aboutsummaryrefslogtreecommitdiffstats
path: root/flocq/Core/FTZ.v
blob: 1a93bcd9004b40d50ec3e8b5e4a66540f60ed118 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
(**
This file is part of the Flocq formalization of floating-point
arithmetic in Coq: http://flocq.gforge.inria.fr/

Copyright (C) 2009-2018 Sylvie Boldo
#<br />#
Copyright (C) 2009-2018 Guillaume Melquiond

This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 3 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
COPYING file for more details.
*)

(** * Floating-point format with abrupt underflow *)
Require Import Raux Defs Round_pred Generic_fmt.
Require Import Float_prop Ulp FLX.

Section RND_FTZ.

Variable beta : radix.

Notation bpow e := (bpow beta e).

Variable emin prec : Z.

Context { prec_gt_0_ : Prec_gt_0 prec }.

Inductive FTZ_format (x : R) : Prop :=
  FTZ_spec (f : float beta) :
    x = F2R f ->
    (x <> 0%R -> Zpower beta (prec - 1) <= Z.abs (Fnum f) < Zpower beta prec)%Z ->
    (emin <= Fexp f)%Z ->
    FTZ_format x.

Definition FTZ_exp e := if Zlt_bool (e - prec) emin then (emin + prec - 1)%Z else (e - prec)%Z.

(** Properties of the FTZ format *)
Global Instance FTZ_exp_valid : Valid_exp FTZ_exp.
Proof.
intros k.
unfold FTZ_exp.
generalize (Zlt_cases (k - prec) emin).
case (Zlt_bool (k - prec) emin) ; intros H1.
split ; intros H2.
omega.
split.
generalize (Zlt_cases (emin + prec + 1 - prec) emin).
case (Zlt_bool (emin + prec + 1 - prec) emin) ; intros H3.
omega.
generalize (Zlt_cases (emin + prec - 1 + 1 - prec) emin).
generalize (prec_gt_0 prec).
case (Zlt_bool (emin + prec - 1 + 1 - prec) emin) ; omega.
intros l H3.
generalize (Zlt_cases (l - prec) emin).
case (Zlt_bool (l - prec) emin) ; omega.
split ; intros H2.
generalize (Zlt_cases (k + 1 - prec) emin).
case (Zlt_bool (k + 1 - prec) emin) ; omega.
generalize (prec_gt_0 prec).
split ; intros ; omega.
Qed.

Theorem FLXN_format_FTZ :
  forall x, FTZ_format x -> FLXN_format beta prec x.
Proof.
intros x [[xm xe] Hx1 Hx2 Hx3].
eexists.
exact Hx1.
exact Hx2.
Qed.

Theorem generic_format_FTZ :
  forall x, FTZ_format x -> generic_format beta FTZ_exp x.
Proof.
intros x Hx.
cut (generic_format beta (FLX_exp prec) x).
apply generic_inclusion_mag.
intros Zx.
destruct Hx as [[xm xe] Hx1 Hx2 Hx3].
simpl in Hx2, Hx3.
specialize (Hx2 Zx).
assert (Zxm: xm <> Z0).
contradict Zx.
rewrite Hx1, Zx.
apply F2R_0.
unfold FTZ_exp, FLX_exp.
rewrite Zlt_bool_false.
apply Z.le_refl.
rewrite Hx1, mag_F2R with (1 := Zxm).
cut (prec - 1 < mag beta (IZR xm))%Z.
clear -Hx3 ; omega.
apply mag_gt_Zpower with (1 := Zxm).
apply Hx2.
apply generic_format_FLXN.
now apply FLXN_format_FTZ.
Qed.

Theorem FTZ_format_generic :
  forall x, generic_format beta FTZ_exp x -> FTZ_format x.
Proof.
intros x Hx.
destruct (Req_dec x 0) as [->|Hx3].
exists (Float beta 0 emin).
apply sym_eq, F2R_0.
intros H.
now elim H.
apply Z.le_refl.
unfold generic_format, scaled_mantissa, cexp, FTZ_exp in Hx.
destruct (mag beta x) as (ex, Hx4).
simpl in Hx.
specialize (Hx4 Hx3).
generalize (Zlt_cases (ex - prec) emin) Hx. clear Hx.
case (Zlt_bool (ex - prec) emin) ; intros Hx5 Hx2.
elim Rlt_not_ge with (1 := proj2 Hx4).
apply Rle_ge.
rewrite Hx2, <- F2R_Zabs.
rewrite <- (Rmult_1_l (bpow ex)).
unfold F2R. simpl.
apply Rmult_le_compat.
now apply IZR_le.
apply bpow_ge_0.
apply IZR_le.
apply (Zlt_le_succ 0).
apply lt_IZR.
apply Rmult_lt_reg_r with (bpow (emin + prec - 1)).
apply bpow_gt_0.
rewrite Rmult_0_l.
change (0 < F2R (Float beta (Z.abs (Ztrunc (x * bpow (- (emin + prec - 1))))) (emin + prec - 1)))%R.
rewrite F2R_Zabs, <- Hx2.
now apply Rabs_pos_lt.
apply bpow_le.
omega.
rewrite Hx2.
eexists ; repeat split ; simpl.
apply le_IZR.
rewrite IZR_Zpower.
apply Rmult_le_reg_r with (bpow (ex - prec)).
apply bpow_gt_0.
rewrite <- bpow_plus.
replace (prec - 1 + (ex - prec))%Z with (ex - 1)%Z by ring.
change (bpow (ex - 1) <= F2R (Float beta (Z.abs (Ztrunc (x * bpow (- (ex - prec))))) (ex - prec)))%R.
rewrite F2R_Zabs, <- Hx2.
apply Hx4.
apply Zle_minus_le_0.
now apply (Zlt_le_succ 0).
apply lt_IZR.
rewrite IZR_Zpower.
apply Rmult_lt_reg_r with (bpow (ex - prec)).
apply bpow_gt_0.
rewrite <- bpow_plus.
replace (prec + (ex - prec))%Z with ex by ring.
change (F2R (Float beta (Z.abs (Ztrunc (x * bpow (- (ex - prec))))) (ex - prec)) < bpow ex)%R.
rewrite F2R_Zabs, <- Hx2.
apply Hx4.
now apply Zlt_le_weak.
now apply Z.ge_le.
Qed.

Theorem FTZ_format_satisfies_any :
  satisfies_any FTZ_format.
Proof.
refine (satisfies_any_eq _ _ _ (generic_format_satisfies_any beta FTZ_exp)).
intros x.
split.
apply FTZ_format_generic.
apply generic_format_FTZ.
Qed.

Theorem FTZ_format_FLXN :
  forall x : R,
  (bpow (emin + prec - 1) <= Rabs x)%R ->
  FLXN_format beta prec x -> FTZ_format x.
Proof.
intros x Hx Fx.
apply FTZ_format_generic.
apply generic_format_FLXN in Fx.
revert Hx Fx.
apply generic_inclusion_ge.
intros e He.
unfold FTZ_exp.
rewrite Zlt_bool_false.
apply Z.le_refl.
omega.
Qed.

Theorem ulp_FTZ_0 :
  ulp beta FTZ_exp 0 = bpow (emin+prec-1).
Proof with auto with typeclass_instances.
unfold ulp; rewrite Req_bool_true; trivial.
case (negligible_exp_spec FTZ_exp).
intros T; specialize (T (emin-1)%Z); contradict T.
apply Zle_not_lt; unfold FTZ_exp; unfold Prec_gt_0 in prec_gt_0_.
rewrite Zlt_bool_true; omega.
assert (V:(FTZ_exp (emin+prec-1) = emin+prec-1)%Z).
unfold FTZ_exp; rewrite Zlt_bool_true; omega.
intros n H2; rewrite <-V.
apply f_equal, fexp_negligible_exp_eq...
omega.
Qed.


Section FTZ_round.

(** Rounding with FTZ *)
Variable rnd : R -> Z.
Context { valid_rnd : Valid_rnd rnd }.

Definition Zrnd_FTZ x :=
  if Rle_bool 1 (Rabs x) then rnd x else Z0.

Global Instance valid_rnd_FTZ : Valid_rnd Zrnd_FTZ.
Proof with auto with typeclass_instances.
split.
(* *)
intros x y Hxy.
unfold Zrnd_FTZ.
case Rle_bool_spec ; intros Hx ;
  case Rle_bool_spec ; intros Hy.
4: easy.
(* 1 <= |x| *)
now apply Zrnd_le.
rewrite <- (Zrnd_IZR rnd 0).
apply Zrnd_le...
apply Rle_trans with (-1)%R. 2: now apply IZR_le.
destruct (Rabs_ge_inv _ _ Hx) as [Hx1|Hx1].
exact Hx1.
elim Rle_not_lt with (1 := Hx1).
apply Rle_lt_trans with (2 := Hy).
apply Rle_trans with (1 := Hxy).
apply RRle_abs.
(* |x| < 1 *)
rewrite <- (Zrnd_IZR rnd 0).
apply Zrnd_le...
apply Rle_trans with 1%R.
now apply IZR_le.
destruct (Rabs_ge_inv _ _ Hy) as [Hy1|Hy1].
elim Rle_not_lt with (1 := Hy1).
apply Rlt_le_trans with (2 := Hxy).
apply (Rabs_def2 _ _ Hx).
exact Hy1.
(* *)
intros n.
unfold Zrnd_FTZ.
rewrite Zrnd_IZR...
case Rle_bool_spec.
easy.
rewrite <- abs_IZR.
intros H.
generalize (lt_IZR _ 1 H).
clear.
now case n ; trivial ; simpl ; intros [p|p|].
Qed.

Theorem round_FTZ_FLX :
  forall x : R,
  (bpow (emin + prec - 1) <= Rabs x)%R ->
  round beta FTZ_exp Zrnd_FTZ x = round beta (FLX_exp prec) rnd x.
Proof.
intros x Hx.
unfold round, scaled_mantissa, cexp.
destruct (mag beta x) as (ex, He). simpl.
assert (Hx0: x <> 0%R).
intros Hx0.
apply Rle_not_lt with (1 := Hx).
rewrite Hx0, Rabs_R0.
apply bpow_gt_0.
specialize (He Hx0).
assert (He': (emin + prec <= ex)%Z).
apply (bpow_lt_bpow beta).
apply Rle_lt_trans with (1 := Hx).
apply He.
replace (FTZ_exp ex) with (FLX_exp prec ex).
unfold Zrnd_FTZ.
rewrite Rle_bool_true.
apply refl_equal.
rewrite Rabs_mult.
rewrite (Rabs_pos_eq (bpow (- FLX_exp prec ex))).
change 1%R with (bpow 0).
rewrite <- (Zplus_opp_r (FLX_exp prec ex)).
rewrite bpow_plus.
apply Rmult_le_compat_r.
apply bpow_ge_0.
apply Rle_trans with (2 := proj1 He).
apply bpow_le.
unfold FLX_exp.
generalize (prec_gt_0 prec).
clear -He' ; omega.
apply bpow_ge_0.
unfold FLX_exp, FTZ_exp.
rewrite Zlt_bool_false.
apply refl_equal.
clear -He' ; omega.
Qed.

Theorem round_FTZ_small :
  forall x : R,
  (Rabs x < bpow (emin + prec - 1))%R ->
  round beta FTZ_exp Zrnd_FTZ x = 0%R.
Proof with auto with typeclass_instances.
intros x Hx.
destruct (Req_dec x 0) as [Hx0|Hx0].
rewrite Hx0.
apply round_0...
unfold round, scaled_mantissa, cexp.
destruct (mag beta x) as (ex, He). simpl.
specialize (He Hx0).
unfold Zrnd_FTZ.
rewrite Rle_bool_false.
apply F2R_0.
rewrite Rabs_mult.
rewrite (Rabs_pos_eq (bpow (- FTZ_exp ex))).
change 1%R with (bpow 0).
rewrite <- (Zplus_opp_r (FTZ_exp ex)).
rewrite bpow_plus.
apply Rmult_lt_compat_r.
apply bpow_gt_0.
apply Rlt_le_trans with (1 := Hx).
apply bpow_le.
unfold FTZ_exp.
generalize (Zlt_cases (ex - prec) emin).
case Zlt_bool.
intros _.
apply Z.le_refl.
intros He'.
elim Rlt_not_le with (1 := Hx).
apply Rle_trans with (2 := proj1 He).
apply bpow_le.
omega.
apply bpow_ge_0.
Qed.

End FTZ_round.

End RND_FTZ.