aboutsummaryrefslogtreecommitdiffstats
path: root/src/QInst.v
diff options
context:
space:
mode:
Diffstat (limited to 'src/QInst.v')
-rw-r--r--src/QInst.v188
1 files changed, 85 insertions, 103 deletions
diff --git a/src/QInst.v b/src/QInst.v
index b2dd836..d891fe2 100644
--- a/src/QInst.v
+++ b/src/QInst.v
@@ -1,7 +1,7 @@
(**************************************************************************)
(* *)
(* SMTCoq *)
-(* Copyright (C) 2011 - 2021 *)
+(* Copyright (C) 2011 - 2022 *)
(* *)
(* See file "AUTHORS" for the list of authors *)
(* *)
@@ -27,7 +27,43 @@ Proof.
installed when we compile SMTCoq. *)
Qed.
-Hint Resolve impl_split : smtcoq_core.
+Lemma impl_split2 a b c:
+ implb a (b || c) = true -> (negb a) || b || c = true.
+Proof.
+ intro H.
+ destruct a; destruct b; trivial.
+(* alternatively we could do <now verit_base H.> but it forces us to have veriT
+ installed when we compile SMTCoq. *)
+Qed.
+
+Lemma impl_split211 a b1 b2 c1 c2 :
+ implb a ((b1 && b2) || (c1 && c2)) = true -> (negb a) || b1 || c1 = true.
+Proof.
+ intro H.
+ destruct a; destruct b1; destruct b2; destruct c1; destruct c2; trivial.
+Qed.
+
+Lemma impl_split212 a b1 b2 c1 c2 :
+ implb a ((b1 && b2) || (c1 && c2)) = true -> (negb a) || b1 || c2 = true.
+Proof.
+ intro H.
+ destruct a; destruct b1; destruct b2; destruct c1; destruct c2; trivial.
+Qed.
+
+Lemma impl_split221 a b1 b2 c1 c2 :
+ implb a ((b1 && b2) || (c1 && c2)) = true -> (negb a) || b2 || c1 = true.
+Proof.
+ intro H.
+ destruct a; destruct b1; destruct b2; destruct c1; destruct c2; trivial.
+Qed.
+
+Lemma impl_split222 a b1 b2 c1 c2 :
+ implb a ((b1 && b2) || (c1 && c2)) = true -> (negb a) || b2 || c2 = true.
+Proof.
+ intro H.
+ destruct a; destruct b1; destruct b2; destruct c1; destruct c2; trivial.
+Qed.
+
(** verit silently transforms an <implb (a || b) c> into a <or (not a) c>
or into a <or (not b) c> when instantiating such a quantified theorem *)
@@ -81,6 +117,25 @@ Proof.
destruct a; destruct b; destruct c; intuition.
Qed.
+(** verit silently transforms an <implb a (b && c)> into a <or (not a)
+ b> or into a <or (not a) c> when instantiating such a quantified
+ theorem. *)
+Lemma impl_and_split_right a b c:
+ implb a (b && c) = true -> negb a || c = true.
+Proof.
+ intro H.
+ destruct a; destruct c; intuition.
+ now rewrite andb_false_r in H.
+Qed.
+
+Lemma impl_and_split_left a b c:
+ implb a (b && c) = true -> negb a || b = true.
+Proof.
+ intro H.
+ destruct a; destruct b; intuition.
+Qed.
+
+
(** verit considers equality modulo its symmetry, so we have to recover the
right direction in the instances of the theorems *)
(* TODO: currently incomplete *)
@@ -90,86 +145,19 @@ Lemma eqb_of_compdec_sym (A:Type) (HA:CompDec A) (a b:A) :
eqb_of_compdec HA b a = eqb_of_compdec HA a b.
Proof. apply eqb_sym2. Qed.
-(* First strategy: change the order of all equalities in the goal or the
- hypotheses
- Incomplete: all or none of the equalities are changed, whereas we may
- need to change some of them but not all of them *)
+(* Strategy: change or not the order of each equality in the goal
+ Complete but exponential in some cases *)
Definition hidden_eq_Z (a b : Z) := (a =? b)%Z.
Definition hidden_eq_U (A:Type) (HA:CompDec A) (a b : A) := eqb_of_compdec HA a b.
-Ltac apply_sym_hyp T :=
- repeat match T with
- | context [ (?A =? ?B)%Z] =>
- change (A =? B)%Z with (hidden_eq_Z A B) in T
- end;
- repeat match T with
- | context [ @eqb_of_compdec ?A ?HA ?a ?b ] =>
- change (eqb_of_compdec HA a b) with (hidden_eq_U A HA a b) in T
- end;
- repeat match T with
- | context [ hidden_eq_Z ?A ?B] =>
- replace (hidden_eq_Z A B) with (B =? A)%Z in T;
- [ | now rewrite Z.eqb_sym]
- end;
- repeat match T with
- | context [ hidden_eq_U ?A ?HA ?a ?b] =>
- replace (hidden_eq_U A HA a b) with (eqb_of_compdec HA b a) in T;
- [ | now rewrite eqb_of_compdec_sym]
- end.
-Ltac apply_sym_goal :=
- repeat match goal with
- | [ |- context [ (?A =? ?B)%Z] ] =>
- change (A =? B)%Z with (hidden_eq_Z A B)
- end;
- repeat match goal with
- | [ |- context [ @eqb_of_compdec ?A ?HA ?a ?b ] ] =>
- change (eqb_of_compdec HA a b) with (hidden_eq_U A HA a b)
- end;
- repeat match goal with
- | [ |- context [ hidden_eq_Z ?A ?B] ] =>
- replace (hidden_eq_Z A B) with (B =? A)%Z;
- [ | now rewrite Z.eqb_sym]
- end;
- repeat match goal with
- | [ |- context [ hidden_eq_U ?A ?HA ?a ?b] ] =>
- replace (hidden_eq_U A HA a b) with (eqb_of_compdec HA b a);
- [ | now rewrite eqb_of_compdec_sym]
- end.
-Ltac strategy1 H :=
- first [ apply H
- | apply_sym_goal; apply H
- | apply_sym_hyp H; apply H
- | apply_sym_goal; apply_sym_hyp H; apply H
- ].
-
-(* Second strategy: find the order of equalities
- Incomplete: does not work if the lemma is quantified *)
-Ltac order_equalities g TH :=
- match g with
- | eqb_of_compdec ?HC ?a1 ?b1 =>
- match TH with
- | eqb_of_compdec _ ?a2 _ =>
- first [ constr_eq a1 a2 | replace (eqb_of_compdec HC a1 b1) with (eqb_of_compdec HC b1 a1) by now rewrite eqb_of_compdec_sym ]
- | _ => idtac
- end
- | Z.eqb ?a1 ?b1 =>
- match TH with
- | Z.eqb ?a2 _ =>
- first [ constr_eq a1 a2 | replace (Z.eqb a1 b1) with (Z.eqb b1 a1) by now rewrite Z.eqb_sym ]
- | _ => idtac
- end
- | ?f1 ?t1 =>
- match TH with
- | ?f2 ?t2 => order_equalities f1 f2; order_equalities t1 t2
- | _ => idtac
- end
- | _ => idtac
- end.
-Ltac strategy2 H :=
- match goal with
- | [ |- ?g ] =>
- let TH := type of H in
- order_equalities g TH;
- apply H
+Ltac apply_sym H :=
+ lazymatch goal with
+ | [ |- context [ (?A =? ?B)%Z ] ] =>
+ first [ change (A =? B)%Z with (hidden_eq_Z A B); apply_sym H
+ | replace (A =? B)%Z with (hidden_eq_Z B A); [apply_sym H | now rewrite Z.eqb_sym] ]
+ | [ |- context [ @eqb_of_compdec ?A ?HA ?a ?b ] ] =>
+ first [ change (eqb_of_compdec HA a b) with (hidden_eq_U A HA a b); apply_sym H
+ | replace (eqb_of_compdec HA a b) with (hidden_eq_U A HA b a); [apply_sym H | now rewrite eqb_of_compdec_sym] ]
+ | _ => apply H
end.
@@ -178,33 +166,27 @@ Ltac vauto :=
try (unfold is_true;
let H := fresh "H" in
intro H;
- first [ strategy1 H
- | strategy2 H
+ first [ apply_sym H
| match goal with
| [ |- (negb ?A || ?B) = true ] =>
- first [ eapply impl_or_split_right;
- first [ strategy1 H
- | strategy2 H ]
- | eapply impl_or_split_left;
- first [ strategy1 H
- | strategy2 H ]
- | eapply eqb_sym_or_split_right;
- first [ strategy1 H
- | strategy2 H ]
- | eapply eqb_sym_or_split_left;
- first [ strategy1 H
- | strategy2 H ]
- | eapply eqb_or_split_right;
- first [ strategy1 H
- | strategy2 H ]
- | eapply eqb_or_split_left;
- first [ strategy1 H
- | strategy2 H ]
+ first [ eapply impl_split; apply_sym H
+ | eapply impl_or_split_right; apply_sym H
+ | eapply impl_or_split_left; apply_sym H
+ | eapply eqb_sym_or_split_right; apply_sym H
+ | eapply eqb_sym_or_split_left; apply_sym H
+ | eapply eqb_or_split_right; apply_sym H
+ | eapply eqb_or_split_left; apply_sym H
+ | eapply impl_and_split_right; apply_sym H
+ | eapply impl_and_split_left; apply_sym H
]
| [ |- (negb ?A || ?B || ?C) = true ] =>
- eapply eqb_or_split;
- first [ strategy1 H
- | strategy2 H ]
+ first [ eapply eqb_or_split; apply_sym H
+ | eapply impl_split2; apply_sym H
+ | eapply impl_split211; apply_sym H
+ | eapply impl_split212; apply_sym H
+ | eapply impl_split221; apply_sym H
+ | eapply impl_split222; apply_sym H
+ ]
end
]
);