aboutsummaryrefslogtreecommitdiffstats
path: root/aarch64/Asmgen.v
blob: 875f3fd1de6f7832a34f32dba08fa7a940c7b027 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
(* *********************************************************************)
(*                                                                     *)
(*              The Compcert verified compiler                         *)
(*                                                                     *)
(*         Xavier Leroy, Collège de France and INRIA Paris             *)
(*                                                                     *)
(*  Copyright Institut National de Recherche en Informatique et en     *)
(*  Automatique.  All rights reserved.  This file is distributed       *)
(*  under the terms of the INRIA Non-Commercial License Agreement.     *)
(*                                                                     *)
(* *********************************************************************)

(** Translation from Mach to AArch64. *)

Require Import Recdef Coqlib Zwf Zbits.
Require Import Errors AST Integers Floats Op.
Require Import Locations Mach Asm.

Local Open Scope string_scope.
Local Open Scope list_scope.
Local Open Scope error_monad_scope.

(** Alignment check for symbols *)

Parameter symbol_is_aligned : ident -> Z -> bool.
(** [symbol_is_aligned id sz] checks whether the symbol [id] is [sz] aligned *)

(** Extracting integer or float registers. *)

Definition ireg_of (r: mreg) : res ireg :=
  match preg_of r with IR mr => OK mr | _ => Error(msg "Asmgen.ireg_of") end.

Definition freg_of (r: mreg) : res freg :=
  match preg_of r with FR mr => OK mr | _ => Error(msg "Asmgen.freg_of") end.

(** Recognition of immediate arguments for logical integer operations.*)

(** Valid immediate arguments are repetitions of a bit pattern [B]
  of length [e] = 2, 4, 8, 16, 32 or 64.
  The bit pattern [B] must be of the form [0*1*0*] or [1*0*1*]
  but must not be all zeros or all ones. *)

(** The following automaton recognizes [0*1*0*|1*0*1*].
<<
               0          1          0
              / \        / \        / \
              \ /        \ /        \ /
        -0--> [B] --1--> [D] --0--> [F]
       /
     [A]
       \
        -1--> [C] --0--> [E] --1--> [G]
              / \        / \        / \
              \ /        \ /        \ /
               1          0          1
>>
*)

Module Automaton.

Inductive state : Type := SA | SB | SC | SD | SE | SF | SG | Sbad.

Definition start := SA.

Definition next (s: state) (b: bool) :=
  match s, b with
    | SA,false => SB      | SA,true => SC
    | SB,false => SB      | SB,true => SD
    | SC,false => SE      | SC,true => SC
    | SD,false => SF      | SD,true => SD
    | SE,false => SE      | SE,true => SG
    | SF,false => SF      | SF,true => Sbad
    | SG,false => Sbad    | SG,true => SG
    | Sbad,_ => Sbad
  end.

Definition accepting (s: state) :=
  match s with
  | SA | SB | SC | SD | SE | SF | SG => true
  | Sbad => false
  end.

Fixpoint run (len: nat) (s: state) (x: Z) : bool :=
  match len with
  | Datatypes.O => accepting s
  | Datatypes.S len => run len (next s (Z.odd x)) (Z.div2 x)
  end.

End Automaton.

(** The following function determines the candidate length [e],
    ensuring that [x] is a repetition [BB...B] 
    of a bit pattern [B] of length [e]. *)

Definition logical_imm_length (x: Z) (sixtyfour: bool) : nat :=
  (** [test n] checks that the low [2n] bits of [x] are of the
      form [BB], that is, two occurrences of the same [n] bits *)
  let test (n: Z) : bool :=
    Z.eqb (Zzero_ext n x) (Zzero_ext n (Z.shiftr x n)) in
  (** If [test n] fails, we know that the candidate length [e] is
      at least [2n].  Hence we test with decreasing values of [n]:
      32, 16, 8, 4, 2. *)
  if sixtyfour && negb (test 32) then 64%nat
  else if negb (test 16) then 32%nat
  else if negb (test 8) then 16%nat
  else if negb (test 4) then 8%nat
  else if negb (test 2) then 4%nat
  else 2%nat.

(** A valid logical immediate is 
- neither [0] nor [-1];
- composed of a repetition [BBBBB] of a bit-pattern [B] of length [e]
- the low [e] bits of the number, that is, [B], match [0*1*0*] or [1*0*1*].
*)

Definition is_logical_imm32 (x: int) : bool :=
  negb (Int.eq x Int.zero) && negb (Int.eq x Int.mone) &&
  Automaton.run (logical_imm_length (Int.unsigned x) false)
                Automaton.start (Int.unsigned x).

Definition is_logical_imm64 (x: int64) : bool :=
  negb (Int64.eq x Int64.zero) && negb (Int64.eq x Int64.mone) &&
  Automaton.run (logical_imm_length (Int64.unsigned x) true)
                Automaton.start (Int64.unsigned x).

(** Arithmetic immediates are 12-bit unsigned numbers, possibly shifted left 12 bits *)

Definition is_arith_imm32 (x: int) : bool :=
  Int.eq x (Int.zero_ext 12 x)
  || Int.eq x (Int.shl (Int.zero_ext 12 (Int.shru x (Int.repr 12))) (Int.repr 12)).

Definition is_arith_imm64 (x: int64) : bool :=
  Int64.eq x (Int64.zero_ext 12 x)
  || Int64.eq x (Int64.shl (Int64.zero_ext 12 (Int64.shru x (Int64.repr 12))) (Int64.repr 12)).

(** Decompose integer literals into 16-bit fragments *)

Fixpoint decompose_int (N: nat) (n p: Z) {struct N} : list (Z * Z) :=
  match N with
  | Datatypes.O => nil
  | Datatypes.S N =>
    let frag := Zzero_ext 16 (Z.shiftr n p) in
    if Z.eqb frag 0 then
      decompose_int N n (p + 16)
    else
      (frag, p) :: decompose_int N (Z.ldiff n (Z.shiftl 65535 p)) (p + 16)
  end.

Definition negate_decomposition (l: list (Z * Z)) :=
  List.map (fun np => (Z.lxor (fst np) 65535, snd np)) l.

Definition loadimm_k (sz: isize) (rd: ireg) (l: list (Z * Z)) (k: code) : code :=
  List.fold_right (fun np k => Pmovk sz rd (fst np) (snd np) :: k) k l.

Definition loadimm_z (sz: isize) (rd: ireg) (l: list (Z * Z)) (k: code) : code :=
  match l with
  | nil => Pmovz sz rd 0 0 :: k
  | (n1, p1) :: l => Pmovz sz rd n1 p1 :: loadimm_k sz rd l k
  end.

Definition loadimm_n (sz: isize) (rd: ireg) (l: list (Z * Z)) (k: code) : code :=
  match l with
  | nil => Pmovn sz rd 0 0 :: k
  | (n1, p1) :: l => Pmovn sz rd n1 p1 :: loadimm_k sz rd (negate_decomposition l) k
  end.

Definition loadimm (sz: isize) (rd: ireg) (n: Z) (k: code) : code :=
  let N := match sz with W => 2%nat | X => 4%nat end in
  let dz := decompose_int N n 0 in
  let dn := decompose_int N (Z.lnot n) 0 in
  if Nat.leb (List.length dz) (List.length dn)
  then loadimm_z sz rd dz k
  else loadimm_n sz rd dn k.

Definition loadimm32 (rd: ireg) (n: int) (k: code) : code :=
  if is_logical_imm32 n
  then Porrimm W rd XZR (Int.unsigned n) :: k
  else loadimm W rd (Int.unsigned n) k.

Definition loadimm64 (rd: ireg) (n: int64) (k: code) : code :=
  if is_logical_imm64 n
  then Porrimm X rd XZR (Int64.unsigned n) :: k
  else loadimm X rd (Int64.unsigned n) k.

(** Add immediate *)

Definition addimm_aux (insn: iregsp -> iregsp -> Z -> instruction)
                        (rd r1: iregsp) (n: Z) (k: code) :=
  let nlo := Zzero_ext 12 n in
  let nhi := n - nlo in
  if Z.eqb nhi 0 then
    insn rd r1 nlo :: k
  else if Z.eqb nlo 0 then
    insn rd r1 nhi :: k
  else
    insn rd r1 nhi :: insn rd rd nlo :: k.

Definition addimm32 (rd r1: ireg) (n: int) (k: code) : code :=
  let m := Int.neg n in
  if Int.eq n (Int.zero_ext 24 n) then
    addimm_aux (Paddimm W) rd r1 (Int.unsigned n) k
  else if Int.eq m (Int.zero_ext 24 m) then
    addimm_aux (Psubimm W) rd r1 (Int.unsigned m) k
  else if Int.lt n Int.zero then
    loadimm32 X16 m (Psub W rd r1 X16 SOnone :: k)
  else
    loadimm32 X16 n (Padd W rd r1 X16 SOnone :: k).

Definition addimm64 (rd r1: iregsp) (n: int64) (k: code) : code :=
  let m := Int64.neg n in
  if Int64.eq n (Int64.zero_ext 24 n) then
    addimm_aux (Paddimm X) rd r1 (Int64.unsigned n) k
  else if Int64.eq m (Int64.zero_ext 24 m) then
    addimm_aux (Psubimm X) rd r1 (Int64.unsigned m) k
  else if Int64.lt n Int64.zero then
    loadimm64 X16 m (Psubext rd r1 X16 (EOuxtx Int.zero) :: k)
  else
    loadimm64 X16 n (Paddext rd r1 X16 (EOuxtx Int.zero) :: k).

(** Logical immediate *)

Definition logicalimm32
              (insn1: ireg -> ireg0 -> Z -> instruction)
              (insn2: ireg -> ireg0 -> ireg -> shift_op -> instruction)
              (rd r1: ireg) (n: int) (k: code) : code :=
  if is_logical_imm32 n
  then insn1 rd r1 (Int.unsigned n) :: k
  else loadimm32 X16 n (insn2 rd r1 X16 SOnone :: k).

Definition logicalimm64
              (insn1: ireg -> ireg0 -> Z -> instruction)
              (insn2: ireg -> ireg0 -> ireg -> shift_op -> instruction)
              (rd r1: ireg) (n: int64) (k: code) : code :=
  if is_logical_imm64 n
  then insn1 rd r1 (Int64.unsigned n) :: k
  else loadimm64 X16 n (insn2 rd r1 X16 SOnone :: k).

(** Sign- or zero-extended arithmetic *)

Definition transl_extension (ex: extension) (a: int) : extend_op :=
  match ex with Xsgn32 => EOsxtw a | Xuns32 => EOuxtw a end.

Definition move_extended_base
              (rd: ireg) (r1: ireg) (ex: extension) (k: code) : code :=
  match ex with
  | Xsgn32 => Pcvtsw2x rd r1 :: k
  | Xuns32 => Pcvtuw2x rd r1 :: k
  end.

Definition move_extended
              (rd: ireg) (r1: ireg) (ex: extension) (a: int) (k: code) : code :=
  if Int.eq a Int.zero then
    move_extended_base rd r1 ex k
  else
    move_extended_base rd r1 ex (Padd X rd XZR rd (SOlsl a) :: k).

Definition arith_extended 
              (insnX: iregsp -> iregsp -> ireg -> extend_op -> instruction)
              (insnS: ireg -> ireg0 -> ireg -> shift_op -> instruction)
              (rd r1 r2: ireg) (ex: extension) (a: int) (k: code) : code :=
  if Int.ltu a (Int.repr 5) then
    insnX rd r1 r2 (transl_extension ex a) :: k
  else
    move_extended_base X16 r2 ex (insnS rd r1 X16 (SOlsl a) :: k).

(** Extended right shift *)

Definition shrx32 (rd r1: ireg) (n: int) (k: code) : code :=
  if Int.eq n Int.zero then
    Pmov rd r1 :: k
  else
    Porr W X16 XZR r1 (SOasr (Int.repr 31)) ::
    Padd W X16 r1 X16 (SOlsr (Int.sub Int.iwordsize n)) ::
    Porr W rd XZR X16 (SOasr n) :: k.

Definition shrx64 (rd r1: ireg) (n: int) (k: code) : code :=
  if Int.eq n Int.zero then
    Pmov rd r1 :: k
  else
    Porr X X16 XZR r1 (SOasr (Int.repr 63)) ::
    Padd X X16 r1 X16 (SOlsr (Int.sub Int64.iwordsize' n)) ::
    Porr X rd XZR X16 (SOasr n) :: k.

(** Load the address [id + ofs] in [rd] *)

Definition loadsymbol (rd: ireg) (id: ident) (ofs: ptrofs) (k: code) : code :=
  if Archi.pic_code tt then
    if Ptrofs.eq ofs Ptrofs.zero then
      Ploadsymbol rd id :: k
    else
      Ploadsymbol rd id :: addimm64 rd rd (Ptrofs.to_int64 ofs) k
  else
    Padrp rd id ofs :: Paddadr rd rd id ofs :: k.

(** Translate a shifted operand *)

Definition transl_shift (s: Op.shift) (a: int): Asm.shift_op :=
  match s with
  | Slsl => SOlsl a
  | Slsr => SOlsr a
  | Sasr => SOasr a
  | Sror => SOror a
  end.

(** Translation of a condition.  Prepends to [k] the instructions
  that evaluate the condition and leave its boolean result in one of
  the bits of the condition register.  The bit in question is
  determined by the [crbit_for_cond] function. *)

Definition transl_cond
              (cond: condition) (args: list mreg) (k: code) :=
  match cond, args with
  | (Ccomp c | Ccompu c), a1 :: a2 :: nil =>
      do r1 <- ireg_of a1; do r2 <- ireg_of a2;
      OK (Pcmp W r1 r2 SOnone :: k)
  | (Ccompshift c s a | Ccompushift c s a), a1 :: a2 :: nil =>
      do r1 <- ireg_of a1; do r2 <- ireg_of a2;
      OK (Pcmp W r1 r2 (transl_shift s a) :: k)
  | (Ccompimm c n | Ccompuimm c n), a1 :: nil =>
      do r1 <- ireg_of a1;
      OK (if is_arith_imm32 n then
            Pcmpimm W r1 (Int.unsigned n) :: k
          else if is_arith_imm32 (Int.neg n) then
            Pcmnimm W r1 (Int.unsigned (Int.neg n)) :: k
          else
            loadimm32 X16 n (Pcmp W r1 X16 SOnone :: k))
  | (Cmaskzero n | Cmasknotzero n), a1 :: nil =>
      do r1 <- ireg_of a1;
      OK (if is_logical_imm32 n then
            Ptstimm W r1 (Int.unsigned n) :: k
          else
            loadimm32 X16 n (Ptst W r1 X16 SOnone :: k))
  | (Ccompl c | Ccomplu c), a1 :: a2 :: nil =>
      do r1 <- ireg_of a1; do r2 <- ireg_of a2;
      OK (Pcmp X r1 r2 SOnone :: k)
  | (Ccomplshift c s a | Ccomplushift c s a), a1 :: a2 :: nil =>
      do r1 <- ireg_of a1; do r2 <- ireg_of a2;
      OK (Pcmp X r1 r2 (transl_shift s a) :: k)
  | (Ccomplimm c n | Ccompluimm c n), a1 :: nil =>
      do r1 <- ireg_of a1;
      OK (if is_arith_imm64 n then
            Pcmpimm X r1 (Int64.unsigned n) :: k
          else if is_arith_imm64 (Int64.neg n) then
            Pcmnimm X r1 (Int64.unsigned (Int64.neg n)) :: k
          else
            loadimm64 X16 n (Pcmp X r1 X16 SOnone :: k))
  | (Cmasklzero n | Cmasklnotzero n), a1 :: nil =>
      do r1 <- ireg_of a1;
      OK (if is_logical_imm64 n then
            Ptstimm X r1 (Int64.unsigned n) :: k
          else
            loadimm64 X16 n (Ptst X r1 X16 SOnone :: k))
  | Ccompf cmp, a1 :: a2 :: nil =>
      do r1 <- freg_of a1; do r2 <- freg_of a2;
      OK (Pfcmp D r1 r2 :: k)
  | Cnotcompf cmp, a1 :: a2 :: nil =>
      do r1 <- freg_of a1; do r2 <- freg_of a2;
      OK (Pfcmp D r1 r2 :: k)
  | Ccompfzero cmp, a1 :: nil =>
      do r1 <- freg_of a1;
      OK (Pfcmp0 D r1 :: k)
  | Cnotcompfzero cmp, a1 :: nil =>
      do r1 <- freg_of a1;
      OK (Pfcmp0 D r1 :: k)
  | Ccompfs cmp, a1 :: a2 :: nil =>
      do r1 <- freg_of a1; do r2 <- freg_of a2;
      OK (Pfcmp S r1 r2 :: k)
  | Cnotcompfs cmp, a1 :: a2 :: nil =>
      do r1 <- freg_of a1; do r2 <- freg_of a2;
      OK (Pfcmp S r1 r2 :: k)
  | Ccompfszero cmp, a1 :: nil =>
      do r1 <- freg_of a1;
      OK (Pfcmp0 S r1 :: k)
  | Cnotcompfszero cmp, a1 :: nil =>
      do r1 <- freg_of a1;
      OK (Pfcmp0 S r1 :: k)
  | _, _ =>
      Error(msg "Asmgen.transl_cond")
  end.

Definition cond_for_signed_cmp (cmp: comparison) :=
  match cmp with
  | Ceq => TCeq
  | Cne => TCne
  | Clt => TClt
  | Cle => TCle
  | Cgt => TCgt
  | Cge => TCge
  end.

Definition cond_for_unsigned_cmp (cmp: comparison) :=
  match cmp with
  | Ceq => TCeq
  | Cne => TCne
  | Clt => TClo
  | Cle => TCls
  | Cgt => TChi
  | Cge => TChs
  end.

Definition cond_for_float_cmp (cmp: comparison) :=
  match cmp with
  | Ceq => TCeq
  | Cne => TCne
  | Clt => TCmi
  | Cle => TCls
  | Cgt => TCgt
  | Cge => TCge
  end.

Definition cond_for_float_not_cmp (cmp: comparison) :=
  match cmp with
  | Ceq => TCne
  | Cne => TCeq
  | Clt => TCpl
  | Cle => TChi
  | Cgt => TCle
  | Cge => TClt
  end.

Definition cond_for_cond (cond: condition) :=
  match cond with
  | Ccomp cmp => cond_for_signed_cmp cmp
  | Ccompu cmp => cond_for_unsigned_cmp cmp
  | Ccompshift cmp s a => cond_for_signed_cmp cmp
  | Ccompushift cmp s a => cond_for_unsigned_cmp cmp
  | Ccompimm cmp n => cond_for_signed_cmp cmp
  | Ccompuimm cmp n => cond_for_unsigned_cmp cmp
  | Cmaskzero n => TCeq
  | Cmasknotzero n => TCne
  | Ccompl cmp => cond_for_signed_cmp cmp
  | Ccomplu cmp => cond_for_unsigned_cmp cmp
  | Ccomplshift cmp s a => cond_for_signed_cmp cmp
  | Ccomplushift cmp s a => cond_for_unsigned_cmp cmp
  | Ccomplimm cmp n => cond_for_signed_cmp cmp
  | Ccompluimm cmp n => cond_for_unsigned_cmp cmp
  | Cmasklzero n => TCeq
  | Cmasklnotzero n => TCne
  | Ccompf cmp => cond_for_float_cmp cmp
  | Cnotcompf cmp => cond_for_float_not_cmp cmp
  | Ccompfzero cmp => cond_for_float_cmp cmp
  | Cnotcompfzero cmp => cond_for_float_not_cmp cmp
  | Ccompfs cmp => cond_for_float_cmp cmp
  | Cnotcompfs cmp => cond_for_float_not_cmp cmp
  | Ccompfszero cmp => cond_for_float_cmp cmp
  | Cnotcompfszero cmp => cond_for_float_not_cmp cmp
  end.

(** Translation of a conditional branch.  Prepends to [k] the instructions
  that evaluate the condition and ranch to [lbl] if it holds.
  We recognize some conditional branches that can be implemented
  without setting then testing condition flags.  *)

Definition transl_cond_branch_default
              (c: condition) (args: list mreg) (lbl: label) (k: code) :=
  transl_cond c args (Pbc (cond_for_cond c) lbl :: k).
 
Definition transl_cond_branch
              (c: condition) (args: list mreg) (lbl: label) (k: code) :=
  match args, c with
  | a1 :: nil, (Ccompimm Cne n | Ccompuimm Cne n) =>
      if Int.eq n Int.zero
      then (do r1 <- ireg_of a1; OK (Pcbnz W r1 lbl :: k))
      else transl_cond_branch_default c args lbl k
  | a1 :: nil, (Ccompimm Ceq n | Ccompuimm Ceq n) =>
      if Int.eq n Int.zero
      then (do r1 <- ireg_of a1; OK (Pcbz W r1 lbl :: k))
      else transl_cond_branch_default c args lbl k
  | a1 :: nil, (Ccomplimm Cne n | Ccompluimm Cne n) =>
      if Int64.eq n Int64.zero
      then (do r1 <- ireg_of a1; OK (Pcbnz X r1 lbl :: k))
      else transl_cond_branch_default c args lbl k
  | a1 :: nil, (Ccomplimm Ceq n | Ccompluimm Ceq n) =>
      if Int64.eq n Int64.zero
      then (do r1 <- ireg_of a1; OK (Pcbz X r1 lbl :: k))
      else transl_cond_branch_default c args lbl k
  | a1 :: nil, Cmaskzero n =>
      match Int.is_power2 n with
      | Some bit => do r1 <- ireg_of a1; OK (Ptbz W r1 bit lbl :: k)
      | None => transl_cond_branch_default c args lbl k
      end
  | a1 :: nil, Cmasknotzero n =>
      match Int.is_power2 n with
      | Some bit => do r1 <- ireg_of a1; OK (Ptbnz W r1 bit lbl :: k)
      | None => transl_cond_branch_default c args lbl k
      end
  | a1 :: nil, Cmasklzero n =>
      match Int64.is_power2' n with
      | Some bit => do r1 <- ireg_of a1; OK (Ptbz X r1 bit lbl :: k)
      | None => transl_cond_branch_default c args lbl k
      end
  | a1 :: nil, Cmasklnotzero n =>
      match Int64.is_power2' n with
      | Some bit => do r1 <- ireg_of a1; OK (Ptbnz X r1 bit lbl :: k)
      | None => transl_cond_branch_default c args lbl k
      end
  | _, _ =>
      transl_cond_branch_default c args lbl k
  end.
  
(** Translation of the arithmetic operation [res <- op(args)].
    The corresponding instructions are prepended to [k]. *)

Definition transl_op
              (op: operation) (args: list mreg) (res: mreg) (k: code) :=
  match op, args with
  | Omove, a1 :: nil =>
      match preg_of res, preg_of a1 with
      | IR r, IR a => OK (Pmov r a :: k)
      | FR r, FR a => OK (Pfmov r a :: k)
      |  _  ,  _   => Error(msg "Asmgen.Omove")
      end
  | Ointconst n, nil =>
      do rd <- ireg_of res;
      OK (loadimm32 rd n k)
  | Olongconst n, nil =>
      do rd <- ireg_of res;
      OK (loadimm64 rd n k)
  | Ofloatconst f, nil =>
      do rd <- freg_of res;
      OK (if Float.eq_dec f Float.zero
          then Pfmovi D rd XZR :: k
          else Pfmovimmd rd f :: k)
  | Osingleconst f, nil =>
      do rd <- freg_of res;
      OK (if Float32.eq_dec f Float32.zero
          then Pfmovi S rd XZR :: k
          else Pfmovimms rd f :: k)
  | Oaddrsymbol id ofs, nil =>
      do rd <- ireg_of res;
      OK (loadsymbol rd id ofs k)
  | Oaddrstack ofs, nil =>
      do rd <- ireg_of res;
      OK (addimm64 rd XSP (Ptrofs.to_int64 ofs) k)
(** 32-bit integer arithmetic *)
  | Oshift s a, a1 :: nil =>
      do rd <- ireg_of res; do r1 <- ireg_of a1;
      OK (Porr W rd XZR r1 (transl_shift s a) :: k)
  | Oadd, a1 :: a2 :: nil =>
      do rd <- ireg_of res; do r1 <- ireg_of a1; do r2 <- ireg_of a2;
      OK (Padd W rd r1 r2 SOnone :: k)
  | Oaddshift s a, a1 :: a2 :: nil =>
      do rd <- ireg_of res; do r1 <- ireg_of a1; do r2 <- ireg_of a2;
      OK (Padd W rd r1 r2 (transl_shift s a) :: k)
  | Oaddimm n, a1 :: nil =>
      do rd <- ireg_of res; do r1 <- ireg_of a1;
      OK (addimm32 rd r1 n k)
  | Oneg, a1 :: nil =>
      do rd <- ireg_of res; do r1 <- ireg_of a1;
      OK (Psub W rd XZR r1 SOnone :: k)
  | Onegshift s a, a1 :: nil =>
      do rd <- ireg_of res; do r1 <- ireg_of a1;
      OK (Psub W rd XZR r1 (transl_shift s a) :: k)
  | Osub, a1 :: a2 :: nil =>
      do rd <- ireg_of res; do r1 <- ireg_of a1; do r2 <- ireg_of a2;
      OK (Psub W rd r1 r2 SOnone :: k)
  | Osubshift s a, a1 :: a2 :: nil =>
      do rd <- ireg_of res; do r1 <- ireg_of a1; do r2 <- ireg_of a2;
      OK (Psub W rd r1 r2 (transl_shift s a) :: k)
  | Omul, a1 :: a2 :: nil =>
      do rd <- ireg_of res; do r1 <- ireg_of a1; do r2 <- ireg_of a2;
      OK (Pmadd W rd r1 r2 XZR :: k)
  | Omuladd, a1 :: a2 :: a3 :: nil =>
      do rd <- ireg_of res; do r1 <- ireg_of a1; do r2 <- ireg_of a2; do r3 <- ireg_of a3;
      OK (Pmadd W rd r2 r3 r1 :: k)
  | Omulsub, a1 :: a2 :: a3 :: nil =>
      do rd <- ireg_of res; do r1 <- ireg_of a1; do r2 <- ireg_of a2; do r3 <- ireg_of a3;
      OK (Pmsub W rd r2 r3 r1 :: k)
  | Odiv, a1 :: a2 :: nil =>
      do rd <- ireg_of res; do r1 <- ireg_of a1; do r2 <- ireg_of a2;
      OK (Psdiv W rd r1 r2 :: k)
  | Odivu, a1 :: a2 :: nil =>
      do rd <- ireg_of res; do r1 <- ireg_of a1; do r2 <- ireg_of a2;
      OK (Pudiv W rd r1 r2 :: k)
  | Oand, a1 :: a2 :: nil =>
      do rd <- ireg_of res; do r1 <- ireg_of a1; do r2 <- ireg_of a2;
      OK (Pand W rd r1 r2 SOnone :: k)
  | Oandshift s a, a1 :: a2 :: nil =>
      do rd <- ireg_of res; do r1 <- ireg_of a1; do r2 <- ireg_of a2;
      OK (Pand W rd r1 r2 (transl_shift s a) :: k)
  | Oandimm n, a1 :: nil =>
      do rd <- ireg_of res; do r1 <- ireg_of a1;
      OK (logicalimm32 (Pandimm W) (Pand W) rd r1 n k)      
  | Oor, a1 :: a2 :: nil =>
      do rd <- ireg_of res; do r1 <- ireg_of a1; do r2 <- ireg_of a2;
      OK (Porr W rd r1 r2 SOnone :: k)
  | Oorshift s a, a1 :: a2 :: nil =>
      do rd <- ireg_of res; do r1 <- ireg_of a1; do r2 <- ireg_of a2;
      OK (Porr W rd r1 r2 (transl_shift s a) :: k)
  | Oorimm n, a1 :: nil =>
      do rd <- ireg_of res; do r1 <- ireg_of a1;
      OK (logicalimm32 (Porrimm W) (Porr W) rd r1 n k)      
  | Oxor, a1 :: a2 :: nil =>
      do rd <- ireg_of res; do r1 <- ireg_of a1; do r2 <- ireg_of a2;
      OK (Peor W rd r1 r2 SOnone :: k)
  | Oxorshift s a, a1 :: a2 :: nil =>
      do rd <- ireg_of res; do r1 <- ireg_of a1; do r2 <- ireg_of a2;
      OK (Peor W rd r1 r2 (transl_shift s a) :: k)
  | Oxorimm n, a1 :: nil =>
      do rd <- ireg_of res; do r1 <- ireg_of a1;
      OK (logicalimm32 (Peorimm W) (Peor W) rd r1 n k)      
  | Onot, a1 :: nil =>
      do rd <- ireg_of res; do r1 <- ireg_of a1;
      OK (Porn W rd XZR r1 SOnone :: k)
  | Onotshift s a, a1 :: nil =>
      do rd <- ireg_of res; do r1 <- ireg_of a1;
      OK (Porn W rd XZR r1 (transl_shift s a) :: k)
  | Obic, a1 :: a2 :: nil =>
      do rd <- ireg_of res; do r1 <- ireg_of a1; do r2 <- ireg_of a2;
      OK (Pbic W rd r1 r2 SOnone :: k)
  | Obicshift s a, a1 :: a2 :: nil =>
      do rd <- ireg_of res; do r1 <- ireg_of a1; do r2 <- ireg_of a2;
      OK (Pbic W rd r1 r2 (transl_shift s a) :: k)
  | Oorn, a1 :: a2 :: nil =>
      do rd <- ireg_of res; do r1 <- ireg_of a1; do r2 <- ireg_of a2;
      OK (Porn W rd r1 r2 SOnone :: k)
  | Oornshift s a, a1 :: a2 :: nil =>
      do rd <- ireg_of res; do r1 <- ireg_of a1; do r2 <- ireg_of a2;
      OK (Porn W rd r1 r2 (transl_shift s a) :: k)
  | Oeqv, a1 :: a2 :: nil =>
      do rd <- ireg_of res; do r1 <- ireg_of a1; do r2 <- ireg_of a2;
      OK (Peon W rd r1 r2 SOnone :: k)
  | Oeqvshift s a, a1 :: a2 :: nil =>
      do rd <- ireg_of res; do r1 <- ireg_of a1; do r2 <- ireg_of a2;
      OK (Peon W rd r1 r2 (transl_shift s a) :: k)
  | Oshl, a1 :: a2 :: nil =>
      do rd <- ireg_of res; do r1 <- ireg_of a1; do r2 <- ireg_of a2;
      OK (Plslv W rd r1 r2 :: k)
  | Oshr, a1 :: a2 :: nil =>
      do rd <- ireg_of res; do r1 <- ireg_of a1; do r2 <- ireg_of a2;
      OK (Pasrv W rd r1 r2 :: k)
  | Oshru, a1 :: a2 :: nil =>
      do rd <- ireg_of res; do r1 <- ireg_of a1; do r2 <- ireg_of a2;
      OK (Plsrv W rd r1 r2 :: k)
  | Oshrximm n, a1 :: nil =>
      do rd <- ireg_of res; do r1 <- ireg_of a1;
      OK (shrx32 rd r1 n k)
  | Ozext s, a1 :: nil =>
      do rd <- ireg_of res; do r1 <- ireg_of a1;
      OK (Pubfiz W rd r1 Int.zero s :: k)
  | Osext s, a1 :: nil =>
      do rd <- ireg_of res; do r1 <- ireg_of a1;
      OK (Psbfiz W rd r1 Int.zero s :: k)
  | Oshlzext s a, a1 :: nil =>
      do rd <- ireg_of res; do r1 <- ireg_of a1;
      OK (Pubfiz W rd r1 a (Z.min s (Int.zwordsize - Int.unsigned a)) :: k)
  | Oshlsext s a, a1 :: nil =>
      do rd <- ireg_of res; do r1 <- ireg_of a1;
      OK (Psbfiz W rd r1 a (Z.min s (Int.zwordsize - Int.unsigned a)) :: k)
  | Ozextshr a s, a1 :: nil =>
      do rd <- ireg_of res; do r1 <- ireg_of a1;
      OK (Pubfx W rd r1 a (Z.min s (Int.zwordsize - Int.unsigned a)) :: k)
  | Osextshr a s, a1 :: nil =>
      do rd <- ireg_of res; do r1 <- ireg_of a1;
      OK (Psbfx W rd r1 a (Z.min s (Int.zwordsize - Int.unsigned a)) :: k)
(** 64-bit integer arithmetic *)
  | Oshiftl s a, a1 :: nil =>
      do rd <- ireg_of res; do r1 <- ireg_of a1;
      OK (Porr X rd XZR r1 (transl_shift s a) :: k)
  | Oextend x a, a1 :: nil =>
      do rd <- ireg_of res; do r1 <- ireg_of a1;
      OK (move_extended rd r1 x a k)
  (* [Omakelong] and [Ohighlong] should not occur *)
  | Olowlong, a1 :: nil => 
      do rd <- ireg_of res; do r1 <- ireg_of a1;
      assertion (ireg_eq rd r1);
      OK (Pcvtx2w rd :: k)
  | Oaddl, a1 :: a2 :: nil =>
      do rd <- ireg_of res; do r1 <- ireg_of a1; do r2 <- ireg_of a2;
      OK (Padd X rd r1 r2 SOnone :: k)
  | Oaddlshift s a, a1 :: a2 :: nil =>
      do rd <- ireg_of res; do r1 <- ireg_of a1; do r2 <- ireg_of a2;
      OK (Padd X rd r1 r2 (transl_shift s a) :: k)
  | Oaddlext x a, a1 :: a2 :: nil =>
      do rd <- ireg_of res; do r1 <- ireg_of a1; do r2 <- ireg_of a2;
      OK (arith_extended Paddext (Padd X) rd r1 r2 x a k)
  | Oaddlimm n, a1 :: nil =>
      do rd <- ireg_of res; do r1 <- ireg_of a1;
      OK (addimm64 rd r1 n k)
  | Onegl, a1 :: nil =>
      do rd <- ireg_of res; do r1 <- ireg_of a1;
      OK (Psub X rd XZR r1 SOnone :: k)
  | Oneglshift s a, a1 :: nil =>
      do rd <- ireg_of res; do r1 <- ireg_of a1;
      OK (Psub X rd XZR r1 (transl_shift s a) :: k)
  | Osubl, a1 :: a2 :: nil =>
      do rd <- ireg_of res; do r1 <- ireg_of a1; do r2 <- ireg_of a2;
      OK (Psub X rd r1 r2 SOnone :: k)
  | Osublshift s a, a1 :: a2 :: nil =>
      do rd <- ireg_of res; do r1 <- ireg_of a1; do r2 <- ireg_of a2;
      OK (Psub X rd r1 r2 (transl_shift s a) :: k)
  | Osublext x a, a1 :: a2 :: nil =>
      do rd <- ireg_of res; do r1 <- ireg_of a1; do r2 <- ireg_of a2;
      OK (arith_extended Psubext (Psub X) rd r1 r2 x a k)
  | Omull, a1 :: a2 :: nil =>
      do rd <- ireg_of res; do r1 <- ireg_of a1; do r2 <- ireg_of a2;
      OK (Pmadd X rd r1 r2 XZR :: k)
  | Omulladd, a1 :: a2 :: a3 :: nil =>
      do rd <- ireg_of res; do r1 <- ireg_of a1; do r2 <- ireg_of a2; do r3 <- ireg_of a3;
      OK (Pmadd X rd r2 r3 r1 :: k)
  | Omullsub, a1 :: a2 :: a3 :: nil =>
      do rd <- ireg_of res; do r1 <- ireg_of a1; do r2 <- ireg_of a2; do r3 <- ireg_of a3;
      OK (Pmsub X rd r2 r3 r1 :: k)
  | Omullhs, a1 :: a2 :: nil =>
      do rd <- ireg_of res; do r1 <- ireg_of a1; do r2 <- ireg_of a2;
      OK (Psmulh rd r1 r2 :: k)
  | Omullhu, a1 :: a2 :: nil =>
      do rd <- ireg_of res; do r1 <- ireg_of a1; do r2 <- ireg_of a2;
      OK (Pumulh rd r1 r2 :: k)
  | Odivl, a1 :: a2 :: nil =>
      do rd <- ireg_of res; do r1 <- ireg_of a1; do r2 <- ireg_of a2;
      OK (Psdiv X rd r1 r2 :: k)
  | Odivlu, a1 :: a2 :: nil =>
      do rd <- ireg_of res; do r1 <- ireg_of a1; do r2 <- ireg_of a2;
      OK (Pudiv X rd r1 r2 :: k)
  | Oandl, a1 :: a2 :: nil =>
      do rd <- ireg_of res; do r1 <- ireg_of a1; do r2 <- ireg_of a2;
      OK (Pand X rd r1 r2 SOnone :: k)
  | Oandlshift s a, a1 :: a2 :: nil =>
      do rd <- ireg_of res; do r1 <- ireg_of a1; do r2 <- ireg_of a2;
      OK (Pand X rd r1 r2 (transl_shift s a) :: k)
  | Oandlimm n, a1 :: nil =>
      do rd <- ireg_of res; do r1 <- ireg_of a1;
      OK (logicalimm64 (Pandimm X) (Pand X) rd r1 n k)      
  | Oorl, a1 :: a2 :: nil =>
      do rd <- ireg_of res; do r1 <- ireg_of a1; do r2 <- ireg_of a2;
      OK (Porr X rd r1 r2 SOnone :: k)
  | Oorlshift s a, a1 :: a2 :: nil =>
      do rd <- ireg_of res; do r1 <- ireg_of a1; do r2 <- ireg_of a2;
      OK (Porr X rd r1 r2 (transl_shift s a) :: k)
  | Oorlimm n, a1 :: nil =>
      do rd <- ireg_of res; do r1 <- ireg_of a1;
      OK (logicalimm64 (Porrimm X) (Porr X) rd r1 n k)      
  | Oxorl, a1 :: a2 :: nil =>
      do rd <- ireg_of res; do r1 <- ireg_of a1; do r2 <- ireg_of a2;
      OK (Peor X rd r1 r2 SOnone :: k)
  | Oxorlshift s a, a1 :: a2 :: nil =>
      do rd <- ireg_of res; do r1 <- ireg_of a1; do r2 <- ireg_of a2;
      OK (Peor X rd r1 r2 (transl_shift s a) :: k)
  | Oxorlimm n, a1 :: nil =>
      do rd <- ireg_of res; do r1 <- ireg_of a1;
      OK (logicalimm64 (Peorimm X) (Peor X) rd r1 n k)      
  | Onotl, a1 :: nil =>
      do rd <- ireg_of res; do r1 <- ireg_of a1;
      OK (Porn X rd XZR r1 SOnone :: k)
  | Onotlshift s a, a1 :: nil =>
      do rd <- ireg_of res; do r1 <- ireg_of a1;
      OK (Porn X rd XZR r1 (transl_shift s a) :: k)
  | Obicl, a1 :: a2 :: nil =>
      do rd <- ireg_of res; do r1 <- ireg_of a1; do r2 <- ireg_of a2;
      OK (Pbic X rd r1 r2 SOnone :: k)
  | Obiclshift s a, a1 :: a2 :: nil =>
      do rd <- ireg_of res; do r1 <- ireg_of a1; do r2 <- ireg_of a2;
      OK (Pbic X rd r1 r2 (transl_shift s a) :: k)
  | Oornl, a1 :: a2 :: nil =>
      do rd <- ireg_of res; do r1 <- ireg_of a1; do r2 <- ireg_of a2;
      OK (Porn X rd r1 r2 SOnone :: k)
  | Oornlshift s a, a1 :: a2 :: nil =>
      do rd <- ireg_of res; do r1 <- ireg_of a1; do r2 <- ireg_of a2;
      OK (Porn X rd r1 r2 (transl_shift s a) :: k)
  | Oeqvl, a1 :: a2 :: nil =>
      do rd <- ireg_of res; do r1 <- ireg_of a1; do r2 <- ireg_of a2;
      OK (Peon X rd r1 r2 SOnone :: k)
  | Oeqvlshift s a, a1 :: a2 :: nil =>
      do rd <- ireg_of res; do r1 <- ireg_of a1; do r2 <- ireg_of a2;
      OK (Peon X rd r1 r2 (transl_shift s a) :: k)
  | Oshll, a1 :: a2 :: nil =>
      do rd <- ireg_of res; do r1 <- ireg_of a1; do r2 <- ireg_of a2;
      OK (Plslv X rd r1 r2 :: k)
  | Oshrl, a1 :: a2 :: nil =>
      do rd <- ireg_of res; do r1 <- ireg_of a1; do r2 <- ireg_of a2;
      OK (Pasrv X rd r1 r2 :: k)
  | Oshrlu, a1 :: a2 :: nil =>
      do rd <- ireg_of res; do r1 <- ireg_of a1; do r2 <- ireg_of a2;
      OK (Plsrv X rd r1 r2 :: k)
  | Oshrlximm n, a1 :: nil =>
      do rd <- ireg_of res; do r1 <- ireg_of a1;
      OK (shrx64 rd r1 n k)
  | Ozextl s, a1 :: nil =>
      do rd <- ireg_of res; do r1 <- ireg_of a1;
      OK (Pubfiz X rd r1 Int.zero s :: k)
  | Osextl s, a1 :: nil =>
      do rd <- ireg_of res; do r1 <- ireg_of a1;
      OK (Psbfiz X rd r1 Int.zero s :: k)
  | Oshllzext s a, a1 :: nil =>
      do rd <- ireg_of res; do r1 <- ireg_of a1;
      OK (Pubfiz X rd r1 a (Z.min s (Int64.zwordsize - Int.unsigned a)) :: k)
  | Oshllsext s a, a1 :: nil =>
      do rd <- ireg_of res; do r1 <- ireg_of a1;
      OK (Psbfiz X rd r1 a (Z.min s (Int64.zwordsize - Int.unsigned a)) :: k)
  | Ozextshrl a s, a1 :: nil =>
      do rd <- ireg_of res; do r1 <- ireg_of a1;
      OK (Pubfx X rd r1 a (Z.min s (Int64.zwordsize - Int.unsigned a)) :: k)
  | Osextshrl a s, a1 :: nil =>
      do rd <- ireg_of res; do r1 <- ireg_of a1;
      OK (Psbfx X rd r1 a (Z.min s (Int64.zwordsize - Int.unsigned a)) :: k)
(** 64-bit floating-point arithmetic *)
  | Onegf, a1 :: nil =>
      do rd <- freg_of res; do rs <- freg_of a1;
      OK (Pfneg D rd rs :: k)
  | Oabsf, a1 :: nil =>
      do rd <- freg_of res; do rs <- freg_of a1;
      OK (Pfabs D rd rs :: k)
  | Oaddf, a1 :: a2 :: nil =>
      do rd <- freg_of res; do rs1 <- freg_of a1; do rs2 <- freg_of a2;
      OK (Pfadd D rd rs1 rs2 :: k)
  | Osubf, a1 :: a2 :: nil =>
      do rd <- freg_of res; do rs1 <- freg_of a1; do rs2 <- freg_of a2;
      OK (Pfsub D rd rs1 rs2 :: k)
  | Omulf, a1 :: a2 :: nil =>
      do rd <- freg_of res; do rs1 <- freg_of a1; do rs2 <- freg_of a2;
      OK (Pfmul D rd rs1 rs2 :: k)
  | Odivf, a1 :: a2 :: nil =>
      do rd <- freg_of res; do rs1 <- freg_of a1; do rs2 <- freg_of a2;
      OK (Pfdiv D rd rs1 rs2 :: k)
(** 32-bit floating-point arithmetic *)
  | Onegfs, a1 :: nil =>
      do rd <- freg_of res; do rs <- freg_of a1;
      OK (Pfneg S rd rs :: k)
  | Oabsfs, a1 :: nil =>
      do rd <- freg_of res; do rs <- freg_of a1;
      OK (Pfabs S rd rs :: k)
  | Oaddfs, a1 :: a2 :: nil =>
      do rd <- freg_of res; do rs1 <- freg_of a1; do rs2 <- freg_of a2;
      OK (Pfadd S rd rs1 rs2 :: k)
  | Osubfs, a1 :: a2 :: nil =>
      do rd <- freg_of res; do rs1 <- freg_of a1; do rs2 <- freg_of a2;
      OK (Pfsub S rd rs1 rs2 :: k)
  | Omulfs, a1 :: a2 :: nil =>
      do rd <- freg_of res; do rs1 <- freg_of a1; do rs2 <- freg_of a2;
      OK (Pfmul S rd rs1 rs2 :: k)
  | Odivfs, a1 :: a2 :: nil =>
      do rd <- freg_of res; do rs1 <- freg_of a1; do rs2 <- freg_of a2;
      OK (Pfdiv S rd rs1 rs2 :: k)
  | Osingleoffloat, a1 :: nil =>
      do rd <- freg_of res; do rs <- freg_of a1;
      OK (Pfcvtsd rd rs :: k)
  | Ofloatofsingle, a1 :: nil =>
      do rd <- freg_of res; do rs <- freg_of a1;
      OK (Pfcvtds rd rs :: k)
(** Conversions between int and float *)
  | Ointoffloat, a1 :: nil =>
      do rd <- ireg_of res; do rs <- freg_of a1;
      OK (Pfcvtzs W D rd rs :: k)
  | Ointuoffloat, a1 :: nil =>
      do rd <- ireg_of res; do rs <- freg_of a1;
      OK (Pfcvtzu W D rd rs :: k)
  | Ofloatofint, a1 :: nil =>
      do rd <- freg_of res; do rs <- ireg_of a1;
      OK (Pscvtf D W rd rs :: k)
  | Ofloatofintu, a1 :: nil =>
      do rd <- freg_of res; do rs <- ireg_of a1;
      OK (Pucvtf D W rd rs :: k)
  | Ointofsingle, a1 :: nil =>
      do rd <- ireg_of res; do rs <- freg_of a1;
      OK (Pfcvtzs W S rd rs :: k)
  | Ointuofsingle, a1 :: nil =>
      do rd <- ireg_of res; do rs <- freg_of a1;
      OK (Pfcvtzu W S rd rs :: k)
  | Osingleofint, a1 :: nil =>
      do rd <- freg_of res; do rs <- ireg_of a1;
      OK (Pscvtf S W rd rs :: k)
  | Osingleofintu, a1 :: nil =>
      do rd <- freg_of res; do rs <- ireg_of a1;
      OK (Pucvtf S W rd rs :: k)
  | Olongoffloat, a1 :: nil =>
      do rd <- ireg_of res; do rs <- freg_of a1;
      OK (Pfcvtzs X D rd rs :: k)
  | Olonguoffloat, a1 :: nil =>
      do rd <- ireg_of res; do rs <- freg_of a1;
      OK (Pfcvtzu X D rd rs :: k)
  | Ofloatoflong, a1 :: nil =>
      do rd <- freg_of res; do rs <- ireg_of a1;
      OK (Pscvtf D X rd rs :: k)
  | Ofloatoflongu, a1 :: nil =>
      do rd <- freg_of res; do rs <- ireg_of a1;
      OK (Pucvtf D X rd rs :: k)
  | Olongofsingle, a1 :: nil =>
      do rd <- ireg_of res; do rs <- freg_of a1;
      OK (Pfcvtzs X S rd rs :: k)
  | Olonguofsingle, a1 :: nil =>
      do rd <- ireg_of res; do rs <- freg_of a1;
      OK (Pfcvtzu X S rd rs :: k)
  | Osingleoflong, a1 :: nil =>
      do rd <- freg_of res; do rs <- ireg_of a1;
      OK (Pscvtf S X rd rs :: k)
  | Osingleoflongu, a1 :: nil =>
      do rd <- freg_of res; do rs <- ireg_of a1;
      OK (Pucvtf S X rd rs :: k)
(** Boolean tests *)
  | Ocmp c, _ =>
      do rd <- ireg_of res;
      transl_cond c args (Pcset rd (cond_for_cond c) :: k)
(** Conditional move *)
  | Osel cmp ty, a1 :: a2 :: args =>
      match preg_of res with
      | IR r => 
          do r1 <- ireg_of a1; do r2 <- ireg_of a2;
          transl_cond cmp args (Pcsel r r1 r2 (cond_for_cond cmp) :: k)
      | FR r =>
          do r1 <- freg_of a1; do r2 <- freg_of a2;
          transl_cond cmp args (Pfsel r r1 r2 (cond_for_cond cmp) :: k)
      | _ =>
          Error(msg "Asmgen.Osel")
      end
  | _, _ =>
      Error(msg "Asmgen.transl_op")
  end.

(** Translation of addressing modes *)

Definition offset_representable (sz: Z) (ofs: int64) : bool :=
  let isz := Int64.repr sz in
  (** either unscaled 9-bit signed *)
  Int64.eq ofs (Int64.sign_ext 9 ofs) ||
  (** or scaled 12-bit unsigned *)
  (Int64.eq (Int64.modu ofs isz) Int64.zero
   && Int64.ltu ofs (Int64.shl isz (Int64.repr 12))).
 
Definition transl_addressing (sz: Z) (addr: Op.addressing) (args: list mreg)
                             (insn: Asm.addressing -> instruction) (k: code) : res code :=
  match addr, args with
  | Aindexed ofs, a1 :: nil =>
      do r1 <- ireg_of a1;
       if offset_representable sz ofs then
        OK (insn (ADimm r1 ofs) :: k)
      else
        OK (loadimm64 X16 ofs (insn (ADreg r1 X16) :: k))
  | Aindexed2, a1 :: a2 :: nil =>
      do r1 <- ireg_of a1; do r2 <- ireg_of a2;
      OK (insn (ADreg r1 r2) :: k)
  | Aindexed2shift a, a1 :: a2 :: nil =>
      do r1 <- ireg_of a1; do r2 <- ireg_of a2;
      if Int.eq a Int.zero then
        OK (insn (ADreg r1 r2) :: k)
      else if Int.eq (Int.shl Int.one a) (Int.repr sz) then
        OK (insn (ADlsl r1 r2 a) :: k)
      else
        OK (Padd X X16 r1 r2 (SOlsl a) :: insn (ADimm X16 Int64.zero) :: k)
  | Aindexed2ext x a, a1 :: a2 :: nil =>
      do r1 <- ireg_of a1; do r2 <- ireg_of a2;
      if Int.eq a Int.zero || Int.eq (Int.shl Int.one a) (Int.repr sz) then
        OK (insn (match x with Xsgn32 => ADsxt r1 r2 a
                             | Xuns32 => ADuxt r1 r2 a end) :: k)
      else
        OK (arith_extended Paddext (Padd X) X16 r1 r2 x a
                           (insn (ADimm X16 Int64.zero) :: k))
  | Aglobal id ofs, nil =>
      assertion (negb (Archi.pic_code tt));
      if Ptrofs.eq (Ptrofs.modu ofs (Ptrofs.repr sz)) Ptrofs.zero && symbol_is_aligned id sz
      then OK (Padrp X16 id ofs :: insn (ADadr X16 id ofs) :: k)
      else OK (loadsymbol X16 id ofs (insn (ADimm X16 Int64.zero) :: k))
  | Ainstack ofs, nil =>
      let ofs := Ptrofs.to_int64 ofs in
      if offset_representable sz ofs then
        OK (insn (ADimm XSP ofs) :: k)
      else
        OK (loadimm64 X16 ofs (insn (ADreg XSP X16) :: k))
  | _, _ =>
      Error(msg "Asmgen.transl_addressing")
  end.

(** Translation of loads and stores *)

Definition transl_load (chunk: memory_chunk) (addr: Op.addressing)
                       (args: list mreg) (dst: mreg) (k: code) : res code :=
  match chunk with
  | Mint8unsigned =>
      do rd <- ireg_of dst; transl_addressing 1 addr args (Pldrb W rd) k
  | Mint8signed =>
      do rd <- ireg_of dst; transl_addressing 1 addr args (Pldrsb W rd) k
  | Mint16unsigned =>
      do rd <- ireg_of dst; transl_addressing 2 addr args (Pldrh W rd) k
  | Mint16signed =>
      do rd <- ireg_of dst; transl_addressing 2 addr args (Pldrsh W rd) k
  | Mint32 =>
      do rd <- ireg_of dst; transl_addressing 4 addr args (Pldrw rd) k
  | Mint64 =>
      do rd <- ireg_of dst; transl_addressing 8 addr args (Pldrx rd) k
  | Mfloat32 =>
      do rd <- freg_of dst; transl_addressing 4 addr args (Pldrs rd) k
  | Mfloat64 =>
      do rd <- freg_of dst; transl_addressing 8 addr args (Pldrd rd) k
  | Many32 =>
      do rd <- ireg_of dst; transl_addressing 4 addr args (Pldrw_a rd) k
  | Many64 =>
      do rd <- ireg_of dst; transl_addressing 8 addr args (Pldrx_a rd) k
  end.

Definition transl_store (chunk: memory_chunk) (addr: Op.addressing)
                        (args: list mreg) (src: mreg) (k: code) : res code :=
  match chunk with
  | Mint8unsigned | Mint8signed =>
      do r1 <- ireg_of src; transl_addressing 1 addr args (Pstrb r1) k
  | Mint16unsigned | Mint16signed =>
      do r1 <- ireg_of src; transl_addressing 2 addr args (Pstrh r1) k
  | Mint32 =>
      do r1 <- ireg_of src; transl_addressing 4 addr args (Pstrw r1) k
  | Mint64 =>
      do r1 <- ireg_of src; transl_addressing 8 addr args (Pstrx r1) k
  | Mfloat32 =>
      do r1 <- freg_of src; transl_addressing 4 addr args (Pstrs r1) k
  | Mfloat64 =>
      do r1 <- freg_of src; transl_addressing 8 addr args (Pstrd r1) k
  | Many32 =>
      do r1 <- ireg_of src; transl_addressing 4 addr args (Pstrw_a r1) k
  | Many64 =>
      do r1 <- ireg_of src; transl_addressing 8 addr args (Pstrx_a r1) k
  end.

(** Register-indexed loads and stores *)

Definition indexed_memory_access (insn: Asm.addressing -> instruction)
                                 (sz: Z) (base: iregsp) (ofs: ptrofs) (k: code) :=
  let ofs := Ptrofs.to_int64 ofs in
  if offset_representable sz ofs
  then insn (ADimm base ofs) :: k
  else loadimm64 X16 ofs (insn (ADreg base X16) :: k).

Definition loadind (base: iregsp) (ofs: ptrofs) (ty: typ) (dst: mreg) (k: code) :=
  match ty, preg_of dst with
  | Tint,    IR rd => OK (indexed_memory_access (Pldrw rd) 4 base ofs k)
  | Tlong,   IR rd => OK (indexed_memory_access (Pldrx rd) 8 base ofs k)
  | Tsingle, FR rd => OK (indexed_memory_access (Pldrs rd) 4 base ofs k)
  | Tfloat,  FR rd => OK (indexed_memory_access (Pldrd rd) 8 base ofs k)
  | Tany32,  IR rd => OK (indexed_memory_access (Pldrw_a rd) 4 base ofs k)
  | Tany64,  IR rd => OK (indexed_memory_access (Pldrx_a rd) 8 base ofs k)
  | Tany64,  FR rd => OK (indexed_memory_access (Pldrd_a rd) 8 base ofs k)
  | _, _           => Error (msg "Asmgen.loadind")
  end.

Definition storeind (src: mreg) (base: iregsp) (ofs: ptrofs) (ty: typ) (k: code) :=
  match ty, preg_of src with
  | Tint,    IR rd => OK (indexed_memory_access (Pstrw rd) 4 base ofs k)
  | Tlong,   IR rd => OK (indexed_memory_access (Pstrx rd) 8 base ofs k)
  | Tsingle, FR rd => OK (indexed_memory_access (Pstrs rd) 4 base ofs k)
  | Tfloat,  FR rd => OK (indexed_memory_access (Pstrd rd) 8 base ofs k)
  | Tany32,  IR rd => OK (indexed_memory_access (Pstrw_a rd) 4 base ofs k)
  | Tany64,  IR rd => OK (indexed_memory_access (Pstrx_a rd) 8 base ofs k)
  | Tany64,  FR rd => OK (indexed_memory_access (Pstrd_a rd) 8 base ofs k)
  | _, _           => Error (msg "Asmgen.storeind")
  end.

Definition loadptr (base: iregsp) (ofs: ptrofs) (dst: ireg) (k: code) :=
  indexed_memory_access (Pldrx dst) 8 base ofs k.

Definition storeptr (src: ireg) (base: iregsp) (ofs: ptrofs) (k: code) :=
  indexed_memory_access (Pstrx src) 8 base ofs k.

(** Function epilogue *)

Definition make_epilogue (f: Mach.function) (k: code) :=
  loadptr XSP f.(fn_retaddr_ofs) RA
    (Pfreeframe f.(fn_stacksize) f.(fn_link_ofs) :: k).
  
(** Translation of a Mach instruction. *)

Definition transl_instr (f: Mach.function) (i: Mach.instruction)
                        (r29_is_parent: bool) (k: code) : res code :=
  match i with
  | Mgetstack ofs ty dst =>
      loadind XSP ofs ty dst k
  | Msetstack src ofs ty =>
      storeind src XSP ofs ty k
  | Mgetparam ofs ty dst =>
      (* load via the frame pointer if it is valid *)
      do c <- loadind X29 ofs ty dst k;
      OK (if r29_is_parent then c else loadptr XSP f.(fn_link_ofs) X29 c)
  | Mop op args res =>
      transl_op op args res k
  | Mload chunk addr args dst =>
      transl_load chunk addr args dst k
  | Mstore chunk addr args src =>
      transl_store chunk addr args src k
  | Mcall sig (inl r) =>
      do r1 <- ireg_of r; OK (Pblr r1 sig :: k)
  | Mcall sig (inr symb) =>
      OK (Pbl symb sig :: k)
  | Mtailcall sig (inl r) =>
      do r1 <- ireg_of r;
      OK (make_epilogue f (Pbr r1 sig :: k))
  | Mtailcall sig (inr symb) =>
      OK (make_epilogue f (Pbs symb sig :: k))
  | Mbuiltin ef args res =>
      OK (Pbuiltin ef (List.map (map_builtin_arg preg_of) args) (map_builtin_res preg_of res) :: k)
  | Mlabel lbl =>
      OK (Plabel lbl :: k)
  | Mgoto lbl =>
      OK (Pb lbl :: k)
  | Mcond cond args lbl =>
      transl_cond_branch cond args lbl k
  | Mjumptable arg tbl =>
      do r <- ireg_of arg;
      OK (Pbtbl r tbl :: k)
  | Mreturn =>
      OK (make_epilogue f (Pret RA :: k))
  end.

(** Translation of a code sequence *)

Definition it1_is_parent (before: bool) (i: Mach.instruction) : bool :=
  match i with
  | Msetstack src ofs ty => before
  | Mgetparam ofs ty dst => negb (mreg_eq dst R29)
  | Mop op args res => before && negb (mreg_eq res R29)
  | _ => false
  end.

(** This is the naive definition that we no longer use because it
  is not tail-recursive.  It is kept as specification. *)

Fixpoint transl_code (f: Mach.function) (il: list Mach.instruction) (it1p: bool) :=
  match il with
  | nil => OK nil
  | i1 :: il' =>
      do k <- transl_code f il' (it1_is_parent it1p i1);
      transl_instr f i1 it1p k
  end.

(** This is an equivalent definition in continuation-passing style
  that runs in constant stack space. *)

Fixpoint transl_code_rec (f: Mach.function) (il: list Mach.instruction)
                         (it1p: bool) (k: code -> res code) :=
  match il with
  | nil => k nil
  | i1 :: il' =>
      transl_code_rec f il' (it1_is_parent it1p i1)
        (fun c1 => do c2 <- transl_instr f i1 it1p c1; k c2)
  end.

Definition transl_code' (f: Mach.function) (il: list Mach.instruction) (it1p: bool) :=
  transl_code_rec f il it1p (fun c => OK c).

(** Translation of a whole function.  Note that we must check
  that the generated code contains less than [2^32] instructions,
  otherwise the offset part of the [PC] code pointer could wrap
  around, leading to incorrect executions. *)

Definition transl_function (f: Mach.function) :=
  do c <- transl_code' f f.(Mach.fn_code) true;
  OK (mkfunction f.(Mach.fn_sig)
        (Pallocframe f.(fn_stacksize) f.(fn_link_ofs) ::
         storeptr RA XSP f.(fn_retaddr_ofs) c)).

Definition transf_function (f: Mach.function) : res Asm.function :=
  do tf <- transl_function f;
  if zlt Ptrofs.max_unsigned (list_length_z tf.(fn_code))
  then Error (msg "code size exceeded")
  else OK tf.

Definition transf_fundef (f: Mach.fundef) : res Asm.fundef :=
  transf_partial_fundef transf_function f.

Definition transf_program (p: Mach.program) : res Asm.program :=
  transform_partial_program transf_fundef p.