aboutsummaryrefslogtreecommitdiffstats
path: root/flocq/Core/Digits.v
blob: a18ff8d626ebabb6fc1433d8bc496914cbf1afb2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
(**
This file is part of the Flocq formalization of floating-point
arithmetic in Coq: http://flocq.gforge.inria.fr/

Copyright (C) 2011-2018 Sylvie Boldo
#<br />#
Copyright (C) 2011-2018 Guillaume Melquiond

This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 3 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
COPYING file for more details.
*)

From Coq Require Import Lia ZArith Zquot.

Require Import Zaux.
Require Import SpecFloatCompat.

Notation digits2_pos := digits2_pos (only parsing).
Notation Zdigits2 := Zdigits2 (only parsing).

(** Number of bits (radix 2) of a positive integer.

It serves as an upper bound on the number of digits to ensure termination.
*)

Fixpoint digits2_Pnat (n : positive) : nat :=
  match n with
  | xH => O
  | xO p => S (digits2_Pnat p)
  | xI p => S (digits2_Pnat p)
  end.

Theorem digits2_Pnat_correct :
  forall n,
  let d := digits2_Pnat n in
  (Zpower_nat 2 d <= Zpos n < Zpower_nat 2 (S d))%Z.
Proof.
intros n d. unfold d. clear.
assert (Hp: forall m, (Zpower_nat 2 (S m) = 2 * Zpower_nat 2 m)%Z) by easy.
induction n ; simpl digits2_Pnat.
rewrite Zpos_xI, 2!Hp.
lia.
rewrite (Zpos_xO n), 2!Hp.
lia.
now split.
Qed.

Section Fcore_digits.

Variable beta : radix.

Definition Zdigit n k := Z.rem (Z.quot n (Zpower beta k)) beta.

Theorem Zdigit_lt :
  forall n k,
  (k < 0)%Z ->
  Zdigit n k = Z0.
Proof.
intros n [|k|k] Hk ; try easy.
now case n.
Qed.

Theorem Zdigit_0 :
  forall k, Zdigit 0 k = Z0.
Proof.
intros k.
unfold Zdigit.
rewrite Zquot_0_l.
apply Zrem_0_l.
Qed.

Theorem Zdigit_opp :
  forall n k,
  Zdigit (-n) k = Z.opp (Zdigit n k).
Proof.
intros n k.
unfold Zdigit.
rewrite Zquot_opp_l.
apply Zrem_opp_l.
Qed.

Theorem Zdigit_ge_Zpower_pos :
  forall e n,
  (0 <= n < Zpower beta e)%Z ->
  forall k, (e <= k)%Z -> Zdigit n k = Z0.
Proof.
intros e n Hn k Hk.
unfold Zdigit.
rewrite Z.quot_small.
apply Zrem_0_l.
split.
apply Hn.
apply Z.lt_le_trans with (1 := proj2 Hn).
replace k with (e + (k - e))%Z by ring.
rewrite Zpower_plus.
rewrite <- (Zmult_1_r (beta ^ e)) at 1.
apply Zmult_le_compat_l.
apply (Zlt_le_succ 0).
apply Zpower_gt_0.
now apply Zle_minus_le_0.
apply Zlt_le_weak.
now apply Z.le_lt_trans with n.
generalize (Z.le_lt_trans _ _ _ (proj1 Hn) (proj2 Hn)).
clear.
now destruct e as [|e|e].
now apply Zle_minus_le_0.
Qed.

Theorem Zdigit_ge_Zpower :
  forall e n,
  (Z.abs n < Zpower beta e)%Z ->
  forall k, (e <= k)%Z -> Zdigit n k = Z0.
Proof.
intros e [|n|n] Hn k.
easy.
apply Zdigit_ge_Zpower_pos.
now split.
intros He.
change (Zneg n) with (Z.opp (Zpos n)).
rewrite Zdigit_opp.
rewrite Zdigit_ge_Zpower_pos with (2 := He).
apply Z.opp_0.
now split.
Qed.

Theorem Zdigit_not_0_pos :
  forall e n, (0 <= e)%Z ->
  (Zpower beta e <= n < Zpower beta (e + 1))%Z ->
  Zdigit n e <> Z0.
Proof.
intros e n He (Hn1,Hn2).
unfold Zdigit.
rewrite <- ZOdiv_mod_mult.
rewrite Z.rem_small.
intros H.
apply Zle_not_lt with (1 := Hn1).
rewrite (Z.quot_rem' n (beta ^ e)).
rewrite H, Zmult_0_r, Zplus_0_l.
apply Zrem_lt_pos_pos.
apply Z.le_trans with (2 := Hn1).
apply Zpower_ge_0.
now apply Zpower_gt_0.
split.
apply Z.le_trans with (2 := Hn1).
apply Zpower_ge_0.
replace (beta ^ e * beta)%Z with (beta ^ (e + 1))%Z.
exact Hn2.
rewrite <- (Zmult_1_r beta) at 3.
now apply (Zpower_plus beta e 1).
Qed.

Theorem Zdigit_not_0 :
  forall e n, (0 <= e)%Z ->
  (Zpower beta e <= Z.abs n < Zpower beta (e + 1))%Z ->
  Zdigit n e <> Z0.
Proof.
intros e n He Hn.
destruct (Zle_or_lt 0 n) as [Hn'|Hn'].
rewrite (Z.abs_eq _ Hn') in Hn.
now apply Zdigit_not_0_pos.
intros H.
rewrite (Zabs_non_eq n) in Hn by now apply Zlt_le_weak.
apply (Zdigit_not_0_pos _ _ He Hn).
now rewrite Zdigit_opp, H.
Qed.

Theorem Zdigit_mul_pow :
  forall n k k', (0 <= k')%Z ->
  Zdigit (n * Zpower beta k') k = Zdigit n (k - k').
Proof.
intros n k k' Hk'.
destruct (Zle_or_lt k' k) as [H|H].
revert k H.
pattern k' ; apply Zlt_0_ind with (2 := Hk').
clear k' Hk'.
intros k' IHk' Hk' k H.
unfold Zdigit.
apply (f_equal (fun x => Z.rem x beta)).
pattern k at 1 ; replace k with (k - k' + k')%Z by ring.
rewrite Zpower_plus with (2 := Hk').
apply Zquot_mult_cancel_r.
apply Zgt_not_eq.
now apply Zpower_gt_0.
now apply Zle_minus_le_0.
destruct (Zle_or_lt 0 k) as [H0|H0].
rewrite (Zdigit_lt n) by lia.
unfold Zdigit.
replace k' with (k' - k + k)%Z by ring.
rewrite Zpower_plus with (2 := H0).
rewrite Zmult_assoc, Z_quot_mult.
replace (k' - k)%Z with (k' - k - 1 + 1)%Z by ring.
rewrite Zpower_exp by lia.
rewrite Zmult_assoc.
change (Zpower beta 1) with (beta * 1)%Z.
rewrite Zmult_1_r.
apply Z_rem_mult.
apply Zgt_not_eq.
now apply Zpower_gt_0.
apply Zle_minus_le_0.
now apply Zlt_le_weak.
rewrite Zdigit_lt with (1 := H0).
apply sym_eq.
apply Zdigit_lt.
lia.
Qed.

Theorem Zdigit_div_pow :
  forall n k k', (0 <= k)%Z -> (0 <= k')%Z ->
  Zdigit (Z.quot n (Zpower beta k')) k = Zdigit n (k + k').
Proof.
intros n k k' Hk Hk'.
unfold Zdigit.
rewrite Zquot_Zquot.
rewrite Zplus_comm.
now rewrite Zpower_plus.
Qed.

Theorem Zdigit_mod_pow :
  forall n k k', (k < k')%Z ->
  Zdigit (Z.rem n (Zpower beta k')) k = Zdigit n k.
Proof.
intros n k k' Hk.
destruct (Zle_or_lt 0 k) as [H|H].
unfold Zdigit.
rewrite <- 2!ZOdiv_mod_mult.
apply (f_equal (fun x => Z.quot x (beta ^ k))).
replace k' with (k + 1 + (k' - (k + 1)))%Z by ring.
rewrite Zpower_exp by lia.
rewrite Zmult_comm.
rewrite Zpower_plus by easy.
change (Zpower beta 1) with (beta * 1)%Z.
rewrite Zmult_1_r.
apply ZOmod_mod_mult.
now rewrite 2!Zdigit_lt.
Qed.

Theorem Zdigit_mod_pow_out :
  forall n k k', (0 <= k' <= k)%Z ->
  Zdigit (Z.rem n (Zpower beta k')) k = Z0.
Proof.
intros n k k' Hk.
unfold Zdigit.
rewrite ZOdiv_small_abs.
apply Zrem_0_l.
apply Z.lt_le_trans with (Zpower beta k').
rewrite <- (Z.abs_eq (beta ^ k')) at 2 by apply Zpower_ge_0.
apply Zrem_lt.
apply Zgt_not_eq.
now apply Zpower_gt_0.
now apply Zpower_le.
Qed.

Fixpoint Zsum_digit f k :=
  match k with
  | O => Z0
  | S k => (Zsum_digit f k + f (Z_of_nat k) * Zpower beta (Z_of_nat k))%Z
  end.

Theorem Zsum_digit_digit :
  forall n k,
  Zsum_digit (Zdigit n) k = Z.rem n (Zpower beta (Z_of_nat k)).
Proof.
intros n.
induction k.
apply sym_eq.
apply Z.rem_1_r.
simpl Zsum_digit.
rewrite IHk.
unfold Zdigit.
rewrite <- ZOdiv_mod_mult.
rewrite <- (ZOmod_mod_mult n beta).
rewrite Zmult_comm.
replace (beta ^ Z_of_nat k * beta)%Z with (Zpower beta (Z_of_nat (S k))).
rewrite Zplus_comm, Zmult_comm.
apply sym_eq.
apply Z.quot_rem'.
rewrite inj_S.
rewrite <- (Zmult_1_r beta) at 3.
apply Zpower_plus.
apply Zle_0_nat.
easy.
Qed.

Theorem Zdigit_ext :
  forall n1 n2,
  (forall k, (0 <= k)%Z -> Zdigit n1 k = Zdigit n2 k) ->
  n1 = n2.
Proof.
intros n1 n2 H.
rewrite <- (ZOmod_small_abs n1 (Zpower beta (Z.max (Z.abs n1) (Z.abs n2)))).
rewrite <- (ZOmod_small_abs n2 (Zpower beta (Z.max (Z.abs n1) (Z.abs n2)))) at 2.
replace (Z.max (Z.abs n1) (Z.abs n2)) with (Z_of_nat (Z.abs_nat (Z.max (Z.abs n1) (Z.abs n2)))).
rewrite <- 2!Zsum_digit_digit.
induction (Z.abs_nat (Z.max (Z.abs n1) (Z.abs n2))).
easy.
simpl.
rewrite H, IHn.
apply refl_equal.
apply Zle_0_nat.
rewrite inj_Zabs_nat.
apply Z.abs_eq.
apply Z.le_trans with (Z.abs n1).
apply Zabs_pos.
apply Z.le_max_l.
apply Z.lt_le_trans with (Zpower beta (Z.abs n2)).
apply Zpower_gt_id.
apply Zpower_le.
apply Z.le_max_r.
apply Z.lt_le_trans with (Zpower beta (Z.abs n1)).
apply Zpower_gt_id.
apply Zpower_le.
apply Z.le_max_l.
Qed.

Theorem ZOmod_plus_pow_digit :
  forall u v n, (0 <= u * v)%Z ->
  (forall k, (0 <= k < n)%Z -> Zdigit u k = Z0 \/ Zdigit v k = Z0) ->
  Z.rem (u + v) (Zpower beta n) = (Z.rem u (Zpower beta n) + Z.rem v (Zpower beta n))%Z.
Proof.
intros u v n Huv Hd.
destruct (Zle_or_lt 0 n) as [Hn|Hn].
rewrite Zplus_rem with (1 := Huv).
apply ZOmod_small_abs.
generalize (Z.le_refl n).
pattern n at -2 ; rewrite <- Z.abs_eq with (1 := Hn).
rewrite <- (inj_Zabs_nat n).
induction (Z.abs_nat n) as [|p IHp].
now rewrite 2!Z.rem_1_r.
rewrite <- 2!Zsum_digit_digit.
simpl Zsum_digit.
rewrite inj_S.
intros Hn'.
replace (Zsum_digit (Zdigit u) p + Zdigit u (Z_of_nat p) * beta ^ Z_of_nat p +
  (Zsum_digit (Zdigit v) p + Zdigit v (Z_of_nat p) * beta ^ Z_of_nat p))%Z with
  (Zsum_digit (Zdigit u) p + Zsum_digit (Zdigit v) p +
  (Zdigit u (Z_of_nat p) + Zdigit v (Z_of_nat p)) * beta ^ Z_of_nat p)%Z by ring.
apply (Z.le_lt_trans _ _ _ (Z.abs_triangle _ _)).
replace (beta ^ Z.succ (Z_of_nat p))%Z with (beta ^ Z_of_nat p + (beta - 1) * beta ^ Z_of_nat p)%Z.
apply Zplus_lt_le_compat.
rewrite 2!Zsum_digit_digit.
apply IHp.
now apply Zle_succ_le.
rewrite Zabs_Zmult.
rewrite (Z.abs_eq (beta ^ Z_of_nat p)) by apply Zpower_ge_0.
apply Zmult_le_compat_r. 2: apply Zpower_ge_0.
apply Zlt_succ_le.
assert (forall u v, Z.abs (Zdigit u v) < Z.succ (beta -  1))%Z.
clear ; intros n k.
assert (0 < beta)%Z.
apply Z.lt_le_trans with 2%Z.
apply refl_equal.
apply Zle_bool_imp_le.
apply beta.
replace (Z.succ (beta - 1)) with (Z.abs beta).
apply Zrem_lt.
now apply Zgt_not_eq.
rewrite Z.abs_eq.
apply Zsucc_pred.
now apply Zlt_le_weak.
assert (0 <= Z_of_nat p < n)%Z.
split.
apply Zle_0_nat.
apply Z.gt_lt.
now apply Zle_succ_gt.
destruct (Hd (Z_of_nat p) H0) as [K|K] ; rewrite K.
apply H.
rewrite Zplus_0_r.
apply H.
unfold Z.succ.
ring_simplify.
rewrite Zpower_plus.
change (beta ^1)%Z with (beta * 1)%Z.
now rewrite Zmult_1_r.
apply Zle_0_nat.
easy.
destruct n as [|n|n] ; try easy.
now rewrite 3!Zrem_0_r.
Qed.

Theorem ZOdiv_plus_pow_digit :
  forall u v n, (0 <= u * v)%Z ->
  (forall k, (0 <= k < n)%Z -> Zdigit u k = Z0 \/ Zdigit v k = Z0) ->
  Z.quot (u + v) (Zpower beta n) = (Z.quot u (Zpower beta n) + Z.quot v (Zpower beta n))%Z.
Proof.
intros u v n Huv Hd.
rewrite <- (Zplus_0_r (Z.quot u (Zpower beta n) + Z.quot v (Zpower beta n))).
rewrite ZOdiv_plus with (1 := Huv).
rewrite <- ZOmod_plus_pow_digit by assumption.
apply f_equal.
destruct (Zle_or_lt 0 n) as [Hn|Hn].
apply ZOdiv_small_abs.
rewrite <- Z.abs_eq.
apply Zrem_lt.
apply Zgt_not_eq.
now apply Zpower_gt_0.
apply Zpower_ge_0.
clear -Hn.
destruct n as [|n|n] ; try easy.
apply Zquot_0_r.
Qed.

Theorem Zdigit_plus :
  forall u v, (0 <= u * v)%Z ->
  (forall k, (0 <= k)%Z -> Zdigit u k = Z0 \/ Zdigit v k = Z0) ->
  forall k,
  Zdigit (u + v) k = (Zdigit u k + Zdigit v k)%Z.
Proof.
intros u v Huv Hd k.
destruct (Zle_or_lt 0 k) as [Hk|Hk].
unfold Zdigit.
rewrite ZOdiv_plus_pow_digit with (1 := Huv).
rewrite <- (Zmult_1_r beta) at 3 5 7.
change (beta * 1)%Z with (beta ^1)%Z.
apply ZOmod_plus_pow_digit.
apply Zsame_sign_trans_weak with v.
intros Zv ; rewrite Zv.
apply Zquot_0_l.
rewrite Zmult_comm.
apply Zsame_sign_trans_weak with u.
intros Zu ; rewrite Zu.
apply Zquot_0_l.
now rewrite Zmult_comm.
apply Zsame_sign_odiv.
apply Zpower_ge_0.
apply Zsame_sign_odiv.
apply Zpower_ge_0.
intros k' (Hk1,Hk2).
rewrite 2!Zdigit_div_pow by assumption.
apply Hd.
now apply Zplus_le_0_compat.
intros k' (Hk1,Hk2).
now apply Hd.
now rewrite 3!Zdigit_lt.
Qed.

(** Left and right shifts *)

Definition Zscale n k :=
  if Zle_bool 0 k then (n * Zpower beta k)%Z else Z.quot n (Zpower beta (-k)).

Theorem Zdigit_scale :
  forall n k k', (0 <= k')%Z ->
  Zdigit (Zscale n k) k' = Zdigit n (k' - k).
Proof.
intros n k k' Hk'.
unfold Zscale.
case Zle_bool_spec ; intros Hk.
now apply Zdigit_mul_pow.
apply Zdigit_div_pow with (1 := Hk').
lia.
Qed.

Theorem Zscale_0 :
  forall k,
  Zscale 0 k = Z0.
Proof.
intros k.
unfold Zscale.
case Zle_bool.
apply Zmult_0_l.
apply Zquot_0_l.
Qed.

Theorem Zsame_sign_scale :
  forall n k,
  (0 <= n * Zscale n k)%Z.
Proof.
intros n k.
unfold Zscale.
case Zle_bool_spec ; intros Hk.
rewrite Zmult_assoc.
apply Zmult_le_0_compat.
apply Zsame_sign_imp ; apply Zlt_le_weak.
apply Zpower_ge_0.
apply Zsame_sign_odiv.
apply Zpower_ge_0.
Qed.

Theorem Zscale_mul_pow :
  forall n k k', (0 <= k)%Z ->
  Zscale (n * Zpower beta k) k' = Zscale n (k + k').
Proof.
intros n k k' Hk.
unfold Zscale.
case Zle_bool_spec ; intros Hk'.
rewrite Zle_bool_true.
rewrite <- Zmult_assoc.
apply f_equal.
now rewrite Zpower_plus.
now apply Zplus_le_0_compat.
case Zle_bool_spec ; intros Hk''.
pattern k at 1 ; replace k with (k + k' + -k')%Z by ring.
assert (0 <= -k')%Z by lia.
rewrite Zpower_plus by easy.
rewrite Zmult_assoc, Z_quot_mult.
apply refl_equal.
apply Zgt_not_eq.
now apply Zpower_gt_0.
replace (-k')%Z with (-(k+k') + k)%Z by ring.
rewrite Zpower_plus with (2 := Hk).
apply Zquot_mult_cancel_r.
apply Zgt_not_eq.
now apply Zpower_gt_0.
lia.
Qed.

Theorem Zscale_scale :
  forall n k k', (0 <= k)%Z ->
  Zscale (Zscale n k) k' = Zscale n (k + k').
Proof.
intros n k k' Hk.
unfold Zscale at 2.
rewrite Zle_bool_true with (1 := Hk).
now apply Zscale_mul_pow.
Qed.

(** Slice of an integer *)

Definition Zslice n k1 k2 :=
  if Zle_bool 0 k2 then Z.rem (Zscale n (-k1)) (Zpower beta k2) else Z0.

Theorem Zdigit_slice :
  forall n k1 k2 k, (0 <= k < k2)%Z ->
  Zdigit (Zslice n k1 k2) k = Zdigit n (k1 + k).
Proof.
intros n k1 k2 k Hk.
unfold Zslice.
rewrite Zle_bool_true.
rewrite Zdigit_mod_pow by apply Hk.
rewrite Zdigit_scale by apply Hk.
unfold Zminus.
now rewrite Z.opp_involutive, Zplus_comm.
lia.
Qed.

Theorem Zdigit_slice_out :
  forall n k1 k2 k, (k2 <= k)%Z ->
  Zdigit (Zslice n k1 k2) k = Z0.
Proof.
intros n k1 k2 k Hk.
unfold Zslice.
case Zle_bool_spec ; intros Hk2.
apply Zdigit_mod_pow_out.
now split.
apply Zdigit_0.
Qed.

Theorem Zslice_0 :
  forall k k',
  Zslice 0 k k' = Z0.
Proof.
intros k k'.
unfold Zslice.
case Zle_bool.
rewrite Zscale_0.
apply Zrem_0_l.
apply refl_equal.
Qed.

Theorem Zsame_sign_slice :
  forall n k k',
  (0 <= n * Zslice n k k')%Z.
Proof.
intros n k k'.
unfold Zslice.
case Zle_bool.
apply Zsame_sign_trans_weak with (Zscale n (-k)).
intros H ; rewrite H.
apply Zrem_0_l.
apply Zsame_sign_scale.
rewrite Zmult_comm.
apply Zrem_sgn2.
now rewrite Zmult_0_r.
Qed.

Theorem Zslice_slice :
  forall n k1 k2 k1' k2', (0 <= k1' <= k2)%Z ->
  Zslice (Zslice n k1 k2) k1' k2' = Zslice n (k1 + k1') (Z.min (k2 - k1') k2').
Proof.
intros n k1 k2 k1' k2' Hk1'.
destruct (Zle_or_lt 0 k2') as [Hk2'|Hk2'].
apply Zdigit_ext.
intros k Hk.
destruct (Zle_or_lt (Z.min (k2 - k1') k2') k) as [Hk'|Hk'].
rewrite (Zdigit_slice_out n (k1 + k1')) with (1 := Hk').
destruct (Zle_or_lt k2' k) as [Hk''|Hk''].
now apply Zdigit_slice_out.
rewrite Zdigit_slice by now split.
apply Zdigit_slice_out.
zify ; lia.
rewrite Zdigit_slice by (zify ; lia).
rewrite (Zdigit_slice n (k1 + k1')) by now split.
rewrite Zdigit_slice.
now rewrite Zplus_assoc.
zify ; lia.
unfold Zslice.
rewrite Z.min_r.
now rewrite Zle_bool_false.
lia.
Qed.

Theorem Zslice_mul_pow :
  forall n k k1 k2, (0 <= k)%Z ->
  Zslice (n * Zpower beta k) k1 k2 = Zslice n (k1 - k) k2.
Proof.
intros n k k1 k2 Hk.
unfold Zslice.
case Zle_bool_spec ; intros Hk2.
2: apply refl_equal.
rewrite Zscale_mul_pow with (1 := Hk).
now replace (- (k1 - k))%Z with (k + -k1)%Z by ring.
Qed.

Theorem Zslice_div_pow :
  forall n k k1 k2, (0 <= k)%Z -> (0 <= k1)%Z ->
  Zslice (Z.quot n (Zpower beta k)) k1 k2 = Zslice n (k1 + k) k2.
Proof.
intros n k k1 k2 Hk Hk1.
unfold Zslice.
case Zle_bool_spec ; intros Hk2.
2: apply refl_equal.
apply (f_equal (fun x => Z.rem x (beta ^ k2))).
unfold Zscale.
case Zle_bool_spec ; intros Hk1'.
replace k1 with Z0 by lia.
case Zle_bool_spec ; intros Hk'.
replace k with Z0 by lia.
simpl.
now rewrite Z.quot_1_r.
rewrite Z.opp_involutive.
apply Zmult_1_r.
rewrite Zle_bool_false by lia.
rewrite 2!Z.opp_involutive, Zplus_comm.
rewrite Zpower_plus by assumption.
apply Zquot_Zquot.
Qed.

Theorem Zslice_scale :
  forall n k k1 k2, (0 <= k1)%Z ->
  Zslice (Zscale n k) k1 k2 = Zslice n (k1 - k) k2.
Proof.
intros n k k1 k2 Hk1.
unfold Zscale.
case Zle_bool_spec; intros Hk.
now apply Zslice_mul_pow.
apply Zslice_div_pow with (2 := Hk1).
lia.
Qed.

Theorem Zslice_div_pow_scale :
  forall n k k1 k2, (0 <= k)%Z ->
  Zslice (Z.quot n (Zpower beta k)) k1 k2 = Zscale (Zslice n k (k1 + k2)) (-k1).
Proof.
intros n k k1 k2 Hk.
apply Zdigit_ext.
intros k' Hk'.
rewrite Zdigit_scale with (1 := Hk').
unfold Zminus.
rewrite (Zplus_comm k'), Z.opp_involutive.
destruct (Zle_or_lt k2 k') as [Hk2|Hk2].
rewrite Zdigit_slice_out with (1 := Hk2).
apply sym_eq.
apply Zdigit_slice_out.
now apply Zplus_le_compat_l.
rewrite Zdigit_slice by now split.
destruct (Zle_or_lt 0 (k1 + k')) as [Hk1'|Hk1'].
rewrite Zdigit_slice by lia.
rewrite Zdigit_div_pow by assumption.
apply f_equal.
ring.
now rewrite 2!Zdigit_lt.
Qed.

Theorem Zplus_slice :
  forall n k l1 l2, (0 <= l1)%Z -> (0 <= l2)%Z ->
  (Zslice n k l1 + Zscale (Zslice n (k + l1) l2) l1)%Z = Zslice n k (l1 + l2).
Proof.
intros n k1 l1 l2 Hl1 Hl2.
clear Hl1.
apply Zdigit_ext.
intros k Hk.
rewrite Zdigit_plus.
rewrite Zdigit_scale with (1 := Hk).
destruct (Zle_or_lt (l1 + l2) k) as [Hk2|Hk2].
rewrite Zdigit_slice_out with (1 := Hk2).
now rewrite 2!Zdigit_slice_out by lia.
rewrite Zdigit_slice with (1 := conj Hk Hk2).
destruct (Zle_or_lt l1 k) as [Hk1|Hk1].
rewrite Zdigit_slice_out with (1 := Hk1).
rewrite Zdigit_slice by lia.
simpl ; apply f_equal.
ring.
rewrite Zdigit_slice with (1 := conj Hk Hk1).
rewrite (Zdigit_lt _ (k - l1)) by lia.
apply Zplus_0_r.
rewrite Zmult_comm.
apply Zsame_sign_trans_weak with n.
intros H ; rewrite H.
apply Zslice_0.
rewrite Zmult_comm.
apply Zsame_sign_trans_weak with (Zslice n (k1 + l1) l2).
intros H ; rewrite H.
apply Zscale_0.
apply Zsame_sign_slice.
apply Zsame_sign_scale.
apply Zsame_sign_slice.
clear k Hk ; intros k Hk.
rewrite Zdigit_scale with (1 := Hk).
destruct (Zle_or_lt l1 k) as [Hk1|Hk1].
left.
now apply Zdigit_slice_out.
right.
apply Zdigit_lt.
lia.
Qed.

Section digits_aux.

Variable p : Z.

Fixpoint Zdigits_aux (nb pow : Z) (n : nat) { struct n } : Z :=
  match n with
  | O => nb
  | S n => if Zlt_bool p pow then nb else Zdigits_aux (nb + 1) (Zmult beta pow) n
  end.

End digits_aux.

(** Number of digits of an integer *)

Definition Zdigits n :=
  match n with
  | Z0 => Z0
  | Zneg p => Zdigits_aux (Zpos p) 1 beta (digits2_Pnat p)
  | Zpos p => Zdigits_aux n 1 beta (digits2_Pnat p)
  end.

Theorem Zdigits_correct :
  forall n,
  (Zpower beta (Zdigits n - 1) <= Z.abs n < Zpower beta (Zdigits n))%Z.
Proof.
cut (forall p, Zpower beta (Zdigits (Zpos p) - 1) <= Zpos p < Zpower beta (Zdigits (Zpos p)))%Z.
intros H [|n|n] ; try exact (H n).
now split.
intros n.
simpl.
(* *)
assert (U: (Zpos n < Zpower beta (Z_of_nat (S (digits2_Pnat n))))%Z).
apply Z.lt_le_trans with (1 := proj2 (digits2_Pnat_correct n)).
rewrite Zpower_Zpower_nat.
rewrite Zabs_nat_Z_of_nat.
induction (S (digits2_Pnat n)).
easy.
rewrite 2!(Zpower_nat_S).
apply Zmult_le_compat with (2 := IHn0).
apply Zle_bool_imp_le.
apply beta.
easy.
rewrite <- (Zabs_nat_Z_of_nat n0).
rewrite <- Zpower_Zpower_nat.
apply (Zpower_ge_0 (Build_radix 2 (refl_equal true))).
apply Zle_0_nat.
apply Zle_0_nat.
(* *)
revert U.
rewrite inj_S.
unfold Z.succ.
generalize (digits2_Pnat n).
intros u U.
pattern (radix_val beta) at 2 4 ; replace (radix_val beta) with (Zpower beta 1) by apply Zmult_1_r.
assert (V: (Zpower beta (1 - 1) <= Zpos n)%Z).
now apply (Zlt_le_succ 0).
generalize (conj V U).
clear.
generalize (Z.le_refl 1).
generalize 1%Z at 2 3 5 6 7 9 10.
(* *)
induction u.
easy.
rewrite inj_S; unfold Z.succ.
simpl Zdigits_aux.
intros v Hv U.
case Zlt_bool_spec ; intros K.
now split.
pattern (radix_val beta) at 2 5 ; replace (radix_val beta) with (Zpower beta 1) by apply Zmult_1_r.
rewrite <- Zpower_plus.
rewrite Zplus_comm.
apply IHu.
clear -Hv ; lia.
split.
now ring_simplify (1 + v - 1)%Z.
now rewrite Zplus_assoc.
easy.
apply Zle_succ_le with (1 := Hv).
Qed.

Theorem Zdigits_unique :
  forall n d,
  (Zpower beta (d - 1) <= Z.abs n < Zpower beta d)%Z ->
  Zdigits n = d.
Proof.
intros n d Hd.
assert (Hd' := Zdigits_correct n).
apply Zle_antisym.
apply (Zpower_lt_Zpower beta).
now apply Z.le_lt_trans with (Z.abs n).
apply (Zpower_lt_Zpower beta).
now apply Z.le_lt_trans with (Z.abs n).
Qed.

Theorem Zdigits_abs :
  forall n, Zdigits (Z.abs n) = Zdigits n.
Proof.
now intros [|n|n].
Qed.

Theorem Zdigits_gt_0 :
  forall n, n <> Z0 -> (0 < Zdigits n)%Z.
Proof.
intros n Zn.
rewrite <- (Zdigits_abs n).
assert (Hn: (0 < Z.abs n)%Z).
destruct n ; [|easy|easy].
now elim Zn.
destruct (Z.abs n) as [|p|p] ; try easy ; clear.
simpl.
generalize 1%Z (radix_val beta) (refl_equal Lt : (0 < 1)%Z).
induction (digits2_Pnat p).
easy.
simpl.
intros.
case Zlt_bool.
exact H.
apply IHn.
now apply Zlt_lt_succ.
Qed.

Theorem Zdigits_ge_0 :
  forall n, (0 <= Zdigits n)%Z.
Proof.
intros n.
destruct (Z.eq_dec n 0) as [H|H].
now rewrite H.
apply Zlt_le_weak.
now apply Zdigits_gt_0.
Qed.

Theorem Zdigit_out :
  forall n k, (Zdigits n <= k)%Z ->
  Zdigit n k = Z0.
Proof.
intros n k Hk.
apply Zdigit_ge_Zpower with (2 := Hk).
apply Zdigits_correct.
Qed.

Theorem Zdigit_digits :
  forall n, n <> Z0 ->
  Zdigit n (Zdigits n - 1) <> Z0.
Proof.
intros n Zn.
apply Zdigit_not_0.
apply Zlt_0_le_0_pred.
now apply Zdigits_gt_0.
ring_simplify (Zdigits n - 1 + 1)%Z.
apply Zdigits_correct.
Qed.

Theorem Zdigits_slice :
  forall n k l, (0 <= l)%Z ->
  (Zdigits (Zslice n k l) <= l)%Z.
Proof.
intros n k l Hl.
unfold Zslice.
rewrite Zle_bool_true with (1 := Hl).
destruct (Zdigits_correct (Z.rem (Zscale n (- k)) (Zpower beta l))) as (H1,H2).
apply Zpower_lt_Zpower with beta.
apply Z.le_lt_trans with (1 := H1).
rewrite <- (Z.abs_eq (beta ^ l)) at 2 by apply Zpower_ge_0.
apply Zrem_lt.
apply Zgt_not_eq.
now apply Zpower_gt_0.
Qed.

Theorem Zdigits_mult_Zpower :
  forall m e,
  m <> Z0 -> (0 <= e)%Z ->
  Zdigits (m * Zpower beta e) = (Zdigits m + e)%Z.
Proof.
intros m e Hm He.
assert (H := Zdigits_correct m).
apply Zdigits_unique.
rewrite Z.abs_mul, Z.abs_pow, (Z.abs_eq beta).
2: now apply Zlt_le_weak, radix_gt_0.
split.
replace (Zdigits m + e - 1)%Z with (Zdigits m - 1 + e)%Z by ring.
rewrite Zpower_plus with (2 := He).
apply Zmult_le_compat_r.
apply H.
apply Zpower_ge_0.
now apply Zlt_0_le_0_pred, Zdigits_gt_0.
rewrite Zpower_plus with (2 := He).
apply Zmult_lt_compat_r.
now apply Zpower_gt_0.
apply H.
now apply Zlt_le_weak, Zdigits_gt_0.
Qed.

Theorem Zdigits_Zpower :
  forall e,
  (0 <= e)%Z ->
  Zdigits (Zpower beta e) = (e + 1)%Z.
Proof.
intros e He.
rewrite <- (Zmult_1_l (Zpower beta e)).
rewrite Zdigits_mult_Zpower ; try easy.
apply Zplus_comm.
Qed.

Theorem Zdigits_le :
  forall x y,
  (0 <= x)%Z -> (x <= y)%Z ->
  (Zdigits x <= Zdigits y)%Z.
Proof.
intros x y Zx Hxy.
assert (Hx := Zdigits_correct x).
assert (Hy := Zdigits_correct y).
apply (Zpower_lt_Zpower beta).
zify ; lia.
Qed.

Theorem lt_Zdigits :
  forall x y,
  (0 <= y)%Z ->
  (Zdigits x < Zdigits y)%Z ->
  (x < y)%Z.
Proof.
intros x y Hy.
cut (y <= x -> Zdigits y <= Zdigits x)%Z. lia.
now apply Zdigits_le.
Qed.

Theorem Zpower_le_Zdigits :
  forall e x,
  (e < Zdigits x)%Z ->
  (Zpower beta e <= Z.abs x)%Z.
Proof.
intros e x Hex.
destruct (Zdigits_correct x) as [H1 H2].
apply Z.le_trans with (2 := H1).
apply Zpower_le.
clear -Hex ; lia.
Qed.

Theorem Zdigits_le_Zpower :
  forall e x,
  (Z.abs x < Zpower beta e)%Z ->
  (Zdigits x <= e)%Z.
Proof.
intros e x.
generalize (Zpower_le_Zdigits e x).
lia.
Qed.

Theorem Zpower_gt_Zdigits :
  forall e x,
  (Zdigits x <= e)%Z ->
  (Z.abs x < Zpower beta e)%Z.
Proof.
intros e x Hex.
destruct (Zdigits_correct x) as [H1 H2].
apply Z.lt_le_trans with (1 := H2).
now apply Zpower_le.
Qed.

Theorem Zdigits_gt_Zpower :
  forall e x,
  (Zpower beta e <= Z.abs x)%Z ->
  (e < Zdigits x)%Z.
Proof.
intros e x Hex.
generalize (Zpower_gt_Zdigits e x).
lia.
Qed.

(** Number of digits of a product.

This strong version is needed for proofs of division and square root
algorithms, since they involve operation remainders.
*)

Theorem Zdigits_mult_strong :
  forall x y,
  (0 <= x)%Z -> (0 <= y)%Z ->
  (Zdigits (x + y + x * y) <= Zdigits x + Zdigits y)%Z.
Proof.
intros x y Hx Hy.
apply Zdigits_le_Zpower.
rewrite Z.abs_eq.
apply Z.lt_le_trans with ((x + 1) * (y + 1))%Z.
ring_simplify.
apply Zle_lt_succ, Z.le_refl.
rewrite Zpower_plus by apply Zdigits_ge_0.
apply Zmult_le_compat.
apply Zlt_le_succ.
rewrite <- (Z.abs_eq x) at 1 by easy.
apply Zdigits_correct.
apply Zlt_le_succ.
rewrite <- (Z.abs_eq y) at 1 by easy.
apply Zdigits_correct.
clear -Hx ; lia.
clear -Hy ; lia.
change Z0 with (0 + 0 + 0)%Z.
apply Zplus_le_compat.
now apply Zplus_le_compat.
now apply Zmult_le_0_compat.
Qed.

Theorem Zdigits_mult :
  forall x y,
  (Zdigits (x * y) <= Zdigits x + Zdigits y)%Z.
Proof.
intros x y.
rewrite <- Zdigits_abs.
rewrite <- (Zdigits_abs x).
rewrite <- (Zdigits_abs y).
apply Z.le_trans with (Zdigits (Z.abs x + Z.abs y + Z.abs x * Z.abs y)).
apply Zdigits_le.
apply Zabs_pos.
rewrite Zabs_Zmult.
generalize (Zabs_pos x) (Zabs_pos y).
lia.
apply Zdigits_mult_strong ; apply Zabs_pos.
Qed.

Theorem Zdigits_mult_ge :
  forall x y,
  (x <> 0)%Z -> (y <> 0)%Z ->
  (Zdigits x + Zdigits y - 1 <= Zdigits (x * y))%Z.
Proof.
intros x y Zx Zy.
cut ((Zdigits x - 1) + (Zdigits y - 1) < Zdigits (x * y))%Z. lia.
apply Zdigits_gt_Zpower.
rewrite Zabs_Zmult.
rewrite Zpower_exp.
apply Zmult_le_compat.
apply Zpower_le_Zdigits.
apply Zlt_pred.
apply Zpower_le_Zdigits.
apply Zlt_pred.
apply Zpower_ge_0.
apply Zpower_ge_0.
generalize (Zdigits_gt_0 x). lia.
generalize (Zdigits_gt_0 y). lia.
Qed.

Theorem Zdigits_div_Zpower :
  forall m e,
  (0 <= m)%Z ->
  (0 <= e <= Zdigits m)%Z ->
  Zdigits (m / Zpower beta e) = (Zdigits m - e)%Z.
Proof.
intros m e Hm He.
assert (H := Zdigits_correct m).
apply Zdigits_unique.
destruct (Zle_lt_or_eq _ _ (proj2 He)) as [He'|He'].
  rewrite Z.abs_eq in H by easy.
  destruct H as [H1 H2].
  rewrite Z.abs_eq.
  split.
  replace (Zdigits m - e - 1)%Z with (Zdigits m - 1 - e)%Z by ring.
  rewrite Z.pow_sub_r.
  2: apply Zgt_not_eq, radix_gt_0.
  2: clear -He He' ; lia.
  apply Z_div_le with (2 := H1).
  now apply Z.lt_gt, Zpower_gt_0.
  apply Zmult_lt_reg_r with (Zpower beta e).
  now apply Zpower_gt_0.
  apply Z.le_lt_trans with m.
  rewrite Zmult_comm.
  apply Z_mult_div_ge.
  now apply Z.lt_gt, Zpower_gt_0.
  rewrite <- Zpower_plus.
  now replace (Zdigits m - e + e)%Z with (Zdigits m) by ring.
  now apply Zle_minus_le_0.
  apply He.
  apply Z_div_pos with (2 := Hm).
  now apply Z.lt_gt, Zpower_gt_0.
rewrite He'.
rewrite (Zeq_minus _ (Zdigits m)) by reflexivity.
simpl.
rewrite Zdiv_small.
easy.
split.
exact Hm.
now rewrite <- (Z.abs_eq m) at 1.
Qed.

End Fcore_digits.

(** Specialized version for computing the number of bits of an integer *)

Section Zdigits2.

Theorem Z_of_nat_S_digits2_Pnat :
  forall m : positive,
  Z_of_nat (S (digits2_Pnat m)) = Zdigits radix2 (Zpos m).
Proof.
intros m.
apply eq_sym, Zdigits_unique.
rewrite <- Zpower_nat_Z.
rewrite Nat2Z.inj_succ.
change (_ - 1)%Z with (Z.pred (Z.succ (Z.of_nat (digits2_Pnat m)))).
rewrite <- Zpred_succ.
rewrite <- Zpower_nat_Z.
apply digits2_Pnat_correct.
Qed.

Theorem Zpos_digits2_pos :
  forall m : positive,
  Zpos (digits2_pos m) = Zdigits radix2 (Zpos m).
Proof.
intros m.
rewrite <- Z_of_nat_S_digits2_Pnat.
unfold Z.of_nat.
apply f_equal.
induction m ; simpl ; try easy ;
  apply f_equal, IHm.
Qed.

Lemma Zdigits2_Zdigits :
  forall n, Zdigits2 n = Zdigits radix2 n.
Proof.
intros [|p|p] ; try easy ;
  apply Zpos_digits2_pos.
Qed.

End Zdigits2.