aboutsummaryrefslogtreecommitdiffstats
path: root/flocq/Core/FLT.v
blob: 7301328d41f71ee996d0eda5955605c760f8ba5e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
(**
This file is part of the Flocq formalization of floating-point
arithmetic in Coq: http://flocq.gforge.inria.fr/

Copyright (C) 2009-2018 Sylvie Boldo
#<br />#
Copyright (C) 2009-2018 Guillaume Melquiond

This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 3 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
COPYING file for more details.
*)

(** * Floating-point format with gradual underflow *)
Require Import Raux Defs Round_pred Generic_fmt Float_prop.
Require Import FLX FIX Ulp Round_NE.
Require Import Psatz.

Section RND_FLT.

Variable beta : radix.

Notation bpow e := (bpow beta e).

Variable emin prec : Z.

Context { prec_gt_0_ : Prec_gt_0 prec }.

Inductive FLT_format (x : R) : Prop :=
  FLT_spec (f : float beta) :
    x = F2R f -> (Z.abs (Fnum f) < Zpower beta prec)%Z ->
    (emin <= Fexp f)%Z -> FLT_format x.

Definition FLT_exp e := Z.max (e - prec) emin.

(** Properties of the FLT format *)
Global Instance FLT_exp_valid : Valid_exp FLT_exp.
Proof.
intros k.
unfold FLT_exp.
generalize (prec_gt_0 prec).
repeat split ;
  intros ; zify ; lia.
Qed.

Theorem generic_format_FLT :
  forall x, FLT_format x -> generic_format beta FLT_exp x.
Proof.
clear prec_gt_0_.
intros x [[mx ex] H1 H2 H3].
simpl in H2, H3.
rewrite H1.
apply generic_format_F2R.
intros Zmx.
unfold cexp, FLT_exp.
rewrite mag_F2R with (1 := Zmx).
apply Z.max_lub with (2 := H3).
apply Zplus_le_reg_r with (prec - ex)%Z.
ring_simplify.
now apply mag_le_Zpower.
Qed.

Theorem FLT_format_generic :
  forall x, generic_format beta FLT_exp x -> FLT_format x.
Proof.
intros x.
unfold generic_format.
set (ex := cexp beta FLT_exp x).
set (mx := Ztrunc (scaled_mantissa beta FLT_exp x)).
intros Hx.
rewrite Hx.
eexists ; repeat split ; simpl.
apply lt_IZR.
rewrite IZR_Zpower. 2: now apply Zlt_le_weak.
apply Rmult_lt_reg_r with (bpow ex).
apply bpow_gt_0.
rewrite <- bpow_plus.
change (F2R (Float beta (Z.abs mx) ex) < bpow (prec + ex))%R.
rewrite F2R_Zabs.
rewrite <- Hx.
destruct (Req_dec x 0) as [Hx0|Hx0].
rewrite Hx0, Rabs_R0.
apply bpow_gt_0.
unfold cexp in ex.
destruct (mag beta x) as (ex', He).
simpl in ex.
specialize (He Hx0).
apply Rlt_le_trans with (1 := proj2 He).
apply bpow_le.
cut (ex' - prec <= ex)%Z. lia.
unfold ex, FLT_exp.
apply Z.le_max_l.
apply Z.le_max_r.
Qed.

Theorem generic_format_FLT_bpow :
  forall e, (emin <= e)%Z -> generic_format beta FLT_exp (bpow e).
Proof.
intros e He.
apply generic_format_bpow; unfold FLT_exp.
apply Z.max_case; try assumption.
unfold Prec_gt_0 in prec_gt_0_; lia.
Qed.

Theorem FLT_format_bpow :
  forall e, (emin <= e)%Z -> FLT_format (bpow e).
Proof.
intros e He.
apply FLT_format_generic.
now apply generic_format_FLT_bpow.
Qed.

Theorem FLT_format_satisfies_any :
  satisfies_any FLT_format.
Proof.
refine (satisfies_any_eq _ _ _ (generic_format_satisfies_any beta FLT_exp)).
intros x.
split.
apply FLT_format_generic.
apply generic_format_FLT.
Qed.

Theorem cexp_FLT_FLX :
  forall x,
  (bpow (emin + prec - 1) <= Rabs x)%R ->
  cexp beta FLT_exp x = cexp beta (FLX_exp prec) x.
Proof.
intros x Hx.
assert (Hx0: x <> 0%R).
intros H1; rewrite H1, Rabs_R0 in Hx.
contradict Hx; apply Rlt_not_le, bpow_gt_0.
unfold cexp.
apply Zmax_left.
destruct (mag beta x) as (ex, He).
unfold FLX_exp. simpl.
specialize (He Hx0).
cut (emin + prec - 1 < ex)%Z. lia.
apply (lt_bpow beta).
apply Rle_lt_trans with (1 := Hx).
apply He.
Qed.

(** FLT is a nice format: it has a monotone exponent... *)
Global Instance FLT_exp_monotone : Monotone_exp FLT_exp.
Proof.
intros ex ey.
unfold FLT_exp.
zify ; lia.
Qed.

(** and it allows a rounding to nearest, ties to even. *)
Global Instance exists_NE_FLT :
  (Z.even beta = false \/ (1 < prec)%Z) ->
  Exists_NE beta FLT_exp.
Proof.
intros [H|H].
now left.
right.
intros e.
unfold FLT_exp.
destruct (Zmax_spec (e - prec) emin) as [(H1,H2)|(H1,H2)] ;
  rewrite H2 ; clear H2.
generalize (Zmax_spec (e + 1 - prec) emin).
generalize (Zmax_spec (e - prec + 1 - prec) emin).
lia.
generalize (Zmax_spec (e + 1 - prec) emin).
generalize (Zmax_spec (emin + 1 - prec) emin).
lia.
Qed.

(** Links between FLT and FLX *)
Theorem generic_format_FLT_FLX :
  forall x : R,
  (bpow (emin + prec - 1) <= Rabs x)%R ->
  generic_format beta (FLX_exp prec) x ->
  generic_format beta FLT_exp x.
Proof.
intros x Hx H.
destruct (Req_dec x 0) as [Hx0|Hx0].
rewrite Hx0.
apply generic_format_0.
unfold generic_format, scaled_mantissa.
now rewrite cexp_FLT_FLX.
Qed.

Theorem generic_format_FLX_FLT :
  forall x : R,
  generic_format beta FLT_exp x -> generic_format beta (FLX_exp prec) x.
Proof.
clear prec_gt_0_.
intros x Hx.
unfold generic_format in Hx; rewrite Hx.
apply generic_format_F2R.
intros _.
rewrite <- Hx.
unfold cexp, FLX_exp, FLT_exp.
apply Z.le_max_l.
Qed.

Theorem round_FLT_FLX : forall rnd x,
  (bpow (emin + prec - 1) <= Rabs x)%R ->
  round beta FLT_exp rnd x = round beta (FLX_exp prec) rnd x.
Proof.
intros rnd x Hx.
unfold round, scaled_mantissa.
rewrite cexp_FLT_FLX ; trivial.
Qed.

(** Links between FLT and FIX (underflow) *)
Theorem cexp_FLT_FIX :
  forall x, x <> 0%R ->
  (Rabs x < bpow (emin + prec))%R ->
  cexp beta FLT_exp x = cexp beta (FIX_exp emin) x.
Proof.
intros x Hx0 Hx.
unfold cexp.
apply Zmax_right.
unfold FIX_exp.
destruct (mag beta x) as (ex, Hex).
simpl.
cut (ex - 1 < emin + prec)%Z. lia.
apply (lt_bpow beta).
apply Rle_lt_trans with (2 := Hx).
now apply Hex.
Qed.

Theorem generic_format_FIX_FLT :
  forall x : R,
  generic_format beta FLT_exp x ->
  generic_format beta (FIX_exp emin) x.
Proof.
clear prec_gt_0_.
intros x Hx.
rewrite Hx.
apply generic_format_F2R.
intros _.
rewrite <- Hx.
apply Z.le_max_r.
Qed.

Theorem generic_format_FLT_FIX :
  forall x : R,
  (Rabs x <= bpow (emin + prec))%R ->
  generic_format beta (FIX_exp emin) x ->
  generic_format beta FLT_exp x.
Proof with auto with typeclass_instances.
apply generic_inclusion_le...
intros e He.
unfold FIX_exp.
apply Z.max_lub.
lia.
apply Z.le_refl.
Qed.

Lemma negligible_exp_FLT :
  exists n, negligible_exp FLT_exp = Some n /\ (n <= emin)%Z.
Proof.
case (negligible_exp_spec FLT_exp).
{ intro H; exfalso; specialize (H emin); revert H.
  apply Zle_not_lt, Z.le_max_r. }
intros n Hn; exists n; split; [now simpl|].
destruct (Z.max_spec (n - prec) emin) as [(Hm, Hm')|(Hm, Hm')].
{ now revert Hn; unfold FLT_exp; rewrite Hm'. }
revert Hn prec_gt_0_; unfold FLT_exp, Prec_gt_0; rewrite Hm'; lia.
Qed.

Theorem generic_format_FLT_1 :
  (emin <= 0)%Z ->
  generic_format beta FLT_exp 1.
Proof.
intros Hemin.
now apply (generic_format_FLT_bpow 0).
Qed.

Theorem ulp_FLT_0 :
  ulp beta FLT_exp 0 = bpow emin.
Proof.
unfold ulp.
rewrite Req_bool_true by easy.
case negligible_exp_spec.
- intros T.
  elim Zle_not_lt with (2 := T emin).
  apply Z.le_max_r.
- intros n Hn.
  apply f_equal.
  assert (H: FLT_exp emin = emin).
    apply Z.max_r.
    generalize (prec_gt_0 prec).
    clear ; lia.
  rewrite <- H.
  apply fexp_negligible_exp_eq.
  apply FLT_exp_valid.
  exact Hn.
  rewrite H.
  apply Z.le_refl.
Qed.

Theorem ulp_FLT_small :
  forall x, (Rabs x < bpow (emin + prec))%R ->
  ulp beta FLT_exp x = bpow emin.
Proof.
intros x Hx.
destruct (Req_dec x 0%R) as [Zx|Zx].
{ rewrite Zx.
  apply ulp_FLT_0. }
rewrite ulp_neq_0 by easy.
apply f_equal.
apply Z.max_r.
destruct (mag beta x) as [e He].
simpl.
cut (e - 1 < emin + prec)%Z. lia.
apply lt_bpow with beta.
apply Rle_lt_trans with (2 := Hx).
now apply He.
Qed.

Theorem ulp_FLT_le :
  forall x, (bpow (emin + prec - 1) <= Rabs x)%R ->
  (ulp beta FLT_exp x <= Rabs x * bpow (1 - prec))%R.
Proof.
intros x Hx.
assert (Zx : (x <> 0)%R).
  intros Z; contradict Hx; apply Rgt_not_le, Rlt_gt.
  rewrite Z, Rabs_R0; apply bpow_gt_0.
rewrite ulp_neq_0 with (1 := Zx).
unfold cexp, FLT_exp.
destruct (mag beta x) as (e,He).
apply Rle_trans with (bpow (e-1)*bpow (1-prec))%R.
rewrite <- bpow_plus.
right; apply f_equal.
replace (e - 1 + (1 - prec))%Z with (e - prec)%Z by ring.
apply Z.max_l; simpl.
assert (emin+prec-1 < e)%Z; try lia.
apply lt_bpow with beta.
apply Rle_lt_trans with (1:=Hx).
now apply He.
apply Rmult_le_compat_r.
apply bpow_ge_0.
now apply He.
Qed.

Theorem ulp_FLT_gt :
  forall x, (Rabs x * bpow (-prec) < ulp beta FLT_exp x)%R.
Proof.
intros x; case (Req_dec x 0); intros Hx.
rewrite Hx, ulp_FLT_small, Rabs_R0, Rmult_0_l; try apply bpow_gt_0.
rewrite Rabs_R0; apply bpow_gt_0.
rewrite ulp_neq_0; try exact Hx.
unfold cexp, FLT_exp.
apply Rlt_le_trans with (bpow (mag beta x)*bpow (-prec))%R.
apply Rmult_lt_compat_r.
apply bpow_gt_0.
now apply bpow_mag_gt.
rewrite <- bpow_plus.
apply bpow_le.
apply Z.le_max_l.
Qed.

Lemma ulp_FLT_exact_shift :
  forall x e,
  (x <> 0)%R ->
  (emin + prec <= mag beta x)%Z ->
  (emin + prec - mag beta x <= e)%Z ->
  (ulp beta FLT_exp (x * bpow e) = ulp beta FLT_exp x * bpow e)%R.
Proof.
intros x e Nzx Hmx He.
unfold ulp; rewrite Req_bool_false;
  [|now intro H; apply Nzx, (Rmult_eq_reg_r (bpow e));
    [rewrite Rmult_0_l|apply Rgt_not_eq, Rlt_gt, bpow_gt_0]].
rewrite (Req_bool_false _ _ Nzx), <- bpow_plus; f_equal; unfold cexp, FLT_exp.
rewrite (mag_mult_bpow _ _ _ Nzx), !Z.max_l; lia.
Qed.

Lemma succ_FLT_exact_shift_pos :
  forall x e,
  (0 < x)%R ->
  (emin + prec <= mag beta x)%Z ->
  (emin + prec - mag beta x <= e)%Z ->
  (succ beta FLT_exp (x * bpow e) = succ beta FLT_exp x * bpow e)%R.
Proof.
intros x e Px Hmx He.
rewrite succ_eq_pos; [|now apply Rlt_le, Rmult_lt_0_compat, bpow_gt_0].
rewrite (succ_eq_pos _ _ _ (Rlt_le _ _ Px)).
now rewrite Rmult_plus_distr_r; f_equal; apply ulp_FLT_exact_shift; [lra| |].
Qed.

Lemma succ_FLT_exact_shift :
  forall x e,
  (x <> 0)%R ->
  (emin + prec + 1 <= mag beta x)%Z ->
  (emin + prec - mag beta x + 1 <= e)%Z ->
  (succ beta FLT_exp (x * bpow e) = succ beta FLT_exp x * bpow e)%R.
Proof.
intros x e Nzx Hmx He.
destruct (Rle_or_lt 0 x) as [Px|Nx].
{ now apply succ_FLT_exact_shift_pos; [lra|lia|lia]. }
unfold succ.
rewrite Rle_bool_false; [|assert (H := bpow_gt_0 beta e); nra].
rewrite Rle_bool_false; [|now simpl].
rewrite Ropp_mult_distr_l_reverse, <-Ropp_mult_distr_l_reverse; f_equal.
unfold pred_pos.
rewrite mag_mult_bpow; [|lra].
replace (_ - 1)%Z with (mag beta (- x) - 1 + e)%Z; [|ring]; rewrite bpow_plus.
unfold Req_bool; rewrite Rcompare_mult_r; [|now apply bpow_gt_0].
fold (Req_bool (-x) (bpow (mag beta (-x) - 1))); case Req_bool.
{ rewrite mag_opp; unfold FLT_exp; do 2 (rewrite Z.max_l; [|lia]).
  replace (_ - _)%Z with (mag beta x - 1 - prec + e)%Z; [|ring].
  rewrite bpow_plus; ring. }
rewrite ulp_FLT_exact_shift; [ring|lra| |]; rewrite mag_opp; lia.
Qed.

Theorem ulp_FLT_pred_pos :
  forall x,
  generic_format beta FLT_exp x ->
  (0 <= x)%R ->
  ulp beta FLT_exp (pred beta FLT_exp x) = ulp beta FLT_exp x \/
  (x = bpow (mag beta x - 1) /\ ulp beta FLT_exp (pred beta FLT_exp x) = (ulp beta FLT_exp x / IZR beta)%R).
Proof.
intros x Fx [Hx|Hx] ; cycle 1.
{ rewrite <- Hx.
  rewrite pred_0.
  rewrite ulp_opp.
  left.
  apply ulp_ulp_0.
  apply FLT_exp_valid.
  typeclasses eauto. }
assert (Hp: (0 <= pred beta FLT_exp x)%R).
{ apply pred_ge_gt ; try easy.
  apply FLT_exp_valid.
  apply generic_format_0. }
destruct (Rle_or_lt (bpow (emin + prec)) x) as [Hs|Hs].
- unfold ulp.
  rewrite Req_bool_false ; cycle 1.
  { intros Zp.
    apply Rle_not_lt with (1 := Hs).
    generalize (f_equal (succ beta FLT_exp) Zp).
    rewrite succ_pred.
    rewrite succ_0, ulp_FLT_0.
    intros H.
    rewrite H.
    apply bpow_lt.
    generalize (prec_gt_0 prec).
    lia.
    apply FLT_exp_valid.
    exact Fx. }
  rewrite Req_bool_false by now apply Rgt_not_eq.
  unfold cexp.
  destruct (mag beta x) as [e He].
  simpl.
  specialize (He (Rgt_not_eq _ _ Hx)).
  rewrite Rabs_pos_eq in He by now apply Rlt_le.
  destruct (proj1 He) as [Hb|Hb].
  + left.
    apply (f_equal (fun v => bpow (FLT_exp v))).
    apply mag_unique.
    rewrite Rabs_pos_eq by easy.
    split.
    * apply pred_ge_gt ; try easy.
      apply FLT_exp_valid.
      apply generic_format_FLT_bpow.
      apply Z.lt_le_pred.
      apply lt_bpow with beta.
      apply Rle_lt_trans with (2 := proj2 He).
      apply Rle_trans with (2 := Hs).
      apply bpow_le.
      generalize (prec_gt_0 prec).
      lia.
    * apply pred_lt_le.
      now apply Rgt_not_eq.
      now apply Rlt_le.
  + right.
    split.
    easy.
    replace (FLT_exp _) with (FLT_exp e + -1)%Z.
    rewrite bpow_plus.
    now rewrite <- (Zmult_1_r beta).
    rewrite <- Hb.
    unfold FLT_exp at 1 2.
    replace (mag_val _ _ (mag _ _)) with (e - 1)%Z.
    rewrite <- Hb in Hs.
    apply le_bpow in Hs.
    zify ; lia.
    apply eq_sym, mag_unique.
    rewrite Hb.
    rewrite Rabs_pos_eq by easy.
    split ; cycle 1.
    { apply pred_lt_id.
      now apply Rgt_not_eq. }
    apply pred_ge_gt.
    apply FLT_exp_valid.
    apply generic_format_FLT_bpow.
    cut (emin + 1 < e)%Z. lia.
    apply lt_bpow with beta.
    apply Rle_lt_trans with (2 := proj2 He).
    apply Rle_trans with (2 := Hs).
    apply bpow_le.
    generalize (prec_gt_0 prec).
    lia.
    exact Fx.
    apply Rlt_le_trans with (2 := proj1 He).
    apply bpow_lt.
    apply Z.lt_pred_l.
- left.
  rewrite (ulp_FLT_small x).
  apply ulp_FLT_small.
  rewrite Rabs_pos_eq by easy.
  apply pred_lt_le.
  now apply Rgt_not_eq.
  now apply Rlt_le.
  rewrite Rabs_pos_eq by now apply Rlt_le.
  exact Hs.
Qed.

End RND_FLT.