aboutsummaryrefslogtreecommitdiffstats
path: root/src/spl/Operators.v
diff options
context:
space:
mode:
Diffstat (limited to 'src/spl/Operators.v')
-rw-r--r--src/spl/Operators.v86
1 files changed, 43 insertions, 43 deletions
diff --git a/src/spl/Operators.v b/src/spl/Operators.v
index 966cbcb..540de3f 100644
--- a/src/spl/Operators.v
+++ b/src/spl/Operators.v
@@ -1,7 +1,7 @@
(**************************************************************************)
(* *)
(* SMTCoq *)
-(* Copyright (C) 2011 - 2021 *)
+(* Copyright (C) 2011 - 2022 *)
(* *)
(* See file "AUTHORS" for the list of authors *)
(* *)
@@ -52,7 +52,7 @@ Section Operators.
Fixpoint check_diseqs_complete_aux a dist t :=
match dist with
| nil => true
- | b::q => if PArray.existsb (fun (x:option (int*int)) =>
+ | b::q => if aexistsbi (fun _ (x:option (int*int)) =>
match x with
| Some (a',b') => ((a == a') && (b == b')) || ((a == b') && (b == a'))
| None => false
@@ -68,10 +68,10 @@ Section Operators.
Proof.
intros a dist t; induction dist as [ |b q IHq]; simpl; split; auto.
intros _ y H; inversion H.
- case_eq (PArray.existsb (fun x : option (int * int) => match x with | Some (a', b') => (a == a') && (b == b') || (a == b') && (b == a') | None => false end) t); try discriminate; rewrite PArray.existsb_spec; intros [i [H1 H2]]; rewrite IHq; clear IHq; intros H3 y [H4|H4]; auto; subst y; exists i; split; auto; generalize H2; case (t .[ i]); try discriminate; intros [a' b']; rewrite orb_true_iff, !andb_true_iff, !Int63Properties.eqb_spec; intros [[H4 H5]|[H4 H5]]; subst a' b'; auto.
- intro H1; case_eq (PArray.existsb (fun x : option (int * int) => match x with | Some (a', b') => (a == a') && (b == b') || (a == b') && (b == a') | None => false end) t).
+ case_eq (aexistsbi (fun _ (x : option (int * int)) => match x with | Some (a', b') => (a == a') && (b == b') || (a == b') && (b == a') | None => false end) t); try discriminate; rewrite aexistsbi_spec; intros [i [H1 H2]]; rewrite IHq; clear IHq; intros H3 y [H4|H4]; auto; subst y; exists i; split; auto; generalize H2; case (t .[ i]); try discriminate; intros [a' b']; rewrite orb_true_iff, !andb_true_iff, !Int63.eqb_spec; intros [[H4 H5]|[H4 H5]]; subst a' b'; auto.
+ intro H1; case_eq (aexistsbi (fun _ (x : option (int * int)) => match x with | Some (a', b') => (a == a') && (b == b') || (a == b') && (b == a') | None => false end) t).
intros _; rewrite IHq; clear IHq; intros y Hy; apply H1; auto.
- rewrite array_existsb_false_spec; destruct (H1 b (or_introl (refl_equal b))) as [i [H2 H3]]; intro H; rewrite <- (H _ H2); destruct H3 as [H3|H3]; rewrite H3; rewrite !eqb_refl; auto; rewrite orb_true_r; auto.
+ rewrite aexistsbi_false_spec; destruct (H1 b (or_introl (refl_equal b))) as [i [H2 H3]]; intro H; rewrite <- (H _ H2); destruct H3 as [H3|H3]; rewrite H3; rewrite !eqb_refl; auto; rewrite orb_true_r; auto.
Qed.
@@ -82,10 +82,10 @@ Section Operators.
Proof.
intros a dist t; induction dist as [ |b q IHq]; simpl; split; try discriminate.
intros [y [H _]]; elim H.
- case_eq (PArray.existsb (fun x : option (int * int) => match x with | Some (a', b') => (a == a') && (b == b') || (a == b') && (b == a') | None => false end) t).
+ case_eq (aexistsbi (fun _ (x : option (int * int)) => match x with | Some (a', b') => (a == a') && (b == b') || (a == b') && (b == a') | None => false end) t).
intros _; rewrite IHq; clear IHq; intros [y [H3 H4]]; exists y; auto.
- rewrite array_existsb_false_spec; intros H _; exists b; split; auto; intros i Hi; split; intro H1; generalize (H _ Hi); rewrite H1, !eqb_refl; try discriminate; rewrite orb_true_r; discriminate.
- intros [y [H1 H2]]; case_eq (PArray.existsb (fun x : option (int * int) => match x with | Some (a', b') => (a == a') && (b == b') || (a == b') && (b == a') | None => false end) t); auto; rewrite PArray.existsb_spec; intros [i [H3 H4]]; rewrite IHq; clear IHq; exists y; destruct H1 as [H1|H1]; auto; subst y; case_eq (t.[i]); [intros [a' b'] Heq|intro Heq]; rewrite Heq in H4; try discriminate; rewrite orb_true_iff, !andb_true_iff, !eqb_spec in H4; destruct H4 as [[H4 H5]|[H4 H5]]; subst a' b'; generalize (H2 _ H3); rewrite Heq; intros [H4 H5]; [elim H4|elim H5]; auto.
+ rewrite aexistsbi_false_spec; intros H _; exists b; split; auto; intros i Hi; split; intro H1; generalize (H _ Hi); rewrite H1, !eqb_refl; try discriminate; rewrite orb_true_r; discriminate.
+ intros [y [H1 H2]]; case_eq (aexistsbi (fun _ (x : option (int * int)) => match x with | Some (a', b') => (a == a') && (b == b') || (a == b') && (b == a') | None => false end) t); auto; rewrite aexistsbi_spec; intros [i [H3 H4]]; rewrite IHq; clear IHq; exists y; destruct H1 as [H1|H1]; auto; subst y; case_eq (t.[i]); [intros [a' b'] Heq|intro Heq]; rewrite Heq in H4; try discriminate; rewrite orb_true_iff, !andb_true_iff, !eqb_spec in H4; destruct H4 as [[H4 H5]|[H4 H5]]; subst a' b'; generalize (H2 _ H3); rewrite Heq; intros [H4 H5]; [elim H4|elim H5]; auto.
Qed.
@@ -129,7 +129,7 @@ Section Operators.
Definition check_diseqs ty dist diseq :=
- let t := PArray.mapi (fun _ t =>
+ let t := amap (fun t =>
if Lit.is_pos t then None else
match get_form (Lit.blit t) with
| Fatom a =>
@@ -144,7 +144,7 @@ Section Operators.
| _ => None
end
) diseq in
- PArray.forallb (fun x => match x with | None => false | _ => true end) t &&
+ aforallbi (fun _ x => match x with | None => false | _ => true end) t &&
check_diseqs_complete dist t.
@@ -166,17 +166,17 @@ Section Operators.
get_atom a = Atom.Abop (Atom.BO_eq A) y x))).
Proof.
intros A dist diseq; unfold check_diseqs; rewrite andb_true_iff,
- PArray.forallb_spec, check_diseqs_complete_spec, length_mapi; split; intros [H1 H2]; split.
- clear H2; intros i Hi; generalize (H1 _ Hi); rewrite get_mapi;
+ aforallbi_spec, check_diseqs_complete_spec, length_amap; split; intros [H1 H2]; split.
+ clear H2; intros i Hi; generalize (H1 _ Hi); rewrite get_amap;
auto; case_eq (Lit.is_pos (diseq .[ i])); try discriminate; intro Heq1; case_eq (get_form (Lit.blit (diseq .[ i])));
try discriminate; intros a Heq2; case_eq (get_atom a); try discriminate; intros [ | | | | | | | B | | | | | | | | | | | | ]; try discriminate; intros h1 h2 Heq3; case_eq (Typ.eqb A B); try discriminate; change (Typ.eqb A B = true) with (is_true (Typ.eqb A B)); rewrite Typ.eqb_spec; intro; subst B; case_eq (h1 == h2); try discriminate; rewrite eqb_false_spec; intro H2; case_eq (check_in h1 dist); try discriminate; case_eq (check_in h2 dist); try discriminate; rewrite !check_in_spec; intros H3 H4 _; split; try discriminate; exists a; split; auto; exists h1, h2; repeat split; auto; rewrite <- In2_In; auto.
- clear H1; intros x y Hxy; destruct (H2 _ _ Hxy) as [i [H1 H4]]; clear H2; rewrite get_mapi in H4; auto; exists i; split; auto; generalize H4;
+ clear H1; intros x y Hxy; destruct (H2 _ _ Hxy) as [i [H1 H4]]; clear H2; rewrite get_amap in H4; auto; exists i; split; auto; generalize H4;
case_eq (Lit.is_pos (diseq .[ i])); intro Heq; try (intros [H|H]; discriminate); case_eq (get_form (Lit.blit (diseq .[ i]))); [intros a| | |intros a1 a2|intros a1|intros a1|intros a1|intros a1 a2|intros a1 a2| intros a1 a2 a3|intros a ls]; intro Heq2; try (intros [H|H]; discriminate); case_eq (get_atom a); [intros a1|intros a1 a2|intros [ | | | | | | | B | | | | | | | | | | | | ] h1 h2|intros a1 a2|intros a1 a2 | intros a1 a2]; intro Heq3; try (intros [H|H]; discriminate); try (case_eq (Typ.eqb A B); try (intros _ [H|H]; discriminate); change (Typ.eqb A B = true) with (is_true (Typ.eqb A B)); rewrite Typ.eqb_spec; intro; subst B; case_eq (h1 == h2); try (intros _ [H|H]; discriminate); rewrite eqb_false_spec; intro H10; case (check_in h1 dist); try (intros [H|H]; discriminate); case (check_in h2 dist); try (intros [H|H]; discriminate); simpl; intro H3; split; try discriminate; exists a; split; auto; destruct H3 as [H3|H3]; inversion H3; subst; auto).
intros. destruct H0; now contradict H0.
- clear H2; intros i Hi; rewrite get_mapi; auto; destruct (H1 _ Hi) as [H2 [a [H3 [h1 [h2 [H4 [H5 H6]]]]]]]; clear H1; replace (Lit.is_pos (diseq .[ i])) with false by (case_eq (Lit.is_pos (diseq .[ i])); auto); rewrite H3, H4, Typ.eqb_refl; simpl; replace (h1 == h2) with false by (case_eq (h1 == h2); auto; rewrite eqb_spec; intro H; elim H5; auto); simpl; rewrite <- In2_In, <- !check_in_spec in H6; auto; destruct H6 as [H6 H7]; rewrite H6, H7; auto.
- clear H1; intros x y Hxy; destruct (H2 _ _ Hxy) as [i [H1 [H3 [a [H4 [H6 H5]]]]]]; clear H2; exists i; split; auto; rewrite get_mapi; auto; replace (Lit.is_pos (diseq .[ i])) with false by (case_eq (Lit.is_pos (diseq .[ i])); auto); rewrite H4; assert (H7 := or_introl (In2 y x dist) Hxy); rewrite <- In2_In, <- !check_in_spec in H7; auto; destruct H7 as [H7 H8]; destruct H5 as [H5|H5]; rewrite H5, Typ.eqb_refl; [replace (x == y) with false by (case_eq (x == y); auto; rewrite eqb_spec; auto)|replace (y == x) with false by (case_eq (y == x); auto; rewrite eqb_spec; auto)]; simpl; rewrite H7, H8; auto.
+ clear H2; intros i Hi; rewrite get_amap; auto; destruct (H1 _ Hi) as [H2 [a [H3 [h1 [h2 [H4 [H5 H6]]]]]]]; clear H1; replace (Lit.is_pos (diseq .[ i])) with false by (case_eq (Lit.is_pos (diseq .[ i])); auto); rewrite H3, H4, Typ.eqb_refl; simpl; replace (h1 == h2) with false by (case_eq (h1 == h2); auto; rewrite eqb_spec; intro H; elim H5; auto); simpl; rewrite <- In2_In, <- !check_in_spec in H6; auto; destruct H6 as [H6 H7]; rewrite H6, H7; auto.
+ clear H1; intros x y Hxy; destruct (H2 _ _ Hxy) as [i [H1 [H3 [a [H4 [H6 H5]]]]]]; clear H2; exists i; split; auto; rewrite get_amap; auto; replace (Lit.is_pos (diseq .[ i])) with false by (case_eq (Lit.is_pos (diseq .[ i])); auto); rewrite H4; assert (H7 := or_introl (In2 y x dist) Hxy); rewrite <- In2_In, <- !check_in_spec in H7; auto; destruct H7 as [H7 H8]; destruct H5 as [H5|H5]; rewrite H5, Typ.eqb_refl; [replace (x == y) with false by (case_eq (x == y); auto; rewrite eqb_spec; auto)|replace (y == x) with false by (case_eq (y == x); auto; rewrite eqb_spec; auto)]; simpl; rewrite H7, H8; auto.
Qed.
@@ -247,7 +247,7 @@ intros. destruct H0; now contradict H0.
get_atom hb = Atom.Abop (Atom.BO_eq ty) y x).
Proof.
intros f1 f2; unfold check_distinct_two_args; split.
- case (get_form f1); try discriminate; intro ha; case (get_form f2); try discriminate; intro hb; case_eq (get_atom ha); try discriminate; intros [A] [ |x [ |y [ |l]]] Heq1; try discriminate; case_eq (get_atom hb); try discriminate; intros [ | | | | | | |B | | | | | | | | | | | | ] x' y' Heq2; try discriminate; rewrite !andb_true_iff, orb_true_iff, !andb_true_iff; change (Typ.eqb A B = true) with (is_true (Typ.eqb A B)); rewrite Typ.eqb_spec, !Int63Properties.eqb_spec; intros [H1 [[H2 H3]|[H2 H3]]]; subst B x' y'; exists ha, hb, A, x, y; auto.
+ case (get_form f1); try discriminate; intro ha; case (get_form f2); try discriminate; intro hb; case_eq (get_atom ha); try discriminate; intros [A] [ |x [ |y [ |l]]] Heq1; try discriminate; case_eq (get_atom hb); try discriminate; intros [ | | | | | | |B | | | | | | | | | | | | ] x' y' Heq2; try discriminate; rewrite !andb_true_iff, orb_true_iff, !andb_true_iff; change (Typ.eqb A B = true) with (is_true (Typ.eqb A B)); rewrite Typ.eqb_spec, !Int63.eqb_spec; intros [H1 [[H2 H3]|[H2 H3]]]; subst B x' y'; exists ha, hb, A, x, y; auto.
intros [ha [hb [A [x [y [H1 [H2 [H3 [H4|H4]]]]]]]]]; rewrite H1, H2, H3, H4, Typ.eqb_refl, !eqb_refl; auto; rewrite orb_true_r; auto.
Qed.
@@ -283,24 +283,24 @@ intros. destruct H0; now contradict H0.
Lemma interp_check_distinct : forall ha diseq,
check_distinct ha diseq = true ->
- interp_form_hatom ha = afold_left bool int true andb (Lit.interp rho) diseq.
+ interp_form_hatom ha = afold_left bool true andb (amap (Lit.interp rho) diseq).
Proof.
intros ha diseq; rewrite check_distinct_spec; intros [A [dist [H1 H2]]]; rewrite check_diseqs_spec in H2; destruct H2 as [H2 H3]; unfold Atom.interp_form_hatom, Atom.interp_bool, Atom.interp_hatom; rewrite Atom.t_interp_wf; auto with smtcoq_spl_op; rewrite H1; simpl; generalize (Atom.compute_interp_spec_rev t_i (get (Atom.t_interp t_i t_func t_atom)) A dist); case (Atom.compute_interp t_i (get (Atom.t_interp t_i t_func t_atom)) A nil); simpl.
intros l H4; case_eq (distinct (Typ.i_eqb t_i A) (rev l)).
- rewrite distinct_spec; intro H5; symmetry; apply afold_left_andb_true; intros i Hi; destruct (H2 _ Hi) as [H9 [a [H10 [h1 [h2 [H6 [H7 H8]]]]]]]; unfold Lit.interp; replace (Lit.is_pos (diseq .[ i])) with false by (case_eq (Lit.is_pos (diseq .[ i])); auto with smtcoq_spl_op smtcoq_core); unfold Var.interp; rewrite Form.wf_interp_form; auto with smtcoq_spl_op smtcoq_core; rewrite H10; simpl; rewrite Atom.t_interp_wf; auto with smtcoq_spl_op smtcoq_core; rewrite H6; simpl; unfold Atom.apply_binop; unfold Atom.wt in wt_t_atom; unfold is_true in wt_t_atom; rewrite forallbi_spec in wt_t_atom; assert (H11: a < length t_atom).
+ rewrite distinct_spec; intro H5; symmetry; apply afold_left_andb_true; rewrite length_amap; intros i Hi; rewrite get_amap by exact Hi; destruct (H2 _ Hi) as [H9 [a [H10 [h1 [h2 [H6 [H7 H8]]]]]]]; unfold Lit.interp; replace (Lit.is_pos (diseq .[ i])) with false by (case_eq (Lit.is_pos (diseq .[ i])); auto with smtcoq_spl_op smtcoq_core); unfold Var.interp; rewrite Form.wf_interp_form; auto with smtcoq_spl_op smtcoq_core; rewrite H10; simpl; rewrite Atom.t_interp_wf; auto with smtcoq_spl_op smtcoq_core; rewrite H6; simpl; unfold Atom.apply_binop; unfold Atom.wt in wt_t_atom; unfold is_true in wt_t_atom; rewrite aforallbi_spec in wt_t_atom; assert (H11: a < length t_atom).
case_eq (a < length t_atom); auto with smtcoq_spl_op smtcoq_core; intro H11; rewrite (get_outofbound _ _ _ H11) in H6; rewrite default_t_atom in H6; inversion H6.
generalize (wt_t_atom _ H11); rewrite H6; simpl; rewrite !andb_true_iff; change (Typ.eqb (Atom.get_type' t_i (Atom.t_interp t_i t_func t_atom) h1) A = true) with (is_true (Typ.eqb (Atom.get_type' t_i (Atom.t_interp t_i t_func t_atom) h1) A)); change (Typ.eqb (Atom.get_type' t_i (Atom.t_interp t_i t_func t_atom) h2) A = true) with (is_true (Typ.eqb (Atom.get_type' t_i (Atom.t_interp t_i t_func t_atom) h2) A)); rewrite !Typ.eqb_spec; intros [[_ H13] H12]; generalize (Atom.check_aux_interp_hatom _ t_func _ wf_t_atom h1); rewrite H13; intros [v1 HH1]; generalize (Atom.check_aux_interp_hatom _ t_func _ wf_t_atom h2); rewrite H12; intros [v2 HH2]; rewrite HH1, HH2; simpl; rewrite Typ.cast_refl; simpl; destruct H8 as [H8|H8]; [ |rewrite Typ.i_eqb_sym]; rewrite H5; auto with smtcoq_spl_op smtcoq_core; rewrite H4; [exists h2; exists h1|exists h1; exists h2]; auto with smtcoq_spl_op smtcoq_core.
- rewrite distinct_false_spec; intros [v2 [v1 [H5 H6]]]; rewrite H4 in H5; destruct H5 as [a [b [H5 [H7 H8]]]]; clear H4; change (Typ.i_eqb t_i A v2 v1 = true) with (is_true (Typ.i_eqb t_i A v2 v1)) in H6; rewrite Typ.i_eqb_spec in H6; subst v2; clear H2; destruct (H3 _ _ H5) as [i [H2 [H4 [hb [H6 [H9 H10]]]]]]; clear H3; symmetry; apply (afold_left_andb_false _ i); auto with smtcoq_spl_op smtcoq_core; unfold Lit.interp; replace (Lit.is_pos (diseq .[ i])) with false by (case_eq (Lit.is_pos (diseq .[ i])); auto with smtcoq_spl_op smtcoq_core); unfold Var.interp; rewrite Form.wf_interp_form; auto with smtcoq_spl_op smtcoq_core; rewrite H6; simpl; rewrite Atom.t_interp_wf; auto with smtcoq_spl_op smtcoq_core; destruct H10 as [H10|H10]; rewrite H10; simpl; rewrite H7, H8; simpl; rewrite Typ.cast_refl; simpl; replace (Typ.i_eqb t_i A v1 v1) with true; auto with smtcoq_spl_op smtcoq_core; symmetry; change (is_true (Typ.i_eqb t_i A v1 v1)); rewrite Typ.i_eqb_spec; auto with smtcoq_spl_op smtcoq_core.
+ rewrite distinct_false_spec; intros [v2 [v1 [H5 H6]]]; rewrite H4 in H5; destruct H5 as [a [b [H5 [H7 H8]]]]; clear H4; change (Typ.i_eqb t_i A v2 v1 = true) with (is_true (Typ.i_eqb t_i A v2 v1)) in H6; rewrite Typ.i_eqb_spec in H6; subst v2; clear H2; destruct (H3 _ _ H5) as [i [H2 [H4 [hb [H6 [H9 H10]]]]]]; clear H3; symmetry; apply (afold_left_andb_false i); rewrite ?length_amap; auto with smtcoq_spl_op smtcoq_core; rewrite get_amap by assumption; unfold Lit.interp; replace (Lit.is_pos (diseq .[ i])) with false by (case_eq (Lit.is_pos (diseq .[ i])); auto with smtcoq_spl_op smtcoq_core); unfold Var.interp; rewrite Form.wf_interp_form; auto with smtcoq_spl_op smtcoq_core; rewrite H6; simpl; rewrite Atom.t_interp_wf; auto with smtcoq_spl_op smtcoq_core; destruct H10 as [H10|H10]; rewrite H10; simpl; rewrite H7, H8; simpl; rewrite Typ.cast_refl; simpl; replace (Typ.i_eqb t_i A v1 v1) with true; auto with smtcoq_spl_op smtcoq_core; symmetry; change (is_true (Typ.i_eqb t_i A v1 v1)); rewrite Typ.i_eqb_spec; auto with smtcoq_spl_op smtcoq_core.
intros [a [H20 H21]]; assert (H4: ha < length t_atom).
case_eq (ha < length t_atom); auto with smtcoq_spl_op smtcoq_core; intro Heq; generalize H1; rewrite get_outofbound; auto with smtcoq_spl_op smtcoq_core; rewrite default_t_atom; discriminate.
- unfold Atom.wt in wt_t_atom; unfold is_true in wt_t_atom; rewrite forallbi_spec in wt_t_atom; generalize (wt_t_atom _ H4); rewrite H1; simpl; rewrite andb_true_iff, forallb_forall; intros [_ H5]; assert (H6 := H5 _ H20); generalize (Atom.check_aux_interp_hatom _ t_func _ wf_t_atom a); intros [va Ha]; rewrite Ha in H21; simpl in H21; elim H21; apply Typ.eqb_spec; auto with smtcoq_spl_op smtcoq_core.
+ unfold Atom.wt in wt_t_atom; unfold is_true in wt_t_atom; rewrite aforallbi_spec in wt_t_atom; generalize (wt_t_atom _ H4); rewrite H1; simpl; rewrite andb_true_iff, forallb_forall; intros [_ H5]; assert (H6 := H5 _ H20); generalize (Atom.check_aux_interp_hatom _ t_func _ wf_t_atom a); intros [va Ha]; rewrite Ha in H21; simpl in H21; elim H21; apply Typ.eqb_spec; auto with smtcoq_spl_op smtcoq_core.
Qed.
Lemma interp_check_distinct_two_args : forall f1 f2,
check_distinct_two_args f1 f2 = true ->
rho f1 = negb (rho f2).
Proof.
- intros f1 f2; rewrite check_distinct_two_args_spec; intros [ha [hb [A [x [y [H1 [H2 [H3 [H4|H4]]]]]]]]]; unfold Form.interp_state_var; assert (H5: f1 < length t_form) by (case_eq (f1 < length t_form); auto with smtcoq_spl_op smtcoq_core; intro Heq; generalize H1; rewrite get_outofbound; auto with smtcoq_spl_op smtcoq_core; rewrite default_t_form; discriminate); assert (H6: f2 < length t_form) by (case_eq (f2 < length t_form); auto with smtcoq_spl_op smtcoq_core; intro Heq; generalize H2; rewrite get_outofbound; auto with smtcoq_spl_op smtcoq_core; rewrite default_t_form; discriminate); rewrite !Form.t_interp_wf; auto with smtcoq_spl_op smtcoq_core; rewrite H1, H2; simpl; unfold Atom.interp_form_hatom, Atom.interp_hatom; rewrite !Atom.t_interp_wf; auto with smtcoq_spl_op smtcoq_core; rewrite H3, H4; simpl; unfold Atom.wt,is_true in wt_t_atom; rewrite forallbi_spec in wt_t_atom; assert (H7: hb < length t_atom) by (case_eq (hb < length t_atom); auto with smtcoq_spl_op smtcoq_core; intro Heq; generalize H4; rewrite get_outofbound; auto with smtcoq_spl_op smtcoq_core; rewrite default_t_atom; discriminate); generalize (wt_t_atom _ H7); rewrite H4; simpl; case (Atom.get_type' t_i (Atom.t_interp t_i t_func t_atom) hb); try discriminate; simpl; rewrite andb_true_iff; change (Typ.eqb (Atom.get_type' t_i (Atom.t_interp t_i t_func t_atom) x) A = true) with (is_true (Typ.eqb (Atom.get_type' t_i (Atom.t_interp t_i t_func t_atom) x) A)); change (Typ.eqb (Atom.get_type' t_i (Atom.t_interp t_i t_func t_atom) y) A = true) with (is_true (Typ.eqb (Atom.get_type' t_i (Atom.t_interp t_i t_func t_atom) y) A)); rewrite !Typ.eqb_spec; intros [H8 H9]; generalize (Atom.check_aux_interp_hatom _ t_func _ wf_t_atom x), (Atom.check_aux_interp_hatom _ t_func _ wf_t_atom y); rewrite H8, H9; intros [v1 HH1] [v2 HH2]; rewrite HH1, HH2; simpl; rewrite Typ.cast_refl; auto with smtcoq_spl_op smtcoq_core; rewrite Typ.i_eqb_sym; auto with smtcoq_spl_op smtcoq_core.
+ intros f1 f2; rewrite check_distinct_two_args_spec; intros [ha [hb [A [x [y [H1 [H2 [H3 [H4|H4]]]]]]]]]; unfold Form.interp_state_var; assert (H5: f1 < length t_form) by (case_eq (f1 < length t_form); auto with smtcoq_spl_op smtcoq_core; intro Heq; generalize H1; rewrite get_outofbound; auto with smtcoq_spl_op smtcoq_core; rewrite default_t_form; discriminate); assert (H6: f2 < length t_form) by (case_eq (f2 < length t_form); auto with smtcoq_spl_op smtcoq_core; intro Heq; generalize H2; rewrite get_outofbound; auto with smtcoq_spl_op smtcoq_core; rewrite default_t_form; discriminate); rewrite !Form.t_interp_wf; auto with smtcoq_spl_op smtcoq_core; rewrite H1, H2; simpl; unfold Atom.interp_form_hatom, Atom.interp_hatom; rewrite !Atom.t_interp_wf; auto with smtcoq_spl_op smtcoq_core; rewrite H3, H4; simpl; unfold Atom.wt,is_true in wt_t_atom; rewrite aforallbi_spec in wt_t_atom; assert (H7: hb < length t_atom) by (case_eq (hb < length t_atom); auto with smtcoq_spl_op smtcoq_core; intro Heq; generalize H4; rewrite get_outofbound; auto with smtcoq_spl_op smtcoq_core; rewrite default_t_atom; discriminate); generalize (wt_t_atom _ H7); rewrite H4; simpl; case (Atom.get_type' t_i (Atom.t_interp t_i t_func t_atom) hb); try discriminate; simpl; rewrite andb_true_iff; change (Typ.eqb (Atom.get_type' t_i (Atom.t_interp t_i t_func t_atom) x) A = true) with (is_true (Typ.eqb (Atom.get_type' t_i (Atom.t_interp t_i t_func t_atom) x) A)); change (Typ.eqb (Atom.get_type' t_i (Atom.t_interp t_i t_func t_atom) y) A = true) with (is_true (Typ.eqb (Atom.get_type' t_i (Atom.t_interp t_i t_func t_atom) y) A)); rewrite !Typ.eqb_spec; intros [H8 H9]; generalize (Atom.check_aux_interp_hatom _ t_func _ wf_t_atom x), (Atom.check_aux_interp_hatom _ t_func _ wf_t_atom y); rewrite H8, H9; intros [v1 HH1] [v2 HH2]; rewrite HH1, HH2; simpl; rewrite Typ.cast_refl; auto with smtcoq_spl_op smtcoq_core; rewrite Typ.i_eqb_sym; auto with smtcoq_spl_op smtcoq_core.
Qed.
@@ -309,12 +309,12 @@ intros. destruct H0; now contradict H0.
(* interp_form_hatom ha -> afold_left bool int true andb (Lit.interp rho) diseq. *)
(* Proof. *)
(* intros ha diseq; rewrite check_distinct_spec; intros [A [dist [H1 H]]]; rewrite check_diseqs_spec in H; unfold Atom.interp_form_hatom, Atom.interp_bool, Atom.interp_hatom; rewrite Atom.t_interp_wf; auto with smtcoq_spl_op smtcoq_core; rewrite H1; simpl; generalize (Atom.compute_interp_spec_rev t_i (get (Atom.t_interp t_i t_func t_atom)) A dist); case (Atom.compute_interp t_i (get (Atom.t_interp t_i t_func t_atom)) A nil); simpl. *)
- (* intros l H2; unfold is_true; rewrite distinct_spec; intro H3; apply afold_left_andb_true; intros i Hi; destruct (H _ Hi) as [H4 [a [H5 [h1 [h2 [H6 [H7 H8]]]]]]]; unfold Lit.interp; replace (Lit.is_pos (diseq .[ i])) with false by (case_eq (Lit.is_pos (diseq .[ i])); auto with smtcoq_spl_op smtcoq_core); unfold Var.interp; rewrite Form.wf_interp_form; auto with smtcoq_spl_op smtcoq_core; rewrite H5; simpl; rewrite Atom.t_interp_wf; auto with smtcoq_spl_op smtcoq_core; rewrite H6; simpl; unfold Atom.apply_binop; unfold Atom.wt in wt_t_atom; unfold is_true in wt_t_atom; rewrite forallbi_spec in wt_t_atom; assert (H10: a < length t_atom). *)
+ (* intros l H2; unfold is_true; rewrite distinct_spec; intro H3; apply afold_left_andb_true; intros i Hi; destruct (H _ Hi) as [H4 [a [H5 [h1 [h2 [H6 [H7 H8]]]]]]]; unfold Lit.interp; replace (Lit.is_pos (diseq .[ i])) with false by (case_eq (Lit.is_pos (diseq .[ i])); auto with smtcoq_spl_op smtcoq_core); unfold Var.interp; rewrite Form.wf_interp_form; auto with smtcoq_spl_op smtcoq_core; rewrite H5; simpl; rewrite Atom.t_interp_wf; auto with smtcoq_spl_op smtcoq_core; rewrite H6; simpl; unfold Atom.apply_binop; unfold Atom.wt in wt_t_atom; unfold is_true in wt_t_atom; rewrite aforallbi_spec in wt_t_atom; assert (H10: a < length t_atom). *)
(* case_eq (a < length t_atom); auto with smtcoq_spl_op smtcoq_core; intro H10; rewrite (get_outofbound _ _ _ H10) in H6; rewrite default_t_atom in H6; inversion H6. *)
(* generalize (wt_t_atom _ H10); rewrite H6; simpl; rewrite !andb_true_iff. change (Typ.eqb (Atom.get_type t_i t_func t_atom h1) A = true) with (is_true (Typ.eqb (Atom.get_type t_i t_func t_atom h1) A)); change (Typ.eqb (Atom.get_type t_i t_func t_atom h2) A = true) with (is_true (Typ.eqb (Atom.get_type t_i t_func t_atom h2) A)); rewrite !Typ.eqb_spec; intros [[_ H11] H12]; generalize (Atom.check_aux_interp_hatom _ t_func _ wf_t_atom h1); rewrite H11; intros [v1 HH1]; generalize (Atom.check_aux_interp_hatom _ t_func _ wf_t_atom h2); rewrite H12; intros [v2 HH2]; rewrite HH1, HH2; simpl; rewrite Typ.cast_refl; simpl; destruct H8 as [H8|H8]; [ |rewrite Typ.i_eqb_sym]; rewrite H3; auto with smtcoq_spl_op smtcoq_core; rewrite H2; [exists h2; exists h1|exists h1; exists h2]; auto with smtcoq_spl_op smtcoq_core. *)
(* intros [a [H2 H3]] _; assert (H4: ha < length t_atom). *)
(* case_eq (ha < length t_atom); auto with smtcoq_spl_op smtcoq_core; intro Heq; generalize H1; rewrite get_outofbound; auto with smtcoq_spl_op smtcoq_core; rewrite default_t_atom; discriminate. *)
- (* unfold Atom.wt in wt_t_atom; unfold is_true in wt_t_atom; rewrite forallbi_spec in wt_t_atom; generalize (wt_t_atom _ H4); rewrite H1; simpl; rewrite andb_true_iff, forallb_forall; intros [_ H5]; assert (H6 := H5 _ H2); generalize (Atom.check_aux_interp_hatom _ t_func _ wf_t_atom a); intros [va Ha]; rewrite Ha in H3; simpl in H3; elim H3; apply Typ.eqb_spec; auto with smtcoq_spl_op smtcoq_core. *)
+ (* unfold Atom.wt in wt_t_atom; unfold is_true in wt_t_atom; rewrite aforallbi_spec in wt_t_atom; generalize (wt_t_atom _ H4); rewrite H1; simpl; rewrite andb_true_iff, forallb_forall; intros [_ H5]; assert (H6 := H5 _ H2); generalize (Atom.check_aux_interp_hatom _ t_func _ wf_t_atom a); intros [va Ha]; rewrite Ha in H3; simpl in H3; elim H3; apply Typ.eqb_spec; auto with smtcoq_spl_op smtcoq_core. *)
(* Qed. *)
End Valid1.
@@ -337,10 +337,10 @@ intros. destruct H0; now contradict H0.
| Ftrue, Ftrue => true
| Ffalse, Ffalse => true
| Fnot2 i1 l1, Fnot2 i2 l2 => (i1 == i2) && (check_lit l1 l2)
- | Fand a1, Fand a2 => (length a1 == length a2) && (forallbi (fun i l => check_lit l (a2.[i])) a1)
- | For a1, For a2 => (length a1 == length a2) && (forallbi (fun i l => check_lit l (a2.[i])) a1)
- | Fimp a1, Fimp a2 => (length a1 == length a2) && (forallbi (fun i l => check_lit l (a2.[i])) a1)
- (* (length a1 == length a2) && (forallbi (fun i l => if i < length a1 - 1 then check_lit (a2.[i]) l else check_lit l (a2.[i])) a1) *)
+ | Fand a1, Fand a2 => (length a1 == length a2) && (aforallbi (fun i l => check_lit l (a2.[i])) a1)
+ | For a1, For a2 => (length a1 == length a2) && (aforallbi (fun i l => check_lit l (a2.[i])) a1)
+ | Fimp a1, Fimp a2 => (length a1 == length a2) && (aforallbi (fun i l => check_lit l (a2.[i])) a1)
+ (* (length a1 == length a2) && (aforallbi (fun i l => if i < length a1 - 1 then check_lit (a2.[i]) l else check_lit l (a2.[i])) a1) *)
| Fxor l1 l2, Fxor j1 j2 => check_lit l1 j1 && check_lit l2 j2
(* check_lit l1 j1 && check_lit j1 l1 && check_lit l2 j2 && check_lit j2 l2 *)
(* (* let a := check_lit l1 j1 in *) *)
@@ -391,7 +391,7 @@ intros. destruct H0; now contradict H0.
(* check_lit l1 l2 -> Lit.interp rho l1 -> Lit.interp rho l2 = true. *)
(* Proof. *)
(* unfold check_lit; intros l1 l2; unfold is_true; rewrite !orb_true_iff, !andb_true_iff; intros [[H1|[[H1 H2] H3]]|[[H1 H2] H3]]. *)
- (* rewrite Int63Properties.eqb_spec in H1; subst l1; auto with smtcoq_core. *)
+ (* rewrite Int63.eqb_spec in H1; subst l1; auto with smtcoq_core. *)
(* unfold Lit.interp; rewrite H1, H2; apply interp_check_var; auto with smtcoq_core. *)
(* unfold Lit.interp; case_eq (Lit.is_pos l1); intro Heq; rewrite Heq in H1; try discriminate; clear Heq H1; case_eq (Lit.is_pos l2); intro Heq; rewrite Heq in H2; try discriminate; clear Heq H2; case_eq (Var.interp rho (Lit.blit l1)); try discriminate; intros H4 _; case_eq (Var.interp rho (Lit.blit l2)); auto with smtcoq_core; intro H5; rewrite (interp_check_var _ _ H3 H5) in H4; discriminate. *)
(* Qed. *)
@@ -404,17 +404,17 @@ intros. destruct H0; now contradict H0.
Proof.
intros [a| | |i1 l1|a1|a1|a1|l1 l2|l1 l2|l1 l2 l3|a l1] [b| | |j1 m1|a2|a2|a2|j1 j2|j1 j2|j1 j2 j3|b m1]; simpl; try discriminate;auto with smtcoq_core.
(* Atom *)
- unfold is_true; rewrite Int63Properties.eqb_spec; intro; subst a; auto with smtcoq_core.
+ unfold is_true; rewrite Int63.eqb_spec; intro; subst a; auto with smtcoq_core.
(* Interesting case *)
apply interp_check_distinct; auto with smtcoq_core.
(* Double negation *)
- unfold is_true; rewrite andb_true_iff, Int63Properties.eqb_spec; intros [H1 H2]; subst j1. rewrite (interp_check_lit _ _ H2). auto with smtcoq_core.
+ unfold is_true; rewrite andb_true_iff, Int63.eqb_spec; intros [H1 H2]; subst j1. rewrite (interp_check_lit _ _ H2). auto with smtcoq_core.
(* Conjunction *)
- unfold is_true; rewrite andb_true_iff, eqb_spec, forallbi_spec; intros [H1 H2]; apply afold_left_eq; auto with smtcoq_core; intros i Hi; apply interp_check_lit; auto with smtcoq_core.
+ unfold is_true; rewrite andb_true_iff, eqb_spec, aforallbi_spec; intros [H1 H2]; apply afold_left_eq; rewrite ?length_amap; auto with smtcoq_core; intros i Hi; rewrite 2!get_amap by (rewrite <- ?H1; assumption); apply interp_check_lit; auto with smtcoq_core.
(* Disjunction *)
- unfold is_true; rewrite andb_true_iff, eqb_spec, forallbi_spec; intros [H1 H2]; apply afold_left_eq; auto with smtcoq_core; intros i Hi; apply interp_check_lit; auto with smtcoq_core.
+ unfold is_true; rewrite andb_true_iff, eqb_spec, aforallbi_spec; intros [H1 H2]; apply afold_left_eq; rewrite ?length_amap; auto with smtcoq_core; intros i Hi; rewrite 2!get_amap by (rewrite <- ?H1; assumption); apply interp_check_lit; auto with smtcoq_core.
(* Implication *)
- unfold is_true; rewrite andb_true_iff, eqb_spec, forallbi_spec; intros [H1 H2]; apply afold_right_eq; auto with smtcoq_core; intros i Hi; apply interp_check_lit; auto with smtcoq_core.
+ unfold is_true; rewrite andb_true_iff, eqb_spec, aforallbi_spec; intros [H1 H2]; apply afold_right_eq; rewrite ?length_amap; auto with smtcoq_core; intros i Hi; rewrite 2!get_amap by (rewrite <- ?H1; assumption); apply interp_check_lit; auto with smtcoq_core.
(* Xor *)
unfold is_true; rewrite andb_true_iff; intros [H1 H2]; rewrite (interp_check_lit _ _ H1), (interp_check_lit _ _ H2); auto with smtcoq_core.
(* Iff *)
@@ -444,22 +444,22 @@ intros. destruct H0; now contradict H0.
(* apply interp_check_lit; auto with smtcoq_core. *)
(* intros a b; case a; try discriminate; intros H _; rewrite H; auto with smtcoq_core. *)
(* (* Conjunction *) *)
- (* unfold is_true; rewrite andb_true_iff, Int63Properties.eqb_spec; intros [H1 H2]; rewrite forallbi_spec in H2; intro H3; assert (H4 := afold_left_andb_true_inv _ _ _ H3); clear H3; apply afold_left_andb_true; rewrite <- H1; intros i Hi; eapply interp_check_lit; eauto with smtcoq_core. *)
+ (* unfold is_true; rewrite andb_true_iff, Int63Properties.eqb_spec; intros [H1 H2]; rewrite aforallbi_spec in H2; intro H3; assert (H4 := afold_left_andb_true_inv _ _ _ H3); clear H3; apply afold_left_andb_true; rewrite <- H1; intros i Hi; eapply interp_check_lit; eauto with smtcoq_core. *)
(* (* Disjunction *) *)
- (* unfold is_true; rewrite andb_true_iff, Int63Properties.eqb_spec; intros [H1 H2]; rewrite forallbi_spec in H2; intro H3; assert (H4 := afold_left_orb_true_inv _ _ _ H3); clear H3; destruct H4 as [i [H3 H4]]; eapply afold_left_orb_true. *)
+ (* unfold is_true; rewrite andb_true_iff, Int63Properties.eqb_spec; intros [H1 H2]; rewrite aforallbi_spec in H2; intro H3; assert (H4 := afold_left_orb_true_inv _ _ _ H3); clear H3; destruct H4 as [i [H3 H4]]; eapply afold_left_orb_true. *)
(* rewrite <- H1; eauto with smtcoq_core. *)
(* eapply interp_check_lit; eauto with smtcoq_core. *)
(* (* Implication *) *)
- (* unfold is_true; rewrite andb_true_iff, Int63Properties.eqb_spec; intros [H1 H2]; rewrite forallbi_spec in H2; intro H3; apply afold_right_implb_true; case_eq (length a1 == 0); intro Heq. *)
+ (* unfold is_true; rewrite andb_true_iff, Int63Properties.eqb_spec; intros [H1 H2]; rewrite aforallbi_spec in H2; intro H3; apply afold_right_implb_true; case_eq (length a1 == 0); intro Heq. *)
(* left; rewrite eqb_spec in Heq; rewrite <- H1; auto with smtcoq_core. *)
(* destruct (afold_right_implb_true_inv _ _ _ H3) as [H4|[[i [H4 H5]]|H4]]. *)
(* rewrite H4 in Heq; discriminate. *)
(* right; left; exists i; rewrite <- H1; split; auto with smtcoq_core; case_eq (Lit.interp rho (a2 .[ i])); auto with smtcoq_core; intro H6; assert (H7: i < length a1 = true). *)
(* rewrite ltb_spec in *; rewrite eqb_false_spec in Heq; rewrite to_Z_sub_1_diff in H4; auto with smtcoq_core; omega. *)
(* generalize (H2 _ H7); rewrite H4; intro H8; rewrite (interp_check_lit _ _ H8 H6) in H5; auto with smtcoq_core. *)
- (* right; case_eq (existsbi (fun i l => (i < length a2 - 1) && (negb (Lit.interp rho l))) a2). *)
- (* rewrite existsbi_spec; intros [i [_ H5]]; rewrite andb_true_iff in H5; destruct H5 as [H5 H6]; left; exists i; split; auto with smtcoq_core; generalize H6; case (Lit.interp rho (a2 .[ i])); auto with smtcoq_core; discriminate. *)
- (* rewrite existsbi_false_spec; intro H; right; intros i Hi; assert (Hi' := Hi); rewrite <- H1 in Hi'; generalize (H2 _ Hi') (H _ Hi); rewrite <- H1; case (i < length a1 - 1); simpl. *)
+ (* right; case_eq (aexistsbi (fun i l => (i < length a2 - 1) && (negb (Lit.interp rho l))) a2). *)
+ (* rewrite aexistsbi_spec; intros [i [_ H5]]; rewrite andb_true_iff in H5; destruct H5 as [H5 H6]; left; exists i; split; auto with smtcoq_core; generalize H6; case (Lit.interp rho (a2 .[ i])); auto with smtcoq_core; discriminate. *)
+ (* rewrite aexistsbi_false_spec; intro H; right; intros i Hi; assert (Hi' := Hi); rewrite <- H1 in Hi'; generalize (H2 _ Hi') (H _ Hi); rewrite <- H1; case (i < length a1 - 1); simpl. *)
(* intros _; case (Lit.interp rho (a2 .[ i])); auto with smtcoq_core; discriminate. *)
(* intros H5 _; apply (interp_check_lit _ _ H5); apply H4; auto with smtcoq_core. *)
(* (* Xor *) *)
@@ -473,9 +473,9 @@ intros. destruct H0; now contradict H0.
End AUX.
Definition check_hform h1 h2 :=
- foldi_down_cont
+ foldi
(fun _ cont h1 h2 => (h1 == h2) || check_form_aux cont (get_form h1) (get_form h2))
- (PArray.length t_form) 0 (fun h1 h2 => false) h1 h2.
+ 0 (PArray.length t_form) (fun h1 h2 => false) h1 h2.
Definition check_form := check_form_aux check_hform.
@@ -517,8 +517,8 @@ intros. destruct H0; now contradict H0.
Lemma interp_check_hform : forall h1 h2,
check_hform h1 h2 -> Var.interp rho h1 = Var.interp rho h2.
Proof.
- unfold check_hform; apply foldi_down_cont_ind; try discriminate. intros i cont _ _ Hrec h1 h2. unfold is_true; rewrite orb_true_iff; intros [H|H].
- rewrite Int63Properties.eqb_spec in H; rewrite H; auto with smtcoq_core.
+ unfold check_hform; apply foldi_ind; try discriminate. apply leb_0. intros i cont _ _ Hrec h1 h2. unfold is_true; rewrite orb_true_iff; intros [H|H].
+ rewrite Int63.eqb_spec in H; rewrite H; auto with smtcoq_core.
unfold Var.interp; rewrite !wf_interp_form; auto with smtcoq_core; eapply interp_check_form_aux; eauto with smtcoq_core.
Qed.