aboutsummaryrefslogtreecommitdiffstats
path: root/ia32/SelectOpproof.v
diff options
context:
space:
mode:
Diffstat (limited to 'ia32/SelectOpproof.v')
-rw-r--r--ia32/SelectOpproof.v958
1 files changed, 0 insertions, 958 deletions
diff --git a/ia32/SelectOpproof.v b/ia32/SelectOpproof.v
deleted file mode 100644
index e201d207..00000000
--- a/ia32/SelectOpproof.v
+++ /dev/null
@@ -1,958 +0,0 @@
-(* *********************************************************************)
-(* *)
-(* The Compcert verified compiler *)
-(* *)
-(* Xavier Leroy, INRIA Paris-Rocquencourt *)
-(* *)
-(* Copyright Institut National de Recherche en Informatique et en *)
-(* Automatique. All rights reserved. This file is distributed *)
-(* under the terms of the INRIA Non-Commercial License Agreement. *)
-(* *)
-(* *********************************************************************)
-
-(** Correctness of instruction selection for operators *)
-
-Require Import Coqlib.
-Require Import AST.
-Require Import Integers.
-Require Import Floats.
-Require Import Values.
-Require Import Memory.
-Require Import Globalenvs.
-Require Import Cminor.
-Require Import Op.
-Require Import CminorSel.
-Require Import SelectOp.
-
-Open Local Scope cminorsel_scope.
-Local Transparent Archi.ptr64.
-
-(** * Useful lemmas and tactics *)
-
-(** The following are trivial lemmas and custom tactics that help
- perform backward (inversion) and forward reasoning over the evaluation
- of operator applications. *)
-
-Ltac EvalOp := eapply eval_Eop; eauto with evalexpr.
-
-Ltac InvEval1 :=
- match goal with
- | [ H: (eval_expr _ _ _ _ _ (Eop _ Enil) _) |- _ ] =>
- inv H; InvEval1
- | [ H: (eval_expr _ _ _ _ _ (Eop _ (_ ::: Enil)) _) |- _ ] =>
- inv H; InvEval1
- | [ H: (eval_expr _ _ _ _ _ (Eop _ (_ ::: _ ::: Enil)) _) |- _ ] =>
- inv H; InvEval1
- | [ H: (eval_exprlist _ _ _ _ _ Enil _) |- _ ] =>
- inv H; InvEval1
- | [ H: (eval_exprlist _ _ _ _ _ (_ ::: _) _) |- _ ] =>
- inv H; InvEval1
- | _ =>
- idtac
- end.
-
-Ltac InvEval2 :=
- match goal with
- | [ H: (eval_operation _ _ _ nil _ = Some _) |- _ ] =>
- simpl in H; inv H
- | [ H: (eval_operation _ _ _ (_ :: nil) _ = Some _) |- _ ] =>
- simpl in H; FuncInv
- | [ H: (eval_operation _ _ _ (_ :: _ :: nil) _ = Some _) |- _ ] =>
- simpl in H; FuncInv
- | [ H: (eval_operation _ _ _ (_ :: _ :: _ :: nil) _ = Some _) |- _ ] =>
- simpl in H; FuncInv
- | _ =>
- idtac
- end.
-
-Ltac InvEval := InvEval1; InvEval2; InvEval2.
-
-Ltac TrivialExists :=
- match goal with
- | [ |- exists v, _ /\ Val.lessdef ?a v ] => exists a; split; [EvalOp | auto]
- end.
-
-(** * Correctness of the smart constructors *)
-
-Section CMCONSTR.
-
-Variable ge: genv.
-Variable sp: val.
-Variable e: env.
-Variable m: mem.
-
-(** We now show that the code generated by "smart constructor" functions
- such as [SelectOp.notint] behaves as expected. Continuing the
- [notint] example, we show that if the expression [e]
- evaluates to some integer value [Vint n], then [SelectOp.notint e]
- evaluates to a value [Vint (Int.not n)] which is indeed the integer
- negation of the value of [e].
-
- All proofs follow a common pattern:
-- Reasoning by case over the result of the classification functions
- (such as [add_match] for integer addition), gathering additional
- information on the shape of the argument expressions in the non-default
- cases.
-- Inversion of the evaluations of the arguments, exploiting the additional
- information thus gathered.
-- Equational reasoning over the arithmetic operations performed,
- using the lemmas from the [Int] and [Float] modules.
-- Construction of an evaluation derivation for the expression returned
- by the smart constructor.
-*)
-
-Definition unary_constructor_sound (cstr: expr -> expr) (sem: val -> val) : Prop :=
- forall le a x,
- eval_expr ge sp e m le a x ->
- exists v, eval_expr ge sp e m le (cstr a) v /\ Val.lessdef (sem x) v.
-
-Definition binary_constructor_sound (cstr: expr -> expr -> expr) (sem: val -> val -> val) : Prop :=
- forall le a x b y,
- eval_expr ge sp e m le a x ->
- eval_expr ge sp e m le b y ->
- exists v, eval_expr ge sp e m le (cstr a b) v /\ Val.lessdef (sem x y) v.
-
-Lemma eval_Olea_ptr:
- forall a el m,
- eval_operation ge sp (Olea_ptr a) el m = eval_addressing ge sp a el.
-Proof.
- unfold Olea_ptr, eval_addressing; intros. destruct Archi.ptr64; auto.
-Qed.
-
-Theorem eval_addrsymbol:
- forall le id ofs,
- exists v, eval_expr ge sp e m le (addrsymbol id ofs) v /\ Val.lessdef (Genv.symbol_address ge id ofs) v.
-Proof.
- intros. unfold addrsymbol. exists (Genv.symbol_address ge id ofs); split; auto.
- destruct (symbol_is_external id).
- predSpec Ptrofs.eq Ptrofs.eq_spec ofs Ptrofs.zero.
- subst. EvalOp.
- EvalOp. econstructor. EvalOp. simpl; eauto. econstructor.
- unfold Olea_ptr; destruct Archi.ptr64 eqn:SF; simpl.
- unfold Genv.symbol_address; destruct (Genv.find_symbol ge id); simpl; auto.
- rewrite SF. rewrite Ptrofs.add_zero_l. fold (Ptrofs.to_int64 ofs). rewrite Ptrofs.of_int64_to_int64 by auto. auto.
- unfold Genv.symbol_address; destruct (Genv.find_symbol ge id); simpl; auto.
- rewrite SF. rewrite Ptrofs.add_zero_l. fold (Ptrofs.to_int ofs). rewrite Ptrofs.of_int_to_int by auto. auto.
- EvalOp. rewrite eval_Olea_ptr. apply eval_addressing_Aglobal.
-Qed.
-
-Theorem eval_addrstack:
- forall le ofs,
- exists v, eval_expr ge sp e m le (addrstack ofs) v /\ Val.lessdef (Val.offset_ptr sp ofs) v.
-Proof.
- intros. unfold addrstack. TrivialExists. rewrite eval_Olea_ptr. apply eval_addressing_Ainstack.
-Qed.
-
-Theorem eval_notint: unary_constructor_sound notint Val.notint.
-Proof.
- unfold notint; red; intros until x. case (notint_match a); intros.
- InvEval. TrivialExists.
- InvEval. subst x. rewrite Val.not_xor. rewrite Val.xor_assoc. TrivialExists.
- TrivialExists.
-Qed.
-
-Theorem eval_addimm:
- forall n, unary_constructor_sound (addimm n) (fun x => Val.add x (Vint n)).
-Proof.
- red; unfold addimm; intros until x.
- predSpec Int.eq Int.eq_spec n Int.zero.
- subst n. intros. exists x; split; auto.
- destruct x; simpl; auto. rewrite Int.add_zero; auto. destruct Archi.ptr64; auto. rewrite Ptrofs.add_zero; auto.
- case (addimm_match a); intros; InvEval; simpl.
- TrivialExists; simpl. rewrite Int.add_commut. auto.
- inv H0. simpl in H6. TrivialExists. simpl.
- erewrite eval_offset_addressing_total_32 by eauto. rewrite Int.repr_signed; auto.
- TrivialExists. simpl. rewrite Int.repr_signed; auto.
-Qed.
-
-Theorem eval_add: binary_constructor_sound add Val.add.
-Proof.
- assert (A: forall x y, Int.repr (x + y) = Int.add (Int.repr x) (Int.repr y)).
- { intros; apply Int.eqm_samerepr; auto with ints. }
- assert (B: forall id ofs n, Archi.ptr64 = false ->
- Genv.symbol_address ge id (Ptrofs.add ofs (Ptrofs.repr n)) =
- Val.add (Genv.symbol_address ge id ofs) (Vint (Int.repr n))).
- { intros. replace (Ptrofs.repr n) with (Ptrofs.of_int (Int.repr n)) by auto with ptrofs.
- apply Genv.shift_symbol_address_32; auto. }
- red; intros until y.
- unfold add; case (add_match a b); intros; InvEval.
- rewrite Val.add_commut. apply eval_addimm; auto.
- apply eval_addimm; auto.
-- subst. TrivialExists. simpl. rewrite A, Val.add_permut_4. auto.
-- subst. TrivialExists. simpl. rewrite A, Val.add_assoc. decEq; decEq. rewrite Val.add_permut. auto.
-- subst. TrivialExists. simpl. rewrite A, Val.add_permut_4. rewrite <- Val.add_permut. rewrite <- Val.add_assoc. auto.
-- subst. TrivialExists. simpl. rewrite Heqb0. rewrite B by auto. rewrite ! Val.add_assoc.
- rewrite (Val.add_commut v1). rewrite Val.add_permut. rewrite Val.add_assoc. auto.
-- subst. TrivialExists. simpl. rewrite Heqb0. rewrite B by auto. rewrite Val.add_assoc. do 2 f_equal. apply Val.add_commut.
-- subst. TrivialExists. simpl. rewrite Heqb0. rewrite B by auto. rewrite !Val.add_assoc.
- rewrite (Val.add_commut (Vint (Int.repr n1))). rewrite Val.add_permut. do 2 f_equal. apply Val.add_commut.
-- subst. TrivialExists. simpl. rewrite Heqb0. rewrite B by auto. rewrite !Val.add_assoc.
- rewrite (Val.add_commut (Vint (Int.repr n2))). rewrite Val.add_permut. auto.
-- subst. TrivialExists. simpl. rewrite Val.add_permut. rewrite Val.add_assoc.
- decEq; decEq. apply Val.add_commut.
-- subst. TrivialExists.
-- subst. TrivialExists. simpl. repeat rewrite Val.add_assoc. decEq; decEq. apply Val.add_commut.
-- subst. TrivialExists. simpl. rewrite Val.add_assoc; auto.
-- TrivialExists. simpl. destruct x; destruct y; simpl; auto.
- rewrite Int.add_zero; auto.
- destruct Archi.ptr64 eqn:SF; simpl; auto. rewrite SF. rewrite Ptrofs.add_assoc, Ptrofs.add_zero. auto.
- destruct Archi.ptr64 eqn:SF; simpl; auto. rewrite SF. rewrite Ptrofs.add_assoc, Ptrofs.add_zero. auto.
-Qed.
-
-Theorem eval_sub: binary_constructor_sound sub Val.sub.
-Proof.
- red; intros until y.
- unfold sub; case (sub_match a b); intros; InvEval.
- rewrite Val.sub_add_opp. apply eval_addimm; auto.
- subst. rewrite Val.sub_add_l. rewrite Val.sub_add_r.
- rewrite Val.add_assoc. simpl. rewrite Int.add_commut. rewrite <- Int.sub_add_opp.
- replace (Int.repr (n1 - n2)) with (Int.sub (Int.repr n1) (Int.repr n2)).
- apply eval_addimm; EvalOp.
- apply Int.eqm_samerepr; auto with ints.
- subst. rewrite Val.sub_add_l. apply eval_addimm; EvalOp.
- subst. rewrite Val.sub_add_r. replace (Int.repr (-n2)) with (Int.neg (Int.repr n2)). apply eval_addimm; EvalOp.
- apply Int.eqm_samerepr; auto with ints.
- TrivialExists.
-Qed.
-
-Theorem eval_negint: unary_constructor_sound negint Val.neg.
-Proof.
- red; intros until x. unfold negint. case (negint_match a); intros; InvEval.
- TrivialExists.
- TrivialExists.
-Qed.
-
-Theorem eval_shlimm:
- forall n, unary_constructor_sound (fun a => shlimm a n)
- (fun x => Val.shl x (Vint n)).
-Proof.
- red; intros until x. unfold shlimm.
- predSpec Int.eq Int.eq_spec n Int.zero.
- intros; subst. exists x; split; auto. destruct x; simpl; auto. rewrite Int.shl_zero; auto.
- destruct (Int.ltu n Int.iwordsize) eqn:LT; simpl.
- destruct (shlimm_match a); intros; InvEval.
- exists (Vint (Int.shl n1 n)); split. EvalOp.
- simpl. rewrite LT. auto.
- destruct (Int.ltu (Int.add n n1) Int.iwordsize) eqn:?.
- exists (Val.shl v1 (Vint (Int.add n n1))); split. EvalOp.
- subst. destruct v1; simpl; auto.
- rewrite Heqb.
- destruct (Int.ltu n1 Int.iwordsize) eqn:?; simpl; auto.
- destruct (Int.ltu n Int.iwordsize) eqn:?; simpl; auto.
- rewrite Int.add_commut. rewrite Int.shl_shl; auto. rewrite Int.add_commut; auto.
- subst. TrivialExists. econstructor. EvalOp. simpl; eauto. constructor.
- simpl. auto.
- subst. destruct (shift_is_scale n).
- econstructor; split. EvalOp. simpl. eauto.
- rewrite ! Int.repr_unsigned.
- destruct v1; simpl; auto. rewrite LT.
- rewrite Int.shl_mul. rewrite Int.mul_add_distr_l. rewrite (Int.shl_mul (Int.repr n1)). auto.
- destruct Archi.ptr64; simpl; auto.
- TrivialExists. econstructor. EvalOp. simpl; eauto. constructor. auto.
- destruct (shift_is_scale n).
- econstructor; split. EvalOp. simpl. eauto.
- destruct x; simpl; auto. rewrite LT.
- rewrite Int.repr_unsigned. rewrite Int.add_zero. rewrite Int.shl_mul. auto.
- TrivialExists.
- intros; TrivialExists. constructor. eauto. constructor. EvalOp. simpl; eauto. constructor.
- auto.
-Qed.
-
-Theorem eval_shruimm:
- forall n, unary_constructor_sound (fun a => shruimm a n)
- (fun x => Val.shru x (Vint n)).
-Proof.
- red; intros until x. unfold shruimm.
- predSpec Int.eq Int.eq_spec n Int.zero.
- intros; subst. exists x; split; auto. destruct x; simpl; auto. rewrite Int.shru_zero; auto.
- destruct (Int.ltu n Int.iwordsize) eqn:LT; simpl.
- destruct (shruimm_match a); intros; InvEval.
- exists (Vint (Int.shru n1 n)); split. EvalOp.
- simpl. rewrite LT; auto.
- destruct (Int.ltu (Int.add n n1) Int.iwordsize) eqn:?.
- exists (Val.shru v1 (Vint (Int.add n n1))); split. EvalOp.
- subst. destruct v1; simpl; auto.
- rewrite Heqb.
- destruct (Int.ltu n1 Int.iwordsize) eqn:?; simpl; auto.
- rewrite LT. rewrite Int.add_commut. rewrite Int.shru_shru; auto. rewrite Int.add_commut; auto.
- subst. TrivialExists. econstructor. EvalOp. simpl; eauto. constructor.
- simpl. auto.
- TrivialExists.
- intros; TrivialExists. constructor. eauto. constructor. EvalOp. simpl; eauto. constructor.
- auto.
-Qed.
-
-Theorem eval_shrimm:
- forall n, unary_constructor_sound (fun a => shrimm a n)
- (fun x => Val.shr x (Vint n)).
-Proof.
- red; intros until x. unfold shrimm.
- predSpec Int.eq Int.eq_spec n Int.zero.
- intros; subst. exists x; split; auto. destruct x; simpl; auto. rewrite Int.shr_zero; auto.
- destruct (Int.ltu n Int.iwordsize) eqn:LT; simpl.
- destruct (shrimm_match a); intros; InvEval.
- exists (Vint (Int.shr n1 n)); split. EvalOp.
- simpl. rewrite LT; auto.
- destruct (Int.ltu (Int.add n n1) Int.iwordsize) eqn:?.
- exists (Val.shr v1 (Vint (Int.add n n1))); split. EvalOp.
- subst. destruct v1; simpl; auto.
- rewrite Heqb.
- destruct (Int.ltu n1 Int.iwordsize) eqn:?; simpl; auto.
- rewrite LT.
- rewrite Int.add_commut. rewrite Int.shr_shr; auto. rewrite Int.add_commut; auto.
- subst. TrivialExists. econstructor. EvalOp. simpl; eauto. constructor.
- simpl. auto.
- TrivialExists.
- intros; TrivialExists. constructor. eauto. constructor. EvalOp. simpl; eauto. constructor.
- auto.
-Qed.
-
-Lemma eval_mulimm_base:
- forall n, unary_constructor_sound (mulimm_base n) (fun x => Val.mul x (Vint n)).
-Proof.
- intros; red; intros; unfold mulimm_base.
- generalize (Int.one_bits_decomp n) (Int.one_bits_range n); intros D R.
- destruct (Int.one_bits n) as [ | i l].
- TrivialExists.
- destruct l as [ | j l ].
- replace (Val.mul x (Vint n)) with (Val.shl x (Vint i)). apply eval_shlimm; auto.
- destruct x; auto; simpl. rewrite D; simpl; rewrite Int.add_zero.
- rewrite R by auto with coqlib. rewrite Int.shl_mul. auto.
- destruct l as [ | k l ].
- exploit (eval_shlimm i (x :: le) (Eletvar 0) x). constructor; auto. intros [v1 [A1 B1]].
- exploit (eval_shlimm j (x :: le) (Eletvar 0) x). constructor; auto. intros [v2 [A2 B2]].
- exploit eval_add. eexact A1. eexact A2. intros [v3 [A3 B3]].
- exists v3; split. econstructor; eauto.
- rewrite D; simpl; rewrite Int.add_zero.
- replace (Vint (Int.add (Int.shl Int.one i) (Int.shl Int.one j)))
- with (Val.add (Val.shl Vone (Vint i)) (Val.shl Vone (Vint j))).
- rewrite Val.mul_add_distr_r.
- repeat rewrite Val.shl_mul.
- apply Val.lessdef_trans with (Val.add v1 v2); auto. apply Val.add_lessdef; auto.
- simpl. rewrite ! R by auto with coqlib. auto.
- TrivialExists.
-Qed.
-
-Theorem eval_mulimm:
- forall n, unary_constructor_sound (mulimm n) (fun x => Val.mul x (Vint n)).
-Proof.
- intros; red; intros until x; unfold mulimm.
- predSpec Int.eq Int.eq_spec n Int.zero.
- intros. exists (Vint Int.zero); split. EvalOp.
- destruct x; simpl; auto. subst n. rewrite Int.mul_zero. auto.
- predSpec Int.eq Int.eq_spec n Int.one.
- intros. exists x; split; auto.
- destruct x; simpl; auto. subst n. rewrite Int.mul_one. auto.
- case (mulimm_match a); intros; InvEval.
- TrivialExists. simpl. rewrite Int.mul_commut; auto.
- subst. rewrite Val.mul_add_distr_l.
- exploit eval_mulimm_base; eauto. instantiate (1 := n). intros [v' [A1 B1]].
- exploit (eval_addimm (Int.mul n (Int.repr n2)) le (mulimm_base n t2) v'). auto. intros [v'' [A2 B2]].
- exists v''; split; auto. eapply Val.lessdef_trans. eapply Val.add_lessdef; eauto.
- rewrite Val.mul_commut; auto.
- apply eval_mulimm_base; auto.
-Qed.
-
-Theorem eval_mul: binary_constructor_sound mul Val.mul.
-Proof.
- red; intros until y.
- unfold mul; case (mul_match a b); intros; InvEval.
- rewrite Val.mul_commut. apply eval_mulimm. auto.
- apply eval_mulimm. auto.
- TrivialExists.
-Qed.
-
-Theorem eval_andimm:
- forall n, unary_constructor_sound (andimm n) (fun x => Val.and x (Vint n)).
-Proof.
- intros; red; intros until x. unfold andimm.
- predSpec Int.eq Int.eq_spec n Int.zero.
- intros. exists (Vint Int.zero); split. EvalOp.
- destruct x; simpl; auto. subst n. rewrite Int.and_zero. auto.
- predSpec Int.eq Int.eq_spec n Int.mone.
- intros. exists x; split; auto.
- destruct x; simpl; auto. subst n. rewrite Int.and_mone. auto.
- case (andimm_match a); intros; InvEval.
- TrivialExists. simpl. rewrite Int.and_commut; auto.
- subst. TrivialExists. simpl. rewrite Val.and_assoc. rewrite Int.and_commut. auto.
- subst. rewrite Val.zero_ext_and. TrivialExists. rewrite Val.and_assoc.
- rewrite Int.and_commut. auto. compute; auto.
- subst. rewrite Val.zero_ext_and. TrivialExists. rewrite Val.and_assoc.
- rewrite Int.and_commut. auto. compute; auto.
- TrivialExists.
-Qed.
-
-Theorem eval_and: binary_constructor_sound and Val.and.
-Proof.
- red; intros until y; unfold and; case (and_match a b); intros; InvEval.
- rewrite Val.and_commut. apply eval_andimm; auto.
- apply eval_andimm; auto.
- TrivialExists.
-Qed.
-
-Theorem eval_orimm:
- forall n, unary_constructor_sound (orimm n) (fun x => Val.or x (Vint n)).
-Proof.
- intros; red; intros until x. unfold orimm.
- predSpec Int.eq Int.eq_spec n Int.zero.
- intros. exists x; split. auto.
- destruct x; simpl; auto. subst n. rewrite Int.or_zero. auto.
- predSpec Int.eq Int.eq_spec n Int.mone.
- intros. exists (Vint Int.mone); split. EvalOp.
- destruct x; simpl; auto. subst n. rewrite Int.or_mone. auto.
- destruct (orimm_match a); intros; InvEval.
- TrivialExists. simpl. rewrite Int.or_commut; auto.
- subst. rewrite Val.or_assoc. simpl. rewrite Int.or_commut. TrivialExists.
- TrivialExists.
-Qed.
-
-Remark eval_same_expr:
- forall a1 a2 le v1 v2,
- same_expr_pure a1 a2 = true ->
- eval_expr ge sp e m le a1 v1 ->
- eval_expr ge sp e m le a2 v2 ->
- a1 = a2 /\ v1 = v2.
-Proof.
- intros until v2.
- destruct a1; simpl; try (intros; discriminate).
- destruct a2; simpl; try (intros; discriminate).
- case (ident_eq i i0); intros.
- subst i0. inversion H0. inversion H1. split. auto. congruence.
- discriminate.
-Qed.
-
-Remark int_add_sub_eq:
- forall x y z, Int.add x y = z -> Int.sub z x = y.
-Proof.
- intros. subst z. rewrite Int.sub_add_l. rewrite Int.sub_idem. apply Int.add_zero_l.
-Qed.
-
-Lemma eval_or: binary_constructor_sound or Val.or.
-Proof.
- red; intros until y; unfold or; case (or_match a b); intros.
-(* intconst *)
- InvEval. rewrite Val.or_commut. apply eval_orimm; auto.
- InvEval. apply eval_orimm; auto.
-(* shlimm - shruimm *)
- predSpec Int.eq Int.eq_spec (Int.add n1 n2) Int.iwordsize.
- destruct (same_expr_pure t1 t2) eqn:?.
- InvEval. exploit eval_same_expr; eauto. intros [EQ1 EQ2]; subst.
- exists (Val.ror v0 (Vint n2)); split. EvalOp.
- destruct v0; simpl; auto.
- destruct (Int.ltu n1 Int.iwordsize) eqn:?; auto.
- destruct (Int.ltu n2 Int.iwordsize) eqn:?; auto.
- simpl. rewrite <- Int.or_ror; auto.
- InvEval. exists (Val.or x y); split. EvalOp.
- simpl. erewrite int_add_sub_eq; eauto. rewrite H0; rewrite H; auto. auto.
- TrivialExists.
-(* shruimm - shlimm *)
- predSpec Int.eq Int.eq_spec (Int.add n1 n2) Int.iwordsize.
- destruct (same_expr_pure t1 t2) eqn:?.
- InvEval. exploit eval_same_expr; eauto. intros [EQ1 EQ2]; subst.
- exists (Val.ror v1 (Vint n2)); split. EvalOp.
- destruct v1; simpl; auto.
- destruct (Int.ltu n2 Int.iwordsize) eqn:?; auto.
- destruct (Int.ltu n1 Int.iwordsize) eqn:?; auto.
- simpl. rewrite Int.or_commut. rewrite <- Int.or_ror; auto.
- InvEval. exists (Val.or y x); split. EvalOp.
- simpl. erewrite int_add_sub_eq; eauto. rewrite H0; rewrite H; auto.
- rewrite Val.or_commut; auto.
- TrivialExists.
-(* default *)
- TrivialExists.
-Qed.
-
-Theorem eval_xorimm:
- forall n, unary_constructor_sound (xorimm n) (fun x => Val.xor x (Vint n)).
-Proof.
- intros; red; intros until x. unfold xorimm.
- predSpec Int.eq Int.eq_spec n Int.zero.
- intros. exists x; split. auto.
- destruct x; simpl; auto. subst n. rewrite Int.xor_zero. auto.
- destruct (xorimm_match a); intros; InvEval.
- TrivialExists. simpl. rewrite Int.xor_commut; auto.
- subst. rewrite Val.xor_assoc. simpl. rewrite Int.xor_commut. TrivialExists.
- subst. rewrite Val.not_xor. rewrite Val.xor_assoc.
- rewrite (Val.xor_commut (Vint Int.mone)). TrivialExists.
- TrivialExists.
-Qed.
-
-Theorem eval_xor: binary_constructor_sound xor Val.xor.
-Proof.
- red; intros until y; unfold xor; case (xor_match a b); intros; InvEval.
- rewrite Val.xor_commut. apply eval_xorimm; auto.
- apply eval_xorimm; auto.
- TrivialExists.
-Qed.
-
-Theorem eval_divs_base:
- forall le a b x y z,
- eval_expr ge sp e m le a x ->
- eval_expr ge sp e m le b y ->
- Val.divs x y = Some z ->
- exists v, eval_expr ge sp e m le (divs_base a b) v /\ Val.lessdef z v.
-Proof.
- intros. unfold divs_base. exists z; split. EvalOp. auto.
-Qed.
-
-Theorem eval_divu_base:
- forall le a b x y z,
- eval_expr ge sp e m le a x ->
- eval_expr ge sp e m le b y ->
- Val.divu x y = Some z ->
- exists v, eval_expr ge sp e m le (divu_base a b) v /\ Val.lessdef z v.
-Proof.
- intros. unfold divu_base. exists z; split. EvalOp. auto.
-Qed.
-
-Theorem eval_mods_base:
- forall le a b x y z,
- eval_expr ge sp e m le a x ->
- eval_expr ge sp e m le b y ->
- Val.mods x y = Some z ->
- exists v, eval_expr ge sp e m le (mods_base a b) v /\ Val.lessdef z v.
-Proof.
- intros. unfold mods_base. exists z; split. EvalOp. auto.
-Qed.
-
-Theorem eval_modu_base:
- forall le a b x y z,
- eval_expr ge sp e m le a x ->
- eval_expr ge sp e m le b y ->
- Val.modu x y = Some z ->
- exists v, eval_expr ge sp e m le (modu_base a b) v /\ Val.lessdef z v.
-Proof.
- intros. unfold modu_base. exists z; split. EvalOp. auto.
-Qed.
-
-Theorem eval_shrximm:
- forall le a n x z,
- eval_expr ge sp e m le a x ->
- Val.shrx x (Vint n) = Some z ->
- exists v, eval_expr ge sp e m le (shrximm a n) v /\ Val.lessdef z v.
-Proof.
- intros. unfold shrximm.
- predSpec Int.eq Int.eq_spec n Int.zero.
- subst n. exists x; split; auto.
- destruct x; simpl in H0; try discriminate.
- destruct (Int.ltu Int.zero (Int.repr 31)); inv H0.
- replace (Int.shrx i Int.zero) with i. auto.
- unfold Int.shrx, Int.divs. rewrite Int.shl_zero.
- change (Int.signed Int.one) with 1. rewrite Z.quot_1_r. rewrite Int.repr_signed; auto.
- econstructor; split. EvalOp. auto.
-Qed.
-
-Theorem eval_shl: binary_constructor_sound shl Val.shl.
-Proof.
- red; intros until y; unfold shl; case (shl_match b); intros.
- InvEval. apply eval_shlimm; auto.
- TrivialExists.
-Qed.
-
-Theorem eval_shr: binary_constructor_sound shr Val.shr.
-Proof.
- red; intros until y; unfold shr; case (shr_match b); intros.
- InvEval. apply eval_shrimm; auto.
- TrivialExists.
-Qed.
-
-Theorem eval_shru: binary_constructor_sound shru Val.shru.
-Proof.
- red; intros until y; unfold shru; case (shru_match b); intros.
- InvEval. apply eval_shruimm; auto.
- TrivialExists.
-Qed.
-
-Theorem eval_negf: unary_constructor_sound negf Val.negf.
-Proof.
- red; intros. TrivialExists.
-Qed.
-
-Theorem eval_absf: unary_constructor_sound absf Val.absf.
-Proof.
- red; intros. TrivialExists.
-Qed.
-
-Theorem eval_addf: binary_constructor_sound addf Val.addf.
-Proof.
- red; intros; TrivialExists.
-Qed.
-
-Theorem eval_subf: binary_constructor_sound subf Val.subf.
-Proof.
- red; intros; TrivialExists.
-Qed.
-
-Theorem eval_mulf: binary_constructor_sound mulf Val.mulf.
-Proof.
- red; intros; TrivialExists.
-Qed.
-
-Theorem eval_negfs: unary_constructor_sound negfs Val.negfs.
-Proof.
- red; intros. TrivialExists.
-Qed.
-
-Theorem eval_absfs: unary_constructor_sound absfs Val.absfs.
-Proof.
- red; intros. TrivialExists.
-Qed.
-
-Theorem eval_addfs: binary_constructor_sound addfs Val.addfs.
-Proof.
- red; intros; TrivialExists.
-Qed.
-
-Theorem eval_subfs: binary_constructor_sound subfs Val.subfs.
-Proof.
- red; intros; TrivialExists.
-Qed.
-
-Theorem eval_mulfs: binary_constructor_sound mulfs Val.mulfs.
-Proof.
- red; intros; TrivialExists.
-Qed.
-
-Section COMP_IMM.
-
-Variable default: comparison -> int -> condition.
-Variable intsem: comparison -> int -> int -> bool.
-Variable sem: comparison -> val -> val -> val.
-
-Hypothesis sem_int: forall c x y, sem c (Vint x) (Vint y) = Val.of_bool (intsem c x y).
-Hypothesis sem_undef: forall c v, sem c Vundef v = Vundef.
-Hypothesis sem_eq: forall x y, sem Ceq (Vint x) (Vint y) = Val.of_bool (Int.eq x y).
-Hypothesis sem_ne: forall x y, sem Cne (Vint x) (Vint y) = Val.of_bool (negb (Int.eq x y)).
-Hypothesis sem_default: forall c v n, sem c v (Vint n) = Val.of_optbool (eval_condition (default c n) (v :: nil) m).
-
-Lemma eval_compimm:
- forall le c a n2 x,
- eval_expr ge sp e m le a x ->
- exists v, eval_expr ge sp e m le (compimm default intsem c a n2) v
- /\ Val.lessdef (sem c x (Vint n2)) v.
-Proof.
- intros until x.
- unfold compimm; case (compimm_match c a); intros.
-(* constant *)
- InvEval. rewrite sem_int. TrivialExists. simpl. destruct (intsem c0 n1 n2); auto.
-(* eq cmp *)
- InvEval. inv H. simpl in H5. inv H5.
- destruct (Int.eq_dec n2 Int.zero). subst n2. TrivialExists.
- simpl. rewrite eval_negate_condition.
- destruct (eval_condition c0 vl m); simpl.
- unfold Vtrue, Vfalse. destruct b; simpl; rewrite sem_eq; auto.
- rewrite sem_undef; auto.
- destruct (Int.eq_dec n2 Int.one). subst n2. TrivialExists.
- simpl. destruct (eval_condition c0 vl m); simpl.
- unfold Vtrue, Vfalse. destruct b; simpl; rewrite sem_eq; auto.
- rewrite sem_undef; auto.
- exists (Vint Int.zero); split. EvalOp.
- destruct (eval_condition c0 vl m); simpl.
- unfold Vtrue, Vfalse. destruct b; rewrite sem_eq; rewrite Int.eq_false; auto.
- rewrite sem_undef; auto.
-(* ne cmp *)
- InvEval. inv H. simpl in H5. inv H5.
- destruct (Int.eq_dec n2 Int.zero). subst n2. TrivialExists.
- simpl. destruct (eval_condition c0 vl m); simpl.
- unfold Vtrue, Vfalse. destruct b; simpl; rewrite sem_ne; auto.
- rewrite sem_undef; auto.
- destruct (Int.eq_dec n2 Int.one). subst n2. TrivialExists.
- simpl. rewrite eval_negate_condition. destruct (eval_condition c0 vl m); simpl.
- unfold Vtrue, Vfalse. destruct b; simpl; rewrite sem_ne; auto.
- rewrite sem_undef; auto.
- exists (Vint Int.one); split. EvalOp.
- destruct (eval_condition c0 vl m); simpl.
- unfold Vtrue, Vfalse. destruct b; rewrite sem_ne; rewrite Int.eq_false; auto.
- rewrite sem_undef; auto.
-(* eq andimm *)
- destruct (Int.eq_dec n2 Int.zero). InvEval; subst.
- econstructor; split. EvalOp. simpl; eauto.
- destruct v1; simpl; try (rewrite sem_undef; auto). rewrite sem_eq.
- destruct (Int.eq (Int.and i n1) Int.zero); auto.
- TrivialExists. simpl. rewrite sem_default. auto.
-(* ne andimm *)
- destruct (Int.eq_dec n2 Int.zero). InvEval; subst.
- econstructor; split. EvalOp. simpl; eauto.
- destruct v1; simpl; try (rewrite sem_undef; auto). rewrite sem_ne.
- destruct (Int.eq (Int.and i n1) Int.zero); auto.
- TrivialExists. simpl. rewrite sem_default. auto.
-(* default *)
- TrivialExists. simpl. rewrite sem_default. auto.
-Qed.
-
-Hypothesis sem_swap:
- forall c x y, sem (swap_comparison c) x y = sem c y x.
-
-Lemma eval_compimm_swap:
- forall le c a n2 x,
- eval_expr ge sp e m le a x ->
- exists v, eval_expr ge sp e m le (compimm default intsem (swap_comparison c) a n2) v
- /\ Val.lessdef (sem c (Vint n2) x) v.
-Proof.
- intros. rewrite <- sem_swap. eapply eval_compimm; eauto.
-Qed.
-
-End COMP_IMM.
-
-Theorem eval_comp:
- forall c, binary_constructor_sound (comp c) (Val.cmp c).
-Proof.
- intros; red; intros until y. unfold comp; case (comp_match a b); intros; InvEval.
- eapply eval_compimm_swap; eauto.
- intros. unfold Val.cmp. rewrite Val.swap_cmp_bool; auto.
- eapply eval_compimm; eauto.
- TrivialExists.
-Qed.
-
-Theorem eval_compu:
- forall c, binary_constructor_sound (compu c) (Val.cmpu (Mem.valid_pointer m) c).
-Proof.
- intros; red; intros until y. unfold compu; case (compu_match a b); intros; InvEval.
- eapply eval_compimm_swap; eauto.
- intros. unfold Val.cmpu. rewrite Val.swap_cmpu_bool; auto.
- eapply eval_compimm; eauto.
- TrivialExists.
-Qed.
-
-Theorem eval_compf:
- forall c, binary_constructor_sound (compf c) (Val.cmpf c).
-Proof.
- intros; red; intros. unfold compf. TrivialExists.
-Qed.
-
-Theorem eval_compfs:
- forall c, binary_constructor_sound (compfs c) (Val.cmpfs c).
-Proof.
- intros; red; intros. unfold compfs. TrivialExists.
-Qed.
-
-Theorem eval_cast8signed: unary_constructor_sound cast8signed (Val.sign_ext 8).
-Proof.
- red; intros until x. unfold cast8signed. case (cast8signed_match a); intros; InvEval.
- TrivialExists.
- TrivialExists.
-Qed.
-
-Theorem eval_cast8unsigned: unary_constructor_sound cast8unsigned (Val.zero_ext 8).
-Proof.
- red; intros until x. unfold cast8unsigned. destruct (cast8unsigned_match a); intros; InvEval.
- TrivialExists.
- subst. rewrite Val.zero_ext_and. rewrite Val.and_assoc.
- rewrite Int.and_commut. apply eval_andimm; auto. compute; auto.
- TrivialExists.
-Qed.
-
-Theorem eval_cast16signed: unary_constructor_sound cast16signed (Val.sign_ext 16).
-Proof.
- red; intros until x. unfold cast16signed. case (cast16signed_match a); intros; InvEval.
- TrivialExists.
- TrivialExists.
-Qed.
-
-Theorem eval_cast16unsigned: unary_constructor_sound cast16unsigned (Val.zero_ext 16).
-Proof.
- red; intros until x. unfold cast16unsigned. destruct (cast16unsigned_match a); intros; InvEval.
- TrivialExists.
- subst. rewrite Val.zero_ext_and. rewrite Val.and_assoc.
- rewrite Int.and_commut. apply eval_andimm; auto. compute; auto.
- TrivialExists.
-Qed.
-
-Theorem eval_singleoffloat: unary_constructor_sound singleoffloat Val.singleoffloat.
-Proof.
- red; intros. unfold singleoffloat. TrivialExists.
-Qed.
-
-Theorem eval_floatofsingle: unary_constructor_sound floatofsingle Val.floatofsingle.
-Proof.
- red; intros. unfold floatofsingle. TrivialExists.
-Qed.
-
-Theorem eval_intoffloat:
- forall le a x y,
- eval_expr ge sp e m le a x ->
- Val.intoffloat x = Some y ->
- exists v, eval_expr ge sp e m le (intoffloat a) v /\ Val.lessdef y v.
-Proof.
- intros; unfold intoffloat. TrivialExists.
-Qed.
-
-Theorem eval_floatofint:
- forall le a x y,
- eval_expr ge sp e m le a x ->
- Val.floatofint x = Some y ->
- exists v, eval_expr ge sp e m le (floatofint a) v /\ Val.lessdef y v.
-Proof.
- intros until y; unfold floatofint. case (floatofint_match a); intros; InvEval.
- TrivialExists.
- TrivialExists.
-Qed.
-
-Theorem eval_intuoffloat:
- forall le a x y,
- eval_expr ge sp e m le a x ->
- Val.intuoffloat x = Some y ->
- exists v, eval_expr ge sp e m le (intuoffloat a) v /\ Val.lessdef y v.
-Proof.
- intros. destruct x; simpl in H0; try discriminate.
- destruct (Float.to_intu f) as [n|] eqn:?; simpl in H0; inv H0.
- exists (Vint n); split; auto. unfold intuoffloat.
- set (im := Int.repr Int.half_modulus).
- set (fm := Float.of_intu im).
- assert (eval_expr ge sp e m (Vfloat fm :: Vfloat f :: le) (Eletvar (S O)) (Vfloat f)).
- constructor. auto.
- assert (eval_expr ge sp e m (Vfloat fm :: Vfloat f :: le) (Eletvar O) (Vfloat fm)).
- constructor. auto.
- econstructor. eauto.
- econstructor. instantiate (1 := Vfloat fm). EvalOp.
- eapply eval_Econdition with (va := Float.cmp Clt f fm).
- eauto with evalexpr.
- destruct (Float.cmp Clt f fm) eqn:?.
- exploit Float.to_intu_to_int_1; eauto. intro EQ.
- EvalOp. simpl. rewrite EQ; auto.
- exploit Float.to_intu_to_int_2; eauto.
- change Float.ox8000_0000 with im. fold fm. intro EQ.
- set (t2 := subf (Eletvar (S O)) (Eletvar O)).
- set (t3 := intoffloat t2).
- exploit (eval_subf (Vfloat fm :: Vfloat f :: le) (Eletvar (S O)) (Vfloat f) (Eletvar O)); eauto.
- fold t2. intros [v2 [A2 B2]]. simpl in B2. inv B2.
- exploit (eval_addimm Float.ox8000_0000 (Vfloat fm :: Vfloat f :: le) t3).
- unfold t3. unfold intoffloat. EvalOp. simpl. rewrite EQ. simpl. eauto.
- intros [v4 [A4 B4]]. simpl in B4. inv B4.
- rewrite Int.sub_add_opp in A4. rewrite Int.add_assoc in A4.
- rewrite (Int.add_commut (Int.neg im)) in A4.
- rewrite Int.add_neg_zero in A4.
- rewrite Int.add_zero in A4.
- auto.
-Qed.
-
-Theorem eval_floatofintu:
- forall le a x y,
- eval_expr ge sp e m le a x ->
- Val.floatofintu x = Some y ->
- exists v, eval_expr ge sp e m le (floatofintu a) v /\ Val.lessdef y v.
-Proof.
- intros until y; unfold floatofintu. case (floatofintu_match a); intros.
- InvEval. TrivialExists.
- destruct x; simpl in H0; try discriminate. inv H0.
- exists (Vfloat (Float.of_intu i)); split; auto.
- econstructor. eauto.
- set (fm := Float.of_intu Float.ox8000_0000).
- assert (eval_expr ge sp e m (Vint i :: le) (Eletvar O) (Vint i)).
- constructor. auto.
- eapply eval_Econdition with (va := Int.ltu i Float.ox8000_0000).
- eauto with evalexpr.
- destruct (Int.ltu i Float.ox8000_0000) eqn:?.
- rewrite Float.of_intu_of_int_1; auto.
- unfold floatofint. EvalOp.
- exploit (eval_addimm (Int.neg Float.ox8000_0000) (Vint i :: le) (Eletvar 0)); eauto.
- simpl. intros [v [A B]]. inv B.
- unfold addf. EvalOp.
- constructor. unfold floatofint. EvalOp. simpl; eauto.
- constructor. EvalOp. simpl; eauto. constructor. simpl; eauto.
- fold fm. rewrite Float.of_intu_of_int_2; auto.
- rewrite Int.sub_add_opp. auto.
-Qed.
-
-Theorem eval_intofsingle:
- forall le a x y,
- eval_expr ge sp e m le a x ->
- Val.intofsingle x = Some y ->
- exists v, eval_expr ge sp e m le (intofsingle a) v /\ Val.lessdef y v.
-Proof.
- intros; unfold intofsingle. TrivialExists.
-Qed.
-
-Theorem eval_singleofint:
- forall le a x y,
- eval_expr ge sp e m le a x ->
- Val.singleofint x = Some y ->
- exists v, eval_expr ge sp e m le (singleofint a) v /\ Val.lessdef y v.
-Proof.
- intros until y; unfold singleofint. case (singleofint_match a); intros; InvEval.
- TrivialExists.
- TrivialExists.
-Qed.
-
-Theorem eval_intuofsingle:
- forall le a x y,
- eval_expr ge sp e m le a x ->
- Val.intuofsingle x = Some y ->
- exists v, eval_expr ge sp e m le (intuofsingle a) v /\ Val.lessdef y v.
-Proof.
- intros. destruct x; simpl in H0; try discriminate.
- destruct (Float32.to_intu f) as [n|] eqn:?; simpl in H0; inv H0.
- unfold intuofsingle. apply eval_intuoffloat with (Vfloat (Float.of_single f)).
- unfold floatofsingle. EvalOp.
- simpl. change (Float.of_single f) with (Float32.to_double f).
- erewrite Float32.to_intu_double; eauto. auto.
-Qed.
-
-Theorem eval_singleofintu:
- forall le a x y,
- eval_expr ge sp e m le a x ->
- Val.singleofintu x = Some y ->
- exists v, eval_expr ge sp e m le (singleofintu a) v /\ Val.lessdef y v.
-Proof.
- intros until y; unfold singleofintu. case (singleofintu_match a); intros.
- InvEval. TrivialExists.
- destruct x; simpl in H0; try discriminate. inv H0.
- exploit eval_floatofintu. eauto. simpl. reflexivity.
- intros (v & A & B).
- exists (Val.singleoffloat v); split.
- unfold singleoffloat; EvalOp.
- inv B; simpl. rewrite Float32.of_intu_double. auto.
-Qed.
-
-Theorem eval_addressing:
- forall le chunk a v b ofs,
- eval_expr ge sp e m le a v ->
- v = Vptr b ofs ->
- match addressing chunk a with (mode, args) =>
- exists vl,
- eval_exprlist ge sp e m le args vl /\
- eval_addressing ge sp mode vl = Some v
- end.
-Proof.
- intros until ofs.
- assert (A: v = Vptr b ofs -> eval_addressing ge sp (Aindexed 0) (v :: nil) = Some v).
- { intros. subst v. unfold eval_addressing.
- destruct Archi.ptr64 eqn:SF; simpl; rewrite SF; rewrite Ptrofs.add_zero; auto. }
- assert (D: forall a,
- eval_expr ge sp e m le a v ->
- v = Vptr b ofs ->
- exists vl, eval_exprlist ge sp e m le (a ::: Enil) vl
- /\ eval_addressing ge sp (Aindexed 0) vl = Some v).
- { intros. exists (v :: nil); split. constructor; auto. constructor. auto. }
- unfold addressing; case (addressing_match a); intros.
-- destruct (negb Archi.ptr64 && addressing_valid addr) eqn:E.
-+ inv H. InvBooleans. apply negb_true_iff in H. unfold eval_addressing; rewrite H.
- exists vl; auto.
-+ apply D; auto.
-- destruct (Archi.ptr64 && addressing_valid addr) eqn:E.
-+ inv H. InvBooleans. unfold eval_addressing; rewrite H.
- exists vl; auto.
-+ apply D; auto.
-- apply D; auto.
-Qed.
-
-Theorem eval_builtin_arg:
- forall a v,
- eval_expr ge sp e m nil a v ->
- CminorSel.eval_builtin_arg ge sp e m (builtin_arg a) v.
-Proof.
- intros until v. unfold builtin_arg; case (builtin_arg_match a); intros; InvEval.
-- constructor.
-- constructor.
-- destruct Archi.ptr64; inv H0. constructor.
-- destruct Archi.ptr64; inv H0. constructor.
-- destruct Archi.ptr64; inv H0. constructor.
-- destruct Archi.ptr64; inv H0. constructor.
-- simpl in H5. inv H5. constructor.
-- subst v. constructor; auto.
-- inv H. InvEval. rewrite eval_addressing_Aglobal in H6. inv H6. constructor; auto.
-- inv H. InvEval. rewrite eval_addressing_Ainstack in H6. inv H6. constructor; auto.
-- constructor; auto.
-Qed.
-
-End CMCONSTR.