec (ey - prec) emin);
-destruct (Z.ltb_spec (ex + ey - 1 - prec') emin');
-omega.
-Qed.
-
-End Double_round_mult_FTZ.
-
-End Double_round_mult.
-
-Section Double_round_plus.
-
-Lemma ln_beta_plus_disj :
- forall x y,
- 0 < y -> y <= x ->
- ((ln_beta (x + y) = ln_beta x :> Z)
- \/ (ln_beta (x + y) = (ln_beta x + 1)%Z :> Z)).
-Proof.
-intros x y Py Hxy.
-destruct (ln_beta_plus beta x y Py Hxy).
-omega.
-Qed.
-
-Lemma ln_beta_plus_separated :
- forall fexp : Z -> Z,
- forall x y,
- 0 < x -> 0 <= y ->
- generic_format beta fexp x ->
- (ln_beta y <= fexp (ln_beta x))%Z ->
- (ln_beta (x + y) = ln_beta x :> Z).
-Proof.
-intros fexp x y Px Nny Fx Hsep.
-destruct (Req_dec y 0) as [Zy|Nzy].
-- (* y = 0 *)
- now rewrite Zy; rewrite Rplus_0_r.
-- (* y <> 0 *)
- apply (ln_beta_plus_eps beta fexp); [assumption|assumption|].
- split; [assumption|].
- rewrite ulp_neq_0;[idtac|now apply Rgt_not_eq].
- unfold canonic_exp.
- destruct (ln_beta y) as (ey, Hey); simpl in *.
- apply Rlt_le_trans with (bpow ey).
- + now rewrite <- (Rabs_right y); [apply Hey|apply Rle_ge].
- + now apply bpow_le.
-Qed.
-
-Lemma ln_beta_minus_disj :
- forall x y,
- 0 < x -> 0 < y ->
- (ln_beta y <= ln_beta x - 2)%Z ->
- ((ln_beta (x - y) = ln_beta x :> Z)
- \/ (ln_beta (x - y) = (ln_beta x - 1)%Z :> Z)).
-Proof.
-intros x y Px Py Hln.
-assert (Hxy : y < x); [now apply (ln_beta_lt_pos beta); [ |omega]|].
-generalize (ln_beta_minus beta x y Py Hxy); intro Hln2.
-generalize (ln_beta_minus_lb beta x y Px Py Hln); intro Hln3.
-omega.
-Qed.
-
-Lemma ln_beta_minus_separated :
- forall fexp : Z -> Z, Valid_exp fexp ->
- forall x y,
- 0 < x -> 0 < y -> y < x ->
- bpow (ln_beta x - 1) < x ->
- generic_format beta fexp x -> (ln_beta y <= fexp (ln_beta x))%Z ->
- (ln_beta (x - y) = ln_beta x :> Z).
-Proof.
-intros fexp Vfexp x y Px Py Yltx Xgtpow Fx Ly.
-apply ln_beta_unique.
-split.
-- apply Rabs_ge; right.
- assert (Hy : y < ulp beta fexp (bpow (ln_beta x - 1))).
- { rewrite ulp_bpow.
- replace (_ + _)%Z with (ln_beta x : Z) by ring.
- rewrite <- (Rabs_right y); [|now apply Rle_ge; apply Rlt_le].
- apply Rlt_le_trans with (bpow (ln_beta y)).
- - apply bpow_ln_beta_gt.
- - now apply bpow_le. }
- apply (Rplus_le_reg_r y); ring_simplify.
- apply Rle_trans with (bpow (ln_beta x - 1)
- + ulp beta fexp (bpow (ln_beta x - 1))).
- + now apply Rplus_le_compat_l; apply Rlt_le.
- + rewrite <- succ_eq_pos;[idtac|apply bpow_ge_0].
- apply succ_le_lt; [apply Vfexp|idtac|exact Fx|assumption].
- apply (generic_format_bpow beta fexp (ln_beta x - 1)).
- replace (_ + _)%Z with (ln_beta x : Z) by ring.
- assert (fexp (ln_beta x) < ln_beta x)%Z; [|omega].
- now apply ln_beta_generic_gt; [|now apply Rgt_not_eq|].
-- rewrite Rabs_right.
- + apply Rlt_trans with x.
- * rewrite <- (Rplus_0_r x) at 2.
- apply Rplus_lt_compat_l.
- rewrite <- Ropp_0.
- now apply Ropp_lt_contravar.
- * apply Rabs_lt_inv.
- apply bpow_ln_beta_gt.
- + lra.
-Qed.
-
-Definition double_round_plus_hyp fexp1 fexp2 :=
- (forall ex ey, (fexp1 (ex + 1) - 1 <= ey)%Z -> (fexp2 ex <= fexp1 ey)%Z)
- /\ (forall ex ey, (fexp1 (ex - 1) + 1 <= ey)%Z -> (fexp2 ex <= fexp1 ey)%Z)
- /\ (forall ex ey, (fexp1 ex - 1 <= ey)%Z -> (fexp2 ex <= fexp1 ey)%Z)
- /\ (forall ex ey, (ex - 1 <= ey)%Z -> (fexp2 ex <= fexp1 ey)%Z).
-
-Lemma double_round_plus_aux0_aux_aux :
- forall (fexp1 fexp2 : Z -> Z),
- forall x y,
- (fexp1 (ln_beta x) <= fexp1 (ln_beta y))%Z ->
- (fexp2 (ln_beta (x + y))%Z <= fexp1 (ln_beta x))%Z ->
- (fexp2 (ln_beta (x + y))%Z <= fexp1 (ln_beta y))%Z ->
- generic_format beta fexp1 x -> generic_format beta fexp1 y ->
- generic_format beta fexp2 (x + y).
-Proof.
-intros fexp1 fexp2 x y Oxy Hlnx Hlny Fx Fy.
-destruct (Req_dec x 0) as [Zx|Nzx].
-- (* x = 0 *)
- rewrite Zx, Rplus_0_l in Hlny |- *.
- now apply (generic_inclusion_ln_beta beta fexp1).
-- (* x <> 0 *)
- destruct (Req_dec y 0) as [Zy|Nzy].
- + (* y = 0 *)
- rewrite Zy, Rplus_0_r in Hlnx |- *.
- now apply (generic_inclusion_ln_beta beta fexp1).
- + (* y <> 0 *)
- revert Fx Fy.
- unfold generic_format at -3, canonic_exp, F2R; simpl.
- set (mx := Ztrunc (scaled_mantissa beta fexp1 x)).
- set (my := Ztrunc (scaled_mantissa beta fexp1 y)).
- intros Fx Fy.
- set (fxy := Float beta (mx + my * (beta ^ (fexp1 (ln_beta y)
- - fexp1 (ln_beta x))))
- (fexp1 (ln_beta x))).
- assert (Hxy : x + y = F2R fxy).
- { unfold fxy, F2R; simpl.
- rewrite Z2R_plus.
- rewrite Rmult_plus_distr_r.
- rewrite <- Fx.
- rewrite Z2R_mult.
- rewrite Z2R_Zpower; [|omega].
- bpow_simplify.
- now rewrite <- Fy. }
- apply generic_format_F2R' with (f := fxy); [now rewrite Hxy|].
- intros _.
- now unfold canonic_exp, fxy; simpl.
-Qed.
-
-Lemma double_round_plus_aux0_aux :
- forall (fexp1 fexp2 : Z -> Z),
- forall x y,
- (fexp2 (ln_beta (x + y))%Z <= fexp1 (ln_beta x))%Z ->
- (fexp2 (ln_beta (x + y))%Z <= fexp1 (ln_beta y))%Z ->
- generic_format beta fexp1 x -> generic_format beta fexp1 y ->
- generic_format beta fexp2 (x + y).
-Proof.
-intros fexp1 fexp2 x y Hlnx Hlny Fx Fy.
-destruct (Z.le_gt_cases (fexp1 (ln_beta x)) (fexp1 (ln_beta y))) as [Hle|Hgt].
-- now apply (double_round_plus_aux0_aux_aux fexp1).
-- rewrite Rplus_comm in Hlnx, Hlny |- *.
- now apply (double_round_plus_aux0_aux_aux fexp1); [omega| | | |].
-Qed.
-
-(* fexp1 (ln_beta x) - 1 <= ln_beta y :
- * addition is exact in the largest precision (fexp2). *)
-Lemma double_round_plus_aux0 :
- forall (fexp1 fexp2 : Z -> Z), Valid_exp fexp1 ->
- double_round_plus_hyp fexp1 fexp2 ->
- forall x y,
- (0 < x)%R -> (0 < y)%R -> (y <= x)%R ->
- (fexp1 (ln_beta x) - 1 <= ln_beta y)%Z ->
- generic_format beta fexp1 x -> generic_format beta fexp1 y ->
- generic_format beta fexp2 (x + y).
-Proof.
-intros fexp1 fexp2 Vfexp1 Hexp x y Px Py Hyx Hln Fx Fy.
-assert (Nny : (0 <= y)%R); [now apply Rlt_le|].
-destruct Hexp as (_,(Hexp2,(Hexp3,Hexp4))).
-destruct (Z.le_gt_cases (ln_beta y) (fexp1 (ln_beta x))) as [Hle|Hgt].
-- (* ln_beta y <= fexp1 (ln_beta x) *)
- assert (Lxy : ln_beta (x + y) = ln_beta x :> Z);
- [now apply (ln_beta_plus_separated fexp1)|].
- apply (double_round_plus_aux0_aux fexp1);
- [| |assumption|assumption]; rewrite Lxy.
- + now apply Hexp4; omega.
- + now apply Hexp3; omega.
-- (* fexp1 (ln_beta x) < ln_beta y *)
- apply (double_round_plus_aux0_aux fexp1); [| |assumption|assumption].
- destruct (ln_beta_plus_disj x y Py Hyx) as [Lxy|Lxy]; rewrite Lxy.
- + now apply Hexp4; omega.
- + apply Hexp2; apply (ln_beta_le beta y x Py) in Hyx.
- replace (_ - _)%Z with (ln_beta x : Z) by ring.
- omega.
- + destruct (ln_beta_plus_disj x y Py Hyx) as [Lxy|Lxy]; rewrite Lxy.
- * now apply Hexp3; omega.
- * apply Hexp2.
- replace (_ - _)%Z with (ln_beta x : Z) by ring.
- omega.
-Qed.
-
-Lemma double_round_plus_aux1_aux :
- forall k, (0 < k)%Z ->
- forall (fexp : Z -> Z),
- forall x y,
- 0 < x -> 0 < y ->
- (ln_beta y <= fexp (ln_beta x) - k)%Z ->
- (ln_beta (x + y) = ln_beta x :> Z) ->
- generic_format beta fexp x ->
- 0 < (x + y) - round beta fexp Zfloor (x + y) < bpow (fexp (ln_beta x) - k).
-Proof.
-assert (Hbeta : (2 <= beta)%Z).
-{ destruct beta as (beta_val,beta_prop).
- now apply Zle_bool_imp_le. }
-intros k Hk fexp x y Px Py Hln Hlxy Fx.
-revert Fx.
-unfold round, generic_format, F2R, scaled_mantissa, canonic_exp; simpl.
-rewrite Hlxy.
-set (mx := Ztrunc (x * bpow (- fexp (ln_beta x)))).
-intros Fx.
-assert (R : (x + y) * bpow (- fexp (ln_beta x))
- = Z2R mx + y * bpow (- fexp (ln_beta x))).
-{ rewrite Fx at 1.
- rewrite Rmult_plus_distr_r.
- now bpow_simplify. }
-rewrite R.
-assert (LB : 0 < y * bpow (- fexp (ln_beta x))).
-{ rewrite <- (Rmult_0_r y).
- now apply Rmult_lt_compat_l; [|apply bpow_gt_0]. }
-assert (UB : y * bpow (- fexp (ln_beta x)) < / Z2R (beta ^ k)).
-{ apply Rlt_le_trans with (bpow (ln_beta y) * bpow (- fexp (ln_beta x))).
- - apply Rmult_lt_compat_r; [now apply bpow_gt_0|].
- rewrite <- (Rabs_right y) at 1; [|now apply Rle_ge; apply Rlt_le].
- apply bpow_ln_beta_gt.
- - apply Rle_trans with (bpow (fexp (ln_beta x) - k)
- * bpow (- fexp (ln_beta x)))%R.
- + apply Rmult_le_compat_r; [now apply bpow_ge_0|].
- now apply bpow_le.
- + bpow_simplify.
- rewrite bpow_opp.
- destruct k.
- * omega.
- * simpl; unfold Fcore_Raux.bpow, Z.pow_pos.
- now apply Rle_refl.
- * casetype False; apply (Zlt_irrefl 0).
- apply (Zlt_trans _ _ _ Hk).
- apply Zlt_neg_0. }
-rewrite (Zfloor_imp mx).
-{ split; ring_simplify.
- - apply (Rmult_lt_reg_r (bpow (- fexp (ln_beta x)))); [now apply bpow_gt_0|].
- rewrite Rmult_minus_distr_r, Rmult_0_l.
- bpow_simplify.
- rewrite R; ring_simplify.
- now apply Rmult_lt_0_compat; [|apply bpow_gt_0].
- - apply (Rmult_lt_reg_r (bpow (- fexp (ln_beta x)))); [now apply bpow_gt_0|].
- rewrite Rmult_minus_distr_r.
- bpow_simplify.
- rewrite R; ring_simplify.
- apply (Rlt_le_trans _ _ _ UB).
- rewrite bpow_opp.
- apply Rinv_le; [now apply bpow_gt_0|].
- now rewrite Z2R_Zpower; [right|omega]. }
-split.
-- rewrite <- Rplus_0_r at 1; apply Rplus_le_compat_l.
- now apply Rlt_le.
-- rewrite Z2R_plus; apply Rplus_lt_compat_l.
- apply (Rmult_lt_reg_r (bpow (fexp (ln_beta x)))); [now apply bpow_gt_0|].
- rewrite Rmult_1_l.
- bpow_simplify.
- apply Rlt_trans with (bpow (ln_beta y)).
- + rewrite <- Rabs_right at 1; [|now apply Rle_ge; apply Rlt_le].
- apply bpow_ln_beta_gt.
- + apply bpow_lt; omega.
-Qed.
-
-(* ln_beta y <= fexp1 (ln_beta x) - 2 : double_round_lt_mid applies. *)
-Lemma double_round_plus_aux1 :
- forall (fexp1 fexp2 : Z -> Z),
- Valid_exp fexp1 -> Valid_exp fexp2 ->
- forall (choice1 choice2 : Z -> bool),
- double_round_plus_hyp fexp1 fexp2 ->
- forall x y,
- 0 < x -> 0 < y ->
- (ln_beta y <= fexp1 (ln_beta x) - 2)%Z ->
- generic_format beta fexp1 x ->
- double_round_eq fexp1 fexp2 choice1 choice2 (x + y).
-Proof.
-assert (Hbeta : (2 <= beta)%Z).
-{ destruct beta as (beta_val,beta_prop).
- now apply Zle_bool_imp_le. }
-intros fexp1 fexp2 Vfexp1 Vfexp2 choice1 choice2 Hexp x y Px Py Hly Fx.
-assert (Lxy : ln_beta (x + y) = ln_beta x :> Z);
- [now apply (ln_beta_plus_separated fexp1); [|apply Rlt_le| |omega]|].
-destruct Hexp as (_,(_,(_,Hexp4))).
-assert (Hf2 : (fexp2 (ln_beta x) <= fexp1 (ln_beta x))%Z);
- [now apply Hexp4; omega|].
-assert (Bpow2 : bpow (- 2) <= / 2 * / 2).
-{ replace (/2 * /2) with (/4) by field.
- rewrite (bpow_opp _ 2).
- apply Rinv_le; [lra|].
- apply (Z2R_le (2 * 2) (beta * (beta * 1))).
- rewrite Zmult_1_r.
- now apply Zmult_le_compat; omega. }
-assert (P2 : (0 < 2)%Z) by omega.
-unfold double_round_eq.
-apply double_round_lt_mid.
-- exact Vfexp1.
-- exact Vfexp2.
-- lra.
-- now rewrite Lxy.
-- rewrite Lxy.
- assert (fexp1 (ln_beta x) < ln_beta x)%Z; [|omega].
- now apply ln_beta_generic_gt; [|apply Rgt_not_eq|].
-- unfold midp.
- apply (Rplus_lt_reg_r (- round beta fexp1 Zfloor (x + y))).
- apply (Rlt_le_trans _ _ _ (proj2 (double_round_plus_aux1_aux 2 P2 fexp1 x y Px
- Py Hly Lxy Fx))).
- ring_simplify.
- rewrite ulp_neq_0;[idtac|now apply Rgt_not_eq, Rplus_lt_0_compat].
- unfold canonic_exp; rewrite Lxy.
- apply (Rmult_le_reg_r (bpow (- fexp1 (ln_beta x)))); [now apply bpow_gt_0|].
- bpow_simplify.
- apply (Rle_trans _ _ _ Bpow2).
- rewrite <- (Rmult_1_r (/ 2)) at 3.
- apply Rmult_le_compat_l; lra.
-- rewrite ulp_neq_0;[idtac|now apply Rgt_not_eq, Rplus_lt_0_compat].
- unfold round, F2R, scaled_mantissa, canonic_exp; simpl; rewrite Lxy.
- intro Hf2'.
- apply (Rmult_lt_reg_r (bpow (- fexp1 (ln_beta x))));
- [now apply bpow_gt_0|].
- apply (Rmult_lt_reg_r (bpow (fexp1 (ln_beta x)))); [now apply bpow_gt_0|].
- bpow_simplify.
- apply (Rplus_lt_reg_r (- round beta fexp1 Zfloor (x + y))).
- unfold midp; ring_simplify.
- apply (Rlt_le_trans _ _ _ (proj2 (double_round_plus_aux1_aux 2 P2 fexp1 x y Px
- Py Hly Lxy Fx))).
- apply (Rmult_le_reg_r (bpow (- fexp1 (ln_beta x)))); [now apply bpow_gt_0|].
- rewrite ulp_neq_0;[idtac|now apply Rgt_not_eq, Rplus_lt_0_compat].
- unfold canonic_exp; rewrite Lxy, Rmult_minus_distr_r; bpow_simplify.
- apply (Rle_trans _ _ _ Bpow2).
- rewrite <- (Rmult_1_r (/ 2)) at 3; rewrite <- Rmult_minus_distr_l.
- apply Rmult_le_compat_l; [lra|].
- apply (Rplus_le_reg_r (- 1)); ring_simplify.
- replace (_ - _) with (- (/ 2)) by lra.
- apply Ropp_le_contravar.
- { apply Rle_trans with (bpow (- 1)).
- - apply bpow_le; omega.
- - unfold Fcore_Raux.bpow, Z.pow_pos; simpl.
- apply Rinv_le; [lra|].
- change 2 with (Z2R 2); apply Z2R_le; omega. }
-Qed.
-
-(* double_round_plus_aux{0,1} together *)
-Lemma double_round_plus_aux2 :
- forall (fexp1 fexp2 : Z -> Z),
- Valid_exp fexp1 -> Valid_exp fexp2 ->
- forall (choice1 choice2 : Z -> bool),
- double_round_plus_hyp fexp1 fexp2 ->
- forall x y,
- 0 < x -> 0 < y -> y <= x ->
- generic_format beta fexp1 x ->
- generic_format beta fexp1 y ->
- double_round_eq fexp1 fexp2 choice1 choice2 (x + y).
-Proof.
-intros fexp1 fexp2 Vfexp1 Vfexp2 choice1 choice2 Hexp x y Px Py Hyx Fx Fy.
-unfold double_round_eq.
-destruct (Zle_or_lt (ln_beta y) (fexp1 (ln_beta x) - 2)) as [Hly|Hly].
-- (* ln_beta y <= fexp1 (ln_beta x) - 2 *)
- now apply double_round_plus_aux1.
-- (* fexp1 (ln_beta x) - 2 < ln_beta y *)
- rewrite (round_generic beta fexp2).
- + reflexivity.
- + now apply valid_rnd_N.
- + assert (Hf1 : (fexp1 (ln_beta x) - 1 <= ln_beta y)%Z); [omega|].
- now apply (double_round_plus_aux0 fexp1).
-Qed.
-
-Lemma double_round_plus_aux :
- forall (fexp1 fexp2 : Z -> Z),
- Valid_exp fexp1 -> Valid_exp fexp2 ->
- forall (choice1 choice2 : Z -> bool),
- double_round_plus_hyp fexp1 fexp2 ->
- forall x y,
- 0 <= x -> 0 <= y ->
- generic_format beta fexp1 x ->
- generic_format beta fexp1 y ->
- double_round_eq fexp1 fexp2 choice1 choice2 (x + y).
-Proof.
-intros fexp1 fexp2 Vfexp1 Vfexp2 choice1 choice2 Hexp x y Nnx Nny Fx Fy.
-unfold double_round_eq.
-destruct (Req_dec x 0) as [Zx|Nzx].
-- (* x = 0 *)
- destruct Hexp as (_,(_,(_,Hexp4))).
- rewrite Zx; rewrite Rplus_0_l.
- rewrite (round_generic beta fexp2).
- + reflexivity.
- + now apply valid_rnd_N.
- + apply (generic_inclusion_ln_beta beta fexp1).
- now intros _; apply Hexp4; omega.
- exact Fy.
-- (* x <> 0 *)
- destruct (Req_dec y 0) as [Zy|Nzy].
- + (* y = 0 *)
- destruct Hexp as (_,(_,(_,Hexp4))).
- rewrite Zy; rewrite Rplus_0_r.
- rewrite (round_generic beta fexp2).
- * reflexivity.
- * now apply valid_rnd_N.
- * apply (generic_inclusion_ln_beta beta fexp1).
- now intros _; apply Hexp4; omega.
- exact Fx.
- + (* y <> 0 *)
- assert (Px : 0 < x); [lra|].
- assert (Py : 0 < y); [lra|].
- destruct (Rlt_or_le x y) as [H|H].
- * (* x < y *)
- apply Rlt_le in H.
- rewrite Rplus_comm.
- now apply double_round_plus_aux2.
- * now apply double_round_plus_aux2.
-Qed.
-
-Lemma double_round_minus_aux0_aux :
- forall (fexp1 fexp2 : Z -> Z),
- forall x y,
- (fexp2 (ln_beta (x - y))%Z <= fexp1 (ln_beta x))%Z ->
- (fexp2 (ln_beta (x - y))%Z <= fexp1 (ln_beta y))%Z ->
- generic_format beta fexp1 x -> generic_format beta fexp1 y ->
- generic_format beta fexp2 (x - y).
-Proof.
-intros fexp1 fexp2 x y.
-replace (x - y)%R with (x + (- y))%R; [|ring].
-intros Hlnx Hlny Fx Fy.
-rewrite <- (ln_beta_opp beta y) in Hlny.
-apply generic_format_opp in Fy.
-now apply (double_round_plus_aux0_aux fexp1).
-Qed.
-
-(* fexp1 (ln_beta x) - 1 <= ln_beta y :
- * substraction is exact in the largest precision (fexp2). *)
-Lemma double_round_minus_aux0 :
- forall (fexp1 fexp2 : Z -> Z),
- double_round_plus_hyp fexp1 fexp2 ->
- forall x y,
- 0 < y -> y < x ->
- (fexp1 (ln_beta x) - 1 <= ln_beta y)%Z ->
- generic_format beta fexp1 x -> generic_format beta fexp1 y ->
- generic_format beta fexp2 (x - y).
-Proof.
-intros fexp1 fexp2 Hexp x y Py Hyx Hln Fx Fy.
-assert (Px := Rlt_trans 0 y x Py Hyx).
-destruct Hexp as (Hexp1,(_,(Hexp3,Hexp4))).
-assert (Lyx : (ln_beta y <= ln_beta x)%Z);
- [now apply ln_beta_le; [|apply Rlt_le]|].
-destruct (Z.lt_ge_cases (ln_beta x - 2) (ln_beta y)) as [Hlt|Hge].
-- (* ln_beta x - 2 < ln_beta y *)
- assert (Hor : (ln_beta y = ln_beta x :> Z)
- \/ (ln_beta y = ln_beta x - 1 :> Z)%Z); [omega|].
- destruct Hor as [Heq|Heqm1].
- + (* ln_beta y = ln_beta x *)
- apply (double_round_minus_aux0_aux fexp1); [| |exact Fx|exact Fy].
- * apply Hexp4.
- apply Zle_trans with (ln_beta (x - y)); [omega|].
- now apply ln_beta_minus.
- * rewrite Heq.
- apply Hexp4.
- apply Zle_trans with (ln_beta (x - y)); [omega|].
- now apply ln_beta_minus.
- + (* ln_beta y = ln_beta x - 1 *)
- apply (double_round_minus_aux0_aux fexp1); [| |exact Fx|exact Fy].
- * apply Hexp4.
- apply Zle_trans with (ln_beta (x - y)); [omega|].
- now apply ln_beta_minus.
- * rewrite Heqm1.
- apply Hexp4.
- apply Zplus_le_compat_r.
- now apply ln_beta_minus.
-- (* ln_beta y <= ln_beta x - 2 *)
- destruct (ln_beta_minus_disj x y Px Py Hge) as [Lxmy|Lxmy].
- + (* ln_beta (x - y) = ln_beta x *)
- apply (double_round_minus_aux0_aux fexp1); [| |exact Fx|exact Fy].
- * apply Hexp4.
- omega.
- * now rewrite Lxmy; apply Hexp3.
- + (* ln_beta (x - y) = ln_beta x - 1 *)
- apply (double_round_minus_aux0_aux fexp1); [| |exact Fx|exact Fy];
- rewrite Lxmy.
- * apply Hexp1.
- replace (_ + _)%Z with (ln_beta x : Z); [|ring].
- now apply Zle_trans with (ln_beta y).
- * apply Hexp1.
- now replace (_ + _)%Z with (ln_beta x : Z); [|ring].
-Qed.
-
-(* ln_beta y <= fexp1 (ln_beta x) - 2,
- * fexp1 (ln_beta (x - y)) - 1 <= ln_beta y :
- * substraction is exact in the largest precision (fexp2). *)
-Lemma double_round_minus_aux1 :
- forall (fexp1 fexp2 : Z -> Z),
- Valid_exp fexp1 -> Valid_exp fexp2 ->
- double_round_plus_hyp fexp1 fexp2 ->
- forall x y,
- 0 < y -> y < x ->
- (ln_beta y <= fexp1 (ln_beta x) - 2)%Z ->
- (fexp1 (ln_beta (x - y)) - 1 <= ln_beta y)%Z ->
- generic_format beta fexp1 x -> generic_format beta fexp1 y ->
- generic_format beta fexp2 (x - y).
-Proof.
-intros fexp1 fexp2 Vfexp1 Vfexp2 Hexp x y Py Hyx Hln Hln' Fx Fy.
-assert (Px := Rlt_trans 0 y x Py Hyx).
-destruct Hexp as (Hexp1,(Hexp2,(Hexp3,Hexp4))).
-assert (Lyx : (ln_beta y <= ln_beta x)%Z);
- [now apply ln_beta_le; [|apply Rlt_le]|].
-assert (Hfx : (fexp1 (ln_beta x) < ln_beta x)%Z);
- [now apply ln_beta_generic_gt; [|apply Rgt_not_eq|]|].
-assert (Hfy : (fexp1 (ln_beta y) < ln_beta y)%Z);
- [now apply ln_beta_generic_gt; [|apply Rgt_not_eq|]|].
-apply (double_round_minus_aux0_aux fexp1); [| |exact Fx|exact Fy].
-- apply Zle_trans with (fexp1 (ln_beta (x - y))).
- + apply Hexp4; omega.
- + omega.
-- now apply Hexp3.
-Qed.
-
-Lemma double_round_minus_aux2_aux :
- forall (fexp : Z -> Z),
- Valid_exp fexp ->
- forall x y,
- 0 < y -> y < x ->
- (ln_beta y <= fexp (ln_beta x) - 1)%Z ->
- generic_format beta fexp x ->
- generic_format beta fexp y ->
- round beta fexp Zceil (x - y) - (x - y) <= y.
-Proof.
-intros fexp Vfexp x y Py Hxy Hly Fx Fy.
-assert (Px := Rlt_trans 0 y x Py Hxy).
-revert Fx.
-unfold generic_format, F2R, scaled_mantissa, canonic_exp; simpl.
-set (mx := Ztrunc (x * bpow (- fexp (ln_beta x)))).
-intro Fx.
-assert (Hfx : (fexp (ln_beta x) < ln_beta x)%Z);
- [now apply ln_beta_generic_gt; [|apply Rgt_not_eq|]|].
-assert (Hfy : (fexp (ln_beta y) < ln_beta y)%Z);
- [now apply ln_beta_generic_gt; [|apply Rgt_not_eq|]|].
-destruct (Rlt_or_le (bpow (ln_beta x - 1)) x) as [Hx|Hx].
-- (* bpow (ln_beta x - 1) < x *)
- assert (Lxy : ln_beta (x - y) = ln_beta x :> Z);
- [now apply (ln_beta_minus_separated fexp); [| | | | | |omega]|].
- assert (Rxy : round beta fexp Zceil (x - y) = x).
- { unfold round, F2R, scaled_mantissa, canonic_exp; simpl.
- rewrite Lxy.
- apply eq_sym; rewrite Fx at 1; apply eq_sym.
- apply Rmult_eq_compat_r.
- apply f_equal.
- rewrite Fx at 1.
- rewrite Rmult_minus_distr_r.
- bpow_simplify.
- apply Zceil_imp.
- split.
- - unfold Zminus; rewrite Z2R_plus.
- apply Rplus_lt_compat_l.
- apply Ropp_lt_contravar; simpl.
- apply (Rmult_lt_reg_r (bpow (fexp (ln_beta x))));
- [now apply bpow_gt_0|].
- rewrite Rmult_1_l; bpow_simplify.
- apply Rlt_le_trans with (bpow (ln_beta y)).
- + rewrite <- Rabs_right at 1; [|now apply Rle_ge; apply Rlt_le].
- apply bpow_ln_beta_gt.
- + apply bpow_le.
- omega.
- - rewrite <- (Rplus_0_r (Z2R _)) at 2.
- apply Rplus_le_compat_l.
- rewrite <- Ropp_0; apply Ropp_le_contravar.
- rewrite <- (Rmult_0_r y).
- apply Rmult_le_compat_l; [now apply Rlt_le|].
- now apply bpow_ge_0. }
- rewrite Rxy; ring_simplify.
- apply Rle_refl.
-- (* x <= bpow (ln_beta x - 1) *)
- assert (Xpow : x = bpow (ln_beta x - 1)).
- { apply Rle_antisym; [exact Hx|].
- destruct (ln_beta x) as (ex, Hex); simpl.
- rewrite <- (Rabs_right x); [|now apply Rle_ge; apply Rlt_le].
- apply Hex.
- now apply Rgt_not_eq. }
- assert (Lxy : (ln_beta (x - y) = ln_beta x - 1 :> Z)%Z).
- { apply Zle_antisym.
- - apply ln_beta_le_bpow.
- + apply Rminus_eq_contra.
- now intro Hx'; rewrite Hx' in Hxy; apply (Rlt_irrefl y).
- + rewrite Rabs_right; lra.
- - apply (ln_beta_minus_lb beta x y Px Py).
- omega. }
- assert (Hfx1 : (fexp (ln_beta x - 1) < ln_beta x - 1)%Z);
- [now apply (valid_exp_large fexp (ln_beta y)); [|omega]|].
- assert (Rxy : round beta fexp Zceil (x - y) <= x).
- { rewrite Xpow at 2.
- unfold round, F2R, scaled_mantissa, canonic_exp; simpl.
- rewrite Lxy.
- apply (Rmult_le_reg_r (bpow (- fexp (ln_beta x - 1)%Z)));
- [now apply bpow_gt_0|].
- bpow_simplify.
- rewrite <- (Z2R_Zpower beta (_ - _ - _)); [|omega].
- apply Z2R_le.
- apply Zceil_glb.
- rewrite Z2R_Zpower; [|omega].
- rewrite Xpow at 1.
- rewrite Rmult_minus_distr_r.
- bpow_simplify.
- rewrite <- (Rplus_0_r (bpow _)) at 2.
- apply Rplus_le_compat_l.
- rewrite <- Ropp_0; apply Ropp_le_contravar.
- rewrite <- (Rmult_0_r y).
- apply Rmult_le_compat_l; [now apply Rlt_le|].
- now apply bpow_ge_0. }
- lra.
-Qed.
-
-(* ln_beta y <= fexp1 (ln_beta x) - 2 :
- * ln_beta y <= fexp1 (ln_beta (x - y)) - 2 :
- * double_round_gt_mid applies. *)
-Lemma double_round_minus_aux2 :
- forall (fexp1 fexp2 : Z -> Z),
- Valid_exp fexp1 -> Valid_exp fexp2 ->
- forall (choice1 choice2 : Z -> bool),
- double_round_plus_hyp fexp1 fexp2 ->
- forall x y,
- 0 < y -> y < x ->
- (ln_beta y <= fexp1 (ln_beta x) - 2)%Z ->
- (ln_beta y <= fexp1 (ln_beta (x - y)) - 2)%Z ->
- generic_format beta fexp1 x ->
- generic_format beta fexp1 y ->
- double_round_eq fexp1 fexp2 choice1 choice2 (x - y).
-Proof.
-assert (Hbeta : (2 <= beta)%Z).
-{ destruct beta as (beta_val,beta_prop).
- now apply Zle_bool_imp_le. }
-intros fexp1 fexp2 Vfexp1 Vfexp2 choice1 choice2 Hexp x y Py Hxy Hly Hly' Fx Fy.
-assert (Px := Rlt_trans 0 y x Py Hxy).
-destruct Hexp as (_,(_,(_,Hexp4))).
-assert (Hf2 : (fexp2 (ln_beta x) <= fexp1 (ln_beta x))%Z);
- [now apply Hexp4; omega|].
-assert (Hfx : (fexp1 (ln_beta x) < ln_beta x)%Z);
- [now apply ln_beta_generic_gt; [|apply Rgt_not_eq|]|].
-assert (Bpow2 : bpow (- 2) <= / 2 * / 2).
-{ replace (/2 * /2) with (/4) by field.
- rewrite (bpow_opp _ 2).
- apply Rinv_le; [lra|].
- apply (Z2R_le (2 * 2) (beta * (beta * 1))).
- rewrite Zmult_1_r.
- now apply Zmult_le_compat; omega. }
-assert (Ly : y < bpow (ln_beta y)).
-{ apply Rabs_lt_inv.
- apply bpow_ln_beta_gt. }
-unfold double_round_eq.
-apply double_round_gt_mid.
-- exact Vfexp1.
-- exact Vfexp2.
-- lra.
-- apply Hexp4; omega.
-- assert (fexp1 (ln_beta (x - y)) < ln_beta (x - y))%Z; [|omega].
- apply (valid_exp_large fexp1 (ln_beta x - 1)).
- + apply (valid_exp_large fexp1 (ln_beta y)); [|omega].
- now apply ln_beta_generic_gt; [|apply Rgt_not_eq|].
- + now apply ln_beta_minus_lb; [| |omega].
-- unfold midp'.
- apply (Rplus_lt_reg_r (/ 2 * ulp beta fexp1 (x - y) - (x - y))).
- ring_simplify.
- replace (_ + _) with (round beta fexp1 Zceil (x - y) - (x - y)) by ring.
- apply Rlt_le_trans with (bpow (fexp1 (ln_beta (x - y)) - 2)).
- + apply Rle_lt_trans with y;
- [now apply double_round_minus_aux2_aux; try assumption; omega|].
- apply (Rlt_le_trans _ _ _ Ly).
- now apply bpow_le.
- + rewrite ulp_neq_0;[idtac|now apply sym_not_eq, Rlt_not_eq, Rgt_minus].
- unfold canonic_exp.
- replace (_ - 2)%Z with (fexp1 (ln_beta (x - y)) - 1 - 1)%Z by ring.
- unfold Zminus at 1; rewrite bpow_plus.
- rewrite Rmult_comm.
- apply Rmult_le_compat.
- * now apply bpow_ge_0.
- * now apply bpow_ge_0.
- * unfold Fcore_Raux.bpow, Z.pow_pos; simpl.
- rewrite Zmult_1_r; apply Rinv_le.
- lra.
- now change 2 with (Z2R 2); apply Z2R_le.
- * apply bpow_le; omega.
-- intro Hf2'.
- unfold midp'.
- apply (Rplus_lt_reg_r (/ 2 * ulp beta fexp1 (x - y) - (x - y)
- - / 2 * ulp beta fexp2 (x - y))).
- ring_simplify.
- replace (_ + _) with (round beta fexp1 Zceil (x - y) - (x - y)) by ring.
- apply Rle_lt_trans with y;
- [now apply double_round_minus_aux2_aux; try assumption; omega|].
- apply (Rlt_le_trans _ _ _ Ly).
- apply Rle_trans with (bpow (fexp1 (ln_beta (x - y)) - 2));
- [now apply bpow_le|].
- replace (_ - 2)%Z with (fexp1 (ln_beta (x - y)) - 1 - 1)%Z by ring.
- unfold Zminus at 1; rewrite bpow_plus.
- rewrite <- Rmult_minus_distr_l.
- rewrite Rmult_comm; apply Rmult_le_compat.
- + apply bpow_ge_0.
- + apply bpow_ge_0.
- + unfold Fcore_Raux.bpow, Z.pow_pos; simpl.
- rewrite Zmult_1_r; apply Rinv_le; [lra|].
- now change 2 with (Z2R 2); apply Z2R_le.
- + rewrite 2!ulp_neq_0; try now apply Rgt_not_eq, Rgt_minus.
- unfold canonic_exp.
- apply (Rplus_le_reg_r (bpow (fexp2 (ln_beta (x - y))))); ring_simplify.
- apply Rle_trans with (2 * bpow (fexp1 (ln_beta (x - y)) - 1)).
- * replace (2 * bpow (fexp1 (ln_beta (x - y)) - 1)) with (bpow (fexp1 (ln_beta (x - y)) - 1) + bpow (fexp1 (ln_beta (x - y)) - 1)) by ring.
- apply Rplus_le_compat_l.
- now apply bpow_le.
- * unfold Zminus; rewrite bpow_plus.
- rewrite Rmult_comm; rewrite Rmult_assoc.
- rewrite <- Rmult_1_r.
- apply Rmult_le_compat_l; [now apply bpow_ge_0|].
- unfold Fcore_Raux.bpow, Z.pow_pos; simpl.
- rewrite Zmult_1_r.
- apply Z2R_le, Rinv_le in Hbeta.
- simpl in Hbeta.
- lra.
- apply Rlt_0_2.
-Qed.
-
-(* double_round_minus_aux{0,1,2} together *)
-Lemma double_round_minus_aux3 :
- forall (fexp1 fexp2 : Z -> Z),
- Valid_exp fexp1 -> Valid_exp fexp2 ->
- forall (choice1 choice2 : Z -> bool),
- double_round_plus_hyp fexp1 fexp2 ->
- forall x y,
- 0 < y -> y <= x ->
- generic_format beta fexp1 x ->
- generic_format beta fexp1 y ->
- double_round_eq fexp1 fexp2 choice1 choice2 (x - y).
-Proof.
-intros fexp1 fexp2 Vfexp1 Vfexp2 choice1 choice2 Hexp x y Py Hyx Fx Fy.
-assert (Px := Rlt_le_trans 0 y x Py Hyx).
-unfold double_round_eq.
-destruct (Req_dec y x) as [Hy|Hy].
-- (* y = x *)
- rewrite Hy; replace (x - x) with 0 by ring.
- rewrite round_0.
- + reflexivity.
- + now apply valid_rnd_N.
-- (* y < x *)
- assert (Hyx' : y < x); [lra|].
- destruct (Zle_or_lt (ln_beta y) (fexp1 (ln_beta x) - 2)) as [Hly|Hly].
- + (* ln_beta y <= fexp1 (ln_beta x) - 2 *)
- destruct (Zle_or_lt (ln_beta y) (fexp1 (ln_beta (x - y)) - 2))
- as [Hly'|Hly'].
- * (* ln_beta y <= fexp1 (ln_beta (x - y)) - 2 *)
- now apply double_round_minus_aux2.
- * (* fexp1 (ln_beta (x - y)) - 2 < ln_beta y *)
- { rewrite (round_generic beta fexp2).
- - reflexivity.
- - now apply valid_rnd_N.
- - assert (Hf1 : (fexp1 (ln_beta (x - y)) - 1 <= ln_beta y)%Z); [omega|].
- now apply (double_round_minus_aux1 fexp1). }
- + rewrite (round_generic beta fexp2).
- * reflexivity.
- * now apply valid_rnd_N.
- * assert (Hf1 : (fexp1 (ln_beta x) - 1 <= ln_beta y)%Z); [omega|].
- now apply (double_round_minus_aux0 fexp1).
-Qed.
-
-Lemma double_round_minus_aux :
- forall (fexp1 fexp2 : Z -> Z),
- Valid_exp fexp1 -> Valid_exp fexp2 ->
- forall (choice1 choice2 : Z -> bool),
- double_round_plus_hyp fexp1 fexp2 ->
- forall x y,
- 0 <= x -> 0 <= y ->
- generic_format beta fexp1 x ->
- generic_format beta fexp1 y ->
- double_round_eq fexp1 fexp2 choice1 choice2 (x - y).
-Proof.
-intros fexp1 fexp2 Vfexp1 Vfexp2 choice1 choice2 Hexp x y Nnx Nny Fx Fy.
-unfold double_round_eq.
-destruct (Req_dec x 0) as [Zx|Nzx].
-- (* x = 0 *)
- rewrite Zx; unfold Rminus; rewrite Rplus_0_l.
- do 3 rewrite round_N_opp.
- rewrite (round_generic beta fexp2).
- * reflexivity.
- * now apply valid_rnd_N.
- * apply (generic_inclusion_ln_beta beta fexp1).
- destruct Hexp as (_,(_,(_,Hexp4))).
- now intros _; apply Hexp4; omega.
- exact Fy.
-- (* x <> 0 *)
- destruct (Req_dec y 0) as [Zy|Nzy].
- + (* y = 0 *)
- rewrite Zy; unfold Rminus; rewrite Ropp_0; rewrite Rplus_0_r.
- rewrite (round_generic beta fexp2).
- * reflexivity.
- * now apply valid_rnd_N.
- * apply (generic_inclusion_ln_beta beta fexp1).
- destruct Hexp as (_,(_,(_,Hexp4))).
- now intros _; apply Hexp4; omega.
- exact Fx.
- + (* y <> 0 *)
- assert (Px : 0 < x); [lra|].
- assert (Py : 0 < y); [lra|].
- destruct (Rlt_or_le x y) as [H|H].
- * (* x < y *)
- apply Rlt_le in H.
- replace (x - y) with (- (y - x)) by ring.
- do 3 rewrite round_N_opp.
- apply Ropp_eq_compat.
- now apply double_round_minus_aux3.
- * (* y <= x *)
- now apply double_round_minus_aux3.
-Qed.
-
-Lemma double_round_plus :
- forall (fexp1 fexp2 : Z -> Z),
- Valid_exp fexp1 -> Valid_exp fexp2 ->
- forall (choice1 choice2 : Z -> bool),
- double_round_plus_hyp fexp1 fexp2 ->
- forall x y,
- generic_format beta fexp1 x ->
- generic_format beta fexp1 y ->
- double_round_eq fexp1 fexp2 choice1 choice2 (x + y).
-Proof.
-intros fexp1 fexp2 Vfexp1 Vfexp2 choice1 choice2 Hexp x y Fx Fy.
-unfold double_round_eq.
-destruct (Rlt_or_le x 0) as [Sx|Sx]; destruct (Rlt_or_le y 0) as [Sy|Sy].
-- (* x < 0, y < 0 *)
- replace (x + y) with (- (- x - y)); [|ring].
- do 3 rewrite round_N_opp.
- apply Ropp_eq_compat.
- assert (Px : 0 <= - x); [lra|].
- assert (Py : 0 <= - y); [lra|].
- apply generic_format_opp in Fx.
- apply generic_format_opp in Fy.
- now apply double_round_plus_aux.
-- (* x < 0, 0 <= y *)
- replace (x + y) with (y - (- x)); [|ring].
- assert (Px : 0 <= - x); [lra|].
- apply generic_format_opp in Fx.
- now apply double_round_minus_aux.
-- (* 0 <= x, y < 0 *)
- replace (x + y) with (x - (- y)); [|ring].
- assert (Py : 0 <= - y); [lra|].
- apply generic_format_opp in Fy.
- now apply double_round_minus_aux.
-- (* 0 <= x, 0 <= y *)
- now apply double_round_plus_aux.
-Qed.
-
-Lemma double_round_minus :
- forall (fexp1 fexp2 : Z -> Z),
- Valid_exp fexp1 -> Valid_exp fexp2 ->
- forall (choice1 choice2 : Z -> bool),
- double_round_plus_hyp fexp1 fexp2 ->
- forall x y,
- generic_format beta fexp1 x ->
- generic_format beta fexp1 y ->
- double_round_eq fexp1 fexp2 choice1 choice2 (x - y).
-Proof.
-intros fexp1 fexp2 Vfexp1 Vfexp2 choice1 choice2 Hexp x y Fx Fy.
-unfold Rminus.
-apply generic_format_opp in Fy.
-now apply double_round_plus.
-Qed.
-
-Section Double_round_plus_FLX.
-
-Import Fcore_FLX.
-
-Variable prec : Z.
-Variable prec' : Z.
-
-Context { prec_gt_0_ : Prec_gt_0 prec }.
-Context { prec_gt_0_' : Prec_gt_0 prec' }.
-
-Lemma FLX_double_round_plus_hyp :
- (2 * prec + 1 <= prec')%Z ->
- double_round_plus_hyp (FLX_exp prec) (FLX_exp prec').
-Proof.
-intros Hprec.
-unfold FLX_exp.
-unfold double_round_plus_hyp; split; [|split; [|split]];
-intros ex ey; try omega.
-unfold Prec_gt_0 in prec_gt_0_.
-omega.
-Qed.
-
-Theorem double_round_plus_FLX :
- forall choice1 choice2,
- (2 * prec + 1 <= prec')%Z ->
- forall x y,
- FLX_format beta prec x -> FLX_format beta prec y ->
- double_round_eq (FLX_exp prec) (FLX_exp prec') choice1 choice2 (x + y).
-Proof.
-intros choice1 choice2 Hprec x y Fx Fy.
-apply double_round_plus.
-- now apply FLX_exp_valid.
-- now apply FLX_exp_valid.
-- now apply FLX_double_round_plus_hyp.
-- now apply generic_format_FLX.
-- now apply generic_format_FLX.
-Qed.
-
-Theorem double_round_minus_FLX :
- forall choice1 choice2,
- (2 * prec + 1 <= prec')%Z ->
- forall x y,
- FLX_format beta prec x -> FLX_format beta prec y ->
- double_round_eq (FLX_exp prec) (FLX_exp prec') choice1 choice2 (x - y).
-Proof.
-intros choice1 choice2 Hprec x y Fx Fy.
-apply double_round_minus.
-- now apply FLX_exp_valid.
-- now apply FLX_exp_valid.
-- now apply FLX_double_round_plus_hyp.
-- now apply generic_format_FLX.
-- now apply generic_format_FLX.
-Qed.
-
-End Double_round_plus_FLX.
-
-Section Double_round_plus_FLT.
-
-Import Fcore_FLX.
-Import Fcore_FLT.
-
-Variable emin prec : Z.
-Variable emin' prec' : Z.
-
-Context { prec_gt_0_ : Prec_gt_0 prec }.
-Context { prec_gt_0_' : Prec_gt_0 prec' }.
-
-Lemma FLT_double_round_plus_hyp :
- (emin' <= emin)%Z -> (2 * prec + 1 <= prec')%Z ->
- double_round_plus_hyp (FLT_exp emin prec) (FLT_exp emin' prec').
-Proof.
-intros Hemin Hprec.
-unfold FLT_exp.
-unfold double_round_plus_hyp; split; [|split; [|split]]; intros ex ey.
-- generalize (Zmax_spec (ex + 1 - prec) emin).
- generalize (Zmax_spec (ex - prec') emin').
- generalize (Zmax_spec (ey - prec) emin).
- omega.
-- generalize (Zmax_spec (ex - 1 - prec) emin).
- generalize (Zmax_spec (ex - prec') emin').
- generalize (Zmax_spec (ey - prec) emin).
- omega.
-- generalize (Zmax_spec (ex - prec) emin).
- generalize (Zmax_spec (ex - prec') emin').
- generalize (Zmax_spec (ey - prec) emin).
- omega.
-- unfold Prec_gt_0 in prec_gt_0_.
- generalize (Zmax_spec (ex - prec') emin').
- generalize (Zmax_spec (ey - prec) emin).
- omega.
-Qed.
-
-Theorem double_round_plus_FLT :
- forall choice1 choice2,
- (emin' <= emin)%Z -> (2 * prec + 1 <= prec')%Z ->
- forall x y,
- FLT_format beta emin prec x -> FLT_format beta emin prec y ->
- double_round_eq (FLT_exp emin prec) (FLT_exp emin' prec')
- choice1 choice2 (x + y).
-Proof.
-intros choice1 choice2 Hemin Hprec x y Fx Fy.
-apply double_round_plus.
-- now apply FLT_exp_valid.
-- now apply FLT_exp_valid.
-- now apply FLT_double_round_plus_hyp.
-- now apply generic_format_FLT.
-- now apply generic_format_FLT.
-Qed.
-
-Theorem double_round_minus_FLT :
- forall choice1 choice2,
- (emin' <= emin)%Z -> (2 * prec + 1 <= prec')%Z ->
- forall x y,
- FLT_format beta emin prec x -> FLT_format beta emin prec y ->
- double_round_eq (FLT_exp emin prec) (FLT_exp emin' prec')
- choice1 choice2 (x - y).
-Proof.
-intros choice1 choice2 Hemin Hprec x y Fx Fy.
-apply double_round_minus.
-- now apply FLT_exp_valid.
-- now apply FLT_exp_valid.
-- now apply FLT_double_round_plus_hyp.
-- now apply generic_format_FLT.
-- now apply generic_format_FLT.
-Qed.
-
-End Double_round_plus_FLT.
-
-Section Double_round_plus_FTZ.
-
-Import Fcore_FLX.
-Import Fcore_FTZ.
-
-Variable emin prec : Z.
-Variable emin' prec' : Z.
-
-Context { prec_gt_0_ : Prec_gt_0 prec }.
-Context { prec_gt_0_' : Prec_gt_0 prec' }.
-
-Lemma FTZ_double_round_plus_hyp :
- (emin' + prec' <= emin + 1)%Z -> (2 * prec + 1 <= prec')%Z ->
- double_round_plus_hyp (FTZ_exp emin prec) (FTZ_exp emin' prec').
-Proof.
-intros Hemin Hprec.
-unfold FTZ_exp.
-unfold Prec_gt_0 in *.
-unfold double_round_plus_hyp; split; [|split; [|split]]; intros ex ey.
-- destruct (Z.ltb_spec (ex + 1 - prec) emin);
- destruct (Z.ltb_spec (ex - prec') emin');
- destruct (Z.ltb_spec (ey - prec) emin);
- omega.
-- destruct (Z.ltb_spec (ex - 1 - prec) emin);
- destruct (Z.ltb_spec (ex - prec') emin');
- destruct (Z.ltb_spec (ey - prec) emin);
- omega.
-- destruct (Z.ltb_spec (ex - prec) emin);
- destruct (Z.ltb_spec (ex - prec') emin');
- destruct (Z.ltb_spec (ey - prec) emin);
- omega.
-- destruct (Z.ltb_spec (ex - prec') emin');
- destruct (Z.ltb_spec (ey - prec) emin);
- omega.
-Qed.
-
-Theorem double_round_plus_FTZ :
- forall choice1 choice2,
- (emin' + prec' <= emin + 1)%Z -> (2 * prec + 1 <= prec')%Z ->
- forall x y,
- FTZ_format beta emin prec x -> FTZ_format beta emin prec y ->
- double_round_eq (FTZ_exp emin prec) (FTZ_exp emin' prec')
- choice1 choice2 (x + y).
-Proof.
-intros choice1 choice2 Hemin Hprec x y Fx Fy.
-apply double_round_plus.
-- now apply FTZ_exp_valid.
-- now apply FTZ_exp_valid.
-- now apply FTZ_double_round_plus_hyp.
-- now apply generic_format_FTZ.
-- now apply generic_format_FTZ.
-Qed.
-
-Theorem double_round_minus_FTZ :
- forall choice1 choice2,
- (emin' + prec' <= emin + 1)%Z -> (2 * prec + 1 <= prec')%Z ->
- forall x y,
- FTZ_format beta emin prec x -> FTZ_format beta emin prec y ->
- double_round_eq (FTZ_exp emin prec) (FTZ_exp emin' prec')
- choice1 choice2 (x - y).
-Proof.
-intros choice1 choice2 Hemin Hprec x y Fx Fy.
-apply double_round_minus.
-- now apply FTZ_exp_valid.
-- now apply FTZ_exp_valid.
-- now apply FTZ_double_round_plus_hyp.
-- now apply generic_format_FTZ.
-- now apply generic_format_FTZ.
-Qed.
-
-End Double_round_plus_FTZ.
-
-Section Double_round_plus_beta_ge_3.
-
-Definition double_round_plus_beta_ge_3_hyp fexp1 fexp2 :=
- (forall ex ey, (fexp1 (ex + 1) <= ey)%Z -> (fexp2 ex <= fexp1 ey)%Z)
- /\ (forall ex ey, (fexp1 (ex - 1) + 1 <= ey)%Z -> (fexp2 ex <= fexp1 ey)%Z)
- /\ (forall ex ey, (fexp1 ex <= ey)%Z -> (fexp2 ex <= fexp1 ey)%Z)
- /\ (forall ex ey, (ex - 1 <= ey)%Z -> (fexp2 ex <= fexp1 ey)%Z).
-
-(* fexp1 (ln_beta x) <= ln_beta y :
- * addition is exact in the largest precision (fexp2). *)
-Lemma double_round_plus_beta_ge_3_aux0 :
- forall (fexp1 fexp2 : Z -> Z), Valid_exp fexp1 ->
- double_round_plus_beta_ge_3_hyp fexp1 fexp2 ->
- forall x y,
- (0 < y)%R -> (y <= x)%R ->
- (fexp1 (ln_beta x) <= ln_beta y)%Z ->
- generic_format beta fexp1 x -> generic_format beta fexp1 y ->
- generic_format beta fexp2 (x + y).
-Proof.
-intros fexp1 fexp2 Vfexp1 Hexp x y Py Hyx Hln Fx Fy.
-assert (Px := Rlt_le_trans 0 y x Py Hyx).
-assert (Nny : (0 <= y)%R); [now apply Rlt_le|].
-destruct Hexp as (_,(Hexp2,(Hexp3,Hexp4))).
-destruct (Z.le_gt_cases (ln_beta y) (fexp1 (ln_beta x))) as [Hle|Hgt].
-- (* ln_beta y <= fexp1 (ln_beta x) *)
- assert (Lxy : ln_beta (x + y) = ln_beta x :> Z);
- [now apply (ln_beta_plus_separated fexp1)|].
- apply (double_round_plus_aux0_aux fexp1);
- [| |assumption|assumption]; rewrite Lxy.
- + now apply Hexp4; omega.
- + now apply Hexp3; omega.
-- (* fexp1 (ln_beta x) < ln_beta y *)
- apply (double_round_plus_aux0_aux fexp1); [| |assumption|assumption].
- destruct (ln_beta_plus_disj x y Py Hyx) as [Lxy|Lxy]; rewrite Lxy.
- + now apply Hexp4; omega.
- + apply Hexp2; apply (ln_beta_le beta y x Py) in Hyx.
- replace (_ - _)%Z with (ln_beta x : Z) by ring.
- omega.
- + destruct (ln_beta_plus_disj x y Py Hyx) as [Lxy|Lxy]; rewrite Lxy.
- * now apply Hexp3; omega.
- * apply Hexp2.
- replace (_ - _)%Z with (ln_beta x : Z) by ring.
- omega.
-Qed.
-
-(* ln_beta y <= fexp1 (ln_beta x) - 1 : double_round_lt_mid applies. *)
-Lemma double_round_plus_beta_ge_3_aux1 :
- (3 <= beta)%Z ->
- forall (fexp1 fexp2 : Z -> Z),
- Valid_exp fexp1 -> Valid_exp fexp2 ->
- forall (choice1 choice2 : Z -> bool),
- double_round_plus_beta_ge_3_hyp fexp1 fexp2 ->
- forall x y,
- 0 < x -> 0 < y ->
- (ln_beta y <= fexp1 (ln_beta x) - 1)%Z ->
- generic_format beta fexp1 x ->
- double_round_eq fexp1 fexp2 choice1 choice2 (x + y).
-Proof.
-intros Hbeta fexp1 fexp2 Vfexp1 Vfexp2 choice1 choice2 Hexp x y Px Py Hly Fx.
-assert (Lxy : ln_beta (x + y) = ln_beta x :> Z);
- [now apply (ln_beta_plus_separated fexp1); [|apply Rlt_le| |omega]|].
-destruct Hexp as (_,(_,(_,Hexp4))).
-assert (Hf2 : (fexp2 (ln_beta x) <= fexp1 (ln_beta x))%Z);
- [now apply Hexp4; omega|].
-assert (Bpow3 : bpow (- 1) <= / 3).
-{ unfold Fcore_Raux.bpow, Z.pow_pos; simpl.
- rewrite Zmult_1_r.
- apply Rinv_le; [lra|].
- now change 3 with (Z2R 3); apply Z2R_le. }
-assert (P1 : (0 < 1)%Z) by omega.
-unfold double_round_eq.
-apply double_round_lt_mid.
-- exact Vfexp1.
-- exact Vfexp2.
-- lra.
-- now rewrite Lxy.
-- rewrite Lxy.
- assert (fexp1 (ln_beta x) < ln_beta x)%Z; [|omega].
- now apply ln_beta_generic_gt; [|apply Rgt_not_eq|].
-- unfold midp.
- apply (Rplus_lt_reg_r (- round beta fexp1 Zfloor (x + y))).
- apply (Rlt_le_trans _ _ _ (proj2 (double_round_plus_aux1_aux 1 P1 fexp1 x y Px
- Py Hly Lxy Fx))).
- ring_simplify.
- rewrite ulp_neq_0;[idtac|now apply Rgt_not_eq, Rplus_lt_0_compat].
- unfold canonic_exp; rewrite Lxy.
- apply (Rmult_le_reg_r (bpow (- fexp1 (ln_beta x))));
- [now apply bpow_gt_0|].
- bpow_simplify.
- apply (Rle_trans _ _ _ Bpow3); lra.
-- rewrite ulp_neq_0;[idtac|now apply Rgt_not_eq, Rplus_lt_0_compat].
- unfold round, F2R, scaled_mantissa, canonic_exp; simpl; rewrite Lxy.
- intro Hf2'.
- unfold midp.
- apply (Rplus_lt_reg_r (- round beta fexp1 Zfloor (x + y))); ring_simplify.
- rewrite <- Rmult_minus_distr_l.
- apply (Rlt_le_trans _ _ _ (proj2 (double_round_plus_aux1_aux 1 P1 fexp1 x y Px
- Py Hly Lxy Fx))).
- rewrite ulp_neq_0;[idtac|now apply Rgt_not_eq, Rplus_lt_0_compat].
- unfold canonic_exp; rewrite Lxy.
- apply (Rmult_le_reg_r (bpow (- fexp1 (ln_beta x))));
- [now apply bpow_gt_0|].
- rewrite (Rmult_assoc (/ 2)).
- rewrite Rmult_minus_distr_r.
- bpow_simplify.
- apply (Rle_trans _ _ _ Bpow3).
- apply Rle_trans with (/ 2 * (2 / 3)); [lra|].
- apply Rmult_le_compat_l; [lra|].
- apply (Rplus_le_reg_r (- 1)); ring_simplify.
- replace (_ - _) with (- (/ 3)) by lra.
- apply Ropp_le_contravar.
- now apply Rle_trans with (bpow (- 1)); [apply bpow_le; omega|].
-Qed.
-
-(* double_round_plus_beta_ge_3_aux{0,1} together *)
-Lemma double_round_plus_beta_ge_3_aux2 :
- (3 <= beta)%Z ->
- forall (fexp1 fexp2 : Z -> Z),
- Valid_exp fexp1 -> Valid_exp fexp2 ->
- forall (choice1 choice2 : Z -> bool),
- double_round_plus_beta_ge_3_hyp fexp1 fexp2 ->
- forall x y,
- 0 < y -> y <= x ->
- generic_format beta fexp1 x ->
- generic_format beta fexp1 y ->
- double_round_eq fexp1 fexp2 choice1 choice2 (x + y).
-Proof.
-intros Hbeta fexp1 fexp2 Vfexp1 Vfexp2 choice1 choice2 Hexp x y Py Hyx Fx Fy.
-assert (Px := Rlt_le_trans 0 y x Py Hyx).
-unfold double_round_eq.
-destruct (Zle_or_lt (ln_beta y) (fexp1 (ln_beta x) - 1)) as [Hly|Hly].
-- (* ln_beta y <= fexp1 (ln_beta x) - 1 *)
- now apply double_round_plus_beta_ge_3_aux1.
-- (* fexp1 (ln_beta x) - 1 < ln_beta y *)
- rewrite (round_generic beta fexp2).
- + reflexivity.
- + now apply valid_rnd_N.
- + assert (Hf1 : (fexp1 (ln_beta x) <= ln_beta y)%Z); [omega|].
- now apply (double_round_plus_beta_ge_3_aux0 fexp1).
-Qed.
-
-Lemma double_round_plus_beta_ge_3_aux :
- (3 <= beta)%Z ->
- forall (fexp1 fexp2 : Z -> Z),
- Valid_exp fexp1 -> Valid_exp fexp2 ->
- forall (choice1 choice2 : Z -> bool),
- double_round_plus_beta_ge_3_hyp fexp1 fexp2 ->
- forall x y,
- 0 <= x -> 0 <= y ->
- generic_format beta fexp1 x ->
- generic_format beta fexp1 y ->
- double_round_eq fexp1 fexp2 choice1 choice2 (x + y).
-Proof.
-intros Hbeta fexp1 fexp2 Vfexp1 Vfexp2 choice1 choice2 Hexp x y Nnx Nny Fx Fy.
-unfold double_round_eq.
-destruct (Req_dec x 0) as [Zx|Nzx].
-- (* x = 0 *)
- destruct Hexp as (_,(_,(_,Hexp4))).
- rewrite Zx; rewrite Rplus_0_l.
- rewrite (round_generic beta fexp2).
- + reflexivity.
- + now apply valid_rnd_N.
- + apply (generic_inclusion_ln_beta beta fexp1).
- now intros _; apply Hexp4; omega.
- exact Fy.
-- (* x <> 0 *)
- destruct (Req_dec y 0) as [Zy|Nzy].
- + (* y = 0 *)
- destruct Hexp as (_,(_,(_,Hexp4))).
- rewrite Zy; rewrite Rplus_0_r.
- rewrite (round_generic beta fexp2).
- * reflexivity.
- * now apply valid_rnd_N.
- * apply (generic_inclusion_ln_beta beta fexp1).
- now intros _; apply Hexp4; omega.
- exact Fx.
- + (* y <> 0 *)
- assert (Px : 0 < x); [lra|].
- assert (Py : 0 < y); [lra|].
- destruct (Rlt_or_le x y) as [H|H].
- * (* x < y *)
- apply Rlt_le in H.
- rewrite Rplus_comm.
- now apply double_round_plus_beta_ge_3_aux2.
- * now apply double_round_plus_beta_ge_3_aux2.
-Qed.
-
-(* fexp1 (ln_beta x) <= ln_beta y :
- * substraction is exact in the largest precision (fexp2). *)
-Lemma double_round_minus_beta_ge_3_aux0 :
- forall (fexp1 fexp2 : Z -> Z),
- double_round_plus_beta_ge_3_hyp fexp1 fexp2 ->
- forall x y,
- 0 < y -> y < x ->
- (fexp1 (ln_beta x) <= ln_beta y)%Z ->
- generic_format beta fexp1 x -> generic_format beta fexp1 y ->
- generic_format beta fexp2 (x - y).
-Proof.
-intros fexp1 fexp2 Hexp x y Py Hyx Hln Fx Fy.
-assert (Px := Rlt_trans 0 y x Py Hyx).
-destruct Hexp as (Hexp1,(_,(Hexp3,Hexp4))).
-assert (Lyx : (ln_beta y <= ln_beta x)%Z);
- [now apply ln_beta_le; [|apply Rlt_le]|].
-destruct (Z.lt_ge_cases (ln_beta x - 2) (ln_beta y)) as [Hlt|Hge].
-- (* ln_beta x - 2 < ln_beta y *)
- assert (Hor : (ln_beta y = ln_beta x :> Z)
- \/ (ln_beta y = ln_beta x - 1 :> Z)%Z); [omega|].
- destruct Hor as [Heq|Heqm1].
- + (* ln_beta y = ln_beta x *)
- apply (double_round_minus_aux0_aux fexp1); [| |exact Fx|exact Fy].
- * apply Hexp4.
- apply Zle_trans with (ln_beta (x - y)); [omega|].
- now apply ln_beta_minus.
- * rewrite Heq.
- apply Hexp4.
- apply Zle_trans with (ln_beta (x - y)); [omega|].
- now apply ln_beta_minus.
- + (* ln_beta y = ln_beta x - 1 *)
- apply (double_round_minus_aux0_aux fexp1); [| |exact Fx|exact Fy].
- * apply Hexp4.
- apply Zle_trans with (ln_beta (x - y)); [omega|].
- now apply ln_beta_minus.
- * rewrite Heqm1.
- apply Hexp4.
- apply Zplus_le_compat_r.
- now apply ln_beta_minus.
-- (* ln_beta y <= ln_beta x - 2 *)
- destruct (ln_beta_minus_disj x y Px Py Hge) as [Lxmy|Lxmy].
- + (* ln_beta (x - y) = ln_beta x *)
- apply (double_round_minus_aux0_aux fexp1); [| |exact Fx|exact Fy].
- * apply Hexp4.
- omega.
- * now rewrite Lxmy; apply Hexp3.
- + (* ln_beta (x - y) = ln_beta x - 1 *)
- apply (double_round_minus_aux0_aux fexp1); [| |exact Fx|exact Fy];
- rewrite Lxmy.
- * apply Hexp1.
- replace (_ + _)%Z with (ln_beta x : Z); [|ring].
- now apply Zle_trans with (ln_beta y).
- * apply Hexp1.
- now replace (_ + _)%Z with (ln_beta x : Z); [|ring].
-Qed.
-
-(* ln_beta y <= fexp1 (ln_beta x) - 1,
- * fexp1 (ln_beta (x - y)) <= ln_beta y :
- * substraction is exact in the largest precision (fexp2). *)
-Lemma double_round_minus_beta_ge_3_aux1 :
- forall (fexp1 fexp2 : Z -> Z),
- Valid_exp fexp1 -> Valid_exp fexp2 ->
- double_round_plus_beta_ge_3_hyp fexp1 fexp2 ->
- forall x y,
- 0 < y -> y < x ->
- (ln_beta y <= fexp1 (ln_beta x) - 1)%Z ->
- (fexp1 (ln_beta (x - y)) <= ln_beta y)%Z ->
- generic_format beta fexp1 x -> generic_format beta fexp1 y ->
- generic_format beta fexp2 (x - y).
-Proof.
-intros fexp1 fexp2 Vfexp1 Vfexp2 Hexp x y Py Hyx Hln Hln' Fx Fy.
-assert (Px := Rlt_trans 0 y x Py Hyx).
-destruct Hexp as (Hexp1,(Hexp2,(Hexp3,Hexp4))).
-assert (Lyx : (ln_beta y <= ln_beta x)%Z);
- [now apply ln_beta_le; [|apply Rlt_le]|].
-assert (Hfx : (fexp1 (ln_beta x) < ln_beta x)%Z);
- [now apply ln_beta_generic_gt; [|apply Rgt_not_eq|]|].
-assert (Hfy : (fexp1 (ln_beta y) < ln_beta y)%Z);
- [now apply ln_beta_generic_gt; [|apply Rgt_not_eq|]|].
-apply (double_round_minus_aux0_aux fexp1); [| |exact Fx|exact Fy].
-- apply Zle_trans with (fexp1 (ln_beta (x - y))).
- + apply Hexp4; omega.
- + omega.
-- now apply Hexp3.
-Qed.
-
-(* ln_beta y <= fexp1 (ln_beta x) - 1 :
- * ln_beta y <= fexp1 (ln_beta (x - y)) - 1 :
- * double_round_gt_mid applies. *)
-Lemma double_round_minus_beta_ge_3_aux2 :
- (3 <= beta)%Z ->
- forall (fexp1 fexp2 : Z -> Z),
- Valid_exp fexp1 -> Valid_exp fexp2 ->
- forall (choice1 choice2 : Z -> bool),
- double_round_plus_beta_ge_3_hyp fexp1 fexp2 ->
- forall x y,
- 0 < y -> y < x ->
- (ln_beta y <= fexp1 (ln_beta x) - 1)%Z ->
- (ln_beta y <= fexp1 (ln_beta (x - y)) - 1)%Z ->
- generic_format beta fexp1 x ->
- generic_format beta fexp1 y ->
- double_round_eq fexp1 fexp2 choice1 choice2 (x - y).
-Proof.
-intros Hbeta fexp1 fexp2 Vfexp1 Vfexp2 choice1 choice2 Hexp x y Py Hxy Hly Hly' Fx Fy.
-assert (Px := Rlt_trans 0 y x Py Hxy).
-destruct Hexp as (_,(_,(_,Hexp4))).
-assert (Hf2 : (fexp2 (ln_beta x) <= fexp1 (ln_beta x))%Z);
- [now apply Hexp4; omega|].
-assert (Hfx : (fexp1 (ln_beta x) < ln_beta x)%Z);
- [now apply ln_beta_generic_gt; [|apply Rgt_not_eq|]|].
-assert (Bpow3 : bpow (- 1) <= / 3).
-{ unfold Fcore_Raux.bpow, Z.pow_pos; simpl.
- rewrite Zmult_1_r.
- apply Rinv_le; [lra|].
- now change 3 with (Z2R 3); apply Z2R_le. }
-assert (Ly : y < bpow (ln_beta y)).
-{ apply Rabs_lt_inv.
- apply bpow_ln_beta_gt. }
-unfold double_round_eq.
-apply double_round_gt_mid.
-- exact Vfexp1.
-- exact Vfexp2.
-- lra.
-- apply Hexp4; omega.
-- assert (fexp1 (ln_beta (x - y)) < ln_beta (x - y))%Z; [|omega].
- apply (valid_exp_large fexp1 (ln_beta x - 1)).
- + apply (valid_exp_large fexp1 (ln_beta y)); [|omega].
- now apply ln_beta_generic_gt; [|apply Rgt_not_eq|].
- + now apply ln_beta_minus_lb; [| |omega].
-- unfold midp'.
- apply (Rplus_lt_reg_r (/ 2 * ulp beta fexp1 (x - y) - (x - y))).
- ring_simplify.
- replace (_ + _) with (round beta fexp1 Zceil (x - y) - (x - y)) by ring.
- apply Rlt_le_trans with (bpow (fexp1 (ln_beta (x - y)) - 1)).
- + apply Rle_lt_trans with y;
- [now apply double_round_minus_aux2_aux|].
- apply (Rlt_le_trans _ _ _ Ly).
- now apply bpow_le.
- + rewrite ulp_neq_0;[idtac|now apply Rgt_not_eq, Rgt_minus].
- unfold canonic_exp.
- unfold Zminus at 1; rewrite bpow_plus.
- rewrite Rmult_comm.
- apply Rmult_le_compat_r; [now apply bpow_ge_0|].
- unfold Fcore_Raux.bpow, Z.pow_pos; simpl.
- rewrite Zmult_1_r; apply Rinv_le; [lra|].
- now change 2 with (Z2R 2); apply Z2R_le; omega.
-- intro Hf2'.
- unfold midp'.
- apply (Rplus_lt_reg_r (/ 2 * (ulp beta fexp1 (x - y)
- - ulp beta fexp2 (x - y)) - (x - y))).
- ring_simplify; rewrite <- Rmult_minus_distr_l.
- replace (_ + _) with (round beta fexp1 Zceil (x - y) - (x - y)) by ring.
- apply Rle_lt_trans with y;
- [now apply double_round_minus_aux2_aux|].
- apply (Rlt_le_trans _ _ _ Ly).
- apply Rle_trans with (bpow (fexp1 (ln_beta (x - y)) - 1));
- [now apply bpow_le|].
- rewrite 2!ulp_neq_0; try now apply Rgt_not_eq, Rgt_minus.
- unfold canonic_exp.
- apply (Rmult_le_reg_r (bpow (- fexp1 (ln_beta (x - y)))));
- [now apply bpow_gt_0|].
- rewrite Rmult_assoc.
- rewrite Rmult_minus_distr_r.
- bpow_simplify.
- apply Rle_trans with (/ 3).
- + unfold Fcore_Raux.bpow, Z.pow_pos; simpl.
- rewrite Zmult_1_r; apply Rinv_le; [lra|].
- now change 3 with (Z2R 3); apply Z2R_le.
- + replace (/ 3) with (/ 2 * (2 / 3)) by field.
- apply Rmult_le_compat_l; [lra|].
- apply (Rplus_le_reg_r (- 1)); ring_simplify.
- replace (_ - _) with (- / 3) by field.
- apply Ropp_le_contravar.
- apply Rle_trans with (bpow (- 1)).
- * apply bpow_le; omega.
- * unfold Fcore_Raux.bpow, Z.pow_pos; simpl.
- rewrite Zmult_1_r; apply Rinv_le; [lra|].
- now change 3 with (Z2R 3); apply Z2R_le.
-Qed.
-
-(* double_round_minus_aux{0,1,2} together *)
-Lemma double_round_minus_beta_ge_3_aux3 :
- (3 <= beta)%Z ->
- forall (fexp1 fexp2 : Z -> Z),
- Valid_exp fexp1 -> Valid_exp fexp2 ->
- forall (choice1 choice2 : Z -> bool),
- double_round_plus_beta_ge_3_hyp fexp1 fexp2 ->
- forall x y,
- 0 < y -> y <= x ->
- generic_format beta fexp1 x ->
- generic_format beta fexp1 y ->
- double_round_eq fexp1 fexp2 choice1 choice2 (x - y).
-Proof.
-intros Hbeta fexp1 fexp2 Vfexp1 Vfexp2 choice1 choice2 Hexp x y Py Hyx Fx Fy.
-assert (Px := Rlt_le_trans 0 y x Py Hyx).
-unfold double_round_eq.
-destruct (Req_dec y x) as [Hy|Hy].
-- (* y = x *)
- rewrite Hy; replace (x - x) with 0 by ring.
- rewrite round_0.
- + reflexivity.
- + now apply valid_rnd_N.
-- (* y < x *)
- assert (Hyx' : y < x); [lra|].
- destruct (Zle_or_lt (ln_beta y) (fexp1 (ln_beta x) - 1)) as [Hly|Hly].
- + (* ln_beta y <= fexp1 (ln_beta x) - 1 *)
- destruct (Zle_or_lt (ln_beta y) (fexp1 (ln_beta (x - y)) - 1))
- as [Hly'|Hly'].
- * (* ln_beta y <= fexp1 (ln_beta (x - y)) - 1 *)
- now apply double_round_minus_beta_ge_3_aux2.
- * (* fexp1 (ln_beta (x - y)) - 1 < ln_beta y *)
- { rewrite (round_generic beta fexp2).
- - reflexivity.
- - now apply valid_rnd_N.
- - assert (Hf1 : (fexp1 (ln_beta (x - y)) <= ln_beta y)%Z); [omega|].
- now apply (double_round_minus_beta_ge_3_aux1 fexp1). }
- + rewrite (round_generic beta fexp2).
- * reflexivity.
- * now apply valid_rnd_N.
- * assert (Hf1 : (fexp1 (ln_beta x) <= ln_beta y)%Z); [omega|].
- now apply (double_round_minus_beta_ge_3_aux0 fexp1).
-Qed.
-
-Lemma double_round_minus_beta_ge_3_aux :
- (3 <= beta)%Z ->
- forall (fexp1 fexp2 : Z -> Z),
- Valid_exp fexp1 -> Valid_exp fexp2 ->
- forall (choice1 choice2 : Z -> bool),
- double_round_plus_beta_ge_3_hyp fexp1 fexp2 ->
- forall x y,
- 0 <= x -> 0 <= y ->
- generic_format beta fexp1 x ->
- generic_format beta fexp1 y ->
- double_round_eq fexp1 fexp2 choice1 choice2 (x - y).
-Proof.
-intros Hbeta fexp1 fexp2 Vfexp1 Vfexp2 choice1 choice2 Hexp x y Nnx Nny Fx Fy.
-unfold double_round_eq.
-destruct (Req_dec x 0) as [Zx|Nzx].
-- (* x = 0 *)
- rewrite Zx; unfold Rminus; rewrite Rplus_0_l.
- do 3 rewrite round_N_opp.
- rewrite (round_generic beta fexp2).
- * reflexivity.
- * now apply valid_rnd_N.
- * apply (generic_inclusion_ln_beta beta fexp1).
- destruct Hexp as (_,(_,(_,Hexp4))).
- now intros _; apply Hexp4; omega.
- exact Fy.
-- (* x <> 0 *)
- destruct (Req_dec y 0) as [Zy|Nzy].
- + (* y = 0 *)
- rewrite Zy; unfold Rminus; rewrite Ropp_0; rewrite Rplus_0_r.
- rewrite (round_generic beta fexp2).
- * reflexivity.
- * now apply valid_rnd_N.
- * apply (generic_inclusion_ln_beta beta fexp1).
- destruct Hexp as (_,(_,(_,Hexp4))).
- now intros _; apply Hexp4; omega.
- exact Fx.
- + (* y <> 0 *)
- assert (Px : 0 < x); [lra|].
- assert (Py : 0 < y); [lra|].
- destruct (Rlt_or_le x y) as [H|H].
- * (* x < y *)
- apply Rlt_le in H.
- replace (x - y) with (- (y - x)) by ring.
- do 3 rewrite round_N_opp.
- apply Ropp_eq_compat.
- now apply double_round_minus_beta_ge_3_aux3.
- * (* y <= x *)
- now apply double_round_minus_beta_ge_3_aux3.
-Qed.
-
-Lemma double_round_plus_beta_ge_3 :
- (3 <= beta)%Z ->
- forall (fexp1 fexp2 : Z -> Z),
- Valid_exp fexp1 -> Valid_exp fexp2 ->
- forall (choice1 choice2 : Z -> bool),
- double_round_plus_beta_ge_3_hyp fexp1 fexp2 ->
- forall x y,
- generic_format beta fexp1 x ->
- generic_format beta fexp1 y ->
- double_round_eq fexp1 fexp2 choice1 choice2 (x + y).
-Proof.
-intros Hbeta fexp1 fexp2 Vfexp1 Vfexp2 choice1 choice2 Hexp x y Fx Fy.
-unfold double_round_eq.
-destruct (Rlt_or_le x 0) as [Sx|Sx]; destruct (Rlt_or_le y 0) as [Sy|Sy].
-- (* x < 0, y < 0 *)
- replace (x + y) with (- (- x - y)); [|ring].
- do 3 rewrite round_N_opp.
- apply Ropp_eq_compat.
- assert (Px : 0 <= - x); [lra|].
- assert (Py : 0 <= - y); [lra|].
- apply generic_format_opp in Fx.
- apply generic_format_opp in Fy.
- now apply double_round_plus_beta_ge_3_aux.
-- (* x < 0, 0 <= y *)
- replace (x + y) with (y - (- x)); [|ring].
- assert (Px : 0 <= - x); [lra|].
- apply generic_format_opp in Fx.
- now apply double_round_minus_beta_ge_3_aux.
-- (* 0 <= x, y < 0 *)
- replace (x + y) with (x - (- y)); [|ring].
- assert (Py : 0 <= - y); [lra|].
- apply generic_format_opp in Fy.
- now apply double_round_minus_beta_ge_3_aux.
-- (* 0 <= x, 0 <= y *)
- now apply double_round_plus_beta_ge_3_aux.
-Qed.
-
-Lemma double_round_minus_beta_ge_3 :
- (3 <= beta)%Z ->
- forall (fexp1 fexp2 : Z -> Z),
- Valid_exp fexp1 -> Valid_exp fexp2 ->
- forall (choice1 choice2 : Z -> bool),
- double_round_plus_beta_ge_3_hyp fexp1 fexp2 ->
- forall x y,
- generic_format beta fexp1 x ->
- generic_format beta fexp1 y ->
- double_round_eq fexp1 fexp2 choice1 choice2 (x - y).
-Proof.
-intros Hbeta fexp1 fexp2 Vfexp1 Vfexp2 choice1 choice2 Hexp x y Fx Fy.
-unfold Rminus.
-apply generic_format_opp in Fy.
-now apply double_round_plus_beta_ge_3.
-Qed.
-
-Section Double_round_plus_beta_ge_3_FLX.
-
-Import Fcore_FLX.
-
-Variable prec : Z.
-Variable prec' : Z.
-
-Context { prec_gt_0_ : Prec_gt_0 prec }.
-Context { prec_gt_0_' : Prec_gt_0 prec' }.
-
-Lemma FLX_double_round_plus_beta_ge_3_hyp :
- (2 * prec <= prec')%Z ->
- double_round_plus_beta_ge_3_hyp (FLX_exp prec) (FLX_exp prec').
-Proof.
-intros Hprec.
-unfold FLX_exp.
-unfold double_round_plus_beta_ge_3_hyp; split; [|split; [|split]];
-intros ex ey; try omega.
-unfold Prec_gt_0 in prec_gt_0_.
-omega.
-Qed.
-
-Theorem double_round_plus_beta_ge_3_FLX :
- (3 <= beta)%Z ->
- forall choice1 choice2,
- (2 * prec <= prec')%Z ->
- forall x y,
- FLX_format beta prec x -> FLX_format beta prec y ->
- double_round_eq (FLX_exp prec) (FLX_exp prec') choice1 choice2 (x + y).
-Proof.
-intros Hbeta choice1 choice2 Hprec x y Fx Fy.
-apply double_round_plus_beta_ge_3.
-- exact Hbeta.
-- now apply FLX_exp_valid.
-- now apply FLX_exp_valid.
-- now apply FLX_double_round_plus_beta_ge_3_hyp.
-- now apply generic_format_FLX.
-- now apply generic_format_FLX.
-Qed.
-
-Theorem double_round_minus_beta_ge_3_FLX :
- (3 <= beta)%Z ->
- forall choice1 choice2,
- (2 * prec <= prec')%Z ->
- forall x y,
- FLX_format beta prec x -> FLX_format beta prec y ->
- double_round_eq (FLX_exp prec) (FLX_exp prec') choice1 choice2 (x - y).
-Proof.
-intros Hbeta choice1 choice2 Hprec x y Fx Fy.
-apply double_round_minus_beta_ge_3.
-- exact Hbeta.
-- now apply FLX_exp_valid.
-- now apply FLX_exp_valid.
-- now apply FLX_double_round_plus_beta_ge_3_hyp.
-- now apply generic_format_FLX.
-- now apply generic_format_FLX.
-Qed.
-
-End Double_round_plus_beta_ge_3_FLX.
-
-Section Double_round_plus_beta_ge_3_FLT.
-
-Import Fcore_FLX.
-Import Fcore_FLT.
-
-Variable emin prec : Z.
-Variable emin' prec' : Z.
-
-Context { prec_gt_0_ : Prec_gt_0 prec }.
-Context { prec_gt_0_' : Prec_gt_0 prec' }.
-
-Lemma FLT_double_round_plus_beta_ge_3_hyp :
- (emin' <= emin)%Z -> (2 * prec <= prec')%Z ->
- double_round_plus_beta_ge_3_hyp (FLT_exp emin prec) (FLT_exp emin' prec').
-Proof.
-intros Hemin Hprec.
-unfold FLT_exp.
-unfold double_round_plus_beta_ge_3_hyp; split; [|split; [|split]]; intros ex ey.
-- generalize (Zmax_spec (ex + 1 - prec) emin).
- generalize (Zmax_spec (ex - prec') emin').
- generalize (Zmax_spec (ey - prec) emin).
- omega.
-- generalize (Zmax_spec (ex - 1 - prec) emin).
- generalize (Zmax_spec (ex - prec') emin').
- generalize (Zmax_spec (ey - prec) emin).
- omega.
-- generalize (Zmax_spec (ex - prec) emin).
- generalize (Zmax_spec (ex - prec') emin').
- generalize (Zmax_spec (ey - prec) emin).
- omega.
-- unfold Prec_gt_0 in prec_gt_0_.
- generalize (Zmax_spec (ex - prec') emin').
- generalize (Zmax_spec (ey - prec) emin).
- omega.
-Qed.
-
-Theorem double_round_plus_beta_ge_3_FLT :
- (3 <= beta)%Z ->
- forall choice1 choice2,
- (emin' <= emin)%Z -> (2 * prec <= prec')%Z ->
- forall x y,
- FLT_format beta emin prec x -> FLT_format beta emin prec y ->
- double_round_eq (FLT_exp emin prec) (FLT_exp emin' prec')
- choice1 choice2 (x + y).
-Proof.
-intros Hbeta choice1 choice2 Hemin Hprec x y Fx Fy.
-apply double_round_plus_beta_ge_3.
-- exact Hbeta.
-- now apply FLT_exp_valid.
-- now apply FLT_exp_valid.
-- now apply FLT_double_round_plus_beta_ge_3_hyp.
-- now apply generic_format_FLT.
-- now apply generic_format_FLT.
-Qed.
-
-Theorem double_round_minus_beta_ge_3_FLT :
- (3 <= beta)%Z ->
- forall choice1 choice2,
- (emin' <= emin)%Z -> (2 * prec <= prec')%Z ->
- forall x y,
- FLT_format beta emin prec x -> FLT_format beta emin prec y ->
- double_round_eq (FLT_exp emin prec) (FLT_exp emin' prec')
- choice1 choice2 (x - y).
-Proof.
-intros Hbeta choice1 choice2 Hemin Hprec x y Fx Fy.
-apply double_round_minus_beta_ge_3.
-- exact Hbeta.
-- now apply FLT_exp_valid.
-- now apply FLT_exp_valid.
-- now apply FLT_double_round_plus_beta_ge_3_hyp.
-- now apply generic_format_FLT.
-- now apply generic_format_FLT.
-Qed.
-
-End Double_round_plus_beta_ge_3_FLT.
-
-Section Double_round_plus_beta_ge_3_FTZ.
-
-Import Fcore_FLX.
-Import Fcore_FTZ.
-
-Variable emin prec : Z.
-Variable emin' prec' : Z.
-
-Context { prec_gt_0_ : Prec_gt_0 prec }.
-Context { prec_gt_0_' : Prec_gt_0 prec' }.
-
-Lemma FTZ_double_round_plus_beta_ge_3_hyp :
- (emin' + prec' <= emin + 1)%Z -> (2 * prec <= prec')%Z ->
- double_round_plus_beta_ge_3_hyp (FTZ_exp emin prec) (FTZ_exp emin' prec').
-Proof.
-intros Hemin Hprec.
-unfold FTZ_exp.
-unfold Prec_gt_0 in *.
-unfold double_round_plus_beta_ge_3_hyp; split; [|split; [|split]]; intros ex ey.
-- destruct (Z.ltb_spec (ex + 1 - prec) emin);
- destruct (Z.ltb_spec (ex - prec') emin');
- destruct (Z.ltb_spec (ey - prec) emin);
- omega.
-- destruct (Z.ltb_spec (ex - 1 - prec) emin);
- destruct (Z.ltb_spec (ex - prec') emin');
- destruct (Z.ltb_spec (ey - prec) emin);
- omega.
-- destruct (Z.ltb_spec (ex - prec) emin);
- destruct (Z.ltb_spec (ex - prec') emin');
- destruct (Z.ltb_spec (ey - prec) emin);
- omega.
-- destruct (Z.ltb_spec (ex - prec') emin');
- destruct (Z.ltb_spec (ey - prec) emin);
- omega.
-Qed.
-
-Theorem double_round_plus_beta_ge_3_FTZ :
- (3 <= beta)%Z ->
- forall choice1 choice2,
- (emin' + prec' <= emin + 1)%Z -> (2 * prec <= prec')%Z ->
- forall x y,
- FTZ_format beta emin prec x -> FTZ_format beta emin prec y ->
- double_round_eq (FTZ_exp emin prec) (FTZ_exp emin' prec')
- choice1 choice2 (x + y).
-Proof.
-intros Hbeta choice1 choice2 Hemin Hprec x y Fx Fy.
-apply double_round_plus_beta_ge_3.
-- exact Hbeta.
-- now apply FTZ_exp_valid.
-- now apply FTZ_exp_valid.
-- now apply FTZ_double_round_plus_beta_ge_3_hyp.
-- now apply generic_format_FTZ.
-- now apply generic_format_FTZ.
-Qed.
-
-Theorem double_round_minus_beta_ge_3_FTZ :
- (3 <= beta)%Z ->
- forall choice1 choice2,
- (emin' + prec' <= emin + 1)%Z -> (2 * prec <= prec')%Z ->
- forall x y,
- FTZ_format beta emin prec x -> FTZ_format beta emin prec y ->
- double_round_eq (FTZ_exp emin prec) (FTZ_exp emin' prec')
- choice1 choice2 (x - y).
-Proof.
-intros Hbeta choice1 choice2 Hemin Hprec x y Fx Fy.
-apply double_round_minus_beta_ge_3.
-- exact Hbeta.
-- now apply FTZ_exp_valid.
-- now apply FTZ_exp_valid.
-- now apply FTZ_double_round_plus_beta_ge_3_hyp.
-- now apply generic_format_FTZ.
-- now apply generic_format_FTZ.
-Qed.
-
-End Double_round_plus_beta_ge_3_FTZ.
-
-End Double_round_plus_beta_ge_3.
-
-End Double_round_plus.
-
-Lemma double_round_mid_cases :
- forall (fexp1 fexp2 : Z -> Z),
- Valid_exp fexp1 -> Valid_exp fexp2 ->
- forall (choice1 choice2 : Z -> bool),
- forall x,
- 0 < x ->
- (fexp2 (ln_beta x) <= fexp1 (ln_beta x) - 1)%Z ->
- (fexp1 (ln_beta x) <= ln_beta x)%Z ->
- (Rabs (x - midp fexp1 x) <= / 2 * (ulp beta fexp2 x) ->
- double_round_eq fexp1 fexp2 choice1 choice2 x) ->
- double_round_eq fexp1 fexp2 choice1 choice2 x.
-Proof.
-intros fexp1 fexp2 Vfexp1 Vfexp2 choice1 choice2 x Px Hf2f1 Hf1.
-unfold double_round_eq, midp.
-set (rd := round beta fexp1 Zfloor x).
-set (u1 := ulp beta fexp1 x).
-set (u2 := ulp beta fexp2 x).
-intros Cmid.
-destruct (generic_format_EM beta fexp1 x) as [Fx|Nfx].
-- (* generic_format beta fexp1 x *)
- rewrite (round_generic beta fexp2); [reflexivity|now apply valid_rnd_N|].
- now apply (generic_inclusion_ln_beta beta fexp1); [omega|].
-- (* ~ generic_format beta fexp1 x *)
- assert (Hceil : round beta fexp1 Zceil x = rd + u1);
- [now apply round_UP_DN_ulp|].
- assert (Hf2' : (fexp2 (ln_beta x) <= fexp1 (ln_beta x) - 1)%Z); [omega|].
- destruct (Rlt_or_le (x - rd) (/ 2 * (u1 - u2))).
- + (* x - rd < / 2 * (u1 - u2) *)
- apply double_round_lt_mid_further_place; try assumption.
- unfold midp. fold rd; fold u1; fold u2.
- apply (Rplus_lt_reg_r (- rd)); ring_simplify.
- now rewrite <- Rmult_minus_distr_l.
- + (* / 2 * (u1 - u2) <= x - rd *)
- { destruct (Rlt_or_le (/ 2 * (u1 + u2)) (x - rd)).
- - (* / 2 * (u1 + u2) < x - rd *)
- assert (round beta fexp1 Zceil x - x
- < / 2 * (ulp beta fexp1 x - ulp beta fexp2 x)).
- { rewrite Hceil; fold u1; fold u2.
- lra. }
- apply double_round_gt_mid_further_place; try assumption.
- unfold midp'; lra.
- - (* x - rd <= / 2 * (u1 + u2) *)
- apply Cmid, Rabs_le; split; lra. }
-Qed.
-
-Section Double_round_sqrt.
-
-Definition double_round_sqrt_hyp fexp1 fexp2 :=
- (forall ex, (2 * fexp1 ex <= fexp1 (2 * ex))%Z)
- /\ (forall ex, (2 * fexp1 ex <= fexp1 (2 * ex - 1))%Z)
- /\ (forall ex, (fexp1 (2 * ex) < 2 * ex)%Z ->
- (fexp2 ex + ex <= 2 * fexp1 ex - 2)%Z).
-
-Lemma ln_beta_sqrt_disj :
- forall x,
- 0 < x ->
- (ln_beta x = 2 * ln_beta (sqrt x) - 1 :> Z)%Z
- \/ (ln_beta x = 2 * ln_beta (sqrt x) :> Z)%Z.
-Proof.
-intros x Px.
-generalize (ln_beta_sqrt beta x Px).
-intro H.
-omega.
-Qed.
-
-Lemma double_round_sqrt_aux :
- forall fexp1 fexp2 : Z -> Z,
- Valid_exp fexp1 -> Valid_exp fexp2 ->
- double_round_sqrt_hyp fexp1 fexp2 ->
- forall x,
- 0 < x ->
- (fexp2 (ln_beta (sqrt x)) <= fexp1 (ln_beta (sqrt x)) - 1)%Z ->
- generic_format beta fexp1 x ->
- / 2 * ulp beta fexp2 (sqrt x) < Rabs (sqrt x - midp fexp1 (sqrt x)).
-Proof.
-intros fexp1 fexp2 Vfexp1 Vfexp2 Hexp x Px Hf2 Fx.
-assert (Hbeta : (2 <= beta)%Z).
-{ destruct beta as (beta_val,beta_prop).
- now apply Zle_bool_imp_le. }
-set (a := round beta fexp1 Zfloor (sqrt x)).
-set (u1 := bpow (fexp1 (ln_beta (sqrt x)))).
-set (u2 := bpow (fexp2 (ln_beta (sqrt x)))).
-set (b := / 2 * (u1 - u2)).
-set (b' := / 2 * (u1 + u2)).
-unfold midp; rewrite 2!ulp_neq_0; try now apply Rgt_not_eq, sqrt_lt_R0.
-apply Rnot_ge_lt; intro H; apply Rge_le in H.
-assert (Fa : generic_format beta fexp1 a).
-{ unfold a.
- apply generic_format_round.
- - exact Vfexp1.
- - now apply valid_rnd_DN. }
-revert Fa; revert Fx.
-unfold generic_format, F2R, scaled_mantissa, canonic_exp; simpl.
-set (mx := Ztrunc (x * bpow (- fexp1 (ln_beta x)))).
-set (ma := Ztrunc (a * bpow (- fexp1 (ln_beta a)))).
-intros Fx Fa.
-assert (Nna : 0 <= a).
-{ rewrite <- (round_0 beta fexp1 Zfloor).
- unfold a; apply round_le.
- - exact Vfexp1.
- - now apply valid_rnd_DN.
- - apply sqrt_pos. }
-assert (Phu1 : 0 < / 2 * u1).
-{ apply Rmult_lt_0_compat; [lra|apply bpow_gt_0]. }
-assert (Phu2 : 0 < / 2 * u2).
-{ apply Rmult_lt_0_compat; [lra|apply bpow_gt_0]. }
-assert (Pb : 0 < b).
-{ unfold b.
- rewrite <- (Rmult_0_r (/ 2)).
- apply Rmult_lt_compat_l; [lra|].
- apply Rlt_Rminus.
- unfold u2, u1.
- apply bpow_lt.
- omega. }
-assert (Pb' : 0 < b').
-{ now unfold b'; rewrite Rmult_plus_distr_l; apply Rplus_lt_0_compat. }
-assert (Hr : sqrt x <= a + b').
-{ unfold b'; apply (Rplus_le_reg_r (- / 2 * u1 - a)); ring_simplify.
- replace (_ - _) with (sqrt x - (a + / 2 * u1)) by ring.
- now apply Rabs_le_inv. }
-assert (Hl : a + b <= sqrt x).
-{ unfold b; apply (Rplus_le_reg_r (- / 2 * u1 - a)); ring_simplify.
- replace (_ + sqrt _) with (sqrt x - (a + / 2 * u1)) by ring.
- rewrite Ropp_mult_distr_l_reverse.
- now apply Rabs_le_inv in H; destruct H. }
-assert (Hf1 : (2 * fexp1 (ln_beta (sqrt x)) <= fexp1 (ln_beta (x)))%Z);
- [destruct (ln_beta_sqrt_disj x Px) as [H'|H']; rewrite H'; apply Hexp|].
-assert (Hlx : (fexp1 (2 * ln_beta (sqrt x)) < 2 * ln_beta (sqrt x))%Z).
-{ destruct (ln_beta_sqrt_disj x Px) as [Hlx|Hlx].
- - apply (valid_exp_large fexp1 (ln_beta x)); [|omega].
- now apply ln_beta_generic_gt; [|apply Rgt_not_eq|].
- - rewrite <- Hlx.
- now apply ln_beta_generic_gt; [|apply Rgt_not_eq|]. }
-assert (Hsl : a * a + u1 * a - u2 * a + b * b <= x).
-{ replace (_ + _) with ((a + b) * (a + b)); [|now unfold b; field].
- rewrite <- sqrt_def; [|now apply Rlt_le].
- assert (H' : 0 <= a + b); [now apply Rlt_le, Rplus_le_lt_0_compat|].
- now apply Rmult_le_compat. }
-assert (Hsr : x <= a * a + u1 * a + u2 * a + b' * b').
-{ replace (_ + _) with ((a + b') * (a + b')); [|now unfold b'; field].
- rewrite <- (sqrt_def x); [|now apply Rlt_le].
- assert (H' : 0 <= sqrt x); [now apply sqrt_pos|].
- now apply Rmult_le_compat. }
-destruct (Req_dec a 0) as [Za|Nza].
-- (* a = 0 *)
- apply (Rlt_irrefl 0).
- apply Rlt_le_trans with (b * b); [now apply Rmult_lt_0_compat|].
- apply Rle_trans with x.
- + revert Hsl; unfold Rminus; rewrite Za; do 3 rewrite Rmult_0_r.
- now rewrite Ropp_0; do 3 rewrite Rplus_0_l.
- + rewrite Fx.
- apply (Rmult_le_reg_r (bpow (- fexp1 (ln_beta x))));
- [now apply bpow_gt_0|].
- rewrite Rmult_0_l; bpow_simplify.
- unfold mx.
- rewrite Ztrunc_floor;
- [|now apply Rmult_le_pos; [apply Rlt_le|apply bpow_ge_0]].
- apply Req_le.
- change 0 with (Z2R 0); apply f_equal.
- apply Zfloor_imp.
- split; [now apply Rmult_le_pos; [apply Rlt_le|apply bpow_ge_0]|simpl].
- apply (Rmult_lt_reg_r (bpow (fexp1 (ln_beta x)))); [now apply bpow_gt_0|].
- rewrite Rmult_1_l; bpow_simplify.
- apply Rlt_le_trans with (bpow (2 * fexp1 (ln_beta (sqrt x))));
- [|now apply bpow_le].
- change 2%Z with (1 + 1)%Z; rewrite Zmult_plus_distr_l; rewrite Zmult_1_l.
- rewrite bpow_plus.
- rewrite <- (sqrt_def x) at 1; [|now apply Rlt_le].
- assert (sqrt x < bpow (fexp1 (ln_beta (sqrt x))));
- [|now apply Rmult_lt_compat; [apply sqrt_pos|apply sqrt_pos| |]].
- apply (Rle_lt_trans _ _ _ Hr); rewrite Za; rewrite Rplus_0_l.
- unfold b'; change (bpow _) with u1.
- apply Rlt_le_trans with (/ 2 * (u1 + u1)); [|lra].
- apply Rmult_lt_compat_l; [lra|]; apply Rplus_lt_compat_l.
- unfold u2, u1, ulp, canonic_exp; apply bpow_lt; omega.
-- (* a <> 0 *)
- assert (Pa : 0 < a); [lra|].
- assert (Hla : (ln_beta a = ln_beta (sqrt x) :> Z)).
- { unfold a; apply ln_beta_DN.
- - exact Vfexp1.
- - now fold a. }
- assert (Hl' : 0 < - (u2 * a) + b * b).
- { apply (Rplus_lt_reg_r (u2 * a)); ring_simplify.
- unfold b; ring_simplify.
- apply (Rplus_lt_reg_r (/ 2 * u2 * u1)); field_simplify.
- replace (_ / 2) with (u2 * (a + / 2 * u1)) by field.
- replace (_ / 8) with (/ 4 * (u2 ^ 2 + u1 ^ 2)) by field.
- apply Rlt_le_trans with (u2 * bpow (ln_beta (sqrt x))).
- - apply Rmult_lt_compat_l; [now unfold u2, ulp; apply bpow_gt_0|].
- unfold u1; rewrite <- Hla.
- apply Rlt_le_trans with (a + bpow (fexp1 (ln_beta a))).
- + apply Rplus_lt_compat_l.
- rewrite <- (Rmult_1_l (bpow _)) at 2.
- apply Rmult_lt_compat_r; [apply bpow_gt_0|lra].
- + apply Rle_trans with (a+ ulp beta fexp1 a).
- right; now rewrite ulp_neq_0.
- apply (id_p_ulp_le_bpow _ _ _ _ Pa Fa).
- apply Rabs_lt_inv, bpow_ln_beta_gt.
- - apply Rle_trans with (bpow (- 2) * u1 ^ 2).
- + unfold pow; rewrite Rmult_1_r.
- unfold u1, u2, ulp, canonic_exp; bpow_simplify; apply bpow_le.
- now apply Hexp.
- + apply Rmult_le_compat.
- * apply bpow_ge_0.
- * apply pow2_ge_0.
- * unfold Fcore_Raux.bpow, Z.pow_pos; simpl; rewrite Zmult_1_r.
- apply Rinv_le; [lra|].
- change 4 with (Z2R (2 * 2)%Z); apply Z2R_le, Zmult_le_compat; omega.
- * rewrite <- (Rplus_0_l (u1 ^ 2)) at 1; apply Rplus_le_compat_r.
- apply pow2_ge_0. }
- assert (Hr' : x <= a * a + u1 * a).
- { rewrite Hla in Fa.
- rewrite <- Rmult_plus_distr_r.
- unfold u1, ulp, canonic_exp.
- rewrite <- (Rmult_1_l (bpow _)); rewrite Fa; rewrite <- Rmult_plus_distr_r.
- rewrite <- Rmult_assoc; rewrite (Rmult_comm _ (Z2R ma)).
- rewrite <- (Rmult_assoc (Z2R ma)); bpow_simplify.
- apply (Rmult_le_reg_r (bpow (- 2 * fexp1 (ln_beta (sqrt x)))));
- [now apply bpow_gt_0|bpow_simplify].
- rewrite Fx at 1; bpow_simplify.
- rewrite <- Z2R_Zpower; [|omega].
- change 1 with (Z2R 1); rewrite <- Z2R_plus; do 2 rewrite <- Z2R_mult.
- apply Z2R_le, Zlt_succ_le, lt_Z2R.
- unfold Z.succ; rewrite Z2R_plus; do 2 rewrite Z2R_mult; rewrite Z2R_plus.
- rewrite Z2R_Zpower; [|omega].
- apply (Rmult_lt_reg_r (bpow (2 * fexp1 (ln_beta (sqrt x)))));
- [now apply bpow_gt_0|bpow_simplify].
- rewrite <- Fx.
- change 2%Z with (1 + 1)%Z; rewrite Zmult_plus_distr_l; rewrite Zmult_1_l.
- rewrite bpow_plus; simpl.
- replace (_ * _) with (a * a + u1 * a + u1 * u1);
- [|unfold u1, ulp, canonic_exp; rewrite Fa; ring].
- apply (Rle_lt_trans _ _ _ Hsr).
- rewrite Rplus_assoc; apply Rplus_lt_compat_l.
- apply (Rplus_lt_reg_r (- b' * b' + / 2 * u1 * u2)); ring_simplify.
- replace (_ + _) with ((a + / 2 * u1) * u2) by ring.
- apply Rlt_le_trans with (bpow (ln_beta (sqrt x)) * u2).
- - apply Rmult_lt_compat_r; [now unfold u2, ulp; apply bpow_gt_0|].
- apply Rlt_le_trans with (a + u1); [lra|].
- unfold u1; fold (canonic_exp beta fexp1 (sqrt x)).
- rewrite <- canonic_exp_DN; [|exact Vfexp1|exact Pa]; fold a.
- rewrite <- ulp_neq_0; trivial.
- apply id_p_ulp_le_bpow.
- + exact Pa.
- + now apply round_DN_pt.
- + apply Rle_lt_trans with (sqrt x).
- * now apply round_DN_pt.
- * apply Rabs_lt_inv.
- apply bpow_ln_beta_gt.
- - apply Rle_trans with (/ 2 * u1 ^ 2).
- + apply Rle_trans with (bpow (- 2) * u1 ^ 2).
- * unfold pow; rewrite Rmult_1_r.
- unfold u2, u1, ulp, canonic_exp.
- bpow_simplify.
- apply bpow_le.
- rewrite Zplus_comm.
- now apply Hexp.
- * apply Rmult_le_compat_r; [now apply pow2_ge_0|].
- unfold Fcore_Raux.bpow; simpl; unfold Z.pow_pos; simpl.
- rewrite Zmult_1_r.
- apply Rinv_le; [lra|].
- change 2 with (Z2R 2); apply Z2R_le.
- rewrite <- (Zmult_1_l 2).
- apply Zmult_le_compat; omega.
- + assert (u2 ^ 2 < u1 ^ 2); [|unfold b'; lra].
- unfold pow; do 2 rewrite Rmult_1_r.
- assert (H' : 0 <= u2); [unfold u2, ulp; apply bpow_ge_0|].
- assert (u2 < u1); [|now apply Rmult_lt_compat].
- unfold u1, u2, ulp, canonic_exp; apply bpow_lt; omega. }
- apply (Rlt_irrefl (a * a + u1 * a)).
- apply Rlt_le_trans with (a * a + u1 * a - u2 * a + b * b).
- + rewrite <- (Rplus_0_r (a * a + _)) at 1.
- unfold Rminus; rewrite (Rplus_assoc _ _ (b * b)).
- now apply Rplus_lt_compat_l.
- + now apply Rle_trans with x.
-Qed.
-
-
-Lemma double_round_sqrt :
- forall fexp1 fexp2 : Z -> Z,
- Valid_exp fexp1 -> Valid_exp fexp2 ->
- forall (choice1 choice2 : Z -> bool),
- double_round_sqrt_hyp fexp1 fexp2 ->
- forall x,
- generic_format beta fexp1 x ->
- double_round_eq fexp1 fexp2 choice1 choice2 (sqrt x).
-Proof.
-intros fexp1 fexp2 Vfexp1 Vfexp2 choice1 choice2 Hexp x Fx.
-unfold double_round_eq.
-destruct (Rle_or_lt x 0) as [Npx|Px].
-- (* x <= 0 *)
- rewrite (sqrt_neg _ Npx).
- now rewrite round_0; [|apply valid_rnd_N].
-- (* 0 < x *)
- assert (Hfx : (fexp1 (ln_beta x) < ln_beta x)%Z);
- [now apply ln_beta_generic_gt; try assumption; lra|].
- assert (Hfsx : (fexp1 (ln_beta (sqrt x)) < ln_beta (sqrt x))%Z).
- { destruct (Rle_or_lt x 1) as [Hx|Hx].
- - (* x <= 1 *)
- apply (valid_exp_large fexp1 (ln_beta x)); [exact Hfx|].
- apply ln_beta_le; [exact Px|].
- rewrite <- (sqrt_def x) at 1; [|lra].
- rewrite <- Rmult_1_r.
- apply Rmult_le_compat_l.
- + apply sqrt_pos.
- + rewrite <- sqrt_1.
- now apply sqrt_le_1_alt.
- - (* 1 < x *)
- generalize ((proj1 (proj2 Hexp)) 1%Z).
- replace (_ - 1)%Z with 1%Z by ring.
- intro Hexp10.
- assert (Hf0 : (fexp1 1 < 1)%Z); [omega|clear Hexp10].
- apply (valid_exp_large fexp1 1); [exact Hf0|].
- apply ln_beta_ge_bpow.
- rewrite Zeq_minus; [|reflexivity].
- unfold Fcore_Raux.bpow; simpl.
- apply Rabs_ge; right.
- rewrite <- sqrt_1.
- apply sqrt_le_1_alt.
- now apply Rlt_le. }
- assert (Hf2 : (fexp2 (ln_beta (sqrt x)) <= fexp1 (ln_beta (sqrt x)) - 1)%Z).
- { assert (H : (fexp1 (2 * ln_beta (sqrt x)) < 2 * ln_beta (sqrt x))%Z).
- { destruct (ln_beta_sqrt_disj x Px) as [Hlx|Hlx].
- - apply (valid_exp_large fexp1 (ln_beta x)); [|omega].
- now apply ln_beta_generic_gt; [|apply Rgt_not_eq|].
- - rewrite <- Hlx.
- now apply ln_beta_generic_gt; [|apply Rgt_not_eq|]. }
- generalize ((proj2 (proj2 Hexp)) (ln_beta (sqrt x)) H).
- omega. }
- apply double_round_mid_cases.
- + exact Vfexp1.
- + exact Vfexp2.
- + now apply sqrt_lt_R0.
- + omega.
- + omega.
- + intros Hmid; casetype False; apply (Rle_not_lt _ _ Hmid).
- apply (double_round_sqrt_aux fexp1 fexp2 Vfexp1 Vfexp2 Hexp x Px Hf2 Fx).
-Qed.
-
-Section Double_round_sqrt_FLX.
-
-Import Fcore_FLX.
-
-Variable prec : Z.
-Variable prec' : Z.
-
-Context { prec_gt_0_ : Prec_gt_0 prec }.
-Context { prec_gt_0_' : Prec_gt_0 prec' }.
-
-Lemma FLX_double_round_sqrt_hyp :
- (2 * prec + 2 <= prec')%Z ->
- double_round_sqrt_hyp (FLX_exp prec) (FLX_exp prec').
-Proof.
-intros Hprec.
-unfold FLX_exp.
-unfold Prec_gt_0 in prec_gt_0_.
-unfold double_round_sqrt_hyp; split; [|split]; intro ex; omega.
-Qed.
-
-Theorem double_round_sqrt_FLX :
- forall choice1 choice2,
- (2 * prec + 2 <= prec')%Z ->
- forall x,
- FLX_format beta prec x ->
- double_round_eq (FLX_exp prec) (FLX_exp prec') choice1 choice2 (sqrt x).
-Proof.
-intros choice1 choice2 Hprec x Fx.
-apply double_round_sqrt.
-- now apply FLX_exp_valid.
-- now apply FLX_exp_valid.
-- now apply FLX_double_round_sqrt_hyp.
-- now apply generic_format_FLX.
-Qed.
-
-End Double_round_sqrt_FLX.
-
-Section Double_round_sqrt_FLT.
-
-Import Fcore_FLX.
-Import Fcore_FLT.
-
-Variable emin prec : Z.
-Variable emin' prec' : Z.
-
-Context { prec_gt_0_ : Prec_gt_0 prec }.
-Context { prec_gt_0_' : Prec_gt_0 prec' }.
-
-Lemma FLT_double_round_sqrt_hyp :
- (emin <= 0)%Z ->
- ((emin' <= emin - prec - 2)%Z
- \/ (2 * emin' <= emin - 4 * prec - 2)%Z) ->
- (2 * prec + 2 <= prec')%Z ->
- double_round_sqrt_hyp (FLT_exp emin prec) (FLT_exp emin' prec').
-Proof.
-intros Hemin Heminprec Hprec.
-unfold FLT_exp.
-unfold Prec_gt_0 in prec_gt_0_.
-unfold double_round_sqrt_hyp; split; [|split]; intros ex.
-- generalize (Zmax_spec (ex - prec) emin).
- generalize (Zmax_spec (2 * ex - prec) emin).
- omega.
-- generalize (Zmax_spec (ex - prec) emin).
- generalize (Zmax_spec (2 * ex - 1 - prec) emin).
- omega.
-- generalize (Zmax_spec (2 * ex - prec) emin).
- generalize (Zmax_spec (ex - prec') emin').
- generalize (Zmax_spec (ex - prec) emin).
- omega.
-Qed.
-
-Theorem double_round_sqrt_FLT :
- forall choice1 choice2,
- (emin <= 0)%Z ->
- ((emin' <= emin - prec - 2)%Z
- \/ (2 * emin' <= emin - 4 * prec - 2)%Z) ->
- (2 * prec + 2 <= prec')%Z ->
- forall x,
- FLT_format beta emin prec x ->
- double_round_eq (FLT_exp emin prec) (FLT_exp emin' prec')
- choice1 choice2 (sqrt x).
-Proof.
-intros choice1 choice2 Hemin Heminprec Hprec x Fx.
-apply double_round_sqrt.
-- now apply FLT_exp_valid.
-- now apply FLT_exp_valid.
-- now apply FLT_double_round_sqrt_hyp.
-- now apply generic_format_FLT.
-Qed.
-
-End Double_round_sqrt_FLT.
-
-Section Double_round_sqrt_FTZ.
-
-Import Fcore_FLX.
-Import Fcore_FTZ.
-
-Variable emin prec : Z.
-Variable emin' prec' : Z.
-
-Context { prec_gt_0_ : Prec_gt_0 prec }.
-Context { prec_gt_0_' : Prec_gt_0 prec' }.
-
-Lemma FTZ_double_round_sqrt_hyp :
- (2 * (emin' + prec') <= emin + prec <= 1)%Z ->
- (2 * prec + 2 <= prec')%Z ->
- double_round_sqrt_hyp (FTZ_exp emin prec) (FTZ_exp emin' prec').
-Proof.
-intros Hemin Hprec.
-unfold FTZ_exp.
-unfold Prec_gt_0 in *.
-unfold double_round_sqrt_hyp; split; [|split]; intros ex.
-- destruct (Z.ltb_spec (ex - prec) emin);
- destruct (Z.ltb_spec (2 * ex - prec) emin);
- omega.
-- destruct (Z.ltb_spec (ex - prec) emin);
- destruct (Z.ltb_spec (2 * ex - 1 - prec) emin);
- omega.
-- intro H.
- destruct (Zle_or_lt emin (2 * ex - prec)) as [H'|H'].
- + destruct (Z.ltb_spec (ex - prec') emin');
- destruct (Z.ltb_spec (ex - prec) emin);
- omega.
- + casetype False.
- rewrite (Zlt_bool_true _ _ H') in H.
- omega.
-Qed.
-
-Theorem double_round_sqrt_FTZ :
- (4 <= beta)%Z ->
- forall choice1 choice2,
- (2 * (emin' + prec') <= emin + prec <= 1)%Z ->
- (2 * prec + 2 <= prec')%Z ->
- forall x,
- FTZ_format beta emin prec x ->
- double_round_eq (FTZ_exp emin prec) (FTZ_exp emin' prec')
- choice1 choice2 (sqrt x).
-Proof.
-intros Hbeta choice1 choice2 Hemin Hprec x Fx.
-apply double_round_sqrt.
-- now apply FTZ_exp_valid.
-- now apply FTZ_exp_valid.
-- now apply FTZ_double_round_sqrt_hyp.
-- now apply generic_format_FTZ.
-Qed.
-
-End Double_round_sqrt_FTZ.
-
-Section Double_round_sqrt_beta_ge_4.
-
-Definition double_round_sqrt_beta_ge_4_hyp fexp1 fexp2 :=
- (forall ex, (2 * fexp1 ex <= fexp1 (2 * ex))%Z)
- /\ (forall ex, (2 * fexp1 ex <= fexp1 (2 * ex - 1))%Z)
- /\ (forall ex, (fexp1 (2 * ex) < 2 * ex)%Z ->
- (fexp2 ex + ex <= 2 * fexp1 ex - 1)%Z).
-
-Lemma double_round_sqrt_beta_ge_4_aux :
- (4 <= beta)%Z ->
- forall fexp1 fexp2 : Z -> Z,
- Valid_exp fexp1 -> Valid_exp fexp2 ->
- double_round_sqrt_beta_ge_4_hyp fexp1 fexp2 ->
- forall x,
- 0 < x ->
- (fexp2 (ln_beta (sqrt x)) <= fexp1 (ln_beta (sqrt x)) - 1)%Z ->
- generic_format beta fexp1 x ->
- / 2 * ulp beta fexp2 (sqrt x) < Rabs (sqrt x - midp fexp1 (sqrt x)).
-Proof.
-intros Hbeta fexp1 fexp2 Vfexp1 Vfexp2 Hexp x Px Hf2 Fx.
-set (a := round beta fexp1 Zfloor (sqrt x)).
-set (u1 := bpow (fexp1 (ln_beta (sqrt x)))).
-set (u2 := bpow (fexp2 (ln_beta (sqrt x)))).
-set (b := / 2 * (u1 - u2)).
-set (b' := / 2 * (u1 + u2)).
-unfold midp; rewrite 2!ulp_neq_0; try now apply Rgt_not_eq, sqrt_lt_R0.
-apply Rnot_ge_lt; intro H; apply Rge_le in H.
-assert (Fa : generic_format beta fexp1 a).
-{ unfold a.
- apply generic_format_round.
- - exact Vfexp1.
- - now apply valid_rnd_DN. }
-revert Fa; revert Fx.
-unfold generic_format, F2R, scaled_mantissa, canonic_exp; simpl.
-set (mx := Ztrunc (x * bpow (- fexp1 (ln_beta x)))).
-set (ma := Ztrunc (a * bpow (- fexp1 (ln_beta a)))).
-intros Fx Fa.
-assert (Nna : 0 <= a).
-{ rewrite <- (round_0 beta fexp1 Zfloor).
- unfold a; apply round_le.
- - exact Vfexp1.
- - now apply valid_rnd_DN.
- - apply sqrt_pos. }
-assert (Phu1 : 0 < / 2 * u1).
-{ apply Rmult_lt_0_compat; [lra|apply bpow_gt_0]. }
-assert (Phu2 : 0 < / 2 * u2).
-{ apply Rmult_lt_0_compat; [lra|apply bpow_gt_0]. }
-assert (Pb : 0 < b).
-{ unfold b.
- rewrite <- (Rmult_0_r (/ 2)).
- apply Rmult_lt_compat_l; [lra|].
- apply Rlt_Rminus.
- unfold u2, u1, ulp, canonic_exp.
- apply bpow_lt.
- omega. }
-assert (Pb' : 0 < b').
-{ now unfold b'; rewrite Rmult_plus_distr_l; apply Rplus_lt_0_compat. }
-assert (Hr : sqrt x <= a + b').
-{ unfold b'; apply (Rplus_le_reg_r (- / 2 * u1 - a)); ring_simplify.
- replace (_ - _) with (sqrt x - (a + / 2 * u1)) by ring.
- now apply Rabs_le_inv. }
-assert (Hl : a + b <= sqrt x).
-{ unfold b; apply (Rplus_le_reg_r (- / 2 * u1 - a)); ring_simplify.
- replace (_ + sqrt _) with (sqrt x - (a + / 2 * u1)) by ring.
- rewrite Ropp_mult_distr_l_reverse.
- now apply Rabs_le_inv in H; destruct H. }
-assert (Hf1 : (2 * fexp1 (ln_beta (sqrt x)) <= fexp1 (ln_beta (x)))%Z);
- [destruct (ln_beta_sqrt_disj x Px) as [H'|H']; rewrite H'; apply Hexp|].
-assert (Hlx : (fexp1 (2 * ln_beta (sqrt x)) < 2 * ln_beta (sqrt x))%Z).
-{ destruct (ln_beta_sqrt_disj x Px) as [Hlx|Hlx].
- - apply (valid_exp_large fexp1 (ln_beta x)); [|omega].
- now apply ln_beta_generic_gt; [|apply Rgt_not_eq|].
- - rewrite <- Hlx.
- now apply ln_beta_generic_gt; [|apply Rgt_not_eq|]. }
-assert (Hsl : a * a + u1 * a - u2 * a + b * b <= x).
-{ replace (_ + _) with ((a + b) * (a + b)); [|now unfold b; field].
- rewrite <- sqrt_def; [|now apply Rlt_le].
- assert (H' : 0 <= a + b); [now apply Rlt_le, Rplus_le_lt_0_compat|].
- now apply Rmult_le_compat. }
-assert (Hsr : x <= a * a + u1 * a + u2 * a + b' * b').
-{ replace (_ + _) with ((a + b') * (a + b')); [|now unfold b'; field].
- rewrite <- (sqrt_def x); [|now apply Rlt_le].
- assert (H' : 0 <= sqrt x); [now apply sqrt_pos|].
- now apply Rmult_le_compat. }
-destruct (Req_dec a 0) as [Za|Nza].
-- (* a = 0 *)
- apply (Rlt_irrefl 0).
- apply Rlt_le_trans with (b * b); [now apply Rmult_lt_0_compat|].
- apply Rle_trans with x.
- + revert Hsl; unfold Rminus; rewrite Za; do 3 rewrite Rmult_0_r.
- now rewrite Ropp_0; do 3 rewrite Rplus_0_l.
- + rewrite Fx.
- apply (Rmult_le_reg_r (bpow (- fexp1 (ln_beta x))));
- [now apply bpow_gt_0|].
- rewrite Rmult_0_l; bpow_simplify.
- unfold mx.
- rewrite Ztrunc_floor;
- [|now apply Rmult_le_pos; [apply Rlt_le|apply bpow_ge_0]].
- apply Req_le.
- change 0 with (Z2R 0); apply f_equal.
- apply Zfloor_imp.
- split; [now apply Rmult_le_pos; [apply Rlt_le|apply bpow_ge_0]|simpl].
- apply (Rmult_lt_reg_r (bpow (fexp1 (ln_beta x)))); [now apply bpow_gt_0|].
- rewrite Rmult_1_l; bpow_simplify.
- apply Rlt_le_trans with (bpow (2 * fexp1 (ln_beta (sqrt x))));
- [|now apply bpow_le].
- change 2%Z with (1 + 1)%Z; rewrite Zmult_plus_distr_l; rewrite Zmult_1_l.
- rewrite bpow_plus.
- rewrite <- (sqrt_def x) at 1; [|now apply Rlt_le].
- assert (sqrt x < bpow (fexp1 (ln_beta (sqrt x))));
- [|now apply Rmult_lt_compat; [apply sqrt_pos|apply sqrt_pos| |]].
- apply (Rle_lt_trans _ _ _ Hr); rewrite Za; rewrite Rplus_0_l.
- unfold b'; change (bpow _) with u1.
- apply Rlt_le_trans with (/ 2 * (u1 + u1)); [|lra].
- apply Rmult_lt_compat_l; [lra|]; apply Rplus_lt_compat_l.
- unfold u2, u1, ulp, canonic_exp; apply bpow_lt; omega.
-- (* a <> 0 *)
- assert (Pa : 0 < a); [lra|].
- assert (Hla : (ln_beta a = ln_beta (sqrt x) :> Z)).
- { unfold a; apply ln_beta_DN.
- - exact Vfexp1.
- - now fold a. }
- assert (Hl' : 0 < - (u2 * a) + b * b).
- { apply (Rplus_lt_reg_r (u2 * a)); ring_simplify.
- unfold b; ring_simplify.
- apply (Rplus_lt_reg_r (/ 2 * u2 * u1)); field_simplify.
- replace (_ / 2) with (u2 * (a + / 2 * u1)) by field.
- replace (_ / 8) with (/ 4 * (u2 ^ 2 + u1 ^ 2)) by field.
- apply Rlt_le_trans with (u2 * bpow (ln_beta (sqrt x))).
- - apply Rmult_lt_compat_l; [now unfold u2, ulp; apply bpow_gt_0|].
- unfold u1; rewrite <- Hla.
- apply Rlt_le_trans with (a + ulp beta fexp1 a).
- + apply Rplus_lt_compat_l.
- rewrite <- (Rmult_1_l (ulp _ _ _)).
- rewrite ulp_neq_0; trivial.
- apply Rmult_lt_compat_r; [apply bpow_gt_0|lra].
- + apply (id_p_ulp_le_bpow _ _ _ _ Pa Fa).
- apply Rabs_lt_inv, bpow_ln_beta_gt.
- - apply Rle_trans with (bpow (- 1) * u1 ^ 2).
- + unfold pow; rewrite Rmult_1_r.
- unfold u1, u2, ulp, canonic_exp; bpow_simplify; apply bpow_le.
- now apply Hexp.
- + apply Rmult_le_compat.
- * apply bpow_ge_0.
- * apply pow2_ge_0.
- * unfold Fcore_Raux.bpow, Z.pow_pos; simpl; rewrite Zmult_1_r.
- apply Rinv_le; [lra|].
- now change 4 with (Z2R 4); apply Z2R_le.
- * rewrite <- (Rplus_0_l (u1 ^ 2)) at 1; apply Rplus_le_compat_r.
- apply pow2_ge_0. }
- assert (Hr' : x <= a * a + u1 * a).
- { rewrite Hla in Fa.
- rewrite <- Rmult_plus_distr_r.
- unfold u1, ulp, canonic_exp.
- rewrite <- (Rmult_1_l (bpow _)); rewrite Fa; rewrite <- Rmult_plus_distr_r.
- rewrite <- Rmult_assoc; rewrite (Rmult_comm _ (Z2R ma)).
- rewrite <- (Rmult_assoc (Z2R ma)); bpow_simplify.
- apply (Rmult_le_reg_r (bpow (- 2 * fexp1 (ln_beta (sqrt x)))));
- [now apply bpow_gt_0|bpow_simplify].
- rewrite Fx at 1; bpow_simplify.
- rewrite <- Z2R_Zpower; [|omega].
- change 1 with (Z2R 1); rewrite <- Z2R_plus; do 2 rewrite <- Z2R_mult.
- apply Z2R_le, Zlt_succ_le, lt_Z2R.
- unfold Z.succ; rewrite Z2R_plus; do 2 rewrite Z2R_mult; rewrite Z2R_plus.
- rewrite Z2R_Zpower; [|omega].
- apply (Rmult_lt_reg_r (bpow (2 * fexp1 (ln_beta (sqrt x)))));
- [now apply bpow_gt_0|bpow_simplify].
- rewrite <- Fx.
- change 2%Z with (1 + 1)%Z; rewrite Zmult_plus_distr_l; rewrite Zmult_1_l.
- rewrite bpow_plus; simpl.
- replace (_ * _) with (a * a + u1 * a + u1 * u1);
- [|unfold u1, ulp, canonic_exp; rewrite Fa; ring].
- apply (Rle_lt_trans _ _ _ Hsr).
- rewrite Rplus_assoc; apply Rplus_lt_compat_l.
- apply (Rplus_lt_reg_r (- b' * b' + / 2 * u1 * u2)); ring_simplify.
- replace (_ + _) with ((a + / 2 * u1) * u2) by ring.
- apply Rlt_le_trans with (bpow (ln_beta (sqrt x)) * u2).
- - apply Rmult_lt_compat_r; [now unfold u2, ulp; apply bpow_gt_0|].
- apply Rlt_le_trans with (a + u1); [lra|].
- unfold u1; fold (canonic_exp beta fexp1 (sqrt x)).
- rewrite <- canonic_exp_DN; [|exact Vfexp1|exact Pa]; fold a.
- rewrite <- ulp_neq_0; trivial.
- apply id_p_ulp_le_bpow.
- + exact Pa.
- + now apply round_DN_pt.
- + apply Rle_lt_trans with (sqrt x).
- * now apply round_DN_pt.
- * apply Rabs_lt_inv.
- apply bpow_ln_beta_gt.
- - apply Rle_trans with (/ 2 * u1 ^ 2).
- + apply Rle_trans with (bpow (- 1) * u1 ^ 2).
- * unfold pow; rewrite Rmult_1_r.
- unfold u2, u1, ulp, canonic_exp.
- bpow_simplify.
- apply bpow_le.
- rewrite Zplus_comm.
- now apply Hexp.
- * apply Rmult_le_compat_r; [now apply pow2_ge_0|].
- unfold Fcore_Raux.bpow; simpl; unfold Z.pow_pos; simpl.
- rewrite Zmult_1_r.
- apply Rinv_le; [lra|].
- change 2 with (Z2R 2); apply Z2R_le; omega.
- + assert (u2 ^ 2 < u1 ^ 2); [|unfold b'; lra].
- unfold pow; do 2 rewrite Rmult_1_r.
- assert (H' : 0 <= u2); [unfold u2, ulp; apply bpow_ge_0|].
- assert (u2 < u1); [|now apply Rmult_lt_compat].
- unfold u1, u2, ulp, canonic_exp; apply bpow_lt; omega. }
- apply (Rlt_irrefl (a * a + u1 * a)).
- apply Rlt_le_trans with (a * a + u1 * a - u2 * a + b * b).
- + rewrite <- (Rplus_0_r (a * a + _)) at 1.
- unfold Rminus; rewrite (Rplus_assoc _ _ (b * b)).
- now apply Rplus_lt_compat_l.
- + now apply Rle_trans with x.
-Qed.
-
-Lemma double_round_sqrt_beta_ge_4 :
- (4 <= beta)%Z ->
- forall fexp1 fexp2 : Z -> Z,
- Valid_exp fexp1 -> Valid_exp fexp2 ->
- forall (choice1 choice2 : Z -> bool),
- double_round_sqrt_beta_ge_4_hyp fexp1 fexp2 ->
- forall x,
- generic_format beta fexp1 x ->
- double_round_eq fexp1 fexp2 choice1 choice2 (sqrt x).
-Proof.
-intros Hbeta fexp1 fexp2 Vfexp1 Vfexp2 choice1 choice2 Hexp x Fx.
-unfold double_round_eq.
-destruct (Rle_or_lt x 0) as [Npx|Px].
-- (* x <= 0 *)
- assert (Hs : sqrt x = 0).
- { destruct (Req_dec x 0) as [Zx|Nzx].
- - (* x = 0 *)
- rewrite Zx.
- exact sqrt_0.
- - (* x < 0 *)
- unfold sqrt.
- destruct Rcase_abs.
- + reflexivity.
- + casetype False; lra. }
- rewrite Hs.
- rewrite round_0.
- + reflexivity.
- + now apply valid_rnd_N.
-- (* 0 < x *)
- assert (Hfx : (fexp1 (ln_beta x) < ln_beta x)%Z);
- [now apply ln_beta_generic_gt; try assumption; lra|].
- assert (Hfsx : (fexp1 (ln_beta (sqrt x)) < ln_beta (sqrt x))%Z).
- { destruct (Rle_or_lt x 1) as [Hx|Hx].
- - (* x <= 1 *)
- apply (valid_exp_large fexp1 (ln_beta x)); [exact Hfx|].
- apply ln_beta_le; [exact Px|].
- rewrite <- (sqrt_def x) at 1; [|lra].
- rewrite <- Rmult_1_r.
- apply Rmult_le_compat_l.
- + apply sqrt_pos.
- + rewrite <- sqrt_1.
- now apply sqrt_le_1_alt.
- - (* 1 < x *)
- generalize ((proj1 (proj2 Hexp)) 1%Z).
- replace (_ - 1)%Z with 1%Z by ring.
- intro Hexp10.
- assert (Hf0 : (fexp1 1 < 1)%Z); [omega|clear Hexp10].
- apply (valid_exp_large fexp1 1); [exact Hf0|].
- apply ln_beta_ge_bpow.
- rewrite Zeq_minus; [|reflexivity].
- unfold Fcore_Raux.bpow; simpl.
- apply Rabs_ge; right.
- rewrite <- sqrt_1.
- apply sqrt_le_1_alt.
- now apply Rlt_le. }
- assert (Hf2 : (fexp2 (ln_beta (sqrt x)) <= fexp1 (ln_beta (sqrt x)) - 1)%Z).
- { assert (H : (fexp1 (2 * ln_beta (sqrt x)) < 2 * ln_beta (sqrt x))%Z).
- { destruct (ln_beta_sqrt_disj x Px) as [Hlx|Hlx].
- - apply (valid_exp_large fexp1 (ln_beta x)); [|omega].
- now apply ln_beta_generic_gt; [|apply Rgt_not_eq|].
- - rewrite <- Hlx.
- now apply ln_beta_generic_gt; [|apply Rgt_not_eq|]. }
- generalize ((proj2 (proj2 Hexp)) (ln_beta (sqrt x)) H).
- omega. }
- apply double_round_mid_cases.
- + exact Vfexp1.
- + exact Vfexp2.
- + now apply sqrt_lt_R0.
- + omega.
- + omega.
- + intros Hmid; casetype False; apply (Rle_not_lt _ _ Hmid).
- apply (double_round_sqrt_beta_ge_4_aux Hbeta fexp1 fexp2 Vfexp1 Vfexp2
- Hexp x Px Hf2 Fx).
-Qed.
-
-Section Double_round_sqrt_beta_ge_4_FLX.
-
-Import Fcore_FLX.
-
-Variable prec : Z.
-Variable prec' : Z.
-
-Context { prec_gt_0_ : Prec_gt_0 prec }.
-Context { prec_gt_0_' : Prec_gt_0 prec' }.
-
-Lemma FLX_double_round_sqrt_beta_ge_4_hyp :
- (2 * prec + 1 <= prec')%Z ->
- double_round_sqrt_beta_ge_4_hyp (FLX_exp prec) (FLX_exp prec').
-Proof.
-intros Hprec.
-unfold FLX_exp.
-unfold Prec_gt_0 in prec_gt_0_.
-unfold double_round_sqrt_beta_ge_4_hyp; split; [|split]; intro ex; omega.
-Qed.
-
-Theorem double_round_sqrt_beta_ge_4_FLX :
- (4 <= beta)%Z ->
- forall choice1 choice2,
- (2 * prec + 1 <= prec')%Z ->
- forall x,
- FLX_format beta prec x ->
- double_round_eq (FLX_exp prec) (FLX_exp prec') choice1 choice2 (sqrt x).
-Proof.
-intros Hbeta choice1 choice2 Hprec x Fx.
-apply double_round_sqrt_beta_ge_4.
-- exact Hbeta.
-- now apply FLX_exp_valid.
-- now apply FLX_exp_valid.
-- now apply FLX_double_round_sqrt_beta_ge_4_hyp.
-- now apply generic_format_FLX.
-Qed.
-
-End Double_round_sqrt_beta_ge_4_FLX.
-
-Section Double_round_sqrt_beta_ge_4_FLT.
-
-Import Fcore_FLX.
-Import Fcore_FLT.
-
-Variable emin prec : Z.
-Variable emin' prec' : Z.
-
-Context { prec_gt_0_ : Prec_gt_0 prec }.
-Context { prec_gt_0_' : Prec_gt_0 prec' }.
-
-Lemma FLT_double_round_sqrt_beta_ge_4_hyp :
- (emin <= 0)%Z ->
- ((emin' <= emin - prec - 1)%Z
- \/ (2 * emin' <= emin - 4 * prec)%Z) ->
- (2 * prec + 1 <= prec')%Z ->
- double_round_sqrt_beta_ge_4_hyp (FLT_exp emin prec) (FLT_exp emin' prec').
-Proof.
-intros Hemin Heminprec Hprec.
-unfold FLT_exp.
-unfold Prec_gt_0 in prec_gt_0_.
-unfold double_round_sqrt_beta_ge_4_hyp; split; [|split]; intros ex.
-- generalize (Zmax_spec (ex - prec) emin).
- generalize (Zmax_spec (2 * ex - prec) emin).
- omega.
-- generalize (Zmax_spec (ex - prec) emin).
- generalize (Zmax_spec (2 * ex - 1 - prec) emin).
- omega.
-- generalize (Zmax_spec (2 * ex - prec) emin).
- generalize (Zmax_spec (ex - prec') emin').
- generalize (Zmax_spec (ex - prec) emin).
- omega.
-Qed.
-
-Theorem double_round_sqrt_beta_ge_4_FLT :
- (4 <= beta)%Z ->
- forall choice1 choice2,
- (emin <= 0)%Z ->
- ((emin' <= emin - prec - 1)%Z
- \/ (2 * emin' <= emin - 4 * prec)%Z) ->
- (2 * prec + 1 <= prec')%Z ->
- forall x,
- FLT_format beta emin prec x ->
- double_round_eq (FLT_exp emin prec) (FLT_exp emin' prec')
- choice1 choice2 (sqrt x).
-Proof.
-intros Hbeta choice1 choice2 Hemin Heminprec Hprec x Fx.
-apply double_round_sqrt_beta_ge_4.
-- exact Hbeta.
-- now apply FLT_exp_valid.
-- now apply FLT_exp_valid.
-- now apply FLT_double_round_sqrt_beta_ge_4_hyp.
-- now apply generic_format_FLT.
-Qed.
-
-End Double_round_sqrt_beta_ge_4_FLT.
-
-Section Double_round_sqrt_beta_ge_4_FTZ.
-
-Import Fcore_FLX.
-Import Fcore_FTZ.
-
-Variable emin prec : Z.
-Variable emin' prec' : Z.
-
-Context { prec_gt_0_ : Prec_gt_0 prec }.
-Context { prec_gt_0_' : Prec_gt_0 prec' }.
-
-Lemma FTZ_double_round_sqrt_beta_ge_4_hyp :
- (2 * (emin' + prec') <= emin + prec <= 1)%Z ->
- (2 * prec + 1 <= prec')%Z ->
- double_round_sqrt_beta_ge_4_hyp (FTZ_exp emin prec) (FTZ_exp emin' prec').
-Proof.
-intros Hemin Hprec.
-unfold FTZ_exp.
-unfold Prec_gt_0 in *.
-unfold double_round_sqrt_beta_ge_4_hyp; split; [|split]; intros ex.
-- destruct (Z.ltb_spec (ex - prec) emin);
- destruct (Z.ltb_spec (2 * ex - prec) emin);
- omega.
-- destruct (Z.ltb_spec (ex - prec) emin);
- destruct (Z.ltb_spec (2 * ex - 1 - prec) emin);
- omega.
-- intro H.
- destruct (Zle_or_lt emin (2 * ex - prec)) as [H'|H'].
- + destruct (Z.ltb_spec (ex - prec') emin');
- destruct (Z.ltb_spec (ex - prec) emin);
- omega.
- + casetype False.
- rewrite (Zlt_bool_true _ _ H') in H.
- omega.
-Qed.
-
-Theorem double_round_sqrt_beta_ge_4_FTZ :
- (4 <= beta)%Z ->
- forall choice1 choice2,
- (2 * (emin' + prec') <= emin + prec <= 1)%Z ->
- (2 * prec + 1 <= prec')%Z ->
- forall x,
- FTZ_format beta emin prec x ->
- double_round_eq (FTZ_exp emin prec) (FTZ_exp emin' prec')
- choice1 choice2 (sqrt x).
-Proof.
-intros Hbeta choice1 choice2 Hemin Hprec x Fx.
-apply double_round_sqrt_beta_ge_4.
-- exact Hbeta.
-- now apply FTZ_exp_valid.
-- now apply FTZ_exp_valid.
-- now apply FTZ_double_round_sqrt_beta_ge_4_hyp.
-- now apply generic_format_FTZ.
-Qed.
-
-End Double_round_sqrt_beta_ge_4_FTZ.
-
-End Double_round_sqrt_beta_ge_4.
-
-End Double_round_sqrt.
-
-Section Double_round_div.
-
-Lemma double_round_eq_mid_beta_even :
- forall (fexp1 fexp2 : Z -> Z),
- Valid_exp fexp1 -> Valid_exp fexp2 ->
- forall (choice1 choice2 : Z -> bool),
- (exists n, (beta = 2 * n :> Z)%Z) ->
- forall x,
- 0 < x ->
- (fexp2 (ln_beta x) <= fexp1 (ln_beta x) - 1)%Z ->
- (fexp1 (ln_beta x) <= ln_beta x)%Z ->
- x = midp fexp1 x ->
- double_round_eq fexp1 fexp2 choice1 choice2 x.
-Proof.
-intros fexp1 fexp2 Vfexp1 Vfexp2 choice1 choice2 Ebeta x Px Hf2 Hf1.
-unfold double_round_eq.
-unfold midp.
-set (rd := round beta fexp1 Zfloor x).
-set (u := ulp beta fexp1 x).
-intro H; apply (Rplus_eq_compat_l (- rd)) in H.
-ring_simplify in H; revert H.
-rewrite Rplus_comm; fold (Rminus x rd).
-intro Xmid.
-destruct Ebeta as (n,Ebeta).
-assert (Hbeta : (2 <= beta)%Z).
-{ destruct beta as (beta_val,beta_prop).
- now apply Zle_bool_imp_le. }
-apply (Rplus_eq_compat_l rd) in Xmid; ring_simplify in Xmid.
-rewrite (round_generic beta fexp2); [reflexivity|now apply valid_rnd_N|].
-set (f := Float beta (Zfloor (scaled_mantissa beta fexp2 rd)
- + n * beta ^ (fexp1 (ln_beta x) - 1
- - fexp2 (ln_beta x)))
- (canonic_exp beta fexp2 x)).
-assert (Hf : F2R f = x).
-{ unfold f, F2R; simpl.
- rewrite Z2R_plus.
- rewrite Rmult_plus_distr_r.
- rewrite Z2R_mult.
- rewrite Z2R_Zpower; [|omega].
- unfold canonic_exp at 2; bpow_simplify.
- unfold Zminus; rewrite bpow_plus.
- rewrite (Rmult_comm _ (bpow (- 1))).
- rewrite <- (Rmult_assoc (Z2R n)).
- change (bpow (- 1)) with (/ Z2R (beta * 1)).
- rewrite Zmult_1_r.
- rewrite Ebeta.
- rewrite (Z2R_mult 2).
- rewrite Rinv_mult_distr;
- [|simpl; lra|change 0 with (Z2R 0); apply Z2R_neq; omega].
- rewrite <- Rmult_assoc; rewrite (Rmult_comm (Z2R n));
- rewrite (Rmult_assoc _ (Z2R n)).
- rewrite Rinv_r;
- [rewrite Rmult_1_r|change 0 with (Z2R 0); apply Z2R_neq; omega].
- simpl; fold (canonic_exp beta fexp1 x).
- rewrite <- 2!ulp_neq_0; try now apply Rgt_not_eq.
- fold u; rewrite Xmid at 2.
- apply f_equal2; [|reflexivity].
- rewrite ulp_neq_0; try now apply Rgt_not_eq.
- destruct (Req_dec rd 0) as [Zrd|Nzrd].
- - (* rd = 0 *)
- rewrite Zrd.
- rewrite scaled_mantissa_0.
- change 0 with (Z2R 0) at 1; rewrite Zfloor_Z2R.
- now rewrite Rmult_0_l.
- - (* rd <> 0 *)
- assert (Nnrd : 0 <= rd).
- { apply round_DN_pt.
- - exact Vfexp1.
- - apply generic_format_0.
- - now apply Rlt_le. }
- assert (Prd : 0 < rd); [lra|].
- assert (Lrd : (ln_beta rd = ln_beta x :> Z)).
- { apply Zle_antisym.
- - apply ln_beta_le; [exact Prd|].
- now apply round_DN_pt.
- - apply ln_beta_round_ge.
- + exact Vfexp1.
- + now apply valid_rnd_DN.
- + exact Nzrd. }
- unfold scaled_mantissa.
- unfold rd at 1.
- unfold round, F2R, scaled_mantissa, canonic_exp; simpl.
- bpow_simplify.
- rewrite Lrd.
- rewrite <- (Z2R_Zpower _ (_ - _)); [|omega].
- rewrite <- Z2R_mult.
- rewrite (Zfloor_imp (Zfloor (x * bpow (- fexp1 (ln_beta x))) *
- beta ^ (fexp1 (ln_beta x) - fexp2 (ln_beta x)))).
- + rewrite Z2R_mult.
- rewrite Z2R_Zpower; [|omega].
- bpow_simplify.
- now unfold rd.
- + split; [now apply Rle_refl|].
- rewrite Z2R_plus.
- simpl; lra. }
-apply (generic_format_F2R' _ _ x f Hf).
-intros _.
-apply Zle_refl.
-Qed.
-
-Lemma double_round_really_zero :
- forall (fexp1 fexp2 : Z -> Z),
- Valid_exp fexp1 -> Valid_exp fexp2 ->
- forall (choice1 choice2 : Z -> bool),
- forall x,
- 0 < x ->
- (ln_beta x <= fexp1 (ln_beta x) - 2)%Z ->
- double_round_eq fexp1 fexp2 choice1 choice2 x.
-Proof.
-intros fexp1 fexp2 Vfexp1 Vfexp2 choice1 choice2 x Px Hf1.
-assert (Hlx : bpow (ln_beta x - 1) <= x < bpow (ln_beta x)).
-{ destruct (ln_beta x) as (ex,Hex); simpl.
- rewrite <- (Rabs_right x); [|now apply Rle_ge; apply Rlt_le].
- apply Hex.
- now apply Rgt_not_eq. }
-unfold double_round_eq.
-rewrite (round_N_really_small_pos beta fexp1 _ x (ln_beta x)); [|exact Hlx|omega].
-set (x'' := round beta fexp2 (Znearest choice2) x).
-destruct (Req_dec x'' 0) as [Zx''|Nzx''];
- [now rewrite Zx''; rewrite round_0; [|apply valid_rnd_N]|].
-destruct (Zle_or_lt (fexp2 (ln_beta x)) (ln_beta x)).
-- (* fexp2 (ln_beta x) <= ln_beta x *)
- destruct (Rlt_or_le x'' (bpow (ln_beta x))).
- + (* x'' < bpow (ln_beta x) *)
- rewrite (round_N_really_small_pos beta fexp1 _ _ (ln_beta x));
- [reflexivity|split; [|exact H0]|omega].
- apply round_large_pos_ge_pow; [now apply valid_rnd_N| |now apply Hlx].
- fold x''; assert (0 <= x''); [|lra]; unfold x''.
- rewrite <- (round_0 beta fexp2 (Znearest choice2)).
- now apply round_le; [|apply valid_rnd_N|apply Rlt_le].
- + (* bpow (ln_beta x) <= x'' *)
- assert (Hx'' : x'' = bpow (ln_beta x)).
- { apply Rle_antisym; [|exact H0].
- rewrite <- (round_generic beta fexp2 (Znearest choice2) (bpow _)).
- - now apply round_le; [|apply valid_rnd_N|apply Rlt_le].
- - now apply generic_format_bpow'. }
- rewrite Hx''.
- unfold round, F2R, scaled_mantissa, canonic_exp; simpl.
- rewrite ln_beta_bpow.
- assert (Hf11 : (fexp1 (ln_beta x + 1) = fexp1 (ln_beta x) :> Z)%Z);
- [apply Vfexp1; omega|].
- rewrite Hf11.
- apply (Rmult_eq_reg_r (bpow (- fexp1 (ln_beta x))));
- [|now apply Rgt_not_eq; apply bpow_gt_0].
- rewrite Rmult_0_l; bpow_simplify.
- change 0 with (Z2R 0); apply f_equal.
- apply Znearest_imp.
- simpl; unfold Rminus; rewrite Ropp_0; rewrite Rplus_0_r.
- rewrite Rabs_right; [|now apply Rle_ge; apply bpow_ge_0].
- apply Rle_lt_trans with (bpow (- 2)); [now apply bpow_le; omega|].
- unfold Fcore_Raux.bpow, Z.pow_pos; simpl; rewrite Zmult_1_r.
- assert (Hbeta : (2 <= beta)%Z).
- { destruct beta as (beta_val,beta_prop); simpl.
- now apply Zle_bool_imp_le. }
- apply Rinv_lt_contravar.
- * apply Rmult_lt_0_compat; [lra|].
- rewrite Z2R_mult; apply Rmult_lt_0_compat; change 0 with (Z2R 0);
- apply Z2R_lt; omega.
- * change 2 with (Z2R 2); apply Z2R_lt.
- apply (Zle_lt_trans _ _ _ Hbeta).
- rewrite <- (Zmult_1_r beta) at 1.
- apply Zmult_lt_compat_l; omega.
-- (* ln_beta x < fexp2 (ln_beta x) *)
- casetype False; apply Nzx''.
- now apply (round_N_really_small_pos beta _ _ _ (ln_beta x)).
-Qed.
-
-Lemma double_round_zero :
- forall fexp1 fexp2 : Z -> Z,
- Valid_exp fexp1 -> Valid_exp fexp2 ->
- forall (choice1 choice2 : Z -> bool),
- forall x,
- 0 < x ->
- (fexp1 (ln_beta x) = ln_beta x + 1 :> Z)%Z ->
- x < bpow (ln_beta x) - / 2 * ulp beta fexp2 x ->
- double_round_eq fexp1 fexp2 choice1 choice2 x.
-Proof.
-intros fexp1 fexp2 Vfexp1 Vfexp2 choice1 choice2 x Px Hf1.
-unfold double_round_eq.
-set (x'' := round beta fexp2 (Znearest choice2) x).
-set (u1 := ulp beta fexp1 x).
-set (u2 := ulp beta fexp2 x).
-intro Hx.
-assert (Hlx : bpow (ln_beta x - 1) <= x < bpow (ln_beta x)).
-{ destruct (ln_beta x) as (ex,Hex); simpl.
- rewrite <- (Rabs_right x); [|now apply Rle_ge; apply Rlt_le].
- apply Hex.
- now apply Rgt_not_eq. }
-rewrite (round_N_really_small_pos beta fexp1 choice1 x (ln_beta x));
- [|exact Hlx|omega].
-destruct (Req_dec x'' 0) as [Zx''|Nzx''];
- [now rewrite Zx''; rewrite round_0; [reflexivity|apply valid_rnd_N]|].
-rewrite (round_N_really_small_pos beta _ _ x'' (ln_beta x));
- [reflexivity| |omega].
-split.
-- apply round_large_pos_ge_pow.
- + now apply valid_rnd_N.
- + assert (0 <= x''); [|now fold x''; lra].
- rewrite <- (round_0 beta fexp2 (Znearest choice2)).
- now apply round_le; [|apply valid_rnd_N|apply Rlt_le].
- + apply Rle_trans with (Rabs x);
- [|now rewrite Rabs_right; [apply Rle_refl|apply Rle_ge; apply Rlt_le]].
- destruct (ln_beta x) as (ex,Hex); simpl; apply Hex.
- now apply Rgt_not_eq.
-- replace x'' with (x + (x'' - x)) by ring.
- replace (bpow _) with (bpow (ln_beta x) - / 2 * u2 + / 2 * u2) by ring.
- apply Rplus_lt_le_compat; [exact Hx|].
- apply Rabs_le_inv.
- now apply error_le_half_ulp.
-Qed.
-
-Lemma double_round_all_mid_cases :
- forall fexp1 fexp2 : Z -> Z,
- Valid_exp fexp1 -> Valid_exp fexp2 ->
- forall (choice1 choice2 : Z -> bool),
- forall x,
- 0 < x ->
- (fexp2 (ln_beta x) <= fexp1 (ln_beta x) - 1)%Z ->
- ((fexp1 (ln_beta x) = ln_beta x + 1 :> Z)%Z ->
- bpow (ln_beta x) - / 2 * ulp beta fexp2 x <= x ->
- double_round_eq fexp1 fexp2 choice1 choice2 x) ->
- ((fexp1 (ln_beta x) <= ln_beta x)%Z ->
- midp fexp1 x - / 2 * ulp beta fexp2 x <= x < midp fexp1 x ->
- double_round_eq fexp1 fexp2 choice1 choice2 x) ->
- ((fexp1 (ln_beta x) <= ln_beta x)%Z ->
- x = midp fexp1 x ->
- double_round_eq fexp1 fexp2 choice1 choice2 x) ->
- ((fexp1 (ln_beta x) <= ln_beta x)%Z ->
- midp fexp1 x < x <= midp fexp1 x + / 2 * ulp beta fexp2 x ->
- double_round_eq fexp1 fexp2 choice1 choice2 x) ->
- double_round_eq fexp1 fexp2 choice1 choice2 x.
-Proof.
-intros fexp1 fexp2 Vfexp1 Vfexp2 choice1 choice2 x Px Hf2.
-set (x' := round beta fexp1 Zfloor x).
-set (u1 := ulp beta fexp1 x).
-set (u2 := ulp beta fexp2 x).
-intros Cz Clt Ceq Cgt.
-destruct (Ztrichotomy (ln_beta x) (fexp1 (ln_beta x) - 1)) as [Hlt|[Heq|Hgt]].
-- (* ln_beta x < fexp1 (ln_beta x) - 1 *)
- assert (H : (ln_beta x <= fexp1 (ln_beta x) - 2)%Z) by omega.
- now apply double_round_really_zero.
-- (* ln_beta x = fexp1 (ln_beta x) - 1 *)
- assert (H : (fexp1 (ln_beta x) = (ln_beta x + 1))%Z) by omega.
- destruct (Rlt_or_le x (bpow (ln_beta x) - / 2 * u2)) as [Hlt'|Hge'].
- + now apply double_round_zero.
- + now apply Cz.
-- (* ln_beta x > fexp1 (ln_beta x) - 1 *)
- assert (H : (fexp1 (ln_beta x) <= ln_beta x)%Z) by omega.
- destruct (Rtotal_order x (midp fexp1 x)) as [Hlt'|[Heq'|Hgt']].
- + (* x < midp fexp1 x *)
- destruct (Rlt_or_le x (midp fexp1 x - / 2 * u2)) as [Hlt''|Hle''].
- * now apply double_round_lt_mid_further_place; [| | |omega| |].
- * now apply Clt; [|split].
- + (* x = midp fexp1 x *)
- now apply Ceq.
- + (* x > midp fexp1 x *)
- destruct (Rle_or_lt x (midp fexp1 x + / 2 * u2)) as [Hlt''|Hle''].
- * now apply Cgt; [|split].
- * { destruct (generic_format_EM beta fexp1 x) as [Fx|Nfx].
- - (* generic_format beta fexp1 x *)
- unfold double_round_eq; rewrite (round_generic beta fexp2);
- [reflexivity|now apply valid_rnd_N|].
- now apply (generic_inclusion_ln_beta beta fexp1); [omega|].
- - (* ~ generic_format beta fexp1 x *)
- assert (Hceil : round beta fexp1 Zceil x = x' + u1);
- [now apply round_UP_DN_ulp|].
- assert (Hf2' : (fexp2 (ln_beta x) <= fexp1 (ln_beta x) - 1)%Z);
- [omega|].
- assert (midp' fexp1 x + / 2 * ulp beta fexp2 x < x);
- [|now apply double_round_gt_mid_further_place].
- revert Hle''; unfold midp, midp'; fold x'.
- rewrite Hceil; fold u1; fold u2.
- lra. }
-Qed.
-
-Lemma ln_beta_div_disj :
- forall x y : R,
- 0 < x -> 0 < y ->
- ((ln_beta (x / y) = ln_beta x - ln_beta y :> Z)%Z
- \/ (ln_beta (x / y) = ln_beta x - ln_beta y + 1 :> Z)%Z).
-Proof.
-intros x y Px Py.
-generalize (ln_beta_div beta x y Px Py).
-omega.
-Qed.
-
-Definition double_round_div_hyp fexp1 fexp2 :=
- (forall ex, (fexp2 ex <= fexp1 ex - 1)%Z)
- /\ (forall ex ey, (fexp1 ex < ex)%Z -> (fexp1 ey < ey)%Z ->
- (fexp1 (ex - ey) <= ex - ey + 1)%Z ->
- (fexp2 (ex - ey) <= fexp1 ex - ey)%Z)
- /\ (forall ex ey, (fexp1 ex < ex)%Z -> (fexp1 ey < ey)%Z ->
- (fexp1 (ex - ey + 1) <= ex - ey + 1 + 1)%Z ->
- (fexp2 (ex - ey + 1) <= fexp1 ex - ey)%Z)
- /\ (forall ex ey, (fexp1 ex < ex)%Z -> (fexp1 ey < ey)%Z ->
- (fexp1 (ex - ey) <= ex - ey)%Z ->
- (fexp2 (ex - ey) <= fexp1 (ex - ey)
- + fexp1 ey - ey)%Z)
- /\ (forall ex ey, (fexp1 ex < ex)%Z -> (fexp1 ey < ey)%Z ->
- (fexp1 (ex - ey) = ex - ey + 1)%Z ->
- (fexp2 (ex - ey) <= ex - ey - ey + fexp1 ey)%Z).
-
-Lemma double_round_div_aux0 :
- forall fexp1 fexp2 : Z -> Z,
- Valid_exp fexp1 -> Valid_exp fexp2 ->
- forall (choice1 choice2 : Z -> bool),
- double_round_div_hyp fexp1 fexp2 ->
- forall x y,
- 0 < x -> 0 < y ->
- generic_format beta fexp1 x ->
- generic_format beta fexp1 y ->
- fexp1 (ln_beta (x / y)) = (ln_beta (x / y) + 1)%Z ->
- ~ (bpow (ln_beta (x / y)) - / 2 * ulp beta fexp2 (x / y) <= x / y).
-Proof.
-intros fexp1 fexp2 Vfexp1 Vfexp2 choice1 choice2 Hexp x y Px Py Fx Fy Hf1.
-assert (Hfx : (fexp1 (ln_beta x) < ln_beta x)%Z);
- [now apply ln_beta_generic_gt; [|apply Rgt_not_eq|]|].
-assert (Hfy : (fexp1 (ln_beta y) < ln_beta y)%Z);
- [now apply ln_beta_generic_gt; [|apply Rgt_not_eq|]|].
-set (p := bpow (ln_beta (x / y))).
-set (u2 := bpow (fexp2 (ln_beta (x / y)))).
-revert Fx Fy.
-unfold generic_format, F2R, scaled_mantissa, canonic_exp; simpl.
-set (mx := Ztrunc (x * bpow (- fexp1 (ln_beta x)))).
-set (my := Ztrunc (y * bpow (- fexp1 (ln_beta y)))).
-intros Fx Fy.
-rewrite ulp_neq_0.
-2: apply Rmult_integral_contrapositive_currified; [now apply Rgt_not_eq|idtac].
-2: now apply Rinv_neq_0_compat, Rgt_not_eq.
-intro Hl.
-assert (Hr : x / y < p);
- [now apply Rabs_lt_inv; apply bpow_ln_beta_gt|].
-apply (Rlt_irrefl (p - / 2 * u2)).
-apply (Rle_lt_trans _ _ _ Hl).
-apply (Rmult_lt_reg_r y _ _ Py).
-unfold Rdiv; rewrite Rmult_assoc.
-rewrite Rinv_l; [|now apply Rgt_not_eq]; rewrite Rmult_1_r.
-destruct (Zle_or_lt Z0 (fexp1 (ln_beta x) - ln_beta (x / y)
- - fexp1 (ln_beta y))%Z) as [He|He].
-- (* ln_beta (x / y) + fexp1 (ln_beta y) <= fexp1 (ln_beta x) *)
- apply Rle_lt_trans with (p * y - p * bpow (fexp1 (ln_beta y))).
- + rewrite Fx; rewrite Fy at 1.
- rewrite <- Rmult_assoc.
- rewrite (Rmult_comm p).
- unfold p; bpow_simplify.
- apply (Rmult_le_reg_r (bpow (- ln_beta (x / y) - fexp1 (ln_beta y))));
- [now apply bpow_gt_0|].
- rewrite Rmult_minus_distr_r.
- bpow_simplify.
- rewrite <- Z2R_Zpower; [|exact He].
- rewrite <- Z2R_mult.
- change 1 with (Z2R 1); rewrite <- Z2R_minus.
- apply Z2R_le.
- apply (Zplus_le_reg_r _ _ 1); ring_simplify.
- apply Zlt_le_succ.
- apply lt_Z2R.
- rewrite Z2R_mult.
- rewrite Z2R_Zpower; [|exact He].
- apply (Rmult_lt_reg_r (bpow (fexp1 (ln_beta y) + ln_beta (x / y))));
- [now apply bpow_gt_0|].
- bpow_simplify.
- rewrite <- Fx.
- rewrite bpow_plus.
- rewrite <- Rmult_assoc; rewrite <- Fy.
- fold p.
- apply (Rmult_lt_reg_r (/ y)); [now apply Rinv_0_lt_compat|].
- field_simplify; lra.
- + rewrite Rmult_minus_distr_r.
- unfold Rminus; apply Rplus_lt_compat_l.
- apply Ropp_lt_contravar.
- apply Rlt_le_trans with (u2 * bpow (ln_beta y)).
- * rewrite <- (Rmult_1_l (u2 * _)).
- rewrite Rmult_assoc.
- { apply Rmult_lt_compat.
- - lra.
- - now apply Rmult_le_pos; [apply bpow_ge_0|apply Rlt_le].
- - lra.
- - apply Rmult_lt_compat_l; [now apply bpow_gt_0|].
- apply Rabs_lt_inv.
- apply bpow_ln_beta_gt. }
- * unfold u2, p, ulp, canonic_exp; bpow_simplify; apply bpow_le.
- apply (Zplus_le_reg_r _ _ (- ln_beta y)); ring_simplify.
- rewrite (Zplus_comm (- _)); fold (Zminus (ln_beta (x / y)) (ln_beta y)).
- destruct (ln_beta_div_disj x y Px Py) as [Hxy|Hxy]; rewrite Hxy;
- [now apply Hexp; [| |rewrite <- Hxy]|].
- replace (_ - _ + 1)%Z with ((ln_beta x + 1) - ln_beta y)%Z by ring.
- apply Hexp.
- { now assert (fexp1 (ln_beta x + 1) <= ln_beta x)%Z;
- [apply valid_exp|omega]. }
- { assumption. }
- replace (_ + 1 - _)%Z with (ln_beta x - ln_beta y + 1)%Z by ring.
- now rewrite <- Hxy.
-- (* fexp1 (ln_beta x) < ln_beta (x / y) + fexp1 (ln_beta y) *)
- apply Rle_lt_trans with (p * y - bpow (fexp1 (ln_beta x))).
- + rewrite Fx at 1; rewrite Fy at 1.
- apply (Rmult_le_reg_r (bpow (- fexp1 (ln_beta x))));
- [now apply bpow_gt_0|].
- rewrite Rmult_minus_distr_r.
- bpow_simplify.
- rewrite (Rmult_comm p).
- unfold p; bpow_simplify.
- rewrite <- Z2R_Zpower; [|omega].
- rewrite <- Z2R_mult.
- change 1 with (Z2R 1); rewrite <- Z2R_minus.
- apply Z2R_le.
- apply (Zplus_le_reg_r _ _ 1); ring_simplify.
- apply Zlt_le_succ.
- apply lt_Z2R.
- rewrite Z2R_mult.
- rewrite Z2R_Zpower; [|omega].
- apply (Rmult_lt_reg_r (bpow (fexp1 (ln_beta x))));
- [now apply bpow_gt_0|bpow_simplify].
- rewrite <- Fx.
- rewrite Zplus_comm; rewrite bpow_plus.
- rewrite <- Rmult_assoc; rewrite <- Fy.
- fold p.
- apply (Rmult_lt_reg_r (/ y)); [now apply Rinv_0_lt_compat|].
- field_simplify; lra.
- + rewrite Rmult_minus_distr_r.
- unfold Rminus; apply Rplus_lt_compat_l.
- apply Ropp_lt_contravar.
- apply Rlt_le_trans with (u2 * bpow (ln_beta y)).
- * rewrite <- (Rmult_1_l (u2 * _)).
- rewrite Rmult_assoc.
- { apply Rmult_lt_compat.
- - lra.
- - now apply Rmult_le_pos; [apply bpow_ge_0|apply Rlt_le].
- - lra.
- - apply Rmult_lt_compat_l; [now apply bpow_gt_0|].
- apply Rabs_lt_inv.
- apply bpow_ln_beta_gt. }
- * unfold u2, p, ulp, canonic_exp; bpow_simplify; apply bpow_le.
- apply (Zplus_le_reg_r _ _ (- ln_beta y)); ring_simplify.
- rewrite (Zplus_comm (- _)); fold (Zminus (ln_beta (x / y)) (ln_beta y)).
- destruct (ln_beta_div_disj x y Px Py) as [Hxy|Hxy]; rewrite Hxy;
- apply Hexp; try assumption; rewrite <- Hxy; rewrite Hf1; apply Zle_refl.
-Qed.
-
-Lemma double_round_div_aux1 :
- forall fexp1 fexp2 : Z -> Z,
- Valid_exp fexp1 -> Valid_exp fexp2 ->
- forall (choice1 choice2 : Z -> bool),
- double_round_div_hyp fexp1 fexp2 ->
- forall x y,
- 0 < x -> 0 < y ->
- generic_format beta fexp1 x ->
- generic_format beta fexp1 y ->
- (fexp1 (ln_beta (x / y)) <= ln_beta (x / y))%Z ->
- ~ (midp fexp1 (x / y) - / 2 * ulp beta fexp2 (x / y)
- <= x / y
- < midp fexp1 (x / y)).
-Proof.
-intros fexp1 fexp2 Vfexp1 Vfexp2 choice1 choice2 Hexp x y Px Py Fx Fy Hf1.
-assert (Hfx : (fexp1 (ln_beta x) < ln_beta x)%Z);
- [now apply ln_beta_generic_gt; [|apply Rgt_not_eq|]|].
-assert (Hfy : (fexp1 (ln_beta y) < ln_beta y)%Z);
- [now apply ln_beta_generic_gt; [|apply Rgt_not_eq|]|].
-assert (S : (x / y <> 0)%R).
-apply Rmult_integral_contrapositive_currified; [now apply Rgt_not_eq|idtac].
-now apply Rinv_neq_0_compat, Rgt_not_eq.
-cut (~ (/ 2 * (ulp beta fexp1 (x / y) - ulp beta fexp2 (x / y))
- <= x / y - round beta fexp1 Zfloor (x / y)
- < / 2 * ulp beta fexp1 (x / y))).
-{ intro H; intro H'; apply H; split.
- - apply (Rplus_le_reg_l (round beta fexp1 Zfloor (x / y))).
- ring_simplify.
- apply H'.
- - apply (Rplus_lt_reg_l (round beta fexp1 Zfloor (x / y))).
- ring_simplify.
- apply H'. }
-set (u1 := bpow (fexp1 (ln_beta (x / y)))).
-set (u2 := bpow (fexp2 (ln_beta (x / y)))).
-set (x' := round beta fexp1 Zfloor (x / y)).
-rewrite 2!ulp_neq_0; trivial.
-revert Fx Fy.
-unfold generic_format, F2R, scaled_mantissa, canonic_exp; simpl.
-set (mx := Ztrunc (x * bpow (- fexp1 (ln_beta x)))).
-set (my := Ztrunc (y * bpow (- fexp1 (ln_beta y)))).
-intros Fx Fy.
-intro Hlr.
-apply (Rlt_irrefl (/ 2 * (u1 - u2))).
-apply (Rle_lt_trans _ _ _ (proj1 Hlr)).
-apply (Rplus_lt_reg_r x'); ring_simplify.
-apply (Rmult_lt_reg_r y _ _ Py).
-unfold Rdiv; rewrite Rmult_assoc.
-rewrite Rinv_l; [|now apply Rgt_not_eq]; rewrite Rmult_1_r.
-rewrite Rmult_minus_distr_r; rewrite Rmult_plus_distr_r.
-apply (Rmult_lt_reg_l 2); [lra|].
-rewrite Rmult_minus_distr_l; rewrite Rmult_plus_distr_l.
-do 5 rewrite <- Rmult_assoc.
-rewrite Rinv_r; [|lra]; do 2 rewrite Rmult_1_l.
-destruct (Zle_or_lt Z0 (fexp1 (ln_beta x) - fexp1 (ln_beta (x / y))
- - fexp1 (ln_beta y))%Z) as [He|He].
-- (* fexp1 (ln_beta (x / y)) + fexp1 (ln_beta y)) <= fexp1 (ln_beta x) *)
- apply Rle_lt_trans with (2 * x' * y + u1 * y
- - bpow (fexp1 (ln_beta (x / y))
- + fexp1 (ln_beta y))).
- + rewrite Fx at 1; rewrite Fy at 1 2.
- apply (Rmult_le_reg_r (bpow (- fexp1 (ln_beta (x / y))
- - fexp1 (ln_beta y))));
- [now apply bpow_gt_0|].
- rewrite Rmult_minus_distr_r; rewrite (Rmult_plus_distr_r (_ * _ * _)).
- bpow_simplify.
- replace (2 * x' * _ * _)
- with (2 * Z2R my * x' * bpow (- fexp1 (ln_beta (x / y)))) by ring.
- rewrite (Rmult_comm u1).
- unfold x', u1, round, F2R, ulp, scaled_mantissa, canonic_exp; simpl.
- bpow_simplify.
- rewrite <- Z2R_Zpower; [|exact He].
- change 2 with (Z2R 2).
- do 4 rewrite <- Z2R_mult.
- rewrite <- Z2R_plus.
- change 1 with (Z2R 1); rewrite <- Z2R_minus.
- apply Z2R_le.
- apply (Zplus_le_reg_r _ _ 1); ring_simplify.
- apply Zlt_le_succ.
- apply lt_Z2R.
- rewrite Z2R_plus.
- do 4 rewrite Z2R_mult; simpl.
- rewrite Z2R_Zpower; [|exact He].
- apply (Rmult_lt_reg_r (bpow (fexp1 (ln_beta (x / y))
- + fexp1 (ln_beta y))));
- [now apply bpow_gt_0|bpow_simplify].
- rewrite Rmult_assoc.
- rewrite <- Fx.
- rewrite (Rmult_plus_distr_r _ _ (Fcore_Raux.bpow _ _)).
- rewrite Rmult_assoc.
- rewrite bpow_plus.
- rewrite <- (Rmult_assoc (Z2R (Zfloor _))).
- change (Z2R (Zfloor _) * _) with x'.
- do 2 rewrite (Rmult_comm _ (bpow (fexp1 (ln_beta y)))).
- rewrite Rmult_assoc.
- do 2 rewrite <- (Rmult_assoc (Z2R my)).
- rewrite <- Fy.
- change (bpow _) with u1.
- apply (Rmult_lt_reg_l (/ 2)); [lra|].
- rewrite Rmult_plus_distr_l.
- do 4 rewrite <- Rmult_assoc.
- rewrite Rinv_l; [|lra]; do 2 rewrite Rmult_1_l.
- apply (Rplus_lt_reg_r (- y * x')); ring_simplify.
- apply (Rmult_lt_reg_l (/ y)); [now apply Rinv_0_lt_compat|].
- rewrite Rmult_minus_distr_l.
- do 3 rewrite <- Rmult_assoc.
- rewrite Rinv_l; [|now apply Rgt_not_eq]; do 2 rewrite Rmult_1_l.
- now rewrite Rmult_comm.
- + apply Rplus_lt_compat_l.
- apply Ropp_lt_contravar.
- apply Rlt_le_trans with (u2 * bpow (ln_beta y)).
- * { apply Rmult_lt_compat_l.
- - apply bpow_gt_0.
- - apply Rabs_lt_inv.
- apply bpow_ln_beta_gt. }
- * unfold u2, ulp, canonic_exp; bpow_simplify; apply bpow_le.
- apply (Zplus_le_reg_r _ _ (- ln_beta y)); ring_simplify.
- rewrite <- Zplus_assoc; rewrite (Zplus_comm (- _)).
- destruct (ln_beta_div_disj x y Px Py) as [Hxy|Hxy]; rewrite Hxy;
- [now apply Hexp; [| |rewrite <- Hxy]|].
- replace (_ - _ + 1)%Z with ((ln_beta x + 1) - ln_beta y)%Z by ring.
- apply Hexp.
- { now assert (fexp1 (ln_beta x + 1) <= ln_beta x)%Z;
- [apply valid_exp|omega]. }
- { assumption. }
- replace (_ + 1 - _)%Z with (ln_beta x - ln_beta y + 1)%Z by ring.
- now rewrite <- Hxy.
-- (* fexp1 (ln_beta x) < fexp1 (ln_beta (x / y)) + fexp1 (ln_beta y) *)
- apply Rle_lt_trans with (2 * x' * y + u1 * y - bpow (fexp1 (ln_beta x))).
- + rewrite Fx at 1; rewrite Fy at 1 2.
- apply (Rmult_le_reg_r (bpow (- fexp1 (ln_beta x))));
- [now apply bpow_gt_0|].
- rewrite Rmult_minus_distr_r; rewrite (Rmult_plus_distr_r (_ * _ * _)).
- bpow_simplify.
- replace (2 * x' * _ * _)
- with (2 * Z2R my * x' * bpow (fexp1 (ln_beta y) - fexp1 (ln_beta x))) by ring.
- rewrite (Rmult_comm u1).
- unfold x', u1, round, F2R, ulp, scaled_mantissa, canonic_exp; simpl.
- bpow_simplify.
- rewrite <- (Z2R_Zpower _ (_ - _)%Z); [|omega].
- change 2 with (Z2R 2).
- do 5 rewrite <- Z2R_mult.
- rewrite <- Z2R_plus.
- change 1 with (Z2R 1); rewrite <- Z2R_minus.
- apply Z2R_le.
- apply (Zplus_le_reg_r _ _ 1); ring_simplify.
- apply Zlt_le_succ.
- apply lt_Z2R.
- rewrite Z2R_plus.
- do 5 rewrite Z2R_mult; simpl.
- rewrite Z2R_Zpower; [|omega].
- apply (Rmult_lt_reg_r (bpow (fexp1 (ln_beta x))));
- [now apply bpow_gt_0|].
- rewrite Rmult_assoc.
- rewrite <- Fx.
- rewrite (Rmult_plus_distr_r _ _ (Fcore_Raux.bpow _ _)).
- bpow_simplify.
- rewrite Rmult_assoc.
- rewrite bpow_plus.
- rewrite <- (Rmult_assoc (Z2R (Zfloor _))).
- change (Z2R (Zfloor _) * _) with x'.
- do 2 rewrite (Rmult_comm _ (bpow (fexp1 (ln_beta y)))).
- rewrite Rmult_assoc.
- do 2 rewrite <- (Rmult_assoc (Z2R my)).
- rewrite <- Fy.
- change (bpow _) with u1.
- apply (Rmult_lt_reg_l (/ 2)); [lra|].
- rewrite Rmult_plus_distr_l.
- do 4 rewrite <- Rmult_assoc.
- rewrite Rinv_l; [|lra]; do 2 rewrite Rmult_1_l.
- apply (Rplus_lt_reg_r (- y * x')); ring_simplify.
- apply (Rmult_lt_reg_l (/ y)); [now apply Rinv_0_lt_compat|].
- rewrite Rmult_minus_distr_l.
- do 3 rewrite <- Rmult_assoc.
- rewrite Rinv_l; [|now apply Rgt_not_eq]; do 2 rewrite Rmult_1_l.
- now rewrite Rmult_comm.
- + apply Rplus_lt_compat_l.
- apply Ropp_lt_contravar.
- apply Rlt_le_trans with (u2 * bpow (ln_beta y)).
- * { apply Rmult_lt_compat_l.
- - apply bpow_gt_0.
- - apply Rabs_lt_inv.
- apply bpow_ln_beta_gt. }
- * unfold u2, ulp, canonic_exp; bpow_simplify; apply bpow_le.
- apply (Zplus_le_reg_r _ _ (- ln_beta y)); ring_simplify.
- rewrite (Zplus_comm (- _)).
- destruct (ln_beta_div_disj x y Px Py) as [Hxy|Hxy]; rewrite Hxy;
- apply Hexp; try assumption; rewrite <- Hxy; omega.
-Qed.
-
-Lemma double_round_div_aux2 :
- forall fexp1 fexp2 : Z -> Z,
- Valid_exp fexp1 -> Valid_exp fexp2 ->
- forall (choice1 choice2 : Z -> bool),
- double_round_div_hyp fexp1 fexp2 ->
- forall x y,
- 0 < x -> 0 < y ->
- generic_format beta fexp1 x ->
- generic_format beta fexp1 y ->
- (fexp1 (ln_beta (x / y)) <= ln_beta (x / y))%Z ->
- ~ (midp fexp1 (x / y)
- < x / y
- <= midp fexp1 (x / y) + / 2 * ulp beta fexp2 (x / y)).
-Proof.
-intros fexp1 fexp2 Vfexp1 Vfexp2 choice1 choice2 Hexp x y Px Py Fx Fy Hf1.
-assert (Hfx : (fexp1 (ln_beta x) < ln_beta x)%Z);
- [now apply ln_beta_generic_gt; [|apply Rgt_not_eq|]|].
-assert (Hfy : (fexp1 (ln_beta y) < ln_beta y)%Z);
- [now apply ln_beta_generic_gt; [|apply Rgt_not_eq|]|].
-cut (~ (/ 2 * ulp beta fexp1 (x / y)
- < x / y - round beta fexp1 Zfloor (x / y)
- <= / 2 * (ulp beta fexp1 (x / y) + ulp beta fexp2 (x / y)))).
-{ intro H; intro H'; apply H; split.
- - apply (Rplus_lt_reg_l (round beta fexp1 Zfloor (x / y))).
- ring_simplify.
- apply H'.
- - apply (Rplus_le_reg_l (round beta fexp1 Zfloor (x / y))).
- ring_simplify.
- apply H'. }
-set (u1 := bpow (fexp1 (ln_beta (x / y)))).
-set (u2 := bpow (fexp2 (ln_beta (x / y)))).
-set (x' := round beta fexp1 Zfloor (x / y)).
-assert (S : (x / y <> 0)%R).
-apply Rmult_integral_contrapositive_currified; [now apply Rgt_not_eq|idtac].
-now apply Rinv_neq_0_compat, Rgt_not_eq.
-rewrite 2!ulp_neq_0; trivial.
-revert Fx Fy.
-unfold generic_format, F2R, scaled_mantissa, canonic_exp; simpl.
-set (mx := Ztrunc (x * bpow (- fexp1 (ln_beta x)))).
-set (my := Ztrunc (y * bpow (- fexp1 (ln_beta y)))).
-intros Fx Fy.
-intro Hlr.
-apply (Rlt_irrefl (/ 2 * (u1 + u2))).
-apply Rlt_le_trans with (x / y - x'); [|now apply Hlr].
-apply (Rplus_lt_reg_r x'); ring_simplify.
-apply (Rmult_lt_reg_r y _ _ Py).
-unfold Rdiv; rewrite Rmult_assoc.
-rewrite Rinv_l; [|now apply Rgt_not_eq]; rewrite Rmult_1_r.
-do 2 rewrite Rmult_plus_distr_r.
-apply (Rmult_lt_reg_l 2); [lra|].
-do 2 rewrite Rmult_plus_distr_l.
-do 5 rewrite <- Rmult_assoc.
-rewrite Rinv_r; [|lra]; do 2 rewrite Rmult_1_l.
-destruct (Zle_or_lt Z0 (fexp1 (ln_beta x) - fexp1 (ln_beta (x / y))
- - fexp1 (ln_beta y))%Z) as [He|He].
-- (* fexp1 (ln_beta (x / y)) + fexp1 (ln_beta y) <= fexp1 (ln_beta x) *)
- apply Rlt_le_trans with (u1 * y + bpow (fexp1 (ln_beta (x / y))
- + fexp1 (ln_beta y))
- + 2 * x' * y).
- + apply Rplus_lt_compat_r, Rplus_lt_compat_l.
- apply Rlt_le_trans with (u2 * bpow (ln_beta y)).
- * { apply Rmult_lt_compat_l.
- - apply bpow_gt_0.
- - apply Rabs_lt_inv.
- apply bpow_ln_beta_gt. }
- * unfold u2, ulp, canonic_exp; bpow_simplify; apply bpow_le.
- apply (Zplus_le_reg_r _ _ (- ln_beta y)); ring_simplify.
- rewrite <- Zplus_assoc; rewrite (Zplus_comm (- _)).
- destruct (ln_beta_div_disj x y Px Py) as [Hxy|Hxy]; rewrite Hxy;
- [now apply Hexp; [| |rewrite <- Hxy]|].
- replace (_ - _ + 1)%Z with ((ln_beta x + 1) - ln_beta y)%Z by ring.
- apply Hexp.
- { now assert (fexp1 (ln_beta x + 1) <= ln_beta x)%Z;
- [apply valid_exp|omega]. }
- { assumption. }
- replace (_ + 1 - _)%Z with (ln_beta x - ln_beta y + 1)%Z by ring.
- now rewrite <- Hxy.
- + apply Rge_le; rewrite Fx at 1; apply Rle_ge.
- replace (u1 * y) with (u1 * (Z2R my * bpow (fexp1 (ln_beta y))));
- [|now apply eq_sym; rewrite Fy at 1].
- replace (2 * x' * y) with (2 * x' * (Z2R my * bpow (fexp1 (ln_beta y))));
- [|now apply eq_sym; rewrite Fy at 1].
- apply (Rmult_le_reg_r (bpow (- fexp1 (ln_beta (x / y))
- - fexp1 (ln_beta y))));
- [now apply bpow_gt_0|].
- do 2 rewrite Rmult_plus_distr_r.
- bpow_simplify.
- rewrite (Rmult_comm u1).
- unfold u1, ulp, canonic_exp; bpow_simplify.
- rewrite (Rmult_assoc 2).
- rewrite (Rmult_comm x').
- rewrite (Rmult_assoc 2).
- unfold x', round, F2R, scaled_mantissa, canonic_exp; simpl.
- bpow_simplify.
- rewrite <- (Z2R_Zpower _ (_ - _)%Z); [|exact He].
- change 2 with (Z2R 2).
- do 4 rewrite <- Z2R_mult.
- change 1 with (Z2R 1); do 2 rewrite <- Z2R_plus.
- apply Z2R_le.
- rewrite Zplus_comm, Zplus_assoc.
- apply Zlt_le_succ.
- apply lt_Z2R.
- rewrite Z2R_plus.
- do 4 rewrite Z2R_mult; simpl.
- rewrite Z2R_Zpower; [|exact He].
- apply (Rmult_lt_reg_r (bpow (fexp1 (ln_beta y))));
- [now apply bpow_gt_0|].
- rewrite Rmult_plus_distr_r.
- rewrite (Rmult_comm _ (Z2R _)).
- do 2 rewrite Rmult_assoc.
- rewrite <- Fy.
- bpow_simplify.
- unfold Zminus; rewrite bpow_plus.
- rewrite (Rmult_assoc _ (Z2R mx)).
- rewrite <- (Rmult_assoc (Z2R mx)).
- rewrite <- Fx.
- apply (Rmult_lt_reg_r (bpow (fexp1 (ln_beta (x / y)))));
- [now apply bpow_gt_0|].
- rewrite Rmult_plus_distr_r.
- bpow_simplify.
- rewrite (Rmult_comm _ y).
- do 2 rewrite Rmult_assoc.
- change (Z2R (Zfloor _) * _) with x'.
- change (bpow _) with u1.
- apply (Rmult_lt_reg_l (/ 2)); [lra|].
- rewrite Rmult_plus_distr_l.
- do 4 rewrite <- Rmult_assoc.
- rewrite Rinv_l; [|lra]; do 2 rewrite Rmult_1_l.
- apply (Rplus_lt_reg_r (- y * x')); ring_simplify.
- apply (Rmult_lt_reg_l (/ y)); [now apply Rinv_0_lt_compat|].
- rewrite Rmult_plus_distr_l.
- do 3 rewrite <- Rmult_assoc.
- rewrite Ropp_mult_distr_r_reverse.
- rewrite Ropp_mult_distr_l_reverse.
- rewrite Rinv_l; [|now apply Rgt_not_eq]; do 2 rewrite Rmult_1_l.
- rewrite (Rmult_comm (/ y)).
- now rewrite (Rplus_comm (- x')).
-- (* fexp1 (ln_beta x) < fexp1 (ln_beta (x / y)) + fexp1 (ln_beta y) *)
- apply Rlt_le_trans with (2 * x' * y + u1 * y + bpow (fexp1 (ln_beta x))).
- + rewrite Rplus_comm, Rplus_assoc; do 2 apply Rplus_lt_compat_l.
- apply Rlt_le_trans with (u2 * bpow (ln_beta y)).
- * apply Rmult_lt_compat_l.
- now apply bpow_gt_0.
- now apply Rabs_lt_inv; apply bpow_ln_beta_gt.
- * unfold u2, ulp, canonic_exp; bpow_simplify; apply bpow_le.
- apply (Zplus_le_reg_r _ _ (- ln_beta y)); ring_simplify.
- rewrite (Zplus_comm (- _)).
- destruct (ln_beta_div_disj x y Px Py) as [Hxy|Hxy]; rewrite Hxy;
- apply Hexp; try assumption; rewrite <- Hxy; omega.
- + apply Rge_le; rewrite Fx at 1; apply Rle_ge.
- rewrite Fy at 1 2.
- apply (Rmult_le_reg_r (bpow (- fexp1 (ln_beta x))));
- [now apply bpow_gt_0|].
- do 2 rewrite Rmult_plus_distr_r.
- bpow_simplify.
- replace (2 * x' * _ * _)
- with (2 * Z2R my * x' * bpow (fexp1 (ln_beta y) - fexp1 (ln_beta x))) by ring.
- rewrite (Rmult_comm u1).
- unfold x', u1, round, F2R, ulp, scaled_mantissa, canonic_exp; simpl.
- bpow_simplify.
- rewrite <- (Z2R_Zpower _ (_ - _)%Z); [|omega].
- change 2 with (Z2R 2).
- do 5 rewrite <- Z2R_mult.
- change 1 with (Z2R 1); do 2 rewrite <- Z2R_plus.
- apply Z2R_le.
- apply Zlt_le_succ.
- apply lt_Z2R.
- rewrite Z2R_plus.
- do 5 rewrite Z2R_mult; simpl.
- rewrite Z2R_Zpower; [|omega].
- apply (Rmult_lt_reg_r (bpow (fexp1 (ln_beta x))));
- [now apply bpow_gt_0|].
- rewrite (Rmult_assoc _ (Z2R mx)).
- rewrite <- Fx.
- rewrite Rmult_plus_distr_r.
- bpow_simplify.
- rewrite bpow_plus.
- rewrite Rmult_assoc.
- rewrite <- (Rmult_assoc (Z2R _)).
- change (Z2R _ * bpow _) with x'.
- do 2 rewrite (Rmult_comm _ (bpow (fexp1 (ln_beta y)))).
- rewrite Rmult_assoc.
- do 2 rewrite <- (Rmult_assoc (Z2R my)).
- rewrite <- Fy.
- change (bpow _) with u1.
- apply (Rmult_lt_reg_l (/ 2)); [lra|].
- rewrite Rmult_plus_distr_l.
- do 4 rewrite <- Rmult_assoc.
- rewrite Rinv_l; [|lra]; do 2 rewrite Rmult_1_l.
- apply (Rplus_lt_reg_r (- y * x')); ring_simplify.
- apply (Rmult_lt_reg_l (/ y)); [now apply Rinv_0_lt_compat|].
- rewrite Rmult_plus_distr_l.
- do 3 rewrite <- Rmult_assoc.
- rewrite Ropp_mult_distr_r_reverse.
- rewrite Ropp_mult_distr_l_reverse.
- rewrite Rinv_l; [|now apply Rgt_not_eq]; do 2 rewrite Rmult_1_l.
- rewrite (Rmult_comm (/ y)).
- now rewrite (Rplus_comm (- x')).
-Qed.
-
-Lemma double_round_div_aux :
- forall fexp1 fexp2 : Z -> Z,
- Valid_exp fexp1 -> Valid_exp fexp2 ->
- forall (choice1 choice2 : Z -> bool),
- (exists n, (beta = 2 * n :> Z)%Z) ->
- double_round_div_hyp fexp1 fexp2 ->
- forall x y,
- 0 < x -> 0 < y ->
- generic_format beta fexp1 x ->
- generic_format beta fexp1 y ->
- double_round_eq fexp1 fexp2 choice1 choice2 (x / y).
-Proof.
-intros fexp1 fexp2 Vfexp1 Vfexp2 choice1 choice2 Ebeta Hexp x y Px Py Fx Fy.
-assert (Pxy : 0 < x / y).
-{ apply Rmult_lt_0_compat; [exact Px|].
- now apply Rinv_0_lt_compat. }
-apply double_round_all_mid_cases.
-- exact Vfexp1.
-- exact Vfexp2.
-- exact Pxy.
-- apply Hexp.
-- intros Hf1 Hlxy.
- casetype False.
- now apply (double_round_div_aux0 fexp1 fexp2 _ _ choice1 choice2 Hexp x y).
-- intros Hf1 Hlxy.
- casetype False.
- now apply (double_round_div_aux1 fexp1 fexp2 _ _ choice1 choice2 Hexp x y).
-- intro H.
- apply double_round_eq_mid_beta_even; try assumption.
- apply Hexp.
-- intros Hf1 Hlxy.
- casetype False.
- now apply (double_round_div_aux2 fexp1 fexp2 _ _ choice1 choice2 Hexp x y).
-Qed.
-
-Lemma double_round_div :
- forall fexp1 fexp2 : Z -> Z,
- Valid_exp fexp1 -> Valid_exp fexp2 ->
- forall (choice1 choice2 : Z -> bool),
- (exists n, (beta = 2 * n :> Z)%Z) ->
- double_round_div_hyp fexp1 fexp2 ->
- forall x y,
- y <> 0 ->
- generic_format beta fexp1 x ->
- generic_format beta fexp1 y ->
- double_round_eq fexp1 fexp2 choice1 choice2 (x / y).
-Proof.
-intros fexp1 fexp2 Vfexp1 Vfexp2 choice1 choice2 Ebeta Hexp x y Nzy Fx Fy.
-unfold double_round_eq.
-destruct (Rtotal_order x 0) as [Nx|[Zx|Px]].
-- (* x < 0 *)
- destruct (Rtotal_order y 0) as [Ny|[Zy|Py]].
- + (* y < 0 *)
- rewrite <- (Ropp_involutive x).
- rewrite <- (Ropp_involutive y).
- rewrite Ropp_div.
- unfold Rdiv; rewrite <- Ropp_inv_permute; [|lra].
- rewrite Ropp_mult_distr_r_reverse.
- rewrite Ropp_involutive.
- fold ((- x) / (- y)).
- apply Ropp_lt_contravar in Nx.
- apply Ropp_lt_contravar in Ny.
- rewrite Ropp_0 in Nx, Ny.
- apply generic_format_opp in Fx.
- apply generic_format_opp in Fy.
- now apply double_round_div_aux.
- + (* y = 0 *)
- now casetype False; apply Nzy.
- + (* y > 0 *)
- rewrite <- (Ropp_involutive x).
- rewrite Ropp_div.
- do 3 rewrite round_N_opp.
- apply Ropp_eq_compat.
- apply Ropp_lt_contravar in Nx.
- rewrite Ropp_0 in Nx.
- apply generic_format_opp in Fx.
- now apply double_round_div_aux.
-- (* x = 0 *)
- rewrite Zx.
- unfold Rdiv; rewrite Rmult_0_l.
- now rewrite round_0; [|apply valid_rnd_N].
-- (* x > 0 *)
- destruct (Rtotal_order y 0) as [Ny|[Zy|Py]].
- + (* y < 0 *)
- rewrite <- (Ropp_involutive y).
- unfold Rdiv; rewrite <- Ropp_inv_permute; [|lra].
- rewrite Ropp_mult_distr_r_reverse.
- do 3 rewrite round_N_opp.
- apply Ropp_eq_compat.
- apply Ropp_lt_contravar in Ny.
- rewrite Ropp_0 in Ny.
- apply generic_format_opp in Fy.
- now apply double_round_div_aux.
- + (* y = 0 *)
- now casetype False; apply Nzy.
- + (* y > 0 *)
- now apply double_round_div_aux.
-Qed.
-
-Section Double_round_div_FLX.
-
-Import Fcore_FLX.
-
-Variable prec : Z.
-Variable prec' : Z.
-
-Context { prec_gt_0_ : Prec_gt_0 prec }.
-Context { prec_gt_0_' : Prec_gt_0 prec' }.
-
-Lemma FLX_double_round_div_hyp :
- (2 * prec <= prec')%Z ->
- double_round_div_hyp (FLX_exp prec) (FLX_exp prec').
-Proof.
-intros Hprec.
-unfold Prec_gt_0 in prec_gt_0_.
-unfold FLX_exp.
-unfold double_round_div_hyp.
-split; [now intro ex; omega|].
-split; [|split; [|split]]; intros ex ey; omega.
-Qed.
-
-Theorem double_round_div_FLX :
- forall choice1 choice2,
- (exists n, (beta = 2 * n :> Z)%Z) ->
- (2 * prec <= prec')%Z ->
- forall x y,
- y <> 0 ->
- FLX_format beta prec x -> FLX_format beta prec y ->
- double_round_eq (FLX_exp prec) (FLX_exp prec') choice1 choice2 (x / y).
-Proof.
-intros choice1 choice2 Ebeta Hprec x y Nzy Fx Fy.
-apply double_round_div.
-- now apply FLX_exp_valid.
-- now apply FLX_exp_valid.
-- exact Ebeta.
-- now apply FLX_double_round_div_hyp.
-- exact Nzy.
-- now apply generic_format_FLX.
-- now apply generic_format_FLX.
-Qed.
-
-End Double_round_div_FLX.
-
-Section Double_round_div_FLT.
-
-Import Fcore_FLX.
-Import Fcore_FLT.
-
-Variable emin prec : Z.
-Variable emin' prec' : Z.
-
-Context { prec_gt_0_ : Prec_gt_0 prec }.
-Context { prec_gt_0_' : Prec_gt_0 prec' }.
-
-Lemma FLT_double_round_div_hyp :
- (emin' <= emin - prec - 2)%Z ->
- (2 * prec <= prec')%Z ->
- double_round_div_hyp (FLT_exp emin prec) (FLT_exp emin' prec').
-Proof.
-intros Hemin Hprec.
-unfold FLT_exp.
-unfold Prec_gt_0 in prec_gt_0_.
-unfold double_round_div_hyp.
-split; [intro ex|split; [|split; [|split]]; intros ex ey].
-- generalize (Zmax_spec (ex - prec') emin').
- generalize (Zmax_spec (ex - prec) emin).
- omega.
-- generalize (Zmax_spec (ex - prec) emin).
- generalize (Zmax_spec (ey - prec) emin).
- generalize (Zmax_spec (ex - ey - prec) emin).
- generalize (Zmax_spec (ex - ey - prec') emin').
- omega.
-- generalize (Zmax_spec (ex - prec) emin).
- generalize (Zmax_spec (ey - prec) emin).
- generalize (Zmax_spec (ex - ey + 1 - prec) emin).
- generalize (Zmax_spec (ex - ey + 1 - prec') emin').
- omega.
-- generalize (Zmax_spec (ex - prec) emin).
- generalize (Zmax_spec (ey - prec) emin).
- generalize (Zmax_spec (ex - ey - prec) emin).
- generalize (Zmax_spec (ex - ey - prec') emin').
- omega.
-- generalize (Zmax_spec (ex - prec) emin).
- generalize (Zmax_spec (ey - prec) emin).
- generalize (Zmax_spec (ex - ey - prec) emin).
- generalize (Zmax_spec (ex - ey - prec') emin').
- omega.
-Qed.
-
-Theorem double_round_div_FLT :
- forall choice1 choice2,
- (exists n, (beta = 2 * n :> Z)%Z) ->
- (emin' <= emin - prec - 2)%Z ->
- (2 * prec <= prec')%Z ->
- forall x y,
- y <> 0 ->
- FLT_format beta emin prec x -> FLT_format beta emin prec y ->
- double_round_eq (FLT_exp emin prec) (FLT_exp emin' prec')
- choice1 choice2 (x / y).
-Proof.
-intros choice1 choice2 Ebeta Hemin Hprec x y Nzy Fx Fy.
-apply double_round_div.
-- now apply FLT_exp_valid.
-- now apply FLT_exp_valid.
-- exact Ebeta.
-- now apply FLT_double_round_div_hyp.
-- exact Nzy.
-- now apply generic_format_FLT.
-- now apply generic_format_FLT.
-Qed.
-
-End Double_round_div_FLT.
-
-Section Double_round_div_FTZ.
-
-Import Fcore_FLX.
-Import Fcore_FTZ.
-
-Variable emin prec : Z.
-Variable emin' prec' : Z.
-
-Context { prec_gt_0_ : Prec_gt_0 prec }.
-Context { prec_gt_0_' : Prec_gt_0 prec' }.
-
-Lemma FTZ_double_round_div_hyp :
- (emin' + prec' <= emin - 1)%Z ->
- (2 * prec <= prec')%Z ->
- double_round_div_hyp (FTZ_exp emin prec) (FTZ_exp emin' prec').
-Proof.
-intros Hemin Hprec.
-unfold FTZ_exp.
-unfold Prec_gt_0 in prec_gt_0_.
-unfold Prec_gt_0 in prec_gt_0_.
-unfold double_round_div_hyp.
-split; [intro ex|split; [|split; [|split]]; intros ex ey].
-- destruct (Z.ltb_spec (ex - prec') emin');
- destruct (Z.ltb_spec (ex - prec) emin);
- omega.
-- destruct (Z.ltb_spec (ex - prec) emin);
- destruct (Z.ltb_spec (ey - prec) emin);
- destruct (Z.ltb_spec (ex - ey - prec) emin);
- destruct (Z.ltb_spec (ex - ey - prec') emin');
- omega.
-- destruct (Z.ltb_spec (ex - prec) emin);
- destruct (Z.ltb_spec (ey - prec) emin);
- destruct (Z.ltb_spec (ex - ey + 1 - prec) emin);
- destruct (Z.ltb_spec (ex - ey + 1 - prec') emin');
- omega.
-- destruct (Z.ltb_spec (ex - prec) emin);
- destruct (Z.ltb_spec (ey - prec) emin);
- destruct (Z.ltb_spec (ex - ey - prec) emin);
- destruct (Z.ltb_spec (ex - ey - prec') emin');
- omega.
-- destruct (Z.ltb_spec (ex - prec) emin);
- destruct (Z.ltb_spec (ey - prec) emin);
- destruct (Z.ltb_spec (ex - ey - prec) emin);
- destruct (Z.ltb_spec (ex - ey - prec') emin');
- omega.
-Qed.
-
-Theorem double_round_div_FTZ :
- forall choice1 choice2,
- (exists n, (beta = 2 * n :> Z)%Z) ->
- (emin' + prec' <= emin - 1)%Z ->
- (2 * prec <= prec')%Z ->
- forall x y,
- y <> 0 ->
- FTZ_format beta emin prec x -> FTZ_format beta emin prec y ->
- double_round_eq (FTZ_exp emin prec) (FTZ_exp emin' prec')
- choice1 choice2 (x / y).
-Proof.
-intros choice1 choice2 Ebeta Hemin Hprec x y Nzy Fx Fy.
-apply double_round_div.
-- now apply FTZ_exp_valid.
-- now apply FTZ_exp_valid.
-- exact Ebeta.
-- now apply FTZ_double_round_div_hyp.
-- exact Nzy.
-- now apply generic_format_FTZ.
-- now apply generic_format_FTZ.
-Qed.
-
-End Double_round_div_FTZ.
-
-End Double_round_div.
-
-End Double_round.