aboutsummaryrefslogtreecommitdiffstats
path: root/src/lia/Lia.v
diff options
context:
space:
mode:
Diffstat (limited to 'src/lia/Lia.v')
-rw-r--r--src/lia/Lia.v1611
1 files changed, 1611 insertions, 0 deletions
diff --git a/src/lia/Lia.v b/src/lia/Lia.v
new file mode 100644
index 0000000..0969db0
--- /dev/null
+++ b/src/lia/Lia.v
@@ -0,0 +1,1611 @@
+(**************************************************************************)
+(* *)
+(* SMTCoq *)
+(* Copyright (C) 2011 - 2015 *)
+(* *)
+(* Michaël Armand *)
+(* Benjamin Grégoire *)
+(* Chantal Keller *)
+(* *)
+(* Inria - École Polytechnique - MSR-Inria Joint Lab *)
+(* *)
+(* This file is distributed under the terms of the CeCILL-C licence *)
+(* *)
+(**************************************************************************)
+
+Require Import Bool.
+Require Import List.
+Require Import Int63.
+Require Import PArray.
+Require Import RingMicromega.
+Require Import ZMicromega.
+Require Import Tauto.
+Require Import Psatz.
+(* Add LoadPath ".." as SMTCoq. *)
+
+Require Import Misc State.
+Require Import SMT_terms.
+Require Import SMTCoq.euf.Euf.
+
+Local Open Scope array_scope.
+Local Open Scope int63_scope.
+
+Section certif.
+
+ Variable t_form : PArray.array Form.form.
+ Variable t_atom : PArray.array Atom.atom.
+
+ Local Notation get_atom := (PArray.get t_atom) (only parsing).
+ Local Notation get_form := (PArray.get t_form) (only parsing).
+
+ Import EnvRing Atom.
+
+ Register option_map as PrimInline.
+
+ Section BuildPositive.
+ Variable build_positive : hatom -> option positive.
+
+ Definition build_positive_atom_aux (a:atom) : option positive :=
+ match a with
+ | Acop CO_xH => Some xH
+ | Auop UO_xO a => option_map xO (build_positive a)
+ | Auop UO_xI a => option_map xI (build_positive a)
+ | _ => None
+ end.
+
+ End BuildPositive.
+
+ Definition build_positive :=
+ foldi_down_cont
+ (fun i cont h =>
+ build_positive_atom_aux cont (get_atom h))
+ (PArray.length t_atom) 0 (fun _ => None).
+
+ Definition build_positive_atom := build_positive_atom_aux build_positive.
+ Register build_positive_atom as PrimInline.
+
+ Section BuildZ.
+
+ Definition build_z_atom_aux a :=
+ match a with
+ | Auop UO_Zpos a => option_map Zpos (build_positive a)
+ | Acop CO_Z0 => Some Z0
+ | Auop UO_Zneg a => option_map Zneg (build_positive a)
+ | _ => None
+ end.
+
+ End BuildZ.
+
+ Definition build_z h := build_z_atom_aux (get_atom h).
+
+ Definition build_z_atom := build_z_atom_aux.
+
+ Definition vmap := (positive * list Atom.atom)%type.
+
+ Fixpoint find_var_aux h p (l:list Atom.atom) :=
+ match l with
+ | nil => None
+ | h' :: l =>
+ let p := Ppred p in
+ if Atom.eqb h h' then Some p else find_var_aux h p l
+ end.
+
+ Definition find_var (vm:vmap) h :=
+ let (count,map) := vm in
+ match find_var_aux h count map with
+ | Some p => (vm, p)
+ | None => ((Psucc count,h::map), count)
+ end.
+
+ Definition empty_vmap : vmap := (1%positive, nil).
+
+ Section BuildPExpr.
+
+ Variable build_pexpr : vmap -> hatom -> (vmap * PExpr Z).
+
+ Definition build_pexpr_atom_aux (vm:vmap) (h:atom) : vmap * PExpr Z :=
+ match h with
+ | Abop BO_Zplus a1 a2 =>
+ let (vm, pe1) := build_pexpr vm a1 in
+ let (vm, pe2) := build_pexpr vm a2 in
+ (vm, PEadd pe1 pe2)
+ | Abop BO_Zminus a1 a2 =>
+ let (vm, pe1) := build_pexpr vm a1 in
+ let (vm, pe2) := build_pexpr vm a2 in
+ (vm, PEsub pe1 pe2)
+ | Abop BO_Zmult a1 a2 =>
+ let (vm, pe1) := build_pexpr vm a1 in
+ let (vm, pe2) := build_pexpr vm a2 in
+ (vm, PEmul pe1 pe2)
+ | Auop UO_Zopp a =>
+ let (vm, pe) := build_pexpr vm a in
+ (vm, PEopp pe)
+ | _ =>
+ match build_z_atom h with
+ | Some z => (vm, PEc z)
+ | None =>
+ let (vm,p) := find_var vm h in
+ (vm,PEX Z p)
+ end
+ end.
+
+ End BuildPExpr.
+
+ Definition build_pexpr :=
+ foldi_down_cont
+ (fun i cont vm h => build_pexpr_atom_aux cont vm (get_atom h))
+ (PArray.length t_atom) 0 (fun vm _ => (vm,PEc 0%Z)).
+
+ Definition build_pexpr_atom := build_pexpr_atom_aux build_pexpr.
+
+ (* Remark: We do not use OpNeq *)
+ Definition build_op2 op :=
+ match op with
+ | (BO_eq Typ.TZ) => Some OpEq
+ | BO_Zle => Some OpLe
+ | BO_Zge => Some OpGe
+ | BO_Zlt => Some OpLt
+ | BO_Zgt => Some OpGt
+ | _ => None
+ end.
+
+ Definition build_formula_atom vm (a:atom) :=
+ match a with
+ | Abop op a1 a2 =>
+ match build_op2 op with
+ | Some o =>
+ let (vm,pe1) := build_pexpr vm a1 in
+ let (vm,pe2) := build_pexpr vm a2 in
+ Some (vm, Build_Formula pe1 o pe2)
+ | None => None
+ end
+ | _ => None
+ end.
+
+ Definition build_formula vm h :=
+ build_formula_atom vm (get_atom h).
+
+
+ Section Build_form.
+
+ Definition build_not2 i f :=
+ fold (fun f' => N (N (A:=Formula Z) f')) 1 i f.
+
+ Variable build_var : vmap -> var -> option (vmap*BFormula (Formula Z)).
+
+
+ Definition build_hform vm f : option (vmap*BFormula (Formula Z)) :=
+ match f with
+ | Form.Fatom h =>
+ match build_formula vm h with
+ | Some (vm,f) => Some (vm, A f)
+ | None => None
+ end
+ | Form.Ftrue => Some (vm, TT (Formula Z))
+ | Form.Ffalse => Some (vm, FF (Formula Z))
+ | Form.Fnot2 i l =>
+ match build_var vm (Lit.blit l) with
+ | Some (vm, f) =>
+ let f' := build_not2 i f in
+ let f'' := if Lit.is_pos l then f' else N f' in
+ Some (vm,f'')
+ | None => None
+ end
+ | Form.Fand args =>
+ let n := length args in
+ if n == 0 then Some (vm,TT (Formula Z))
+ else
+ foldi (fun i f1 => match f1 with | Some(vm',f1') => let l := (args.[i]) in match build_var vm' (Lit.blit l) with | Some(vm2,f2) => let f2' := if Lit.is_pos l then f2 else N f2 in Some(vm2,Cj f1' f2') | None => None end | None => None end) 1 (n-1) (let l := args.[0] in
+ match build_var vm (Lit.blit l) with
+ | Some (vm',f) => if Lit.is_pos l then Some (vm',f) else Some (vm',N f)
+ | None => None
+ end)
+ | Form.For args =>
+ let n := length args in
+ if n == 0 then Some (vm,FF (Formula Z))
+ else
+ foldi (fun i f1 => match f1 with | Some(vm',f1') => let l := (args.[i]) in match build_var vm' (Lit.blit l) with | Some(vm2,f2) => let f2' := if Lit.is_pos l then f2 else N f2 in Some(vm2,D f1' f2') | None => None end | None => None end) 1 (n-1) (let l := args.[0] in
+ match build_var vm (Lit.blit l) with
+ | Some (vm',f) => if Lit.is_pos l then Some (vm',f) else Some (vm',N f)
+ | None => None
+ end)
+ | Form.Fxor a b =>
+ match build_var vm (Lit.blit a) with
+ | Some (vm1, f1) =>
+ match build_var vm1 (Lit.blit b) with
+ | Some (vm2, f2) =>
+ let f1' := if Lit.is_pos a then f1 else N f1 in
+ let f2' := if Lit.is_pos b then f2 else N f2 in
+ Some (vm2, Cj (D f1' f2') (D (N f1') (N f2')))
+ | None => None
+ end
+ | None => None
+ end
+ | Form.Fimp args =>
+ let n := length args in
+ if n == 0 then Some (vm,TT (Formula Z))
+ else if n <= 1 then
+ let l := args.[0] in
+ match build_var vm (Lit.blit l) with
+ | Some (vm',f) => if Lit.is_pos l then Some (vm',f) else Some (vm',N f)
+ | None => None
+ end
+ else
+ foldi_down (fun i f1 => match f1 with | Some(vm',f1') => let l := (args.[i]) in match build_var vm' (Lit.blit l) with | Some(vm2,f2) => let f2' := if Lit.is_pos l then f2 else N f2 in Some(vm2,I f2' f1') | None => None end | None => None end) (n-2) 0 (let l := args.[n-1] in
+ match build_var vm (Lit.blit l) with
+ | Some (vm',f) => if Lit.is_pos l then Some (vm',f) else Some (vm',N f)
+ | None => None
+ end)
+ | Form.Fiff a b =>
+ match build_var vm (Lit.blit a) with
+ | Some (vm1, f1) =>
+ match build_var vm1 (Lit.blit b) with
+ | Some (vm2, f2) =>
+ let f1' := if Lit.is_pos a then f1 else N f1 in
+ let f2' := if Lit.is_pos b then f2 else N f2 in
+ Some (vm2, Cj (D f1' (N f2')) (D (N f1') f2'))
+ | None => None
+ end
+ | None => None
+ end
+ | Form.Fite a b c =>
+ match build_var vm (Lit.blit a) with
+ | Some (vm1, f1) =>
+ match build_var vm1 (Lit.blit b) with
+ | Some (vm2, f2) =>
+ match build_var vm2 (Lit.blit c) with
+ | Some (vm3, f3) =>
+ let f1' := if Lit.is_pos a then f1 else N f1 in
+ let f2' := if Lit.is_pos b then f2 else N f2 in
+ let f3' := if Lit.is_pos c then f3 else N f3 in
+ Some (vm3, D (Cj f1' f2') (Cj (N f1') f3'))
+ | None => None
+ end
+ | None => None
+ end
+ | None => None
+ end
+ end.
+
+ End Build_form.
+
+
+ Definition build_var :=
+ foldi_down_cont
+ (fun i cont vm h => build_hform cont vm (get_form h))
+ (PArray.length t_form) 0 (fun _ _ => None).
+
+ Definition build_form := build_hform build_var.
+
+
+ Definition build_nlit vm l :=
+ let l := Lit.neg l in
+ match build_form vm (get_form (Lit.blit l)) with
+ | Some (vm,f) =>
+ let f := if Lit.is_pos l then f else N f in
+ Some (vm,f)
+ | None => None
+ end.
+
+
+ Fixpoint build_clause_aux vm (cl:list _lit) {struct cl} :
+ option (vmap * BFormula (Formula Z)) :=
+ match cl with
+ | nil => None
+ | l::nil => build_nlit vm l
+ | l::cl =>
+ match build_nlit vm l with
+ | Some (vm,bf1) =>
+ match build_clause_aux vm cl with
+ | Some (vm,bf2) => Some (vm, Cj bf1 bf2)
+ | _ => None
+ end
+ | None => None
+ end
+ end.
+
+ Definition build_clause vm cl :=
+ match build_clause_aux vm cl with
+ | Some (vm, bf) => Some (vm, I bf (FF _))
+ | None => None
+ end.
+
+ Definition get_eq (l:_lit) (f : Atom.hatom -> Atom.hatom -> C.t) :=
+ if Lit.is_pos l then
+ match get_form (Lit.blit l) with
+ | Form.Fatom xa =>
+ match get_atom xa with
+ | Atom.Abop (Atom.BO_eq _) a b => f a b
+ | _ => C._true
+ end
+ | _ => C._true
+ end
+ else C._true.
+ Register get_eq as PrimInline.
+
+ Definition get_not_le (l:_lit) (f : Atom.hatom -> Atom.hatom -> C.t) :=
+ if negb (Lit.is_pos l) then
+ match get_form (Lit.blit l) with
+ | Form.Fatom xa =>
+ match get_atom xa with
+ | Atom.Abop (Atom.BO_Zle) a b => f a b
+ | _ => C._true
+ end
+ | _ => C._true
+ end
+ else C._true.
+ Register get_not_le as PrimInline.
+
+ Definition check_micromega cl c : C.t :=
+ match build_clause empty_vmap cl with
+ | Some (_, bf) =>
+ if ZTautoChecker bf c then cl
+ else C._true
+ | None => C._true
+ end.
+
+ Definition check_diseq l : C.t :=
+ match get_form (Lit.blit l) with
+ |Form.For a =>
+ if PArray.length a == 3 then
+ let a_eq_b := a.[0] in
+ let not_a_le_b := a.[1] in
+ let not_b_le_a := a.[2] in
+ get_eq a_eq_b (fun a b => get_not_le not_a_le_b (fun a' b' => get_not_le not_b_le_a (fun b'' a'' =>
+ if (a == a') && (a == a'') && (b == b') && (b == b'')
+ then (Lit.lit (Lit.blit l))::nil
+ else
+ if (a == b') && (a == b'') && (b == a') && (b == a'')
+ then (Lit.lit (Lit.blit l))::nil
+ else C._true)))
+ else C._true
+ | _ => C._true
+ end.
+
+
+ Section Proof.
+
+ Variables (t_i : array typ_eqb)
+ (t_func : array (Atom.tval t_i))
+ (ch_atom : Atom.check_atom t_atom)
+ (ch_form : Form.check_form t_form)
+ (wt_t_atom : Atom.wt t_i t_func t_atom).
+
+ Local Notation check_atom :=
+ (check_aux t_i t_func (get_type t_i t_func t_atom)).
+
+ Local Notation interp_form_hatom :=
+ (Atom.interp_form_hatom t_i t_func t_atom).
+
+ Local Notation rho :=
+ (Form.interp_state_var interp_form_hatom t_form).
+
+ Local Notation t_interp := (t_interp t_i t_func t_atom).
+
+ Local Notation interp_atom :=
+ (interp_aux t_i t_func (get t_interp)).
+
+ Let wf_t_atom : Atom.wf t_atom.
+ Proof. destruct (Atom.check_atom_correct _ ch_atom); auto. Qed.
+
+ Let def_t_atom : default t_atom = Atom.Acop Atom.CO_xH.
+ Proof. destruct (Atom.check_atom_correct _ ch_atom); auto. Qed.
+
+ Let def_t_form : default t_form = Form.Ftrue.
+ Proof.
+ destruct (Form.check_form_correct interp_form_hatom _ ch_form) as [H _]; destruct H; auto.
+ Qed.
+
+ Let wf_t_form : Form.wf t_form.
+ Proof.
+ destruct (Form.check_form_correct interp_form_hatom _ ch_form) as [H _]; destruct H; auto.
+ Qed.
+
+ Let wf_rho : Valuation.wf rho.
+ Proof.
+ destruct (Form.check_form_correct interp_form_hatom _ ch_form); auto.
+ Qed.
+
+ Lemma build_positive_atom_aux_correct :
+ forall (build_positive : hatom -> option positive),
+ (forall (h : hatom) p,
+ build_positive h = Some p ->
+ t_interp.[h] = Bval t_i Typ.Tpositive p) ->
+ forall (a:atom) (p:positive),
+ build_positive_atom_aux build_positive a = Some p ->
+ interp_atom a = Bval t_i Typ.Tpositive p.
+ Proof.
+ intros build_positive Hbuild a; case a; simpl; try discriminate; auto.
+ destruct c; simpl; try discriminate; intros p H1; inversion_clear H1; auto.
+ destruct u; simpl; try discriminate;
+ intros i p; case_eq (build_positive i); simpl; try discriminate; intros q H1 H2; inversion_clear H2; rewrite (Hbuild _ _ H1); auto.
+ Qed.
+
+ Lemma build_positive_correct : forall h p,
+ build_positive h = Some p ->
+ t_interp.[h] = Bval t_i Typ.Tpositive p.
+ Proof.
+ unfold build_positive.
+ apply foldi_down_cont_ind;intros;try discriminate.
+ rewrite t_interp_wf;trivial.
+ apply build_positive_atom_aux_correct with cont;trivial.
+ Qed.
+
+ Lemma build_positive_atom_correct :
+ forall (a:atom) (p:positive),
+ build_positive_atom a = Some p ->
+ interp_atom a = Bval t_i Typ.Tpositive p.
+ Proof.
+ apply build_positive_atom_aux_correct;apply build_positive_correct.
+ Qed.
+
+ Lemma build_z_atom_aux_correct :
+ forall a z,
+ build_z_atom_aux a = Some z ->
+ interp_atom a = Bval t_i Typ.TZ z.
+ Proof.
+ intros a z.
+ destruct a;simpl;try discriminate;auto.
+ destruct c;[discriminate | intros Heq;inversion Heq;trivial].
+ destruct u;try discriminate;
+ case_eq (build_positive i);try discriminate;
+ intros p Hp Heq;inversion Heq;clear Heq;subst;
+ rewrite (build_positive_correct _ _ Hp);trivial.
+ Qed.
+
+ Lemma build_z_correct :
+ forall h z, build_z h = Some z -> t_interp.[h] = Bval t_i Typ.TZ z.
+ Proof.
+ unfold build_z;intros h z;rewrite t_interp_wf;trivial.
+ apply build_z_atom_aux_correct;discriminate.
+ Qed.
+
+ Lemma build_z_atom_correct :
+ forall a z, build_z_atom a = Some z ->
+ interp_atom a = Bval t_i Typ.TZ z.
+ Proof.
+ apply build_z_atom_aux_correct.
+ Qed.
+
+ Definition wf_vmap (vm:vmap) :=
+ (List.length (snd vm) = nat_of_P (fst vm) - 1)%nat /\
+ List.forallb (fun h => check_atom h Typ.TZ) (snd vm).
+
+ Fixpoint bounded_pexpr (p:positive) (pe:PExpr Z) :=
+ match pe with
+ | PEc _ => true
+ | PEX x => Zlt_bool (Zpos x) (Zpos p)
+ | PEadd pe1 pe2
+ | PEsub pe1 pe2
+ | PEmul pe1 pe2 => bounded_pexpr p pe1 && bounded_pexpr p pe2
+ | PEopp pe => bounded_pexpr p pe
+ | PEpow pe _ => bounded_pexpr p pe
+ end.
+
+ Definition bounded_formula (p:positive) (f:Formula Z) :=
+ bounded_pexpr p (f.(Flhs)) && bounded_pexpr p (f.(Frhs)).
+
+ Fixpoint bounded_bformula (p:positive) (bf:BFormula (Formula Z)) :=
+ match bf with
+ | TT | FF | X _ => true
+ | A f => bounded_formula p f
+ | Cj bf1 bf2
+ | D bf1 bf2
+ | I bf1 bf2 => bounded_bformula p bf1 && bounded_bformula p bf2
+ | N bf => bounded_bformula p bf
+ end.
+
+ Definition interp_vmap (vm:vmap) p :=
+ match nth_error (snd vm) (nat_of_P (fst vm - p) - 1)%nat with
+ | Some a =>
+ let (t,v) := interp_atom a in
+ match Typ.cast t Typ.TZ with
+ | Typ.Cast k => k (Typ.interp t_i) v
+ | _ => 0%Z
+ end
+ | _ => 0%Z
+ end.
+
+ Lemma find_var_aux_lt :
+ forall h p lvm pvm,
+ find_var_aux h pvm lvm = Some p ->
+ Datatypes.length lvm = (nat_of_P pvm - 1)%nat ->
+ (nat_of_P p < nat_of_P pvm)%nat.
+ Proof.
+ induction lvm;simpl;try discriminate.
+ intros pvm Heq1 Heq.
+ assert (1 < pvm)%positive.
+ rewrite Plt_lt;change (nat_of_P 1) with 1%nat ;omega.
+ assert (Datatypes.length lvm = nat_of_P (Ppred pvm) - 1)%nat.
+ rewrite Ppred_minus, Pminus_minus;trivial.
+ change (nat_of_P 1) with 1%nat ;try omega.
+ revert Heq1.
+ destruct (Atom.reflect_eqb h a);subst.
+ intros Heq1;inversion Heq1;clear Heq1;subst;omega.
+ intros Heq1;apply IHlvm in Heq1;trivial.
+ apply lt_trans with (1:= Heq1);omega.
+ Qed.
+
+ Lemma build_pexpr_atom_aux_correct_z :
+ forall (h : atom) (vm vm' : vmap) (pe : PExpr Z),
+ check_atom h Typ.TZ ->
+ match build_z_atom h with
+ | Some z => (vm, PEc z)
+ | None => let (vm0, p) := find_var vm h in (vm0, PEX Z p)
+ end = (vm', pe) ->
+ wf_vmap vm ->
+ wf_vmap vm' /\
+ (nat_of_P (fst vm) <= nat_of_P (fst vm'))%nat /\
+ (forall p,
+ (nat_of_P p < nat_of_P (fst vm))%nat ->
+ nth_error (snd vm) (nat_of_P (fst vm - p) - 1) =
+ nth_error (snd vm')(nat_of_P (fst vm' - p) - 1)) /\
+ bounded_pexpr (fst vm') pe /\
+ interp_atom h = Bval t_i Typ.TZ (Zeval_expr (interp_vmap vm') pe).
+ Proof.
+ intros h vm vm' pe Hh.
+ case_eq (build_z_atom h).
+ intros z Hb Heq;inversion Heq;clear Heq;subst.
+ intros (Hwf1, Hwf2).
+ repeat split;auto with zarith.
+ rewrite (build_z_atom_correct _ _ Hb);trivial.
+ intros _;unfold find_var;destruct vm as (pvm,lvm).
+ case_eq (find_var_aux h pvm lvm).
+ intros p Hf Heq;inversion Heq;clear Heq;subst.
+ intros (Hwf1, Hwf2);repeat split;auto with zarith.
+ simpl; unfold is_true;rewrite <- Zlt_is_lt_bool.
+ rewrite <- !Z_of_nat_of_P; apply inj_lt;simpl in Hwf1.
+ apply find_var_aux_lt with (1:= Hf);trivial.
+ revert lvm pvm p Hf Hwf1 Hwf2.
+ unfold interp_vmap;simpl.
+ induction lvm;simpl;try discriminate.
+ intros pvm p Heq1 Heq.
+ assert (1 < pvm)%positive.
+ rewrite Plt_lt;change (nat_of_P 1) with 1%nat ;omega.
+ assert (Datatypes.length lvm = nat_of_P (Ppred pvm) - 1)%nat.
+ rewrite Ppred_minus, Pminus_minus;trivial.
+ change (nat_of_P 1) with 1%nat ;try omega.
+ revert Heq1.
+ destruct (Atom.reflect_eqb h a);subst.
+ intros Heq1;inversion Heq1;clear Heq1;subst.
+ unfold is_true;rewrite andb_true_iff;intros (H1,H2).
+ assert (1 < nat_of_P pvm)%nat by (rewrite Plt_lt in H;trivial).
+ assert (W:=nat_of_P_pos (Ppred pvm)).
+ assert (nat_of_P (pvm - Ppred pvm) - 1 = 0)%nat.
+ rewrite Pminus_minus;try omega.
+ apply Plt_lt;omega.
+ rewrite H4;simpl.
+ destruct (check_aux_interp_aux _ _ _ wf_t_atom _ _ H1) as (z,Hz).
+ rewrite Hz;trivial.
+ unfold is_true;rewrite andb_true_iff;intros Heq1 (H1,H2).
+ assert (W:= find_var_aux_lt _ _ _ _ Heq1 H0).
+ assert (nat_of_P (pvm - p) - 1 = S (nat_of_P (Ppred pvm - p) - 1))%nat.
+ assert (W1:= W);rewrite <- Plt_lt in W.
+ rewrite !Pminus_minus;trivial.
+ assert (W2:=nat_of_P_pos (Ppred pvm)).
+ omega.
+ rewrite Plt_lt.
+ apply lt_trans with (1:= W1);omega.
+ rewrite H3;simpl;apply IHlvm;trivial.
+ intros _ Heq;inversion Heq;clear Heq;subst;unfold wf_vmap;
+ simpl;intros (Hwf1, Hwf2);repeat split;simpl.
+ rewrite Psucc_S; assert (W:= nat_of_P_pos pvm);omega.
+ rewrite Hh;trivial.
+ rewrite Psucc_S;omega.
+ intros p Hlt;
+ assert (nat_of_P (Psucc pvm - p) - 1 = S (nat_of_P (pvm - p) - 1))%nat.
+ assert (W1:= Hlt);rewrite <- Plt_lt in W1.
+ rewrite !Pminus_minus;trivial.
+ rewrite Psucc_S;omega.
+ rewrite Plt_lt, Psucc_S;omega.
+ rewrite H;trivial.
+ unfold is_true;rewrite <- Zlt_is_lt_bool.
+ rewrite Zpos_succ_morphism;omega.
+ destruct (check_aux_interp_aux _ _ _ wf_t_atom _ _ Hh) as (z,Hz).
+ rewrite Hz;unfold interp_vmap;simpl.
+ assert (nat_of_P (Psucc pvm - pvm) = 1%nat).
+ rewrite Pplus_one_succ_l, Pminus_minus, Pplus_plus.
+ change (nat_of_P 1) with 1%nat;omega.
+ rewrite Plt_lt, Pplus_plus.
+ change (nat_of_P 1) with 1%nat;omega.
+ rewrite H;simpl;rewrite Hz;trivial.
+ Qed.
+
+ Lemma bounded_pexpr_le :
+ forall p p',
+ (nat_of_P p <= nat_of_P p')%nat ->
+ forall pe,
+ bounded_pexpr p pe -> bounded_pexpr p' pe.
+ Proof.
+ unfold is_true;induction pe;simpl;trivial.
+ rewrite <- !Zlt_is_lt_bool; rewrite <- Ple_le in H.
+ intros H1;apply Zlt_le_trans with (1:= H1);trivial.
+ rewrite !andb_true_iff;intros (H1,H2);auto.
+ rewrite !andb_true_iff;intros (H1,H2);auto.
+ rewrite !andb_true_iff;intros (H1,H2);auto.
+ Qed.
+
+ Lemma interp_pexpr_le :
+ forall vm vm',
+ (forall (p : positive),
+ (nat_of_P p < nat_of_P (fst vm))%nat ->
+ nth_error (snd vm) (nat_of_P (fst vm - p) - 1) =
+ nth_error (snd vm') (nat_of_P (fst vm' - p) - 1)) ->
+ forall pe,
+ bounded_pexpr (fst vm) pe ->
+ Zeval_expr (interp_vmap vm) pe = Zeval_expr (interp_vmap vm') pe.
+ Proof.
+ intros vm vm' Hnth.
+ unfold is_true;induction pe;simpl;trivial.
+ unfold interp_vmap, is_true;rewrite <- Zlt_is_lt_bool.
+ intros Hlt;rewrite Hnth;trivial.
+ rewrite <- Plt_lt;trivial.
+ rewrite andb_true_iff;intros (H1,H2);rewrite IHpe1, IHpe2;trivial.
+ rewrite andb_true_iff;intros (H1,H2);rewrite IHpe1, IHpe2;trivial.
+ rewrite andb_true_iff;intros (H1,H2);rewrite IHpe1, IHpe2;trivial.
+ intros H1;rewrite IHpe;trivial.
+ intros H1;rewrite IHpe;trivial.
+ Qed.
+
+ Lemma build_pexpr_atom_aux_correct :
+ forall (build_pexpr : vmap -> hatom -> vmap * PExpr Z) h i,
+ (forall h' vm vm' pe,
+ h' < h ->
+ Typ.eqb (get_type t_i t_func t_atom h') Typ.TZ ->
+ build_pexpr vm h' = (vm',pe) ->
+ wf_vmap vm ->
+ wf_vmap vm' /\
+ (nat_of_P (fst vm) <= nat_of_P (fst vm'))%nat /\
+ (forall p,
+ (nat_of_P p < nat_of_P (fst vm))%nat ->
+ nth_error (snd vm) (nat_of_P (fst vm - p) - 1) =
+ nth_error (snd vm')(nat_of_P (fst vm' - p) - 1)) /\
+ bounded_pexpr (fst vm') pe /\
+ t_interp.[h'] = Bval t_i Typ.TZ (Zeval_expr (interp_vmap vm') pe))->
+ forall a vm vm' pe,
+ h < i ->
+ lt_atom h a ->
+ check_atom a Typ.TZ ->
+ build_pexpr_atom_aux build_pexpr vm a = (vm',pe) ->
+ wf_vmap vm ->
+ wf_vmap vm' /\
+ (nat_of_P (fst vm) <= nat_of_P (fst vm'))%nat /\
+ (forall p,
+ (nat_of_P p < nat_of_P (fst vm))%nat ->
+ nth_error (snd vm) (nat_of_P (fst vm - p) - 1) =
+ nth_error (snd vm')(nat_of_P (fst vm' - p) - 1)) /\
+ bounded_pexpr (fst vm') pe /\
+ interp_atom a = Bval t_i Typ.TZ (Zeval_expr (interp_vmap vm') pe).
+ Proof.
+ intros build_pexpr h i Hb a.
+Opaque build_z_atom interp_aux.
+ case a;simpl;
+ try (intros;apply build_pexpr_atom_aux_correct_z;trivial;fail).
+
+ intros u; destruct u; intros j vm vm' pe _H_ Hlt Ht;
+ try (intros;apply build_pexpr_atom_aux_correct_z;trivial;fail).
+ generalize (Hb j vm vm').
+ destruct (build_pexpr vm j) as (vm0, pe0); intro W1.
+ intros Heq Hwf;inversion Heq;clear Heq;subst.
+ assert (W:= W1 pe0 Hlt Ht (refl_equal _) Hwf).
+ decompose [and] W;clear W W1.
+ destruct H;repeat split;trivial.
+Transparent interp_aux.
+ simpl;rewrite H4;trivial.
+
+ intro b; destruct b; intros j k vm vm' pe HH Hlt Ht;
+ try (intros;apply build_pexpr_atom_aux_correct_z;trivial;fail).
+
+ generalize (Hb j vm). destruct (build_pexpr vm j) as (vm0,pe0). intro IH.
+ generalize (Hb k vm0). destruct (build_pexpr vm0 k) as (vm1,pe1). intro IH'.
+ simpl in Ht;unfold is_true in Ht;rewrite !andb_true_iff in Ht;
+ decompose [and] Ht;clear Ht.
+ unfold is_true in Hlt;rewrite andb_true_iff in Hlt;destruct Hlt as (Hlt1, Hlt2).
+ intros Heq Hwf;inversion Heq;clear Heq;subst.
+ assert (W:= IH _ _ Hlt1 H (refl_equal _) Hwf);clear IH.
+ decompose [and] W;clear W.
+ assert (W:= IH' _ _ Hlt2 H0 (refl_equal _) H1);clear IH'.
+ decompose [and] W;clear W.
+ destruct H5;repeat split;trivial.
+ apply le_trans with (1:= H3);trivial.
+ intros p Hlt;rewrite H2, H7;trivial.
+ apply lt_le_trans with (1:=Hlt);trivial.
+ simpl;rewrite H9, andb_true_r.
+ apply (bounded_pexpr_le (fst vm0));auto with arith.
+ simpl;rewrite H6, H11;simpl.
+ rewrite (interp_pexpr_le _ _ H7 _ H4);trivial.
+
+ generalize (Hb j vm). destruct (build_pexpr vm j) as (vm0,pe0); intro IH.
+ generalize (Hb k vm0). destruct (build_pexpr vm0 k) as (vm1,pe1). intro IH'.
+ simpl in Ht;unfold is_true in Ht;rewrite !andb_true_iff in Ht;
+ decompose [and] Ht;clear Ht.
+ unfold is_true in Hlt;rewrite andb_true_iff in Hlt;destruct Hlt as (Hlt1, Hlt2).
+ intros Heq Hwf;inversion Heq;clear Heq;subst.
+ assert (W:= IH _ _ Hlt1 H (refl_equal _) Hwf);clear IH.
+ decompose [and] W;clear W.
+ assert (W:= IH' _ _ Hlt2 H0 (refl_equal _) H1);clear IH'.
+ decompose [and] W;clear W.
+ destruct H5;repeat split;trivial.
+ apply le_trans with (1:= H3);trivial.
+ intros p Hlt;rewrite H2, H7;trivial.
+ apply lt_le_trans with (1:=Hlt);trivial.
+ simpl;rewrite H9, andb_true_r.
+ apply (bounded_pexpr_le (fst vm0));auto with arith.
+ simpl;rewrite H6, H11;simpl.
+ rewrite (interp_pexpr_le _ _ H7 _ H4);trivial.
+
+ generalize (Hb j vm). destruct (build_pexpr vm j) as (vm0,pe0); intro IH.
+ generalize (Hb k vm0). destruct (build_pexpr vm0 k) as (vm1,pe1). intro IH'.
+ simpl in Ht;unfold is_true in Ht;rewrite !andb_true_iff in Ht;
+ decompose [and] Ht;clear Ht.
+ unfold is_true in Hlt;rewrite andb_true_iff in Hlt;destruct Hlt as (Hlt1, Hlt2).
+ intros Heq Hwf;inversion Heq;clear Heq;subst.
+ assert (W:= IH _ _ Hlt1 H (refl_equal _) Hwf);clear IH.
+ decompose [and] W;clear W.
+ assert (W:= IH' _ _ Hlt2 H0 (refl_equal _) H1);clear IH'.
+ decompose [and] W;clear W.
+ destruct H5;repeat split;trivial.
+ apply le_trans with (1:= H3);trivial.
+ intros p Hlt;rewrite H2, H7;trivial.
+ apply lt_le_trans with (1:=Hlt);trivial.
+ simpl;rewrite H9, andb_true_r.
+ apply (bounded_pexpr_le (fst vm0));auto with arith.
+ simpl;rewrite H6, H11;simpl.
+ rewrite (interp_pexpr_le _ _ H7 _ H4);trivial.
+ Qed.
+Transparent build_z_atom.
+
+ Lemma build_pexpr_atom_aux_correct' :
+ forall (build_pexpr : vmap -> hatom -> vmap * PExpr Z),
+ (forall h' vm vm' pe,
+ Typ.eqb (get_type t_i t_func t_atom h') Typ.TZ ->
+ build_pexpr vm h' = (vm',pe) ->
+ wf_vmap vm ->
+ wf_vmap vm' /\
+ (nat_of_P (fst vm) <= nat_of_P (fst vm'))%nat /\
+ (forall p,
+ (nat_of_P p < nat_of_P (fst vm))%nat ->
+ nth_error (snd vm) (nat_of_P (fst vm - p) - 1) =
+ nth_error (snd vm')(nat_of_P (fst vm' - p) - 1)) /\
+ bounded_pexpr (fst vm') pe /\
+ t_interp.[h'] = Bval t_i Typ.TZ (Zeval_expr (interp_vmap vm') pe))->
+ forall a vm vm' pe,
+ check_atom a Typ.TZ ->
+ build_pexpr_atom_aux build_pexpr vm a = (vm',pe) ->
+ wf_vmap vm ->
+ wf_vmap vm' /\
+ (nat_of_P (fst vm) <= nat_of_P (fst vm'))%nat /\
+ (forall p,
+ (nat_of_P p < nat_of_P (fst vm))%nat ->
+ nth_error (snd vm) (nat_of_P (fst vm - p) - 1) =
+ nth_error (snd vm')(nat_of_P (fst vm' - p) - 1)) /\
+ bounded_pexpr (fst vm') pe /\
+ interp_atom a = Bval t_i Typ.TZ (Zeval_expr (interp_vmap vm') pe).
+ Proof.
+ intros build_pexpr Hb a.
+Opaque build_z_atom interp_aux.
+ case a;simpl;
+ try (intros;apply build_pexpr_atom_aux_correct_z;trivial;fail).
+ intro u; destruct u; intros i vm vm' pe Ht;
+ try (intros;apply build_pexpr_atom_aux_correct_z;trivial;fail).
+ generalize (Hb i vm); clear Hb.
+ destruct (build_pexpr vm i) as (vm0,pe0); intro IH.
+ intros Heq Hwf;inversion Heq;clear Heq;subst.
+ assert (W:= IH vm' pe0 Ht (refl_equal _) Hwf).
+ decompose [and] W;clear W IH.
+ destruct H;repeat split;trivial.
+Transparent interp_aux.
+ simpl;rewrite H4;trivial.
+
+ intro b; destruct b; intros j k vm vm' pe Ht;
+ try (intros;apply build_pexpr_atom_aux_correct_z;trivial;fail).
+ generalize (Hb j vm).
+ destruct (build_pexpr vm j) as (vm0,pe0); intro IH.
+ generalize (Hb k vm0); clear Hb.
+ destruct (build_pexpr vm0 k) as (vm1,pe1); intro IH'.
+ simpl in Ht;unfold is_true in Ht;rewrite !andb_true_iff in Ht;
+ decompose [and] Ht;clear Ht.
+ intros Heq Hwf;inversion Heq;clear Heq;subst.
+ assert (W:= IH _ _ H (refl_equal _) Hwf);clear IH.
+ decompose [and] W;clear W.
+ assert (W:= IH' _ _ H0 (refl_equal _) H1);clear IH'.
+ decompose [and] W;clear W.
+ destruct H5;repeat split;trivial.
+ apply le_trans with (1:= H3);trivial.
+ intros p Hlt;rewrite H2, H7;trivial.
+ apply lt_le_trans with (1:=Hlt);trivial.
+ simpl;rewrite H9, andb_true_r.
+ apply (bounded_pexpr_le (fst vm0));auto with arith.
+ simpl;rewrite H6, H11;simpl.
+ rewrite (interp_pexpr_le _ _ H7 _ H4);trivial.
+
+ generalize (Hb j vm).
+ destruct (build_pexpr vm j) as (vm0,pe0); intro IH.
+ generalize (Hb k vm0); clear Hb.
+ destruct (build_pexpr vm0 k) as (vm1,pe1); intro IH'.
+ simpl in Ht;unfold is_true in Ht;rewrite !andb_true_iff in Ht;
+ decompose [and] Ht;clear Ht.
+ intros Heq Hwf;inversion Heq;clear Heq;subst.
+ assert (W:= IH _ _ H (refl_equal _) Hwf);clear IH.
+ decompose [and] W;clear W.
+ assert (W:= IH' _ _ H0 (refl_equal _) H1);clear IH'.
+ decompose [and] W;clear W.
+ destruct H5;repeat split;trivial.
+ apply le_trans with (1:= H3);trivial.
+ intros p Hlt;rewrite H2, H7;trivial.
+ apply lt_le_trans with (1:=Hlt);trivial.
+ simpl;rewrite H9, andb_true_r.
+ apply (bounded_pexpr_le (fst vm0));auto with arith.
+ simpl;rewrite H6, H11;simpl.
+ rewrite (interp_pexpr_le _ _ H7 _ H4);trivial.
+
+ generalize (Hb j vm).
+ destruct (build_pexpr vm j) as (vm0,pe0); intro IH.
+ generalize (Hb k vm0); clear Hb.
+ destruct (build_pexpr vm0 k) as (vm1,pe1); intro IH'.
+ simpl in Ht;unfold is_true in Ht;rewrite !andb_true_iff in Ht;
+ decompose [and] Ht;clear Ht.
+ intros Heq Hwf;inversion Heq;clear Heq;subst.
+ assert (W:= IH _ _ H (refl_equal _) Hwf);clear IH.
+ decompose [and] W;clear W.
+ assert (W:= IH' _ _ H0 (refl_equal _) H1);clear IH'.
+ decompose [and] W;clear W.
+ destruct H5;repeat split;trivial.
+ apply le_trans with (1:= H3);trivial.
+ intros p Hlt;rewrite H2, H7;trivial.
+ apply lt_le_trans with (1:=Hlt);trivial.
+ simpl;rewrite H9, andb_true_r.
+ apply (bounded_pexpr_le (fst vm0));auto with arith.
+ simpl;rewrite H6, H11;simpl.
+ rewrite (interp_pexpr_le _ _ H7 _ H4);trivial.
+Qed.
+Transparent build_z_atom.
+
+ Lemma build_pexpr_correct_aux :
+ forall h vm vm' pe,
+ (to_Z h < to_Z (length t_atom))%Z ->
+ Typ.eqb (get_type t_i t_func t_atom h) Typ.TZ ->
+ build_pexpr vm h = (vm',pe) ->
+ wf_vmap vm ->
+ wf_vmap vm' /\
+ (nat_of_P (fst vm) <= nat_of_P (fst vm'))%nat /\
+ (forall p,
+ (nat_of_P p < nat_of_P (fst vm))%nat ->
+ nth_error (snd vm) (nat_of_P (fst vm - p) - 1) =
+ nth_error (snd vm')(nat_of_P (fst vm' - p) - 1)) /\
+ bounded_pexpr (fst vm') pe /\
+ t_interp.[h] = Bval t_i Typ.TZ (Zeval_expr (interp_vmap vm') pe).
+ Proof.
+ unfold build_pexpr.
+ apply foldi_down_cont_ZInd.
+ intros z Hz h vm vm' pe Hh.
+ assert (W:=to_Z_bounded h);rewrite to_Z_0 in Hz.
+ elimtype False;omega.
+ intros i cont Hpos Hlen Hrec.
+ intros h vm vm' pe;unfold is_true;rewrite <-ltb_spec;intros.
+ rewrite t_interp_wf;trivial.
+ apply build_pexpr_atom_aux_correct with cont h i;trivial.
+ intros;apply Hrec;auto.
+ unfold is_true in H3;rewrite ltb_spec in H, H3;omega.
+ unfold wf, is_true in wf_t_atom.
+ rewrite forallbi_spec in wf_t_atom.
+ apply wf_t_atom.
+ rewrite ltb_spec in H;rewrite leb_spec in Hlen;rewrite ltb_spec;omega.
+ unfold wt, is_true in wt_t_atom.
+ rewrite forallbi_spec in wt_t_atom.
+ change (is_true(Typ.eqb (get_type t_i t_func t_atom h) Typ.TZ)) in H0.
+ rewrite Typ.eqb_spec in H0;rewrite <- H0.
+ apply wt_t_atom.
+ rewrite ltb_spec in H;rewrite leb_spec in Hlen;rewrite ltb_spec;omega.
+ Qed.
+
+ Lemma build_pexpr_correct :
+ forall h vm vm' pe,
+ Typ.eqb (get_type t_i t_func t_atom h) Typ.TZ ->
+ build_pexpr vm h = (vm',pe) ->
+ wf_vmap vm ->
+ wf_vmap vm' /\
+ (nat_of_P (fst vm) <= nat_of_P (fst vm'))%nat /\
+ (forall p,
+ (nat_of_P p < nat_of_P (fst vm))%nat ->
+ nth_error (snd vm) (nat_of_P (fst vm - p) - 1) =
+ nth_error (snd vm')(nat_of_P (fst vm' - p) - 1)) /\
+ bounded_pexpr (fst vm') pe /\
+ t_interp.[h] = Bval t_i Typ.TZ (Zeval_expr (interp_vmap vm') pe).
+ Proof.
+ intros.
+ case_eq (h < length t_atom);intros.
+ apply build_pexpr_correct_aux;trivial.
+ rewrite <- ltb_spec;trivial.
+ revert H;unfold get_type,get_type'.
+ rewrite PArray.get_outofbound, default_t_interp.
+ revert H0.
+ unfold build_pexpr.
+ case_eq (0 < length t_atom);intros Heq.
+ rewrite foldi_down_cont_gt;trivial.
+ rewrite PArray.get_outofbound;trivial.
+ Opaque build_z_atom.
+ rewrite def_t_atom;simpl.
+ intros HH H;revert HH H1;apply build_pexpr_atom_aux_correct_z;trivial.
+ rewrite foldi_down_cont_eq;trivial.
+ rewrite PArray.get_outofbound;trivial.
+ rewrite def_t_atom;simpl.
+ intros HH H;revert HH H1;apply build_pexpr_atom_aux_correct_z;trivial.
+ rewrite <- not_true_iff_false, ltb_spec, to_Z_0 in Heq.
+ assert (W:= to_Z_bounded (length t_atom)).
+ apply to_Z_inj;rewrite to_Z_0;omega.
+ rewrite length_t_interp;trivial.
+ Qed.
+Transparent build_z_atom.
+
+ Lemma build_pexpr_atom_correct :
+ forall a vm vm' pe,
+ check_atom a Typ.TZ ->
+ build_pexpr_atom_aux build_pexpr vm a = (vm',pe) ->
+ wf_vmap vm ->
+ wf_vmap vm' /\
+ (nat_of_P (fst vm) <= nat_of_P (fst vm'))%nat /\
+ (forall p,
+ (nat_of_P p < nat_of_P (fst vm))%nat ->
+ nth_error (snd vm) (nat_of_P (fst vm - p) - 1) =
+ nth_error (snd vm')(nat_of_P (fst vm' - p) - 1)) /\
+ bounded_pexpr (fst vm') pe /\
+ interp_atom a = Bval t_i Typ.TZ (Zeval_expr (interp_vmap vm') pe).
+ Proof.
+ apply build_pexpr_atom_aux_correct';apply build_pexpr_correct.
+ Qed.
+
+ Lemma build_formula_atom_correct :
+ forall a vm vm' f t,
+ check_atom a t ->
+ build_formula_atom vm a = Some (vm',f) ->
+ wf_vmap vm ->
+ wf_vmap vm' /\
+ (nat_of_P (fst vm) <= nat_of_P (fst vm'))%nat /\
+ (forall p,
+ (nat_of_P p < nat_of_P (fst vm))%nat ->
+ nth_error (snd vm) (nat_of_P (fst vm - p) - 1) =
+ nth_error (snd vm')(nat_of_P (fst vm' - p) - 1)) /\
+ bounded_formula (fst vm') f /\
+ (interp_bool t_i (interp_atom a) <->Zeval_formula (interp_vmap vm') f).
+ Proof.
+ intros a vm vm' f t.
+ destruct a;simpl;try discriminate.
+ case_eq (build_op2 b);try discriminate.
+ intros o Heq Ht.
+ assert (Typ.eqb Typ.Tbool t && Typ.eqb (get_type t_i t_func t_atom i) Typ.TZ && Typ.eqb (get_type t_i t_func t_atom i0) Typ.TZ).
+ destruct b;try discriminate;trivial.
+ destruct t0;try discriminate;trivial.
+ unfold is_true in H;rewrite !andb_true_iff in H;decompose [and] H;clear H.
+ case_eq (build_pexpr vm i);intros vm0 pe1 Heq1.
+ case_eq (build_pexpr vm0 i0);intros vm1 pe2 Heq2.
+ intros H Hwf;inversion H;clear H;subst.
+ assert (W1:= build_pexpr_correct _ _ _ _ H3 Heq1 Hwf).
+ decompose [and] W1;clear W1.
+ assert (W1:= build_pexpr_correct _ _ _ _ H1 Heq2 H).
+ decompose [and] W1;clear W1.
+ split;trivial.
+ split;[ apply le_trans with (1:= H4);trivial | ].
+ split.
+ intros p Hlt;rewrite H0, H8;trivial.
+ apply lt_le_trans with (1:= Hlt);trivial.
+ split.
+ unfold bounded_formula;simpl;rewrite H10, andb_true_r.
+ apply (bounded_pexpr_le (fst vm0));auto with arith.
+ rewrite (interp_pexpr_le _ _ H8 _ H5) in H7.
+ rewrite H7,H12;destruct b;try discriminate;simpl in Heq |- *;
+ inversion Heq;clear Heq;subst;simpl.
+ symmetry;apply Zlt_is_lt_bool.
+ rewrite Zle_is_le_bool;tauto.
+ rewrite Zge_iff_le.
+ unfold Zge_bool;rewrite <- Zcompare_antisym.
+ rewrite Zle_is_le_bool;unfold Zle_bool.
+ destruct
+ (Zeval_expr (interp_vmap vm') pe2 ?= Zeval_expr (interp_vmap vm') pe1)%Z;
+ simpl;tauto.
+ symmetry;apply Zgt_is_gt_bool.
+ destruct t0;inversion H13;clear H13;subst.
+ simpl.
+ symmetry;apply (Zeq_is_eq_bool (Zeval_expr (interp_vmap vm') pe1) (Zeval_expr (interp_vmap vm') pe2)).
+ Qed.
+
+ Lemma build_formula_correct :
+ forall h' vm vm' f,
+ build_formula vm h' = Some (vm',f) ->
+ wf_vmap vm ->
+ wf_vmap vm' /\
+ (nat_of_P (fst vm) <= nat_of_P (fst vm'))%nat /\
+ (forall p,
+ (nat_of_P p < nat_of_P (fst vm))%nat ->
+ nth_error (snd vm) (nat_of_P (fst vm - p) - 1) =
+ nth_error (snd vm')(nat_of_P (fst vm' - p) - 1)) /\
+ bounded_formula (fst vm') f /\
+ (interp_form_hatom h' <-> Zeval_formula (interp_vmap vm') f).
+ Proof.
+ unfold build_formula;intros h.
+ unfold Atom.interp_form_hatom, Atom.interp_hatom.
+ rewrite t_interp_wf;trivial.
+ intros;apply build_formula_atom_correct with
+ (get_type t_i t_func t_atom h);trivial.
+ unfold wt, is_true in wt_t_atom;rewrite forallbi_spec in wt_t_atom.
+ case_eq (h < length t_atom);intros Heq;unfold get_type;auto.
+ unfold get_type'.
+ rewrite !PArray.get_outofbound, default_t_interp, def_t_atom;trivial; try reflexivity.
+ rewrite length_t_interp;trivial.
+ Qed.
+
+
+ Lemma build_not2_pos_correct : forall vm f l i,
+ bounded_bformula (fst vm) f -> (rho (Lit.blit l) <-> eval_f (Zeval_formula (interp_vmap vm)) f) -> Lit.is_pos l -> bounded_bformula (fst vm) (build_not2 i f) /\ (Form.interp interp_form_hatom t_form (Form.Fnot2 i l) <-> eval_f (Zeval_formula (interp_vmap vm)) (build_not2 i f)).
+ Proof.
+ simpl; intros vm f l i H1 H2 H3; split; unfold build_not2.
+ apply fold_ind; auto.
+ apply (fold_ind2 _ _ (fun b f' => b = true <-> eval_f (Zeval_formula (interp_vmap vm)) f')).
+ unfold Lit.interp; rewrite H3; auto.
+ intros b f' H4; rewrite negb_involutive; simpl; split.
+ intros Hb H5; apply H5; rewrite <- H4; auto.
+ intro H5; case_eq b; auto; intro H6; elim H5; intro H7; rewrite <- H4 in H7; rewrite H7 in H6; discriminate.
+ Qed.
+
+
+ Lemma build_not2_neg_correct : forall vm f l i,
+ bounded_bformula (fst vm) f -> (rho (Lit.blit l) <-> eval_f (Zeval_formula (interp_vmap vm)) f) -> Lit.is_pos l = false -> bounded_bformula (fst vm) (N (build_not2 i f)) /\ (Form.interp interp_form_hatom t_form (Form.Fnot2 i l) <-> eval_f (Zeval_formula (interp_vmap vm)) (N (build_not2 i f))).
+ Proof.
+ simpl; intros vm f l i H1 H2 H3; split; unfold build_not2.
+ apply fold_ind; auto.
+ apply (fold_ind2 _ _ (fun b f' => b = true <-> ~ eval_f (Zeval_formula (interp_vmap vm)) f')).
+ unfold Lit.interp; rewrite H3; unfold Var.interp; split.
+ intros H4 H5; rewrite <- H2 in H5; rewrite H5 in H4; discriminate.
+ intro H4; case_eq (rho (Lit.blit l)); auto; intro H5; elim H4; rewrite <- H2; auto.
+ intros b f' H4; rewrite negb_involutive; simpl; split.
+ intros Hb H5; apply H5; rewrite <- H4; auto.
+ intro H5; case_eq b; auto; intro H6; elim H5; intro H7; rewrite <- H4 in H7; rewrite H7 in H6; discriminate.
+ Qed.
+
+
+ Lemma bounded_bformula_le :
+ forall p p',
+ (nat_of_P p <= nat_of_P p')%nat ->
+ forall bf,
+ bounded_bformula p bf -> bounded_bformula p' bf.
+ Proof.
+ unfold is_true;induction bf;simpl;trivial.
+ destruct a;unfold bounded_formula;simpl.
+ rewrite andb_true_iff;intros (H1, H2).
+ rewrite (bounded_pexpr_le _ _ H _ H1), (bounded_pexpr_le _ _ H _ H2);trivial.
+ rewrite !andb_true_iff;intros (H1, H2);auto.
+ rewrite !andb_true_iff;intros (H1, H2);auto.
+ rewrite !andb_true_iff;intros (H1, H2);auto.
+ Qed.
+
+ Lemma interp_bformula_le :
+ forall vm vm',
+ (forall (p : positive),
+ (nat_of_P p < nat_of_P (fst vm))%nat ->
+ nth_error (snd vm) (nat_of_P (fst vm - p) - 1) =
+ nth_error (snd vm') (nat_of_P (fst vm' - p) - 1)) ->
+ forall bf,
+ bounded_bformula (fst vm) bf ->
+ (eval_f (Zeval_formula (interp_vmap vm)) bf <->
+ eval_f (Zeval_formula (interp_vmap vm')) bf).
+ Proof.
+ intros vm vm' Hnth.
+ unfold is_true;induction bf;simpl;try tauto.
+ destruct a;unfold bounded_formula;simpl.
+ rewrite andb_true_iff;intros (H1, H2).
+ rewrite !(interp_pexpr_le _ _ Hnth);tauto.
+ rewrite andb_true_iff;intros (H1,H2);rewrite IHbf1, IHbf2;tauto.
+ rewrite andb_true_iff;intros (H1,H2);rewrite IHbf1, IHbf2;tauto.
+ rewrite andb_true_iff;intros (H1,H2);rewrite IHbf1, IHbf2;tauto.
+ Qed.
+
+
+ Lemma build_hform_correct :
+ forall (build_var : vmap -> var -> option (vmap*BFormula (Formula Z))),
+ (forall v vm vm' bf,
+ build_var vm v = Some (vm', bf) ->
+ wf_vmap vm ->
+ wf_vmap vm' /\
+ (nat_of_P (fst vm) <= nat_of_P (fst vm'))%nat /\
+ (forall p,
+ (nat_of_P p < nat_of_P (fst vm))%nat ->
+ nth_error (snd vm) (nat_of_P (fst vm - p) - 1) =
+ nth_error (snd vm')(nat_of_P (fst vm' - p) - 1)) /\
+ bounded_bformula (fst vm') bf /\
+ (Var.interp rho v <-> eval_f (Zeval_formula (interp_vmap vm')) bf)) ->
+ forall f vm vm' bf,
+ build_hform build_var vm f = Some (vm', bf) ->
+ wf_vmap vm ->
+ wf_vmap vm' /\
+ (nat_of_P (fst vm) <= nat_of_P (fst vm'))%nat /\
+ (forall p,
+ (nat_of_P p < nat_of_P (fst vm))%nat ->
+ nth_error (snd vm) (nat_of_P (fst vm - p) - 1) =
+ nth_error (snd vm')(nat_of_P (fst vm' - p) - 1)) /\
+ bounded_bformula (fst vm') bf /\
+ (Form.interp interp_form_hatom t_form f <-> eval_f (Zeval_formula (interp_vmap vm')) bf).
+ Proof.
+ unfold build_hform; intros build_var Hbv [h| | |i l|l|l|l|a b|a b|a b c] vm vm' bf; try discriminate.
+ (* Fatom *)
+ case_eq (build_formula vm h); try discriminate; intros [vm0 f] Heq H1 H2; inversion H1; subst vm0; subst bf; apply build_formula_correct; auto.
+ (* Ftrue *)
+ intros H H1; inversion H; subst vm'; subst bf; split; auto; split; [omega| ]; do 4 split; auto.
+ (* Ffalse *)
+ intros H H1; inversion H; subst vm'; subst bf; split; auto; split; [omega| ]; do 3 (split; auto); discriminate.
+ (* Fnot2 *)
+ case_eq (build_var vm (Lit.blit l)); try discriminate; intros [vm0 f] Heq H H1; inversion H; subst vm0; subst bf; destruct (Hbv _ _ _ _ Heq H1) as [H2 [H3 [H4 [H5 H6]]]]; do 3 (split; auto); case_eq (Lit.is_pos l); [apply build_not2_pos_correct|apply build_not2_neg_correct]; auto.
+ (* Fand *)
+ simpl; unfold afold_left; case (length l == 0).
+ intro H; inversion H; subst vm'; subst bf; simpl; intro H1; split; auto; split; [omega| ]; do 3 (split; auto).
+ revert vm' bf; apply (foldi_ind2 _ _ (fun f1 b => forall vm' bf, f1 = Some (vm', bf) -> wf_vmap vm -> wf_vmap vm' /\ (Pos.to_nat (fst vm) <= Pos.to_nat (fst vm'))%nat /\ (forall p : positive, (Pos.to_nat p < Pos.to_nat (fst vm))%nat -> nth_error (snd vm) (Pos.to_nat (fst vm - p) - 1) = nth_error (snd vm') (Pos.to_nat (fst vm' - p) - 1)) /\ bounded_bformula (fst vm') bf /\ (b = true <-> eval_f (Zeval_formula (interp_vmap vm')) bf))).
+ intros vm' bf; case_eq (build_var vm (Lit.blit (l .[ 0]))); try discriminate; intros [vm0 f] Heq; case_eq (Lit.is_pos (l .[ 0])); intros Heq2 H1 H2; inversion H1; subst vm'; subst bf; destruct (Hbv _ _ _ _ Heq H2) as [H10 [H11 [H12 [H13 H14]]]]; do 4 (split; auto); unfold Lit.interp; rewrite Heq2; auto; simpl; split.
+ intros H3 H4; rewrite <- H14 in H4; rewrite H4 in H3; discriminate.
+ intro H3; case_eq (Var.interp rho (Lit.blit (l .[ 0]))); auto; intro H4; elim H3; rewrite <- H14; auto.
+ intros i a b _ H1; case a; try discriminate; intros [vm0 f0] IH vm' bf; case_eq (build_var vm0 (Lit.blit (l .[ i]))); try discriminate; intros [vm1 f1] Heq H2 H3; inversion H2; subst vm'; subst bf; destruct (IH _ _ (refl_equal (Some (vm0, f0))) H3) as [H5 [H6 [H7 [H8 H9]]]]; destruct (Hbv _ _ _ _ Heq H5) as [H10 [H11 [H12 [H13 H14]]]]; split; auto; split; [eauto with arith| ]; split.
+ intros p H15; rewrite H7; auto; apply H12; eauto with arith.
+ split.
+ simpl; rewrite (bounded_bformula_le _ _ H11 _ H8); case (Lit.is_pos (l .[ i])); rewrite H13; auto.
+ simpl; rewrite (interp_bformula_le _ _ H12 _ H8) in H9; rewrite <- H9; case_eq (Lit.is_pos (l .[ i])); intro Heq2; simpl; rewrite <- H14; unfold Lit.interp; rewrite Heq2; split; case (Var.interp rho (Lit.blit (l .[ i]))); try rewrite andb_true_r; try rewrite andb_false_r; try (intros; split; auto); try discriminate; intros [H20 H21]; auto.
+ (* For *)
+ simpl; unfold afold_left; case (length l == 0).
+ intro H; inversion H; subst vm'; subst bf; simpl; intro H1; split; auto; split; [omega| ]; do 3 (split; auto); discriminate.
+ revert vm' bf; apply (foldi_ind2 _ _ (fun f1 b => forall vm' bf, f1 = Some (vm', bf) -> wf_vmap vm -> wf_vmap vm' /\ (Pos.to_nat (fst vm) <= Pos.to_nat (fst vm'))%nat /\ (forall p : positive, (Pos.to_nat p < Pos.to_nat (fst vm))%nat -> nth_error (snd vm) (Pos.to_nat (fst vm - p) - 1) = nth_error (snd vm') (Pos.to_nat (fst vm' - p) - 1)) /\ bounded_bformula (fst vm') bf /\ (b = true <-> eval_f (Zeval_formula (interp_vmap vm')) bf))).
+ intros vm' bf; case_eq (build_var vm (Lit.blit (l .[ 0]))); try discriminate; intros [vm0 f] Heq; case_eq (Lit.is_pos (l .[ 0])); intros Heq2 H1 H2; inversion H1; subst vm'; subst bf; destruct (Hbv _ _ _ _ Heq H2) as [H10 [H11 [H12 [H13 H14]]]]; do 4 (split; auto); unfold Lit.interp; rewrite Heq2; auto; simpl; split.
+ intros H3 H4; rewrite <- H14 in H4; rewrite H4 in H3; discriminate.
+ intro H3; case_eq (Var.interp rho (Lit.blit (l .[ 0]))); auto; intro H4; elim H3; rewrite <- H14; auto.
+ intros i a b _ H1; case a; try discriminate; intros [vm0 f0] IH vm' bf; case_eq (build_var vm0 (Lit.blit (l .[ i]))); try discriminate; intros [vm1 f1] Heq H2 H3; inversion H2; subst vm'; subst bf; destruct (IH _ _ (refl_equal (Some (vm0, f0))) H3) as [H5 [H6 [H7 [H8 H9]]]]; destruct (Hbv _ _ _ _ Heq H5) as [H10 [H11 [H12 [H13 H14]]]]; split; auto; split; [eauto with arith| ]; split.
+ intros p H15; rewrite H7; auto; apply H12; eauto with arith.
+ split.
+ simpl; rewrite (bounded_bformula_le _ _ H11 _ H8); case (Lit.is_pos (l .[ i])); rewrite H13; auto.
+ simpl; rewrite (interp_bformula_le _ _ H12 _ H8) in H9; rewrite <- H9; case_eq (Lit.is_pos (l .[ i])); intro Heq2; simpl; rewrite <- H14; unfold Lit.interp; rewrite Heq2; split; case (Var.interp rho (Lit.blit (l .[ i]))); try rewrite orb_false_r; try rewrite orb_true_r; auto; try (intros [H20|H20]; auto; discriminate); right; intro H20; discriminate.
+ (* Fimp *)
+ simpl; unfold afold_right; case (length l == 0).
+ intro H; inversion H; subst vm'; subst bf; simpl; intro H1; split; auto; split; [omega| ]; do 3 (split; auto).
+ case (length l <= 1).
+ case_eq (build_var vm (Lit.blit (l .[ 0]))); try discriminate; intros [vm0 f] Heq; case_eq (Lit.is_pos (l .[ 0])); intros Heq2 H1 H2; inversion H1; subst vm'; subst bf; destruct (Hbv _ _ _ _ Heq H2) as [H3 [H4 [H5 [H6 H7]]]]; do 4 (split; auto); unfold Lit.interp; rewrite Heq2; auto; simpl; split.
+ intros H8 H9; rewrite <- H7 in H9; rewrite H9 in H8; discriminate.
+ intro H8; case_eq (Var.interp rho (Lit.blit (l .[ 0]))); auto; intro H9; rewrite H7 in H9; elim H8; auto.
+ revert vm' bf; apply (foldi_down_ind2 _ _ (fun f1 b => forall vm' bf, f1 = Some (vm', bf) -> wf_vmap vm -> wf_vmap vm' /\ (Pos.to_nat (fst vm) <= Pos.to_nat (fst vm'))%nat /\ (forall p : positive, (Pos.to_nat p < Pos.to_nat (fst vm))%nat -> nth_error (snd vm) (Pos.to_nat (fst vm - p) - 1) = nth_error (snd vm') (Pos.to_nat (fst vm' - p) - 1)) /\ bounded_bformula (fst vm') bf /\ (b = true <-> eval_f (Zeval_formula (interp_vmap vm')) bf))).
+ intros vm' bf; case_eq (build_var vm (Lit.blit (l .[ length l - 1]))); try discriminate; intros [vm0 f] Heq; case_eq (Lit.is_pos (l .[ length l - 1])); intros Heq2 H1 H2; inversion H1; subst vm'; subst bf; destruct (Hbv _ _ _ _ Heq H2) as [H10 [H11 [H12 [H13 H14]]]]; do 4 (split; auto); unfold Lit.interp; rewrite Heq2; auto; simpl; split.
+ intros H3 H4; rewrite <- H14 in H4; rewrite H4 in H3; discriminate.
+ intro H3; case_eq (Var.interp rho (Lit.blit (l .[ length l - 1]))); auto; intro H4; elim H3; rewrite <- H14; auto.
+ intros i a b _ H1; case a; try discriminate; intros [vm0 f0] IH vm' bf; case_eq (build_var vm0 (Lit.blit (l .[ i]))); try discriminate; intros [vm1 f1] Heq H2 H3; inversion H2; subst vm'; subst bf; destruct (IH _ _ (refl_equal (Some (vm0, f0))) H3) as [H5 [H6 [H7 [H8 H9]]]]; destruct (Hbv _ _ _ _ Heq H5) as [H10 [H11 [H12 [H13 H14]]]]; split; auto; split; [eauto with arith| ]; split.
+ intros p H15; rewrite H7; auto; apply H12; eauto with arith.
+ split.
+ simpl; rewrite (bounded_bformula_le _ _ H11 _ H8); case (Lit.is_pos (l .[ i])); rewrite H13; auto.
+ simpl; rewrite (interp_bformula_le _ _ H12 _ H8) in H9; rewrite <- H9; case_eq (Lit.is_pos (l .[ i])); intro Heq2; simpl; rewrite <- H14; unfold Lit.interp; rewrite Heq2; split; case (Var.interp rho (Lit.blit (l .[ i]))); auto; try discriminate; simpl; intro H; apply H; discriminate.
+ (* Fxor *)
+ simpl; case_eq (build_var vm (Lit.blit a)); try discriminate; intros [vm1 f1] Heq1; case_eq (build_var vm1 (Lit.blit b)); try discriminate; intros [vm2 f2] Heq2 H1 H2; inversion H1; subst vm'; subst bf; destruct (Hbv _ _ _ _ Heq1 H2) as [H3 [H4 [H5 [H6 H7]]]]; destruct (Hbv _ _ _ _ Heq2 H3) as [H8 [H9 [H10 [H11 H12]]]]; split; auto; split; [eauto with arith| ]; split.
+ intros p H18; rewrite H5; auto; rewrite H10; eauto with arith.
+ split.
+ case (Lit.is_pos a); case (Lit.is_pos b); simpl; rewrite H11; rewrite (bounded_bformula_le _ _ H9 _ H6); auto.
+ simpl; rewrite (interp_bformula_le _ _ H10 _ H6) in H7; case_eq (Lit.is_pos a); intro Ha; case_eq (Lit.is_pos b); intro Hb; unfold Lit.interp; rewrite Ha, Hb; simpl; rewrite <- H12; rewrite <- H7; (case (Var.interp rho (Lit.blit a)); case (Var.interp rho (Lit.blit b))); split; auto; try discriminate; simpl.
+ intros [_ [H20|H20]]; elim H20; reflexivity.
+ intros _; split; [left; reflexivity|right; intro H20; discriminate].
+ intros _; split; [right; reflexivity|left; intro H20; discriminate].
+ intros [[H20|H20] _]; discriminate.
+ intros [_ [H20|H20]]; elim H20; [reflexivity|discriminate].
+ intros [[H20|H20] _]; [discriminate|elim H20; reflexivity].
+ intros _; split; [right|left]; discriminate.
+ intros [[H20|H20] _]; [elim H20; reflexivity|discriminate].
+ intros [_ [H20|H20]]; elim H20; [discriminate|reflexivity].
+ intros _; split; [left|right]; discriminate.
+ intros [[H20|H20] _]; elim H20; reflexivity.
+ intros _; split; [right; discriminate|left; intro H21; apply H21; reflexivity].
+ intros _; split; [left; discriminate|right; intro H21; apply H21; reflexivity].
+ intros [_ [H20|H20]]; elim H20; discriminate.
+ (* Fiff *)
+ simpl; case_eq (build_var vm (Lit.blit a)); try discriminate; intros [vm1 f1] Heq1; case_eq (build_var vm1 (Lit.blit b)); try discriminate; intros [vm2 f2] Heq2 H1 H2; inversion H1; subst vm'; subst bf; destruct (Hbv _ _ _ _ Heq1 H2) as [H3 [H4 [H5 [H6 H7]]]]; destruct (Hbv _ _ _ _ Heq2 H3) as [H8 [H9 [H10 [H11 H12]]]]; split; auto; split; [eauto with arith| ]; split.
+ intros p H18; rewrite H5; auto; rewrite H10; eauto with arith.
+ split.
+ case (Lit.is_pos a); case (Lit.is_pos b); simpl; rewrite H11; rewrite (bounded_bformula_le _ _ H9 _ H6); auto.
+ simpl; rewrite (interp_bformula_le _ _ H10 _ H6) in H7; case_eq (Lit.is_pos a); intro Ha; case_eq (Lit.is_pos b); intro Hb; unfold Lit.interp; rewrite Ha, Hb; simpl; rewrite <- H12; rewrite <- H7; (case (Var.interp rho (Lit.blit a)); case (Var.interp rho (Lit.blit b))); split; auto; try discriminate; simpl.
+ intros [_ [H20|H20]]; [elim H20; reflexivity|discriminate].
+ intros [[H20|H20] _]; [discriminate|elim H20; reflexivity].
+ intros _; split; [right|left]; discriminate.
+ intros [_ [H20|H20]]; elim H20; reflexivity.
+ intros _; split; [left; reflexivity|right; discriminate].
+ intros _; split; [right; intro H20; apply H20; reflexivity|left; discriminate].
+ intros [[H20|H20] _]; [ |elim H20]; discriminate.
+ intros [[H20|H20] _]; elim H20; reflexivity.
+ intros _; split; [right; discriminate|left; intro H20; apply H20; reflexivity].
+ intros _; split; [left; discriminate|right; reflexivity].
+ intros [_ [H20|H20]]; [elim H20| ]; discriminate.
+ intros [[H20|H20] _]; elim H20; [reflexivity|discriminate].
+ intros [_ [H20|H20]]; elim H20; [discriminate|reflexivity].
+ intros _; split; [left|right]; discriminate.
+ (* Fite *)
+ simpl; case_eq (build_var vm (Lit.blit a)); try discriminate; intros [vm1 f1] Heq1; case_eq (build_var vm1 (Lit.blit b)); try discriminate; intros [vm2 f2] Heq2; case_eq (build_var vm2 (Lit.blit c)); try discriminate; intros [vm3 f3] Heq3 H1 H2; inversion H1; subst vm'; subst bf; destruct (Hbv _ _ _ _ Heq1 H2) as [H3 [H4 [H5 [H6 H7]]]]; destruct (Hbv _ _ _ _ Heq2 H3) as [H8 [H9 [H10 [H11 H12]]]]; destruct (Hbv _ _ _ _ Heq3 H8) as [H13 [H14 [H15 [H16 H17]]]]; split; auto; split; [eauto with arith| ]; split.
+ intros p H18; rewrite H5; auto; rewrite H10; eauto with arith.
+ assert (H18: (Pos.to_nat (fst vm1) <= Pos.to_nat (fst vm3))%nat) by eauto with arith.
+ split.
+ case (Lit.is_pos a); case (Lit.is_pos b); case (Lit.is_pos c); simpl; rewrite H16; rewrite (bounded_bformula_le _ _ H14 _ H11); rewrite (bounded_bformula_le _ _ H18 _ H6); auto.
+ simpl; rewrite (interp_bformula_le _ _ H15 _ H11) in H12; rewrite (interp_bformula_le _ vm3) in H7; [ |intros p Hp; rewrite H10; eauto with arith|auto]; case_eq (Lit.is_pos a); intro Ha; case_eq (Lit.is_pos b); intro Hb; case_eq (Lit.is_pos c); intro Hc; unfold Lit.interp; rewrite Ha, Hb, Hc; simpl; rewrite <- H17; rewrite <- H12; rewrite <- H7; (case (Var.interp rho (Lit.blit a)); [case (Var.interp rho (Lit.blit b))|case (Var.interp rho (Lit.blit c))]); split; auto; try discriminate; try (intros [[H20 H21]|[H20 H21]]; auto); try (intros _; left; split; auto; discriminate); try (intros _; right; split; auto; discriminate); try (elim H20; discriminate); try (elim H21; discriminate); try (simpl; intro H; left; split; auto; discriminate); try (revert H; case (Var.interp rho (Lit.blit c)); discriminate); try (revert H; case (Var.interp rho (Lit.blit b)); discriminate); try (intro H20; rewrite H20 in H; discriminate); simpl.
+ intro H; right; split; auto.
+ intro H; right; split; auto.
+ intro H; right; split; auto.
+ intro H20; rewrite H20 in H; discriminate.
+ revert H21; case (Var.interp rho (Lit.blit c)); auto.
+ right; split; auto; intro H20; rewrite H20 in H; discriminate.
+ revert H21; case (Var.interp rho (Lit.blit c)); auto.
+ intro H; right; split; auto.
+ intro H; right; split; auto.
+ intro H; left; split; try discriminate; revert H; case (Var.interp rho (Lit.blit b)); discriminate.
+ revert H21; case (Var.interp rho (Lit.blit b)); auto.
+ intro H; left; split; try discriminate; revert H; case (Var.interp rho (Lit.blit b)); discriminate.
+ revert H21; case (Var.interp rho (Lit.blit b)); auto.
+ intro H; right; split; auto; revert H; case (Var.interp rho (Lit.blit c)); discriminate.
+ revert H21; case (Var.interp rho (Lit.blit c)); auto.
+ intro H; right; split; auto; revert H; case (Var.interp rho (Lit.blit c)); discriminate.
+ revert H21; case (Var.interp rho (Lit.blit c)); auto.
+ intro H; left; split; auto; revert H; case (Var.interp rho (Lit.blit b)); discriminate.
+ revert H21; case (Var.interp rho (Lit.blit b)); auto.
+ intro H; left; split; auto; revert H; case (Var.interp rho (Lit.blit b)); discriminate.
+ revert H21; case (Var.interp rho (Lit.blit b)); auto.
+ Qed.
+
+
+ Lemma build_var_correct : forall v vm vm' bf,
+ build_var vm v = Some (vm', bf) ->
+ wf_vmap vm ->
+ wf_vmap vm' /\
+ (nat_of_P (fst vm) <= nat_of_P (fst vm'))%nat /\
+ (forall p,
+ (nat_of_P p < nat_of_P (fst vm))%nat ->
+ nth_error (snd vm) (nat_of_P (fst vm - p) - 1) =
+ nth_error (snd vm')(nat_of_P (fst vm' - p) - 1)) /\
+ bounded_bformula (fst vm') bf /\
+ (Var.interp rho v <-> eval_f (Zeval_formula (interp_vmap vm')) bf).
+ Proof.
+ unfold build_var; apply foldi_down_cont_ind; try discriminate.
+ intros i cont _ Hlen Hrec v vm vm' bf; unfold is_true; intros H1 H2; replace (Var.interp rho v) with (Form.interp interp_form_hatom t_form (t_form.[v])).
+ apply (build_hform_correct cont); auto.
+ unfold Var.interp; rewrite <- wf_interp_form; auto.
+ Qed.
+
+
+ Lemma build_form_correct : forall f vm vm' bf,
+ build_form vm f = Some (vm', bf) ->
+ wf_vmap vm ->
+ wf_vmap vm' /\
+ (nat_of_P (fst vm) <= nat_of_P (fst vm'))%nat /\
+ (forall p,
+ (nat_of_P p < nat_of_P (fst vm))%nat ->
+ nth_error (snd vm) (nat_of_P (fst vm - p) - 1) =
+ nth_error (snd vm')(nat_of_P (fst vm' - p) - 1)) /\
+ bounded_bformula (fst vm') bf /\
+ (Form.interp interp_form_hatom t_form f <-> eval_f (Zeval_formula (interp_vmap vm')) bf).
+ Proof. apply build_hform_correct; apply build_var_correct. Qed.
+
+
+ Lemma build_nlit_correct : forall l vm vm' bf,
+ build_nlit vm l = Some (vm', bf) ->
+ wf_vmap vm ->
+ wf_vmap vm' /\
+ (nat_of_P (fst vm) <= nat_of_P (fst vm'))%nat /\
+ (forall p,
+ (nat_of_P p < nat_of_P (fst vm))%nat ->
+ nth_error (snd vm) (nat_of_P (fst vm - p) - 1) =
+ nth_error (snd vm')(nat_of_P (fst vm' - p) - 1)) /\
+ bounded_bformula (fst vm') bf /\
+ (negb (Lit.interp rho l) <-> eval_f (Zeval_formula (interp_vmap vm')) bf).
+ Proof.
+ unfold build_nlit; intros l vm vm' bf; case_eq (build_form vm (t_form .[ Lit.blit (Lit.neg l)])); try discriminate.
+ intros [vm1 f] Heq H1 H2; inversion H1; subst vm1; subst bf; case_eq (Lit.is_pos (Lit.neg l)); intro Heq2.
+ replace (negb (Lit.interp rho l)) with (Form.interp interp_form_hatom t_form (t_form .[ Lit.blit (Lit.neg l)])).
+ apply build_form_correct; auto.
+ unfold Lit.interp; replace (Lit.is_pos l) with false.
+ rewrite negb_involutive; unfold Var.interp; rewrite <- wf_interp_form; auto; rewrite Lit.blit_neg; auto.
+ rewrite Lit.is_pos_neg in Heq2; case_eq (Lit.is_pos l); auto; intro H; rewrite H in Heq2; discriminate.
+ simpl; destruct (build_form_correct (t_form .[ Lit.blit (Lit.neg l)]) vm vm' f Heq H2) as [H3 [H4 [H5 [H6 [H7 H8]]]]]; do 4 (split; auto); split.
+ intros H9 H10; pose (H11 := H8 H10); unfold Lit.interp in H9; replace (Lit.is_pos l) with true in H9.
+ unfold Var.interp in H9; rewrite <- wf_interp_form in H11; auto; rewrite Lit.blit_neg in H11; rewrite H11 in H9; discriminate.
+ rewrite Lit.is_pos_neg in Heq2; case_eq (Lit.is_pos l); auto; intro H; rewrite H in Heq2; discriminate.
+ intro H9; case_eq (Lit.interp rho l); intro Heq3; auto; elim H9; apply H7; unfold Lit.interp in Heq3; replace (Lit.is_pos l) with true in Heq3.
+ unfold Var.interp in Heq3; rewrite <- wf_interp_form; auto; rewrite Lit.blit_neg; auto.
+ rewrite Lit.is_pos_neg in Heq2; case_eq (Lit.is_pos l); auto; intro H; rewrite H in Heq2; discriminate.
+ Qed.
+
+
+ Lemma build_clause_aux_correct :
+ forall cl vm vm' bf,
+ build_clause_aux vm cl = Some (vm',bf) ->
+ wf_vmap vm ->
+ wf_vmap vm' /\
+ (nat_of_P (fst vm) <= nat_of_P (fst vm'))%nat /\
+ (forall p,
+ (nat_of_P p < nat_of_P (fst vm))%nat ->
+ nth_error (snd vm) (nat_of_P (fst vm - p) - 1) =
+ nth_error (snd vm')(nat_of_P (fst vm' - p) - 1)) /\
+ bounded_bformula (fst vm') bf /\
+ (negb (C.interp rho cl) <-> eval_f (Zeval_formula (interp_vmap vm')) bf).
+ Proof.
+ induction cl;try discriminate.
+ case_eq cl.
+ intros _; simpl;intros;rewrite orb_false_r;apply build_nlit_correct;trivial.
+ intros i l Heq vm vm' bf;rewrite <- Heq at 2.
+ change (build_clause_aux vm (a :: i :: l) ) with
+ ( match build_nlit vm a with
+ | Some (vm0, bf1) =>
+ match build_clause_aux vm0 (i::l) with
+ | Some (vm1, bf2) => Some (vm1, Cj bf1 bf2)
+ | None => None
+ end
+ | None => None
+ end).
+ case_eq (build_nlit vm a);try discriminate.
+ intros (vm0, bf1) Heq1 Heq2 Hwf.
+ rewrite <- Heq in Heq2.
+ assert (W:= build_nlit_correct _ _ _ _ Heq1 Hwf).
+ decompose [and] W;clear W.
+ revert Heq2; case_eq (build_clause_aux vm0 cl);try discriminate.
+ intros (vm1, fb2) Heq2 W;inversion W;clear W Heq;subst.
+ assert (W:= IHcl _ _ _ Heq2 H);decompose [and] W;clear W.
+ split;trivial.
+ split.
+ apply le_trans with (1:= H1);trivial.
+ split.
+ intros p Hlt;rewrite H0, H5;trivial.
+ apply lt_le_trans with (1:= Hlt);trivial.
+ split.
+ simpl;rewrite H7, andb_true_r.
+ apply bounded_bformula_le with (2:= H2);trivial.
+ simpl.
+ unfold is_true;
+ rewrite <- (interp_bformula_le _ _ H5), <- H4, <- H9, negb_orb,andb_true_iff;
+ tauto.
+ Qed.
+
+ Lemma build_clause_correct :
+ forall cl vm vm' bf,
+ build_clause vm cl = Some (vm',bf) ->
+ wf_vmap vm ->
+ wf_vmap vm' /\
+ (nat_of_P (fst vm) <= nat_of_P (fst vm'))%nat /\
+ (forall p,
+ (nat_of_P p < nat_of_P (fst vm))%nat ->
+ nth_error (snd vm) (nat_of_P (fst vm - p) - 1) =
+ nth_error (snd vm')(nat_of_P (fst vm' - p) - 1)) /\
+ bounded_bformula (fst vm') bf /\
+ (C.interp rho cl <-> eval_f (Zeval_formula (interp_vmap vm')) bf).
+ Proof.
+ unfold build_clause;intros cl vm vm' bf.
+ case_eq (build_clause_aux vm cl);try discriminate.
+ intros (vm1, bf1) Heq W Hwf;inversion W;clear W;subst.
+ assert (W:= build_clause_aux_correct _ _ _ _ Heq Hwf).
+ decompose [and] W;clear W.
+ repeat (split;[trivial;fail | ]).
+ split;simpl.
+ rewrite H2;reflexivity.
+ unfold is_true in *;
+ destruct (C.interp rho cl);split;simpl;trivial;try discriminate;
+ try tauto.
+ intros _ HH;destruct H4.
+ apply H4 in HH;discriminate.
+ Qed.
+
+ Local Notation hinterp := (Atom.interp_hatom t_i t_func t_atom).
+ Local Notation interp := (Atom.interp t_i t_func t_atom).
+
+ Lemma get_eq_interp :
+ forall (l:_lit) (f:Atom.hatom -> Atom.hatom -> C.t),
+ (forall xa, t_form.[Lit.blit l] = Form.Fatom xa ->
+ forall t a b, t_atom.[xa] = Atom.Abop (Atom.BO_eq t) a b ->
+ Lit.is_pos l ->
+ rho (Lit.blit l) =
+ Atom.interp_bool t_i
+ (Atom.apply_binop t_i t t Typ.Tbool (Typ.i_eqb t_i t)
+ (hinterp a) (hinterp b)) ->
+ Typ.eqb (get_type t_i t_func t_atom a) t -> Typ.eqb (get_type t_i t_func t_atom b) t ->
+ C.interp rho (f a b)) ->
+ C.interp rho (get_eq l f).
+ Proof.
+ intros l f Hf;unfold get_eq.
+ destruct (Lit.is_pos l); case_eq (t_form.[Lit.blit l]);trivial;intros;
+ try(case_eq (t_atom.[i]);trivial;intros); try (apply valid_C_true; trivial).
+ destruct b; try (apply valid_C_true; trivial).
+ generalize wt_t_atom;unfold Atom.wt;unfold is_true;
+ rewrite PArray.forallbi_spec;intros.
+ assert (i < length t_atom).
+ apply PArray.get_not_default_lt.
+ rewrite H0, def_t_atom;discriminate.
+ apply H1 in H2;clear H1;rewrite H0 in H2;simpl in H2.
+ rewrite !andb_true_iff in H2;decompose [and] H2;clear H2.
+ apply Hf with (2:= H0);trivial. auto.
+ rewrite wf_interp_form, H;simpl.
+ unfold Atom.interp_form_hatom, Atom.interp_hatom at 1;simpl.
+ rewrite Atom.t_interp_wf, H0;simpl;trivial.
+ trivial.
+ Qed.
+
+ Lemma get_not_le_interp :
+ forall (l:_lit) (f:Atom.hatom -> Atom.hatom -> C.t),
+ (forall xa, t_form.[Lit.blit l] = Form.Fatom xa ->
+ forall a b, t_atom.[xa] = Atom.Abop Atom.BO_Zle a b ->
+ negb (Lit.is_pos l) ->
+ rho (Lit.blit l) =
+ Atom.interp_bool t_i
+ (Atom.apply_binop t_i Typ.TZ Typ.TZ Typ.Tbool Zle_bool
+ (hinterp a) (hinterp b)) ->
+ Typ.eqb (get_type t_i t_func t_atom a) Typ.TZ -> Typ.eqb (get_type t_i t_func t_atom b) Typ.TZ ->
+ C.interp rho (f a b)) ->
+ C.interp rho (get_not_le l f).
+ Proof.
+ intros l f Hf;unfold get_not_le.
+ destruct (Lit.is_pos l); case_eq (t_form.[Lit.blit l]);trivial;intros;
+ try(case_eq (t_atom.[i]);trivial;intros); try (apply valid_C_true; trivial).
+ destruct b; try (apply valid_C_true; trivial).
+ generalize wt_t_atom;unfold Atom.wt;unfold is_true;
+ rewrite PArray.forallbi_spec;intros.
+ assert (i < length t_atom).
+ apply PArray.get_not_default_lt.
+ rewrite H0, def_t_atom;discriminate.
+ apply H1 in H2;clear H1;rewrite H0 in H2;simpl in H2.
+ rewrite !andb_true_iff in H2;decompose [and] H2;clear H2.
+ simpl; apply Hf with (2:= H0);trivial. auto.
+ rewrite wf_interp_form, H;simpl.
+ unfold Atom.interp_form_hatom, Atom.interp_hatom at 1;simpl.
+ rewrite Atom.t_interp_wf, H0;simpl;trivial.
+ trivial.
+ Qed.
+
+
+ Lemma interp_binop_eqb_antisym:
+ forall a b va vb,
+ interp_atom a = Bval t_i Typ.TZ va -> interp_atom b = Bval t_i Typ.TZ vb ->
+ (interp_bool t_i
+ (apply_binop t_i Typ.TZ Typ.TZ Typ.Tbool (Typ.i_eqb t_i Typ.TZ)
+ (interp a) (interp b)) = false) ->
+ negb
+ (interp_bool t_i
+ (apply_binop t_i Typ.TZ Typ.TZ Typ.Tbool Z.leb
+ (interp a) (interp b))) = false ->
+ negb
+ (interp_bool t_i
+ (apply_binop t_i Typ.TZ Typ.TZ Typ.Tbool Z.leb
+ (interp b) (interp a))) = false ->
+ False.
+ Proof.
+ intros a b va vb HHa HHb.
+ unfold Atom.interp, Atom.interp_hatom.
+ rewrite HHa, HHb; simpl.
+ intros.
+ case_eq (va <=? vb); intros; subst.
+ case_eq (vb <=? va); intros; subst.
+ apply Zle_bool_imp_le in H2.
+ apply Zle_bool_imp_le in H3.
+ apply Zeq_bool_neq in H.
+ (*pour la beauté du geste!*) lia.
+ rewrite H3 in H1; simpl in H1; elim diff_true_false; trivial.
+ rewrite H2 in H0; simpl in H1; elim diff_true_false; trivial.
+ Qed.
+
+
+ Lemma valid_check_micromega :
+ forall cl c, C.valid rho (check_micromega cl c).
+ Proof.
+ unfold check_micromega; intros cl c.
+ case_eq (build_clause empty_vmap cl).
+ intros (vm1, bf) Heq.
+ destruct (build_clause_correct _ _ _ _ Heq).
+ red;simpl;auto.
+ decompose [and] H0.
+ case_eq (ZTautoChecker bf c);intros Heq2.
+ unfold C.valid;rewrite H5.
+ apply ZTautoChecker_sound with c;trivial.
+ apply C.interp_true.
+ destruct (Form.check_form_correct interp_form_hatom _ ch_form);trivial.
+ intros _;apply C.interp_true.
+ destruct (Form.check_form_correct interp_form_hatom _ ch_form);trivial.
+ Qed.
+
+
+ Lemma valid_check_diseq :
+ forall c, C.valid rho (check_diseq c).
+ Proof.
+ unfold check_diseq; intro c.
+ case_eq (t_form.[Lit.blit c]);intros;subst; try (unfold C.valid; apply valid_C_true; trivial).
+ case_eq ((length a) == 3); intros; try (unfold C.valid; apply valid_C_true; trivial).
+ apply eqb_correct in H0.
+ apply get_eq_interp; intros.
+ apply get_not_le_interp; intros.
+ apply get_not_le_interp; intros.
+ case_eq ((a0 == a1) && (a0 == b1) && (b == b0) && (b == a2)); intros; subst;
+ try (unfold C.valid; apply valid_C_true; trivial).
+ repeat(apply andb_prop in H19; destruct H19).
+ apply Int63Properties.eqb_spec in H19;apply Int63Properties.eqb_spec in H20;apply Int63Properties.eqb_spec in H21;apply Int63Properties.eqb_spec in H22;subst.
+ unfold C.interp; simpl; rewrite orb_false_r.
+ unfold Lit.interp; rewrite Lit.is_pos_lit.
+ unfold Var.interp; rewrite Lit.blit_lit.
+ rewrite wf_interp_form, H;simpl.
+ case_eq (Lit.interp rho (a.[0]) || Lit.interp rho (a.[1]) || Lit.interp rho (a.[2])).
+ intros;repeat (rewrite orb_true_iff in H19);destruct H19. destruct H19.
+ apply (afold_left_orb_true int 0); subst; auto.
+ apply ltb_spec;rewrite H0;compute;trivial.
+ apply (afold_left_orb_true int 1); auto.
+ apply ltb_spec;rewrite H0;compute;trivial.
+ apply (afold_left_orb_true int 2); auto.
+ apply ltb_spec;rewrite H0;compute;trivial.
+ intros; repeat (rewrite orb_false_iff in H19);destruct H19. destruct H19.
+ unfold Lit.interp in H19.
+ rewrite H3 in H19; unfold Var.interp in H19; rewrite H4 in H19.
+ unfold Lit.interp in H21.
+ pose (H24 := H15). apply negb_true_iff in H24.
+ rewrite H24 in H21.
+ unfold Var.interp in H21; rewrite H16 in H21.
+ unfold Lit.interp in H23.
+ pose (H25 := H9). apply negb_true_iff in H25.
+ rewrite H25 in H23.
+ unfold Var.interp in H23; rewrite H10 in H23.
+ assert (t = Typ.TZ).
+ generalize H12. clear H12.
+ destruct (Typ.reflect_eqb (get_type t_i t_func t_atom b0) Typ.TZ) as [H12|H12]; [intros _|discriminate].
+ generalize H6. clear H6.
+ destruct (Typ.reflect_eqb (get_type t_i t_func t_atom b0) t) as [H6|H6]; [intros _|discriminate].
+ rewrite <- H6. auto.
+ rewrite H26 in H19.
+ case_eq (interp_atom (t_atom .[ b1])); intros t1 v1 Heq1.
+ assert (H50: t1 = Typ.TZ).
+ unfold get_type, get_type' in H18. rewrite t_interp_wf in H18; trivial. rewrite Heq1 in H18. simpl in H18. rewrite Typ.eqb_spec in H18. assumption.
+ subst t1.
+ case_eq (interp_atom (t_atom .[ a2])); intros t2 v2 Heq2.
+ assert (H50: t2 = Typ.TZ).
+ unfold get_type, get_type' in H17. rewrite t_interp_wf in H17; trivial. rewrite Heq2 in H17. simpl in H17. rewrite Typ.eqb_spec in H17. assumption.
+ subst t2.
+ subst;elim (interp_binop_eqb_antisym (t_atom.[b1]) (t_atom.[a2]) v1 v2);trivial.
+ unfold interp_hatom in H19; do 2 rewrite t_interp_wf in H19; trivial.
+ unfold interp_hatom in H23; do 2 rewrite t_interp_wf in H23; trivial.
+ unfold interp_hatom in H21; do 2 rewrite t_interp_wf in H21; trivial.
+ trivial.
+ destruct H19.
+ case_eq ((a0 == b0) && (a0 == a2) && (b == a1) && (b == b1)); intros; subst;
+ try (unfold C.valid; apply valid_C_true; trivial).
+ repeat(apply andb_prop in H19; destruct H19).
+ apply Int63Properties.eqb_spec in H19;apply Int63Properties.eqb_spec in H20;apply Int63Properties.eqb_spec in H21;apply Int63Properties.eqb_spec in H22;subst.
+ unfold C.interp; simpl; rewrite orb_false_r.
+ unfold Lit.interp; rewrite Lit.is_pos_lit.
+ unfold Var.interp; rewrite Lit.blit_lit.
+ rewrite wf_interp_form, H;simpl.
+ case_eq (Lit.interp rho (a.[0]) || Lit.interp rho (a.[1]) || Lit.interp rho (a.[2])).
+ intros;repeat (rewrite orb_true_iff in H19);destruct H19. destruct H19.
+ apply (afold_left_orb_true int 0); auto.
+ apply ltb_spec;rewrite H0;compute;trivial.
+ apply (afold_left_orb_true int 1); auto.
+ apply ltb_spec;rewrite H0;compute;trivial.
+ apply (afold_left_orb_true int 2); auto.
+ apply ltb_spec;rewrite H0;compute;trivial.
+ intros; repeat (rewrite orb_false_iff in H19);destruct H19. destruct H19.
+ unfold Lit.interp in H19.
+ rewrite H3 in H19; unfold Var.interp in H19; rewrite H4 in H19.
+ unfold Lit.interp in H21.
+ case_eq (Lit.is_pos (a.[2])); intros.
+ apply negb_true_iff in H15;rewrite H15 in H24; discriminate.
+ rewrite H24 in H21.
+ unfold Var.interp in H21;rewrite H16 in H21.
+ unfold Lit.interp in H23.
+ case_eq (Lit.is_pos (a.[1])); intros.
+ apply negb_true_iff in H9; rewrite H9 in H25; discriminate.
+ rewrite H25 in H23.
+ unfold Var.interp in H23; rewrite H10 in H23.
+ rewrite <-H22, <- H20 in H21.
+ assert (t = Typ.TZ).
+ rewrite Typ.eqb_spec in H6; rewrite Typ.eqb_spec in H18; subst; auto.
+ rewrite H26 in H19.
+ case_eq (interp_atom (t_atom .[ b0])); intros t1 v1 Heq1.
+ assert (H50: t1 = Typ.TZ).
+ unfold get_type, get_type' in H12. rewrite t_interp_wf in H12; trivial. rewrite Heq1 in H12. simpl in H12. rewrite Typ.eqb_spec in H12. assumption.
+ subst t1.
+ case_eq (interp_atom (t_atom .[ a1])); intros t2 v2 Heq2.
+ assert (H50: t2 = Typ.TZ).
+ unfold get_type, get_type' in H11. rewrite t_interp_wf in H11; trivial. rewrite Heq2 in H11. simpl in H11. rewrite Typ.eqb_spec in H11. assumption.
+ subst t2.
+ elim (interp_binop_eqb_antisym (t_atom.[b0]) (t_atom.[a1]) v1 v2); trivial.
+ unfold interp_hatom in H19; do 2 rewrite t_interp_wf in H19; trivial.
+ unfold interp_hatom in H21; do 2 rewrite t_interp_wf in H21; trivial.
+ unfold interp_hatom in H23; do 2 rewrite t_interp_wf in H23; trivial.
+ trivial.
+ Qed.
+
+ End Proof.
+
+End certif.