aboutsummaryrefslogtreecommitdiffstats
path: root/flocq/IEEE754/Bits.v
blob: 68bc541a00c26110b0d7f7f6f6b409dd6829f886 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
(**
This file is part of the Flocq formalization of floating-point
arithmetic in Coq: http://flocq.gforge.inria.fr/

Copyright (C) 2011-2018 Sylvie Boldo
#<br />#
Copyright (C) 2011-2018 Guillaume Melquiond

This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 3 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
COPYING file for more details.
*)

(** * IEEE-754 encoding of binary floating-point data *)

From Coq Require Import Lia.
Require Import Core Digits Binary.

Section Binary_Bits.

Arguments exist {A} {P}.
Arguments B754_zero {prec} {emax}.
Arguments B754_infinity {prec} {emax}.
Arguments B754_nan {prec} {emax}.
Arguments B754_finite {prec} {emax}.

(** Number of bits for the fraction and exponent *)
Variable mw ew : Z.

Definition join_bits (s : bool) m e :=
  (Z.shiftl ((if s then Zpower 2 ew else 0) + e) mw + m)%Z.

Lemma join_bits_range :
  forall s m e,
  (0 <= m < 2^mw)%Z ->
  (0 <= e < 2^ew)%Z ->
  (0 <= join_bits s m e < 2 ^ (mw + ew + 1))%Z.
Proof.
intros s m e Hm He.
assert (0 <= mw)%Z as Hmw.
  destruct mw as [|mw'|mw'] ; try easy.
  clear -Hm ; simpl in Hm ; lia.
assert (0 <= ew)%Z as Hew.
  destruct ew as [|ew'|ew'] ; try easy.
  clear -He ; simpl in He ; lia.
unfold join_bits.
rewrite Z.shiftl_mul_pow2 by easy.
split.
- apply (Zplus_le_compat 0 _ 0) with (2 := proj1 Hm).
  rewrite <- (Zmult_0_l (2^mw)).
  apply Zmult_le_compat_r.
  case s.
  clear -He ; lia.
  now rewrite Zmult_0_l.
  clear -Hm ; lia.
- apply Z.lt_le_trans with (((if s then 2 ^ ew else 0) + e + 1) * 2 ^ mw)%Z.
  rewrite (Zmult_plus_distr_l _ 1).
  apply Zplus_lt_compat_l.
  now rewrite Zmult_1_l.
  rewrite <- (Zplus_assoc mw), (Zplus_comm mw), Zpower_plus.
  apply Zmult_le_compat_r.
  rewrite Zpower_plus by easy.
  change (2^1)%Z with 2%Z.
  case s ; clear -He ; lia.
  clear -Hm ; lia.
  clear -Hew ; lia.
  easy.
Qed.

Definition split_bits x :=
  let mm := Zpower 2 mw in
  let em := Zpower 2 ew in
  (Zle_bool (mm * em) x, Zmod x mm, Zmod (Z.div x mm) em)%Z.

Theorem split_join_bits :
  forall s m e,
  (0 <= m < Zpower 2 mw)%Z ->
  (0 <= e < Zpower 2 ew)%Z ->
  split_bits (join_bits s m e) = (s, m, e).
Proof.
intros s m e Hm He.
assert (0 <= mw)%Z as Hmw.
  destruct mw as [|mw'|mw'] ; try easy.
  clear -Hm ; simpl in Hm ; lia.
assert (0 <= ew)%Z as Hew.
  destruct ew as [|ew'|ew'] ; try easy.
  clear -He ; simpl in He ; lia.
unfold split_bits, join_bits.
rewrite Z.shiftl_mul_pow2 by easy.
apply f_equal2 ; [apply f_equal2|].
- case s.
  + apply Zle_bool_true.
    apply Zle_0_minus_le.
    ring_simplify.
    apply Zplus_le_0_compat.
    apply Zmult_le_0_compat.
    apply He.
    clear -Hm ; lia.
    apply Hm.
  + apply Zle_bool_false.
    apply Zplus_lt_reg_l with (2^mw * (-e))%Z.
    replace (2 ^ mw * - e + ((0 + e) * 2 ^ mw + m))%Z with (m * 1)%Z by ring.
    rewrite <- Zmult_plus_distr_r.
    apply Z.lt_le_trans with (2^mw * 1)%Z.
    now apply Zmult_lt_compat_r.
    apply Zmult_le_compat_l.
    clear -He ; lia.
    clear -Hm ; lia.
- rewrite Zplus_comm.
  rewrite Z_mod_plus_full.
  now apply Zmod_small.
- rewrite Z_div_plus_full_l by (clear -Hm ; lia).
  rewrite Zdiv_small with (1 := Hm).
  rewrite Zplus_0_r.
  case s.
  + replace (2^ew + e)%Z with (e + 1 * 2^ew)%Z by ring.
    rewrite Z_mod_plus_full.
    now apply Zmod_small.
  + now apply Zmod_small.
Qed.

Hypothesis Hmw : (0 < mw)%Z.
Hypothesis Hew : (0 < ew)%Z.

Let emax := Zpower 2 (ew - 1).
Let prec := (mw + 1)%Z.
Let emin := (3 - emax - prec)%Z.
Let binary_float := binary_float prec emax.

Let Hprec : (0 < prec)%Z.
Proof.
unfold prec.
apply Zle_lt_succ.
now apply Zlt_le_weak.
Qed.

Let Hm_gt_0 : (0 < 2^mw)%Z.
Proof.
apply (Zpower_gt_0 radix2).
now apply Zlt_le_weak.
Qed.

Let He_gt_0 : (0 < 2^ew)%Z.
Proof.
apply (Zpower_gt_0 radix2).
now apply Zlt_le_weak.
Qed.

Hypothesis Hmax : (prec < emax)%Z.

Theorem join_split_bits :
  forall x,
  (0 <= x < Zpower 2 (mw + ew + 1))%Z ->
  let '(s, m, e) := split_bits x in
  join_bits s m e = x.
Proof.
intros x Hx.
unfold split_bits, join_bits.
rewrite Z.shiftl_mul_pow2 by now apply Zlt_le_weak.
pattern x at 4 ; rewrite Z_div_mod_eq_full with x (2^mw)%Z.
apply (f_equal (fun v => (v + _)%Z)).
rewrite Zmult_comm.
apply f_equal.
pattern (x / (2^mw))%Z at 2 ; rewrite Z_div_mod_eq_full with (x / (2^mw))%Z (2^ew)%Z.
apply (f_equal (fun v => (v + _)%Z)).
replace (x / 2 ^ mw / 2 ^ ew)%Z with (if Zle_bool (2 ^ mw * 2 ^ ew) x then 1 else 0)%Z.
case Zle_bool.
now rewrite Zmult_1_r.
now rewrite Zmult_0_r.
rewrite Zdiv_Zdiv.
apply sym_eq.
case Zle_bool_spec ; intros Hs.
apply Zle_antisym.
cut (x / (2^mw * 2^ew) < 2)%Z. clear ; lia.
apply Zdiv_lt_upper_bound.
now apply Zmult_lt_0_compat.
rewrite <- Zpower_exp ; try ( apply Z.le_ge ; apply Zlt_le_weak ; assumption ).
change 2%Z at 1 with (Zpower 2 1).
rewrite <- Zpower_exp.
now rewrite Zplus_comm.
discriminate.
apply Z.le_ge.
now apply Zplus_le_0_compat ; apply Zlt_le_weak.
apply Zdiv_le_lower_bound.
now apply Zmult_lt_0_compat.
now rewrite Zmult_1_l.
apply Zdiv_small.
now split.
now apply Zlt_le_weak.
now apply Zlt_le_weak.
now apply Zgt_not_eq.
now apply Zgt_not_eq.
Qed.

Theorem split_bits_inj :
  forall x y,
  (0 <= x < Zpower 2 (mw + ew + 1))%Z ->
  (0 <= y < Zpower 2 (mw + ew + 1))%Z ->
  split_bits x = split_bits y ->
  x = y.
Proof.
intros x y Hx Hy.
generalize (join_split_bits x Hx) (join_split_bits y Hy).
destruct (split_bits x) as ((sx, mx), ex).
destruct (split_bits y) as ((sy, my), ey).
intros Jx Jy H. revert Jx Jy.
inversion_clear H.
intros Jx Jy.
now rewrite <- Jx.
Qed.

Definition bits_of_binary_float (x : binary_float) :=
  match x with
  | B754_zero sx => join_bits sx 0 0
  | B754_infinity sx => join_bits sx 0 (Zpower 2 ew - 1)
  | B754_nan sx plx _ => join_bits sx (Zpos plx) (Zpower 2 ew - 1)
  | B754_finite sx mx ex _ =>
    let m := (Zpos mx - Zpower 2 mw)%Z in
    if Zle_bool 0 m then
      join_bits sx m (ex - emin + 1)
    else
      join_bits sx (Zpos mx) 0
  end.

Definition split_bits_of_binary_float (x : binary_float) :=
  match x with
  | B754_zero sx => (sx, 0, 0)%Z
  | B754_infinity sx => (sx, 0, Zpower 2 ew - 1)%Z
  | B754_nan sx plx _ => (sx, Zpos plx, Zpower 2 ew - 1)%Z
  | B754_finite sx mx ex _ =>
    let m := (Zpos mx - Zpower 2 mw)%Z in
    if Zle_bool 0 m then
      (sx, m, ex - emin + 1)%Z
    else
      (sx, Zpos mx, 0)%Z
  end.

Theorem split_bits_of_binary_float_correct :
  forall x,
  split_bits (bits_of_binary_float x) = split_bits_of_binary_float x.
Proof.
intros [sx|sx|sx plx Hplx|sx mx ex Hx] ;
  try ( simpl ; apply split_join_bits ; split ; try apply Z.le_refl ; try apply Zlt_pred ; trivial ; lia ).
simpl. apply split_join_bits; split; try (zify; lia).
destruct (digits2_Pnat_correct plx).
unfold nan_pl in Hplx.
rewrite Zpos_digits2_pos, <- Z_of_nat_S_digits2_Pnat in Hplx.
rewrite Zpower_nat_Z in H0.
eapply Z.lt_le_trans. apply H0.
change 2%Z with (radix_val radix2). apply Zpower_le.
rewrite Z.ltb_lt in Hplx.
unfold prec in *. zify; lia.
(* *)
unfold bits_of_binary_float, split_bits_of_binary_float.
assert (Hf: (emin <= ex /\ Zdigits radix2 (Zpos mx) <= prec)%Z).
destruct (andb_prop _ _ Hx) as (Hx', _).
unfold canonical_mantissa in Hx'.
rewrite Zpos_digits2_pos in Hx'.
generalize (Zeq_bool_eq _ _ Hx').
unfold FLT_exp.
unfold emin.
clear ; zify ; lia.
case Zle_bool_spec ; intros H ;
  [ apply -> Z.le_0_sub in H | apply -> Z.lt_sub_0 in H ] ;
  apply split_join_bits ; try now split.
(* *)
split.
clear -He_gt_0 H ; lia.
cut (Zpos mx < 2 * 2^mw)%Z. clear ; lia.
replace (2 * 2^mw)%Z with (2^prec)%Z.
apply (Zpower_gt_Zdigits radix2 _ (Zpos mx)).
apply Hf.
unfold prec.
rewrite Zplus_comm.
apply Zpower_exp ; apply Z.le_ge.
discriminate.
now apply Zlt_le_weak.
(* *)
split.
generalize (proj1 Hf).
clear ; lia.
destruct (andb_prop _ _ Hx) as (_, Hx').
unfold emin.
replace (2^ew)%Z with (2 * emax)%Z.
generalize (Zle_bool_imp_le _ _ Hx').
clear ; lia.
apply sym_eq.
rewrite (Zsucc_pred ew).
unfold Z.succ.
rewrite Zplus_comm.
apply Zpower_exp ; apply Z.le_ge.
discriminate.
now apply Zlt_0_le_0_pred.
Qed.

Theorem bits_of_binary_float_range:
  forall x, (0 <= bits_of_binary_float x < 2^(mw+ew+1))%Z.
Proof.
unfold bits_of_binary_float.
intros [sx|sx|sx pl pl_range|sx mx ex H].
- apply join_bits_range ; now split.
- apply join_bits_range.
  now split.
  clear -He_gt_0 ; lia.
- apply Z.ltb_lt in pl_range.
  apply join_bits_range.
  split.
  easy.
  apply (Zpower_gt_Zdigits radix2 _ (Zpos pl)).
  apply Z.lt_succ_r.
  now rewrite <- Zdigits2_Zdigits.
  clear -He_gt_0 ; lia.
- unfold bounded in H.
  apply Bool.andb_true_iff in H ; destruct H as [A B].
  apply Z.leb_le in B.
  unfold canonical_mantissa, FLT_exp in A. apply Zeq_bool_eq in A.
  case Zle_bool_spec ; intros H.
  + apply join_bits_range.
    * split.
      clear -H ; lia.
      rewrite Zpos_digits2_pos in A.
      cut (Zpos mx < 2 ^ prec)%Z.
      unfold prec.
      rewrite Zpower_plus by (clear -Hmw ; lia).
      change (2^1)%Z with 2%Z.
      clear ; lia.
      apply (Zpower_gt_Zdigits radix2 _ (Zpos mx)).
      clear -A ; zify ; lia.
    * split.
      unfold emin ; clear -A ; zify ; lia.
      replace ew with ((ew - 1) + 1)%Z by ring.
      rewrite Zpower_plus by (clear - Hew ; lia).
      unfold emin, emax in *.
      change (2^1)%Z with 2%Z.
      clear -B ; lia.
  + apply -> Z.lt_sub_0 in H.
    apply join_bits_range ; now split.
Qed.

Definition binary_float_of_bits_aux x :=
  let '(sx, mx, ex) := split_bits x in
  if Zeq_bool ex 0 then
    match mx with
    | Z0 => F754_zero sx
    | Zpos px => F754_finite sx px emin
    | Zneg _ => F754_nan false xH (* dummy *)
    end
  else if Zeq_bool ex (Zpower 2 ew - 1) then
    match mx with
      | Z0 => F754_infinity sx
      | Zpos plx => F754_nan sx plx
      | Zneg _ => F754_nan false xH (* dummy *)
    end
  else
    match (mx + Zpower 2 mw)%Z with
    | Zpos px => F754_finite sx px (ex + emin - 1)
    | _ => F754_nan false xH (* dummy *)
    end.

Lemma binary_float_of_bits_aux_correct :
  forall x,
  valid_binary prec emax (binary_float_of_bits_aux x) = true.
Proof.
intros x.
unfold binary_float_of_bits_aux, split_bits.
assert (Hnan: nan_pl prec 1 = true).
  apply Z.ltb_lt.
  simpl. unfold prec.
  clear -Hmw ; lia.
case Zeq_bool_spec ; intros He1.
case_eq (x mod 2^mw)%Z ; try easy.
(* subnormal *)
intros px Hm.
assert (Zdigits radix2 (Zpos px) <= mw)%Z.
apply Zdigits_le_Zpower.
simpl.
rewrite <- Hm.
eapply Z_mod_lt.
now apply Z.lt_gt.
apply bounded_canonical_lt_emax ; try assumption.
unfold canonical, cexp.
fold emin.
rewrite mag_F2R_Zdigits. 2: discriminate.
unfold Fexp, FLT_exp.
apply sym_eq.
apply Zmax_right.
clear -H Hprec.
unfold prec ; lia.
apply Rnot_le_lt.
intros H0.
refine (_ (mag_le radix2 _ _ _ H0)).
rewrite mag_bpow.
rewrite mag_F2R_Zdigits. 2: discriminate.
unfold emin, prec.
apply Zlt_not_le.
cut (0 < emax)%Z. clear -H Hew ; lia.
apply (Zpower_gt_0 radix2).
clear -Hew ; lia.
apply bpow_gt_0.
case Zeq_bool_spec ; intros He2.
case_eq (x mod 2 ^ mw)%Z; try easy.
(* nan *)
intros plx Eqplx. apply Z.ltb_lt.
rewrite Zpos_digits2_pos.
assert (forall a b, a <= b -> a < b+1)%Z by (intros; lia). apply H. clear H.
apply Zdigits_le_Zpower. simpl.
rewrite <- Eqplx. edestruct Z_mod_lt; eauto.
change 2%Z with (radix_val radix2).
apply Z.lt_gt, Zpower_gt_0. lia.
case_eq (x mod 2^mw + 2^mw)%Z ; try easy.
(* normal *)
intros px Hm.
assert (prec = Zdigits radix2 (Zpos px)).
(* . *)
rewrite Zdigits_mag. 2: discriminate.
apply sym_eq.
apply mag_unique.
rewrite <- abs_IZR.
unfold Z.abs.
replace (prec - 1)%Z with mw by ( unfold prec ; ring ).
rewrite <- IZR_Zpower with (1 := Zlt_le_weak _ _ Hmw).
rewrite <- IZR_Zpower. 2: now apply Zlt_le_weak.
rewrite <- Hm.
split.
apply IZR_le.
change (radix2^mw)%Z with (0 + 2^mw)%Z.
apply Zplus_le_compat_r.
eapply Z_mod_lt.
now apply Z.lt_gt.
apply IZR_lt.
unfold prec.
rewrite Zpower_exp. 2: now apply Z.le_ge ; apply Zlt_le_weak. 2: discriminate.
rewrite <- Zplus_diag_eq_mult_2.
apply Zplus_lt_compat_r.
eapply Z_mod_lt.
now apply Z.lt_gt.
(* . *)
apply bounded_canonical_lt_emax ; try assumption.
unfold canonical, cexp.
rewrite mag_F2R_Zdigits. 2: discriminate.
unfold Fexp, FLT_exp.
rewrite <- H.
set (ex := ((x / 2^mw) mod 2^ew)%Z).
replace (prec + (ex + emin - 1) - prec)%Z with (ex + emin - 1)%Z by ring.
apply sym_eq.
apply Zmax_left.
revert He1.
fold ex.
cut (0 <= ex)%Z.
unfold emin.
clear ; intros H1 H2 ; lia.
eapply Z_mod_lt.
apply Z.lt_gt.
apply (Zpower_gt_0 radix2).
now apply Zlt_le_weak.
apply Rnot_le_lt.
intros H0.
refine (_ (mag_le radix2 _ _ _ H0)).
rewrite mag_bpow.
rewrite mag_F2R_Zdigits. 2: discriminate.
rewrite <- H.
apply Zlt_not_le.
unfold emin.
apply Zplus_lt_reg_r with (emax - 1)%Z.
ring_simplify.
revert He2.
set (ex := ((x / 2^mw) mod 2^ew)%Z).
cut (ex < 2^ew)%Z.
replace (2^ew)%Z with (2 * emax)%Z.
clear ; intros H1 H2 ; lia.
replace ew with (1 + (ew - 1))%Z by ring.
rewrite Zpower_exp.
apply refl_equal.
discriminate.
clear -Hew ; lia.
eapply Z_mod_lt.
apply Z.lt_gt.
apply (Zpower_gt_0 radix2).
now apply Zlt_le_weak.
apply bpow_gt_0.
Qed.

Definition binary_float_of_bits x :=
  FF2B prec emax _ (binary_float_of_bits_aux_correct x).

Theorem binary_float_of_bits_of_binary_float :
  forall x,
  binary_float_of_bits (bits_of_binary_float x) = x.
Proof.
intros x.
apply B2FF_inj.
unfold binary_float_of_bits.
rewrite B2FF_FF2B.
unfold binary_float_of_bits_aux.
rewrite split_bits_of_binary_float_correct.
destruct x as [sx|sx|sx plx Hplx|sx mx ex Bx].
apply refl_equal.
(* *)
simpl.
rewrite Zeq_bool_false.
now rewrite Zeq_bool_true.
cut (1 < 2^ew)%Z. clear ; lia.
now apply (Zpower_gt_1 radix2).
(* *)
simpl.
rewrite Zeq_bool_false.
rewrite Zeq_bool_true; auto.
cut (1 < 2^ew)%Z. clear ; lia.
now apply (Zpower_gt_1 radix2).
(* *)
unfold split_bits_of_binary_float.
case Zle_bool_spec ; intros Hm.
(* . *)
rewrite Zeq_bool_false.
rewrite Zeq_bool_false.
now ring_simplify (Zpos mx - 2 ^ mw + 2 ^ mw)%Z (ex - emin + 1 + emin - 1)%Z.
destruct (andb_prop _ _ Bx) as (_, H1).
generalize (Zle_bool_imp_le _ _ H1).
unfold emin.
replace (2^ew)%Z with (2 * emax)%Z.
clear ; lia.
replace ew with (1 + (ew - 1))%Z by ring.
rewrite Zpower_exp.
apply refl_equal.
discriminate.
clear -Hew ; lia.
destruct (andb_prop _ _ Bx) as (H1, _).
generalize (Zeq_bool_eq _ _ H1).
rewrite Zpos_digits2_pos.
unfold FLT_exp, emin.
generalize (Zdigits radix2 (Zpos mx)).
clear.
intros ; zify ; lia.
(* . *)
rewrite Zeq_bool_true. 2: apply refl_equal.
simpl.
apply f_equal.
destruct (andb_prop _ _ Bx) as (H1, _).
generalize (Zeq_bool_eq _ _ H1).
rewrite Zpos_digits2_pos.
unfold FLT_exp, emin, prec.
apply -> Z.lt_sub_0 in Hm.
generalize (Zdigits_le_Zpower radix2 _ (Zpos mx) Hm).
generalize (Zdigits radix2 (Zpos mx)).
clear.
intros ; zify ; lia.
Qed.

Theorem bits_of_binary_float_of_bits :
  forall x,
  (0 <= x < 2^(mw+ew+1))%Z ->
  bits_of_binary_float (binary_float_of_bits x) = x.
Proof.
intros x Hx.
unfold binary_float_of_bits, bits_of_binary_float.
set (Cx := binary_float_of_bits_aux_correct x).
clearbody Cx.
rewrite match_FF2B.
revert Cx.
generalize (join_split_bits x Hx).
unfold binary_float_of_bits_aux.
case_eq (split_bits x).
intros (sx, mx) ex Sx.
assert (Bm: (0 <= mx < 2^mw)%Z).
inversion_clear Sx.
apply Z_mod_lt.
now apply Z.lt_gt.
case Zeq_bool_spec ; intros He1.
(* subnormal *)
case_eq mx.
intros Hm Jx _.
now rewrite He1 in Jx.
intros px Hm Jx _.
rewrite Zle_bool_false.
now rewrite <- He1.
apply <- Z.lt_sub_0.
now rewrite <- Hm.
intros px Hm _ _.
apply False_ind.
apply Zle_not_lt with (1 := proj1 Bm).
now rewrite Hm.
case Zeq_bool_spec ; intros He2.
(* infinity/nan *)
case_eq mx; intros Hm.
now rewrite He2.
now rewrite He2.
intros. zify; lia.
(* normal *)
case_eq (mx + 2 ^ mw)%Z.
intros Hm.
apply False_ind.
clear -Bm Hm ; lia.
intros p Hm Jx Cx.
rewrite <- Hm.
rewrite Zle_bool_true.
now ring_simplify (mx + 2^mw - 2^mw)%Z (ex + emin - 1 - emin + 1)%Z.
now ring_simplify.
intros p Hm.
apply False_ind.
clear -Bm Hm ; zify ; lia.
Qed.

End Binary_Bits.

(** Specialization for IEEE single precision operations *)
Section B32_Bits.

Arguments B754_nan {prec} {emax}.

Definition binary32 := binary_float 24 128.

Let Hprec : (0 < 24)%Z.
Proof.
apply refl_equal.
Qed.

Let Hprec_emax : (24 < 128)%Z.
Proof.
apply refl_equal.
Qed.

Let Hemax : (3 <= 128)%Z.
Proof.
intros H.
discriminate H.
Qed.

Definition default_nan_pl32 : { nan : binary32 | is_nan 24 128 nan = true } :=
  exist _ (@B754_nan 24 128 false (iter_nat xO 22 xH) (refl_equal true)) (refl_equal true).

Definition unop_nan_pl32 (f : binary32) : { nan : binary32 | is_nan 24 128 nan = true } :=
  match f as f with
  | B754_nan s pl Hpl => exist _ (B754_nan s pl Hpl) (refl_equal true)
  | _ => default_nan_pl32
  end.

Definition binop_nan_pl32 (f1 f2 : binary32) : { nan : binary32 | is_nan 24 128 nan = true } :=
  match f1, f2 with
  | B754_nan s1 pl1 Hpl1, _ => exist _ (B754_nan s1 pl1 Hpl1) (refl_equal true)
  | _, B754_nan s2 pl2 Hpl2 => exist _ (B754_nan s2 pl2 Hpl2) (refl_equal true)
  | _, _ => default_nan_pl32
  end.

Definition ternop_nan_pl32 (f1 f2 f3 : binary32) : { nan : binary32 | is_nan 24 128 nan = true } :=
  match f1, f2, f3 with
  | B754_nan s1 pl1 Hpl1, _, _ => exist _ (B754_nan s1 pl1 Hpl1) (refl_equal true)
  | _, B754_nan s2 pl2 Hpl2, _ => exist _ (B754_nan s2 pl2 Hpl2) (refl_equal true)
  | _, _, B754_nan s3 pl3 Hpl3 => exist _ (B754_nan s3 pl3 Hpl3) (refl_equal true)
  | _, _, _ => default_nan_pl32
  end.

Definition b32_erase : binary32 -> binary32 := erase 24 128.
Definition b32_opp : binary32 -> binary32 := Bopp 24 128 unop_nan_pl32.
Definition b32_abs : binary32 -> binary32 := Babs 24 128 unop_nan_pl32.
Definition b32_pred : binary32 -> binary32 := Bpred _ _ Hprec Hprec_emax Hemax unop_nan_pl32.
Definition b32_succ : binary32 -> binary32 := Bsucc _ _ Hprec Hprec_emax Hemax unop_nan_pl32.
Definition b32_sqrt : mode -> binary32 -> binary32 := Bsqrt  _ _ Hprec Hprec_emax unop_nan_pl32.

Definition b32_plus :  mode -> binary32 -> binary32 -> binary32 := Bplus  _ _ Hprec Hprec_emax binop_nan_pl32.
Definition b32_minus : mode -> binary32 -> binary32 -> binary32 := Bminus _ _ Hprec Hprec_emax binop_nan_pl32.
Definition b32_mult :  mode -> binary32 -> binary32 -> binary32 := Bmult  _ _ Hprec Hprec_emax binop_nan_pl32.
Definition b32_div :   mode -> binary32 -> binary32 -> binary32 := Bdiv   _ _ Hprec Hprec_emax binop_nan_pl32.

Definition b32_fma :   mode -> binary32 -> binary32 -> binary32 -> binary32 := Bfma _ _ Hprec Hprec_emax ternop_nan_pl32.

Definition b32_compare : binary32 -> binary32 -> option comparison := Bcompare 24 128.
Definition b32_of_bits : Z -> binary32 := binary_float_of_bits 23 8 (refl_equal _) (refl_equal _) (refl_equal _).
Definition bits_of_b32 : binary32 -> Z := bits_of_binary_float 23 8.

End B32_Bits.

(** Specialization for IEEE double precision operations *)
Section B64_Bits.

Arguments B754_nan {prec} {emax}.

Definition binary64 := binary_float 53 1024.

Let Hprec : (0 < 53)%Z.
Proof.
apply refl_equal.
Qed.

Let Hprec_emax : (53 < 1024)%Z.
Proof.
apply refl_equal.
Qed.

Let Hemax : (3 <= 1024)%Z.
Proof.
intros H.
discriminate H.
Qed.

Definition default_nan_pl64 : { nan : binary64 | is_nan 53 1024 nan = true } :=
  exist _ (@B754_nan 53 1024 false (iter_nat xO 51 xH) (refl_equal true)) (refl_equal true).

Definition unop_nan_pl64 (f : binary64) : { nan : binary64 | is_nan 53 1024 nan = true } :=
  match f as f with
  | B754_nan s pl Hpl => exist _ (B754_nan s pl Hpl) (refl_equal true)
  | _ => default_nan_pl64
  end.

Definition binop_nan_pl64 (f1 f2 : binary64) : { nan : binary64 | is_nan 53 1024 nan = true } :=
  match f1, f2 with
  | B754_nan s1 pl1 Hpl1, _ => exist _ (B754_nan s1 pl1 Hpl1) (refl_equal true)
  | _, B754_nan s2 pl2 Hpl2 => exist _ (B754_nan s2 pl2 Hpl2) (refl_equal true)
  | _, _ => default_nan_pl64
  end.

Definition ternop_nan_pl64 (f1 f2 f3 : binary64) : { nan : binary64 | is_nan 53 1024 nan = true } :=
  match f1, f2, f3 with
  | B754_nan s1 pl1 Hpl1, _, _ => exist _ (B754_nan s1 pl1 Hpl1) (refl_equal true)
  | _, B754_nan s2 pl2 Hpl2, _ => exist _ (B754_nan s2 pl2 Hpl2) (refl_equal true)
  | _, _, B754_nan s3 pl3 Hpl3 => exist _ (B754_nan s3 pl3 Hpl3) (refl_equal true)
  | _, _, _ => default_nan_pl64
  end.

Definition b64_erase : binary64 -> binary64 := erase 53 1024.
Definition b64_opp : binary64 -> binary64 := Bopp 53 1024 unop_nan_pl64.
Definition b64_abs : binary64 -> binary64 := Babs 53 1024 unop_nan_pl64.
Definition b64_pred : binary64 -> binary64 := Bpred _ _ Hprec Hprec_emax Hemax unop_nan_pl64.
Definition b64_succ : binary64 -> binary64 := Bsucc _ _ Hprec Hprec_emax Hemax unop_nan_pl64.
Definition b64_sqrt : mode -> binary64 -> binary64 := Bsqrt _ _ Hprec Hprec_emax unop_nan_pl64.

Definition b64_plus  : mode -> binary64 -> binary64 -> binary64 := Bplus  _ _ Hprec Hprec_emax binop_nan_pl64.
Definition b64_minus : mode -> binary64 -> binary64 -> binary64 := Bminus _ _ Hprec Hprec_emax binop_nan_pl64.
Definition b64_mult  : mode -> binary64 -> binary64 -> binary64 := Bmult  _ _ Hprec Hprec_emax binop_nan_pl64.
Definition b64_div   : mode -> binary64 -> binary64 -> binary64 := Bdiv   _ _ Hprec Hprec_emax binop_nan_pl64.

Definition b64_fma :   mode -> binary64 -> binary64 -> binary64 -> binary64 := Bfma _ _ Hprec Hprec_emax ternop_nan_pl64.

Definition b64_compare : binary64 -> binary64 -> option comparison := Bcompare 53 1024.
Definition b64_of_bits : Z -> binary64 := binary_float_of_bits 52 11 (refl_equal _) (refl_equal _) (refl_equal _).
Definition bits_of_b64 : binary64 -> Z := bits_of_binary_float 52 11.

End B64_Bits.