aboutsummaryrefslogtreecommitdiffstats
path: root/src/versions/standard/Int63/Cyclic63_standard.v
diff options
context:
space:
mode:
Diffstat (limited to 'src/versions/standard/Int63/Cyclic63_standard.v')
-rw-r--r--src/versions/standard/Int63/Cyclic63_standard.v2491
1 files changed, 2491 insertions, 0 deletions
diff --git a/src/versions/standard/Int63/Cyclic63_standard.v b/src/versions/standard/Int63/Cyclic63_standard.v
new file mode 100644
index 0000000..2c24655
--- /dev/null
+++ b/src/versions/standard/Int63/Cyclic63_standard.v
@@ -0,0 +1,2491 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2014 *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(** * Int63 numbers defines indeed a cyclic structure : Z/(2^63)Z *)
+
+(**
+Author: Arnaud Spiwack (+ Pierre Letouzey)
+*)
+
+Require Import List.
+Require Import Min.
+Require Import Int63Lib.
+Require Import Znumtheory.
+Require Import Zgcd_alt.
+Require Import Zpow_facts.
+Require Import BigNumPrelude.
+Require Import CyclicAxioms.
+Require Import ROmega.
+
+Local Open Scope nat_scope.
+Local Open Scope int63_scope.
+
+Section Basics.
+
+ (** * Basic results about [iszero], [shiftl], [shiftr] *)
+
+ Lemma iszero_eq0 : forall x, iszero x = true -> x=0.
+ Proof.
+ destruct x; simpl; intros.
+ repeat
+ match goal with H:(if ?d then _ else _) = true |- _ =>
+ destruct d; try discriminate
+ end.
+ reflexivity.
+ Qed.
+
+ Lemma iszero_not_eq0 : forall x, iszero x = false -> x<>0.
+ Proof.
+ intros x H Eq; rewrite Eq in H; simpl in *; discriminate.
+ Qed.
+
+ Lemma sneakl_shiftr : forall x,
+ x = sneakl (firstr x) (shiftr x).
+ Proof.
+ destruct x; simpl; auto.
+ Qed.
+
+ Lemma sneakr_shiftl : forall x,
+ x = sneakr (firstl x) (shiftl x).
+ Proof.
+ destruct x; simpl; auto.
+ Qed.
+
+ Lemma twice_zero : forall x,
+ twice x = 0 <-> twice_plus_one x = 1.
+ Proof.
+ destruct x; simpl in *; split;
+ intro H; injection H; intros; subst; auto.
+ Qed.
+
+ Lemma twice_or_twice_plus_one : forall x,
+ x = twice (shiftr x) \/ x = twice_plus_one (shiftr x).
+ Proof.
+ intros; case_eq (firstr x); intros.
+ destruct x; simpl in *; rewrite H; auto.
+ destruct x; simpl in *; rewrite H; auto.
+ Qed.
+
+
+
+ (** * Iterated shift to the right *)
+
+ Definition nshiftr n x := iter_nat n _ shiftr x.
+
+ Lemma nshiftr_S :
+ forall n x, nshiftr (S n) x = shiftr (nshiftr n x).
+ Proof.
+ reflexivity.
+ Qed.
+
+ Lemma nshiftr_S_tail :
+ forall n x, nshiftr (S n) x = nshiftr n (shiftr x).
+ Proof.
+ induction n; simpl; auto.
+ intros; rewrite nshiftr_S, IHn, nshiftr_S; auto.
+ Qed.
+
+ Lemma nshiftr_n_0 : forall n, nshiftr n 0 = 0.
+ Proof.
+ induction n; simpl; auto.
+ rewrite nshiftr_S, IHn; auto.
+ Qed.
+
+ Lemma nshiftr_size : forall x, nshiftr size x = 0.
+ Proof.
+ destruct x; simpl; auto.
+ Qed.
+
+ Lemma nshiftr_above_size : forall k x, size<=k ->
+ nshiftr k x = 0.
+ Proof.
+ intros.
+ replace k with ((k-size)+size)%nat by omega.
+ induction (k-size)%nat; auto.
+ rewrite nshiftr_size; auto.
+ simpl; rewrite nshiftr_S, IHn; auto.
+ Qed.
+
+ (** * Iterated shift to the left *)
+
+ Definition nshiftl n x := iter_nat n _ shiftl x.
+
+ Lemma nshiftl_S :
+ forall n x, nshiftl (S n) x = shiftl (nshiftl n x).
+ Proof.
+ reflexivity.
+ Qed.
+
+ Lemma nshiftl_S_tail :
+ forall n x, nshiftl (S n) x = nshiftl n (shiftl x).
+ Proof.
+ induction n; simpl; auto.
+ intros; rewrite nshiftl_S, IHn, nshiftl_S; auto.
+ Qed.
+
+ Lemma nshiftl_n_0 : forall n, nshiftl n 0 = 0.
+ Proof.
+ induction n; simpl; auto.
+ rewrite nshiftl_S, IHn; auto.
+ Qed.
+
+ Lemma nshiftl_size : forall x, nshiftl size x = 0.
+ Proof.
+ destruct x; simpl; auto.
+ Qed.
+
+ Lemma nshiftl_above_size : forall k x, size<=k ->
+ nshiftl k x = 0.
+ Proof.
+ intros.
+ replace k with ((k-size)+size)%nat by omega.
+ induction (k-size)%nat; auto.
+ rewrite nshiftl_size; auto.
+ simpl; rewrite nshiftl_S, IHn; auto.
+ Qed.
+
+ Lemma firstr_firstl :
+ forall x, firstr x = firstl (nshiftl (pred size) x).
+ Proof.
+ destruct x; simpl; auto.
+ Qed.
+
+ Lemma firstl_firstr :
+ forall x, firstl x = firstr (nshiftr (pred size) x).
+ Proof.
+ destruct x; simpl; auto.
+ Qed.
+
+ (** More advanced results about [nshiftr] *)
+
+ Lemma nshiftr_predsize_0_firstl : forall x,
+ nshiftr (pred size) x = 0 -> firstl x = D0.
+ Proof.
+ destruct x; compute; intros H; injection H; intros; subst; auto.
+ Qed.
+
+ Lemma nshiftr_0_propagates : forall n p x, n <= p ->
+ nshiftr n x = 0 -> nshiftr p x = 0.
+ Proof.
+ intros.
+ replace p with ((p-n)+n)%nat by omega.
+ induction (p-n)%nat.
+ simpl; auto.
+ simpl; rewrite nshiftr_S; rewrite IHn0; auto.
+ Qed.
+
+ Lemma nshiftr_0_firstl : forall n x, n < size ->
+ nshiftr n x = 0 -> firstl x = D0.
+ Proof.
+ intros.
+ apply nshiftr_predsize_0_firstl.
+ apply nshiftr_0_propagates with n; auto; omega.
+ Qed.
+
+ (** * Some induction principles over [int63] *)
+
+ (** Not used for the moment. Are they really useful ? *)
+
+ Lemma int63_ind_sneakl : forall P : int63->Prop,
+ P 0 ->
+ (forall x d, P x -> P (sneakl d x)) ->
+ forall x, P x.
+ Proof.
+ intros.
+ assert (forall n, n<=size -> P (nshiftr (size - n) x)).
+ induction n; intros.
+ rewrite nshiftr_size; auto.
+ rewrite sneakl_shiftr.
+ apply H0.
+ change (P (nshiftr (S (size - S n)) x)).
+ replace (S (size - S n))%nat with (size - n)%nat by omega.
+ apply IHn; omega.
+ change x with (nshiftr (size-size) x); auto.
+ Qed.
+
+ Lemma int63_ind_twice : forall P : int63->Prop,
+ P 0 ->
+ (forall x, P x -> P (twice x)) ->
+ (forall x, P x -> P (twice_plus_one x)) ->
+ forall x, P x.
+ Proof.
+ induction x using int63_ind_sneakl; auto.
+ destruct d; auto.
+ Qed.
+
+
+ (** * Some generic results about [recr] *)
+
+ Section Recr.
+
+ (** [recr] satisfies the fixpoint equation used for its definition. *)
+
+ Variable (A:Type)(case0:A)(caserec:digits->int63->A->A).
+
+ Lemma recr_aux_eqn : forall n x, iszero x = false ->
+ recr_aux (S n) A case0 caserec x =
+ caserec (firstr x) (shiftr x) (recr_aux n A case0 caserec (shiftr x)).
+ Proof.
+ intros; simpl; rewrite H; auto.
+ Qed.
+
+ Lemma recr_aux_converges :
+ forall n p x, n <= size -> n <= p ->
+ recr_aux n A case0 caserec (nshiftr (size - n) x) =
+ recr_aux p A case0 caserec (nshiftr (size - n) x).
+ Proof.
+ induction n.
+ simpl; intros.
+ rewrite nshiftr_size; destruct p; simpl; auto.
+ intros.
+ destruct p.
+ inversion H0.
+ unfold recr_aux; fold recr_aux.
+ destruct (iszero (nshiftr (size - S n) x)); auto.
+ f_equal.
+ change (shiftr (nshiftr (size - S n) x)) with (nshiftr (S (size - S n)) x).
+ replace (S (size - S n))%nat with (size - n)%nat by omega.
+ apply IHn; auto with arith.
+ Qed.
+
+ Lemma recr_eqn : forall x, iszero x = false ->
+ recr A case0 caserec x =
+ caserec (firstr x) (shiftr x) (recr A case0 caserec (shiftr x)).
+ Proof.
+ intros.
+ unfold recr.
+ change x with (nshiftr (size - size) x).
+ rewrite (recr_aux_converges size (S size)); auto with arith.
+ rewrite recr_aux_eqn; auto.
+ Qed.
+
+ (** [recr] is usually equivalent to a variant [recrbis]
+ written without [iszero] check. *)
+
+ Fixpoint recrbis_aux (n:nat)(A:Type)(case0:A)(caserec:digits->int63->A->A)
+ (i:int63) : A :=
+ match n with
+ | O => case0
+ | S next =>
+ let si := shiftr i in
+ caserec (firstr i) si (recrbis_aux next A case0 caserec si)
+ end.
+
+ Definition recrbis := recrbis_aux size.
+
+ (* Useless [iszero] check, to stop simplification (did not manage to
+ restrict it using Arguments) *)
+ Fixpoint recrter_aux (n:nat)(A:Type)(case0:A)(caserec:digits->int63->A->A)
+ (i:int63) : A :=
+ match n with
+ | O => case0
+ | S next =>
+ if iszero i then
+ let si := shiftr i in
+ caserec (firstr i) si (recrter_aux next A case0 caserec si)
+ else
+ let si := shiftr i in
+ caserec (firstr i) si (recrter_aux next A case0 caserec si)
+ end.
+
+ Definition recrter := recrter_aux size.
+
+ Lemma recrbis_ter_aux n:
+ forall i, recrbis_aux n A case0 caserec i = recrter_aux n A case0 caserec i.
+ Proof.
+ induction n as [|n IHn]; simpl; auto.
+ intros; case (iszero _); rewrite IHn; auto.
+ Qed.
+
+ Lemma recrbis_ter i : recrbis A case0 caserec i = recrter A case0 caserec i.
+ Proof. apply recrbis_ter_aux. Qed.
+
+ Hypothesis case0_caserec : caserec D0 0 case0 = case0.
+
+ Lemma recrbis_aux_equiv : forall n x,
+ recrbis_aux n A case0 caserec x = recr_aux n A case0 caserec x.
+ Proof.
+ induction n; simpl; auto; intros.
+ case_eq (iszero x); intros; [ | f_equal; auto ].
+ rewrite (iszero_eq0 _ H); simpl; auto.
+ fold On.
+ replace (recrbis_aux n A case0 caserec 0) with case0; auto.
+ clear H IHn; induction n; simpl; fold On; congruence.
+ Qed.
+
+ Lemma recrbis_equiv : forall x,
+ recrbis A case0 caserec x = recr A case0 caserec x.
+ Proof.
+ intros; apply recrbis_aux_equiv; auto.
+ Qed.
+
+ End Recr.
+
+ (** * Incrementation *)
+
+ Section Incr.
+
+ (** Variant of [incr] via [recrbis] *)
+
+ Let Incr (b : digits) (si rec : int63) :=
+ match b with
+ | D0 => sneakl D1 si
+ | D1 => sneakl D0 rec
+ end.
+
+ Definition incrbis_aux n x := recrbis_aux n _ In Incr x.
+
+ Lemma incrbis_aux_equiv : forall x, incrbis_aux size x = incr x.
+ Proof.
+ unfold incr, recr, incrbis_aux; fold Incr; intros.
+ apply recrbis_aux_equiv; auto.
+ Qed.
+
+ (** Recursive equations satisfied by [incr] *)
+
+ Lemma incr_eqn1 :
+ forall x, firstr x = D0 -> incr x = twice_plus_one (shiftr x).
+ Proof.
+ intros.
+ case_eq (iszero x); intros.
+ rewrite (iszero_eq0 _ H0); simpl; auto.
+ unfold incr; rewrite recr_eqn; fold incr; auto.
+ rewrite H; auto.
+ Qed.
+
+ Lemma incr_eqn2 :
+ forall x, firstr x = D1 -> incr x = twice (incr (shiftr x)).
+ Proof.
+ intros.
+ case_eq (iszero x); intros.
+ rewrite (iszero_eq0 _ H0) in H; simpl in H; discriminate.
+ unfold incr; rewrite recr_eqn; fold incr; auto.
+ rewrite H; auto.
+ Qed.
+
+ Lemma incr_twice : forall x, incr (twice x) = twice_plus_one x.
+ Proof.
+ intros.
+ rewrite incr_eqn1; destruct x; simpl; auto.
+ Qed.
+
+ Lemma incr_twice_plus_one_firstl :
+ forall x, firstl x = D0 -> incr (twice_plus_one x) = twice (incr x).
+ Proof.
+ intros.
+ rewrite incr_eqn2; [ | destruct x; simpl; auto ].
+ f_equal; f_equal.
+ destruct x; simpl in *; rewrite H; auto.
+ Qed.
+
+ (** The previous result is actually true even without the
+ constraint on [firstl], but this is harder to prove
+ (see later). *)
+
+ End Incr.
+
+ (** * Conversion to [Z] : the [phi] function *)
+
+ Section Phi.
+
+ (** Variant of [phi] via [recrbis] *)
+
+ Let Phi := fun b (_:int63) =>
+ match b with D0 => Z.double | D1 => Z.succ_double end.
+
+ Definition phibis_aux n x := recrbis_aux n _ Z0 Phi x.
+
+ Lemma phibis_aux_equiv : forall x, phibis_aux size x = phi x.
+ Proof.
+ unfold phi, recr, phibis_aux; fold Phi; intros.
+ apply recrbis_aux_equiv; auto.
+ Qed.
+
+ (** Recursive equations satisfied by [phi] *)
+
+ Lemma phi_eqn1 : forall x, firstr x = D0 ->
+ phi x = Z.double (phi (shiftr x)).
+ Proof.
+ intros.
+ case_eq (iszero x); intros.
+ rewrite (iszero_eq0 _ H0); simpl; auto.
+ intros; unfold phi; rewrite recr_eqn; fold phi; auto.
+ rewrite H; auto.
+ Qed.
+
+ Lemma phi_eqn2 : forall x, firstr x = D1 ->
+ phi x = Z.succ_double (phi (shiftr x)).
+ Proof.
+ intros.
+ case_eq (iszero x); intros.
+ rewrite (iszero_eq0 _ H0) in H; simpl in H; discriminate.
+ intros; unfold phi; rewrite recr_eqn; fold phi; auto.
+ rewrite H; auto.
+ Qed.
+
+ Lemma phi_twice_firstl : forall x, firstl x = D0 ->
+ phi (twice x) = Z.double (phi x).
+ Proof.
+ intros.
+ rewrite phi_eqn1; auto; [ | destruct x; auto ].
+ f_equal; f_equal.
+ destruct x; simpl in *; rewrite H; auto.
+ Qed.
+
+ Lemma phi_twice_plus_one_firstl : forall x, firstl x = D0 ->
+ phi (twice_plus_one x) = Z.succ_double (phi x).
+ Proof.
+ intros.
+ rewrite phi_eqn2; auto; [ | destruct x; auto ].
+ f_equal; f_equal.
+ destruct x; simpl in *; rewrite H; auto.
+ Qed.
+
+ End Phi.
+
+ (** [phi x] is positive and lower than [2^63] *)
+
+ Lemma phibis_aux_pos : forall n x, (0 <= phibis_aux n x)%Z.
+ Proof.
+ induction n.
+ simpl; unfold phibis_aux; simpl; auto with zarith.
+ intros.
+ unfold phibis_aux, recrbis_aux; fold recrbis_aux;
+ fold (phibis_aux n (shiftr x)).
+ destruct (firstr x).
+ specialize IHn with (shiftr x); rewrite Z.double_spec; omega.
+ specialize IHn with (shiftr x); rewrite Z.succ_double_spec; omega.
+ Qed.
+
+ Lemma phibis_aux_bounded :
+ forall n x, n <= size ->
+ (phibis_aux n (nshiftr (size-n) x) < 2 ^ (Z.of_nat n))%Z.
+ Proof.
+ induction n.
+ simpl; unfold phibis_aux; simpl; auto with zarith.
+ intros.
+ unfold phibis_aux, recrbis_aux; fold recrbis_aux;
+ fold (phibis_aux n (shiftr (nshiftr (size - S n) x))).
+ assert (shiftr (nshiftr (size - S n) x) = nshiftr (size-n) x).
+ replace (size - n)%nat with (S (size - (S n))) by omega.
+ simpl; auto.
+ rewrite H0.
+ assert (H1 : n <= size) by omega.
+ specialize (IHn x H1).
+ set (y:=phibis_aux n (nshiftr (size - n) x)) in *.
+ rewrite Nat2Z.inj_succ, Z.pow_succ_r; auto with zarith.
+ case_eq (firstr (nshiftr (size - S n) x)); intros.
+ rewrite Z.double_spec; auto with zarith.
+ rewrite Z.succ_double_spec; auto with zarith.
+ Qed.
+
+ Lemma phi_bounded : forall x, (0 <= phi x < 2 ^ (Z.of_nat size))%Z.
+ Proof.
+ intros.
+ rewrite <- phibis_aux_equiv.
+ split.
+ apply phibis_aux_pos.
+ change x with (nshiftr (size-size) x).
+ apply phibis_aux_bounded; auto.
+ Qed.
+
+ Lemma phibis_aux_lowerbound :
+ forall n x, firstr (nshiftr n x) = D1 ->
+ (2 ^ Z.of_nat n <= phibis_aux (S n) x)%Z.
+ Proof.
+ induction n.
+ intros.
+ unfold nshiftr in H; simpl in *.
+ unfold phibis_aux, recrbis_aux.
+ rewrite H, Z.succ_double_spec; omega.
+
+ intros.
+ remember (S n) as m.
+ unfold phibis_aux, recrbis_aux; fold recrbis_aux;
+ fold (phibis_aux m (shiftr x)).
+ subst m.
+ rewrite Nat2Z.inj_succ, Z.pow_succ_r; auto with zarith.
+ assert (2^(Z.of_nat n) <= phibis_aux (S n) (shiftr x))%Z.
+ apply IHn.
+ rewrite <- nshiftr_S_tail; auto.
+ destruct (firstr x).
+ change (Z.double (phibis_aux (S n) (shiftr x))) with
+ (2*(phibis_aux (S n) (shiftr x)))%Z.
+ omega.
+ rewrite Z.succ_double_spec; omega.
+ Qed.
+
+ Lemma phi_lowerbound :
+ forall x, firstl x = D1 -> (2^(Z.of_nat (pred size)) <= phi x)%Z.
+ Proof.
+ intros.
+ generalize (phibis_aux_lowerbound (pred size) x).
+ rewrite <- firstl_firstr.
+ change (S (pred size)) with size; auto.
+ rewrite phibis_aux_equiv; auto.
+ Qed.
+
+ (** * Equivalence modulo [2^n] *)
+
+ Section EqShiftL.
+
+ (** After killing [n] bits at the left, are the numbers equal ?*)
+
+ Definition EqShiftL n x y :=
+ nshiftl n x = nshiftl n y.
+
+ Lemma EqShiftL_zero : forall x y, EqShiftL O x y <-> x = y.
+ Proof.
+ unfold EqShiftL; intros; unfold nshiftl; simpl; split; auto.
+ Qed.
+
+ Lemma EqShiftL_size : forall k x y, size<=k -> EqShiftL k x y.
+ Proof.
+ red; intros; rewrite 2 nshiftl_above_size; auto.
+ Qed.
+
+ Lemma EqShiftL_le : forall k k' x y, k <= k' ->
+ EqShiftL k x y -> EqShiftL k' x y.
+ Proof.
+ unfold EqShiftL; intros.
+ replace k' with ((k'-k)+k)%nat by omega.
+ remember (k'-k)%nat as n.
+ clear Heqn H k'.
+ induction n; simpl; auto.
+ rewrite 2 nshiftl_S; f_equal; auto.
+ Qed.
+
+ Lemma EqShiftL_firstr : forall k x y, k < size ->
+ EqShiftL k x y -> firstr x = firstr y.
+ Proof.
+ intros.
+ rewrite 2 firstr_firstl.
+ f_equal.
+ apply EqShiftL_le with k; auto.
+ unfold size.
+ auto with arith.
+ Qed.
+
+ Lemma EqShiftL_twice : forall k x y,
+ EqShiftL k (twice x) (twice y) <-> EqShiftL (S k) x y.
+ Proof.
+ intros; unfold EqShiftL.
+ rewrite 2 nshiftl_S_tail; split; auto.
+ Qed.
+
+ (** * From int63 to list of digits. *)
+
+ (** Lower (=rightmost) bits comes first. *)
+
+ Definition i2l := recrbis _ nil (fun d _ rec => d::rec).
+
+ Lemma i2l_length : forall x, length (i2l x) = size.
+ Proof.
+ intros; reflexivity.
+ Qed.
+
+ Fixpoint lshiftl l x :=
+ match l with
+ | nil => x
+ | d::l => sneakl d (lshiftl l x)
+ end.
+
+ Definition l2i l := lshiftl l On.
+
+ Lemma l2i_i2l : forall x, l2i (i2l x) = x.
+ Proof.
+ destruct x; compute; auto.
+ Qed.
+
+ Lemma i2l_sneakr : forall x d,
+ i2l (sneakr d x) = tail (i2l x) ++ d::nil.
+ Proof.
+ destruct x; compute; auto.
+ Qed.
+
+ Lemma i2l_sneakl : forall x d,
+ i2l (sneakl d x) = d :: removelast (i2l x).
+ Proof.
+ destruct x; compute; auto.
+ Qed.
+
+ Lemma i2l_l2i : forall l, length l = size ->
+ i2l (l2i l) = l.
+ Proof.
+ repeat (destruct l as [ |? l]; [intros; discriminate | ]).
+ destruct l; [ | intros; discriminate].
+ intros _; compute; auto.
+ Qed.
+
+ Fixpoint cstlist (A:Type)(a:A) n :=
+ match n with
+ | O => nil
+ | S n => a::cstlist _ a n
+ end.
+
+ Lemma i2l_nshiftl : forall n x, n<=size ->
+ i2l (nshiftl n x) = cstlist _ D0 n ++ firstn (size-n) (i2l x).
+ Proof.
+ induction n.
+ intros.
+ assert (firstn (size-0) (i2l x) = i2l x).
+ rewrite <- minus_n_O, <- (i2l_length x).
+ induction (i2l x); simpl; f_equal; auto.
+ rewrite H0; clear H0.
+ reflexivity.
+
+ intros.
+ rewrite nshiftl_S.
+ unfold shiftl; rewrite i2l_sneakl.
+ simpl cstlist.
+ rewrite <- app_comm_cons; f_equal.
+ rewrite IHn; [ | omega].
+ rewrite removelast_app.
+ f_equal.
+ replace (size-n)%nat with (S (size - S n))%nat by omega.
+ rewrite removelast_firstn; auto.
+ rewrite i2l_length; omega.
+ generalize (firstn_length (size-n) (i2l x)).
+ rewrite i2l_length.
+ intros H0 H1; rewrite H1 in H0.
+ rewrite min_l in H0 by omega.
+ simpl length in H0.
+ omega.
+ Qed.
+
+ (** [i2l] can be used to define a relation equivalent to [EqShiftL] *)
+
+ Lemma EqShiftL_i2l : forall k x y,
+ EqShiftL k x y <-> firstn (size-k) (i2l x) = firstn (size-k) (i2l y).
+ Proof.
+ intros.
+ destruct (le_lt_dec size k).
+ split; intros.
+ replace (size-k)%nat with O by omega.
+ unfold firstn; auto.
+ apply EqShiftL_size; auto.
+
+ unfold EqShiftL.
+ assert (k <= size) by omega.
+ split; intros.
+ assert (i2l (nshiftl k x) = i2l (nshiftl k y)) by (f_equal; auto).
+ rewrite 2 i2l_nshiftl in H1; auto.
+ eapply app_inv_head; eauto.
+ assert (i2l (nshiftl k x) = i2l (nshiftl k y)).
+ rewrite 2 i2l_nshiftl; auto.
+ f_equal; auto.
+ rewrite <- (l2i_i2l (nshiftl k x)), <- (l2i_i2l (nshiftl k y)).
+ f_equal; auto.
+ Qed.
+
+ (** This equivalence allows to prove easily the following delicate
+ result *)
+
+ Lemma EqShiftL_twice_plus_one : forall k x y,
+ EqShiftL k (twice_plus_one x) (twice_plus_one y) <-> EqShiftL (S k) x y.
+ Proof.
+ intros.
+ destruct (le_lt_dec size k).
+ split; intros; apply EqShiftL_size; auto.
+
+ rewrite 2 EqShiftL_i2l.
+ unfold twice_plus_one.
+ rewrite 2 i2l_sneakl.
+ replace (size-k)%nat with (S (size - S k))%nat by omega.
+ remember (size - S k)%nat as n.
+ remember (i2l x) as lx.
+ remember (i2l y) as ly.
+ simpl.
+ rewrite 2 firstn_removelast.
+ split; intros.
+ injection H; auto.
+ f_equal; auto.
+ subst ly n; rewrite i2l_length; omega.
+ subst lx n; rewrite i2l_length; omega.
+ Qed.
+
+ Lemma EqShiftL_shiftr : forall k x y, EqShiftL k x y ->
+ EqShiftL (S k) (shiftr x) (shiftr y).
+ Proof.
+ intros.
+ destruct (le_lt_dec size (S k)).
+ apply EqShiftL_size; auto.
+ case_eq (firstr x); intros.
+ rewrite <- EqShiftL_twice.
+ unfold twice; rewrite <- H0.
+ rewrite <- sneakl_shiftr.
+ rewrite (EqShiftL_firstr k x y); auto.
+ rewrite <- sneakl_shiftr; auto.
+ omega.
+ rewrite <- EqShiftL_twice_plus_one.
+ unfold twice_plus_one; rewrite <- H0.
+ rewrite <- sneakl_shiftr.
+ rewrite (EqShiftL_firstr k x y); auto.
+ rewrite <- sneakl_shiftr; auto.
+ omega.
+ Qed.
+
+ Lemma EqShiftL_incrbis : forall n k x y, n<=size ->
+ (n+k=S size)%nat ->
+ EqShiftL k x y ->
+ EqShiftL k (incrbis_aux n x) (incrbis_aux n y).
+ Proof.
+ induction n; simpl; intros.
+ red; auto.
+ destruct (eq_nat_dec k size).
+ subst k; apply EqShiftL_size; auto.
+ unfold incrbis_aux; simpl;
+ fold (incrbis_aux n (shiftr x)); fold (incrbis_aux n (shiftr y)).
+
+ rewrite (EqShiftL_firstr k x y); auto; try omega.
+ case_eq (firstr y); intros.
+ rewrite EqShiftL_twice_plus_one.
+ apply EqShiftL_shiftr; auto.
+
+ rewrite EqShiftL_twice.
+ apply IHn; try omega.
+ apply EqShiftL_shiftr; auto.
+ Qed.
+
+ Lemma EqShiftL_incr : forall x y,
+ EqShiftL 1 x y -> EqShiftL 1 (incr x) (incr y).
+ Proof.
+ intros.
+ rewrite <- 2 incrbis_aux_equiv.
+ apply EqShiftL_incrbis; auto.
+ Qed.
+
+ End EqShiftL.
+
+ (** * More equations about [incr] *)
+
+ Lemma incr_twice_plus_one :
+ forall x, incr (twice_plus_one x) = twice (incr x).
+ Proof.
+ intros.
+ rewrite incr_eqn2; [ | destruct x; simpl; auto].
+ apply EqShiftL_incr.
+ red; destruct x; simpl; auto.
+ Qed.
+
+ Lemma incr_firstr : forall x, firstr (incr x) <> firstr x.
+ Proof.
+ intros.
+ case_eq (firstr x); intros.
+ rewrite incr_eqn1; auto.
+ destruct (shiftr x); simpl; discriminate.
+ rewrite incr_eqn2; auto.
+ destruct (incr (shiftr x)); simpl; discriminate.
+ Qed.
+
+ Lemma incr_inv : forall x y,
+ incr x = twice_plus_one y -> x = twice y.
+ Proof.
+ intros.
+ case_eq (iszero x); intros.
+ rewrite (iszero_eq0 _ H0) in *; simpl in *.
+ change (incr 0) with 1 in H.
+ symmetry; rewrite twice_zero; auto.
+ case_eq (firstr x); intros.
+ rewrite incr_eqn1 in H; auto.
+ clear H0; destruct x; destruct y; simpl in *.
+ injection H; intros; subst; auto.
+ elim (incr_firstr x).
+ rewrite H1, H; destruct y; simpl; auto.
+ Qed.
+
+ (** * Conversion from [Z] : the [phi_inv] function *)
+
+ (** First, recursive equations *)
+
+ Lemma phi_inv_double_plus_one : forall z,
+ phi_inv (Z.succ_double z) = twice_plus_one (phi_inv z).
+ Proof.
+ destruct z; simpl; auto.
+ induction p; simpl.
+ rewrite 2 incr_twice; auto.
+ rewrite incr_twice, incr_twice_plus_one.
+ f_equal.
+ apply incr_inv; auto.
+ auto.
+ Qed.
+
+ Lemma phi_inv_double : forall z,
+ phi_inv (Z.double z) = twice (phi_inv z).
+ Proof.
+ destruct z; simpl; auto.
+ rewrite incr_twice_plus_one; auto.
+ Qed.
+
+ Lemma phi_inv_incr : forall z,
+ phi_inv (Z.succ z) = incr (phi_inv z).
+ Proof.
+ destruct z.
+ simpl; auto.
+ simpl; auto.
+ induction p; simpl; auto.
+ rewrite <- Pos.add_1_r, IHp, incr_twice_plus_one; auto.
+ rewrite incr_twice; auto.
+ simpl; auto.
+ destruct p; simpl; auto.
+ rewrite incr_twice; auto.
+ f_equal.
+ rewrite incr_twice_plus_one; auto.
+ induction p; simpl; auto.
+ rewrite incr_twice; auto.
+ f_equal.
+ rewrite incr_twice_plus_one; auto.
+ Qed.
+
+ (** [phi_inv o inv], the always-exact and easy-to-prove trip :
+ from int63 to Z and then back to int63. *)
+
+ Lemma phi_inv_phi_aux :
+ forall n x, n <= size ->
+ phi_inv (phibis_aux n (nshiftr (size-n) x)) =
+ nshiftr (size-n) x.
+ Proof.
+ induction n.
+ intros; simpl.
+ rewrite nshiftr_size; auto.
+ intros.
+ unfold phibis_aux, recrbis_aux; fold recrbis_aux;
+ fold (phibis_aux n (shiftr (nshiftr (size-S n) x))).
+ assert (shiftr (nshiftr (size - S n) x) = nshiftr (size-n) x).
+ replace (size - n)%nat with (S (size - (S n))); auto; omega.
+ rewrite H0.
+ case_eq (firstr (nshiftr (size - S n) x)); intros.
+
+ rewrite phi_inv_double.
+ rewrite IHn by omega.
+ rewrite <- H0.
+ remember (nshiftr (size - S n) x) as y.
+ destruct y; simpl in H1; rewrite H1; auto.
+
+ rewrite phi_inv_double_plus_one.
+ rewrite IHn by omega.
+ rewrite <- H0.
+ remember (nshiftr (size - S n) x) as y.
+ destruct y; simpl in H1; rewrite H1; auto.
+ Qed.
+
+ Lemma phi_inv_phi : forall x, phi_inv (phi x) = x.
+ Proof.
+ intros.
+ rewrite <- phibis_aux_equiv.
+ replace x with (nshiftr (size - size) x) by auto.
+ apply phi_inv_phi_aux; auto.
+ Qed.
+
+ (** The other composition [phi o phi_inv] is harder to prove correct.
+ In particular, an overflow can happen, so a modulo is needed.
+ For the moment, we proceed via several steps, the first one
+ being a detour to [positive_to_in63]. *)
+
+ (** * [positive_to_int63] *)
+
+ (** A variant of [p2i] with [twice] and [twice_plus_one] instead of
+ [2*i] and [2*i+1] *)
+
+ Fixpoint p2ibis n p : (N*int63)%type :=
+ match n with
+ | O => (Npos p, On)
+ | S n => match p with
+ | xO p => let (r,i) := p2ibis n p in (r, twice i)
+ | xI p => let (r,i) := p2ibis n p in (r, twice_plus_one i)
+ | xH => (N0, In)
+ end
+ end.
+
+ Lemma p2ibis_bounded : forall n p,
+ nshiftr n (snd (p2ibis n p)) = 0.
+ Proof.
+ induction n.
+ simpl; intros; auto.
+ simpl; intros.
+ destruct p; simpl.
+
+ specialize IHn with p.
+ destruct (p2ibis n p); simpl in *.
+ rewrite nshiftr_S_tail.
+ destruct (le_lt_dec size n).
+ rewrite nshiftr_above_size; auto.
+ assert (H:=nshiftr_0_firstl _ _ l IHn).
+ replace (shiftr (twice_plus_one i)) with i; auto.
+ destruct i; simpl in *; rewrite H; auto.
+
+ specialize IHn with p.
+ destruct (p2ibis n p); simpl in *.
+ rewrite nshiftr_S_tail.
+ destruct (le_lt_dec size n).
+ rewrite nshiftr_above_size; auto.
+ assert (H:=nshiftr_0_firstl _ _ l IHn).
+ replace (shiftr (twice i)) with i; auto.
+ destruct i; simpl in *; rewrite H; auto.
+
+ rewrite nshiftr_S_tail; auto.
+ replace (shiftr In) with 0; auto.
+ apply nshiftr_n_0.
+ Qed.
+
+ Local Open Scope Z_scope.
+
+ Lemma p2ibis_spec : forall n p, (n<=size)%nat ->
+ Zpos p = (Z.of_N (fst (p2ibis n p)))*2^(Z.of_nat n) +
+ phi (snd (p2ibis n p)).
+ Proof.
+ induction n; intros.
+ simpl; rewrite Pos.mul_1_r; auto.
+ replace (2^(Z.of_nat (S n)))%Z with (2*2^(Z.of_nat n))%Z by
+ (rewrite <- Z.pow_succ_r, <- Zpos_P_of_succ_nat;
+ auto with zarith).
+ rewrite (Z.mul_comm 2).
+ assert (n<=size)%nat by omega.
+ destruct p; simpl; [ | | auto];
+ specialize (IHn p H0);
+ generalize (p2ibis_bounded n p);
+ destruct (p2ibis n p) as (r,i); simpl in *; intros.
+
+ change (Zpos p~1) with (2*Zpos p + 1)%Z.
+ rewrite phi_twice_plus_one_firstl, Z.succ_double_spec.
+ rewrite IHn; ring.
+ apply (nshiftr_0_firstl n); auto; try omega.
+
+ change (Zpos p~0) with (2*Zpos p)%Z.
+ rewrite phi_twice_firstl.
+ change (Z.double (phi i)) with (2*(phi i))%Z.
+ rewrite IHn; ring.
+ apply (nshiftr_0_firstl n); auto; try omega.
+ Qed.
+
+ (** We now prove that this [p2ibis] is related to [phi_inv_positive] *)
+
+ Lemma phi_inv_positive_p2ibis : forall n p, (n<=size)%nat ->
+ EqShiftL (size-n) (phi_inv_positive p) (snd (p2ibis n p)).
+ Proof.
+ induction n.
+ intros.
+ apply EqShiftL_size; auto.
+ intros.
+ simpl p2ibis; destruct p; [ | | red; auto];
+ specialize IHn with p;
+ destruct (p2ibis n p); simpl snd in *; simpl phi_inv_positive;
+ rewrite ?EqShiftL_twice_plus_one, ?EqShiftL_twice;
+ replace (S (size - S n))%nat with (size - n)%nat by omega;
+ apply IHn; omega.
+ Qed.
+
+ (** This gives the expected result about [phi o phi_inv], at least
+ for the positive case. *)
+
+ Lemma phi_phi_inv_positive : forall p,
+ phi (phi_inv_positive p) = (Zpos p) mod (2^(Z.of_nat size)).
+ Proof.
+ intros.
+ replace (phi_inv_positive p) with (snd (p2ibis size p)).
+ rewrite (p2ibis_spec size p) by auto.
+ rewrite Z.add_comm, Z_mod_plus.
+ symmetry; apply Zmod_small.
+ apply phi_bounded.
+ auto with zarith.
+ symmetry.
+ rewrite <- EqShiftL_zero.
+ apply (phi_inv_positive_p2ibis size p); auto.
+ Qed.
+
+ (** Moreover, [p2ibis] is also related with [p2i] and hence with
+ [positive_to_int63]. *)
+
+ Lemma double_twice_firstl : forall x, firstl x = D0 ->
+ (Twon*x = twice x)%int.
+ Proof.
+ intros.
+ unfold mul63.
+ rewrite <- Z.double_spec, <- phi_twice_firstl, phi_inv_phi; auto.
+ Qed.
+
+ Lemma double_twice_plus_one_firstl : forall x, firstl x = D0 ->
+ (Twon*x+In = twice_plus_one x)%int.
+ Proof.
+ intros.
+ rewrite double_twice_firstl; auto.
+ unfold add63.
+ rewrite phi_twice_firstl, <- Z.succ_double_spec,
+ <- phi_twice_plus_one_firstl, phi_inv_phi; auto.
+ Qed.
+
+ Lemma p2i_p2ibis : forall n p, (n<=size)%nat ->
+ p2i n p = p2ibis n p.
+ Proof.
+ induction n; simpl; auto; intros.
+ destruct p; auto; specialize IHn with p;
+ generalize (p2ibis_bounded n p);
+ rewrite IHn; try omega; destruct (p2ibis n p); simpl; intros;
+ f_equal; auto.
+ apply double_twice_plus_one_firstl.
+ apply (nshiftr_0_firstl n); auto; omega.
+ apply double_twice_firstl.
+ apply (nshiftr_0_firstl n); auto; omega.
+ Qed.
+
+ Lemma positive_to_int63_phi_inv_positive : forall p,
+ snd (positive_to_int63 p) = phi_inv_positive p.
+ Proof.
+ intros; unfold positive_to_int63.
+ rewrite p2i_p2ibis; auto.
+ symmetry.
+ rewrite <- EqShiftL_zero.
+ apply (phi_inv_positive_p2ibis size); auto.
+ Qed.
+
+ Lemma positive_to_int63_spec : forall p,
+ Zpos p = (Z.of_N (fst (positive_to_int63 p)))*2^(Z.of_nat size) +
+ phi (snd (positive_to_int63 p)).
+ Proof.
+ unfold positive_to_int63.
+ intros; rewrite p2i_p2ibis; auto.
+ apply p2ibis_spec; auto.
+ Qed.
+
+ (** Thanks to the result about [phi o phi_inv_positive], we can
+ now establish easily the most general results about
+ [phi o twice] and so one. *)
+
+ Lemma phi_twice : forall x,
+ phi (twice x) = (Z.double (phi x)) mod 2^(Z.of_nat size).
+ Proof.
+ intros.
+ pattern x at 1; rewrite <- (phi_inv_phi x).
+ rewrite <- phi_inv_double.
+ assert (0 <= Z.double (phi x)).
+ rewrite Z.double_spec; generalize (phi_bounded x); omega.
+ destruct (Z.double (phi x)).
+ simpl; auto.
+ apply phi_phi_inv_positive.
+ compute in H; elim H; auto.
+ Qed.
+
+ Lemma phi_twice_plus_one : forall x,
+ phi (twice_plus_one x) = (Z.succ_double (phi x)) mod 2^(Z.of_nat size).
+ Proof.
+ intros.
+ pattern x at 1; rewrite <- (phi_inv_phi x).
+ rewrite <- phi_inv_double_plus_one.
+ assert (0 <= Z.succ_double (phi x)).
+ rewrite Z.succ_double_spec; generalize (phi_bounded x); omega.
+ destruct (Z.succ_double (phi x)).
+ simpl; auto.
+ apply phi_phi_inv_positive.
+ compute in H; elim H; auto.
+ Qed.
+
+ Lemma phi_incr : forall x,
+ phi (incr x) = (Z.succ (phi x)) mod 2^(Z.of_nat size).
+ Proof.
+ intros.
+ pattern x at 1; rewrite <- (phi_inv_phi x).
+ rewrite <- phi_inv_incr.
+ assert (0 <= Z.succ (phi x)).
+ change (Z.succ (phi x)) with ((phi x)+1)%Z;
+ generalize (phi_bounded x); omega.
+ destruct (Z.succ (phi x)).
+ simpl; auto.
+ apply phi_phi_inv_positive.
+ compute in H; elim H; auto.
+ Qed.
+
+ (** With the previous results, we can deal with [phi o phi_inv] even
+ in the negative case *)
+
+ Lemma phi_phi_inv_negative :
+ forall p, phi (incr (complement_negative p)) = (Zneg p) mod 2^(Z.of_nat size).
+ Proof.
+ induction p.
+
+ simpl complement_negative.
+ rewrite phi_incr in IHp.
+ rewrite incr_twice, phi_twice_plus_one.
+ remember (phi (complement_negative p)) as q.
+ rewrite Z.succ_double_spec.
+ replace (2*q+1) with (2*(Z.succ q)-1) by omega.
+ rewrite <- Zminus_mod_idemp_l, <- Zmult_mod_idemp_r, IHp.
+ rewrite Zmult_mod_idemp_r, Zminus_mod_idemp_l; auto with zarith.
+
+ simpl complement_negative.
+ rewrite incr_twice_plus_one, phi_twice.
+ remember (phi (incr (complement_negative p))) as q.
+ rewrite Z.double_spec, IHp, Zmult_mod_idemp_r; auto with zarith.
+
+ simpl; auto.
+ Qed.
+
+ Lemma phi_phi_inv :
+ forall z, phi (phi_inv z) = z mod 2 ^ (Z.of_nat size).
+ Proof.
+ destruct z.
+ simpl; auto.
+ apply phi_phi_inv_positive.
+ apply phi_phi_inv_negative.
+ Qed.
+
+End Basics.
+
+Definition zdigits := Eval vm_compute in (phi_inv 63).
+Notation "63" := zdigits : int63_scope.
+
+Instance int63_ops : ZnZ.Ops int63 :=
+{
+ digits := 63%positive; (* number of digits *)
+ zdigits := 63; (* number of digits *)
+ to_Z := phi; (* conversion to Z *)
+ of_pos := positive_to_int63; (* positive -> N*int63 : p => N,i
+ where p = N*2^63+phi i *)
+ head0 := head063; (* number of head 0 *)
+ tail0 := tail063; (* number of tail 0 *)
+ zero := 0;
+ one := 1;
+ minus_one := Tn; (* 2^63 - 1 *)
+ compare := compare63;
+ eq0 := fun i => match i ?= 0 with Eq => true | _ => false end;
+ opp_c := fun i => 0 -c i;
+ opp := opp63;
+ opp_carry := fun i => 0-i-1;
+ succ_c := fun i => i +c 1;
+ add_c := add63c;
+ add_carry_c := add63carryc;
+ succ := fun i => i + 1;
+ add := add63;
+ add_carry := fun i j => i + j + 1;
+ pred_c := fun i => i -c 1;
+ sub_c := sub63c;
+ sub_carry_c := sub63carryc;
+ pred := fun i => i - 1;
+ sub := sub63;
+ sub_carry := fun i j => i - j - 1;
+ mul_c := mul63c;
+ mul := mul63;
+ square_c := fun x => x *c x;
+ div21 := div6321;
+ div_gt := div63; (* this is supposed to be the special case of
+ division a/b where a > b *)
+ div := div63;
+ modulo_gt := fun i j => let (_,r) := i/j in r;
+ modulo := fun i j => let (_,r) := i/j in r;
+ gcd_gt := gcd63;
+ gcd := gcd63;
+ add_mul_div := addmuldiv63;
+ pos_mod := (* modulo 2^p *)
+ fun p i =>
+ match p ?= 63 with
+ | Lt => addmuldiv63 p 0 (addmuldiv63 (63-p) i 0)
+ | _ => i
+ end;
+ is_even :=
+ fun i => let (_,r) := i/2 in
+ match r ?= 0 with Eq => true | _ => false end;
+ sqrt2 := sqrt632;
+ sqrt := sqrt63
+}.
+
+Section Int63_Specs.
+
+ Local Open Scope Z_scope.
+
+ Notation "[| x |]" := (phi x) (at level 0, x at level 99).
+
+ Local Notation wB := (2 ^ (Z.of_nat size)).
+
+ Lemma wB_pos : wB > 0.
+ Proof.
+ auto with zarith.
+ Qed.
+
+ Notation "[+| c |]" :=
+ (interp_carry 1 wB phi c) (at level 0, x at level 99).
+
+ Notation "[-| c |]" :=
+ (interp_carry (-1) wB phi c) (at level 0, x at level 99).
+
+ Notation "[|| x ||]" :=
+ (zn2z_to_Z wB phi x) (at level 0, x at level 99).
+
+ Lemma spec_zdigits : [| 63 |] = 63.
+ Proof.
+ reflexivity.
+ Qed.
+
+ Lemma spec_more_than_1_digit: 1 < 63.
+ Proof.
+ auto with zarith.
+ Qed.
+
+ Lemma spec_0 : [| 0 |] = 0.
+ Proof.
+ reflexivity.
+ Qed.
+
+ Lemma spec_1 : [| 1 |] = 1.
+ Proof.
+ reflexivity.
+ Qed.
+
+ Lemma spec_m1 : [| Tn |] = wB - 1.
+ Proof.
+ reflexivity.
+ Qed.
+
+ Lemma spec_compare : forall x y,
+ (x ?= y)%int = ([|x|] ?= [|y|]).
+ Proof. reflexivity. Qed.
+
+ (** Addition *)
+
+ Lemma spec_add_c : forall x y, [+|add63c x y|] = [|x|] + [|y|].
+ Proof.
+ intros; unfold add63c, add63, interp_carry; rewrite phi_phi_inv.
+ generalize (phi_bounded x)(phi_bounded y); intros.
+ set (X:=[|x|]) in *; set (Y:=[|y|]) in *; clearbody X Y.
+
+ assert ((X+Y) mod wB ?= X+Y <> Eq -> [+|C1 (phi_inv (X+Y))|] = X+Y).
+ unfold interp_carry; rewrite phi_phi_inv, Z.compare_eq_iff; intros.
+ destruct (Z_lt_le_dec (X+Y) wB).
+ contradict H1; auto using Zmod_small with zarith.
+ rewrite <- (Z_mod_plus_full (X+Y) (-1) wB).
+ rewrite Zmod_small; romega.
+
+ generalize (Z.compare_eq ((X+Y) mod wB) (X+Y)); intros Heq.
+ destruct Z.compare; intros;
+ [ rewrite phi_phi_inv; auto | now apply H1 | now apply H1].
+ Qed.
+
+ Lemma spec_succ_c : forall x, [+|add63c x 1|] = [|x|] + 1.
+ Proof.
+ intros; apply spec_add_c.
+ Qed.
+
+ Lemma spec_add_carry_c : forall x y, [+|add63carryc x y|] = [|x|] + [|y|] + 1.
+ Proof.
+ intros.
+ unfold add63carryc, interp_carry; rewrite phi_phi_inv.
+ generalize (phi_bounded x)(phi_bounded y); intros.
+ set (X:=[|x|]) in *; set (Y:=[|y|]) in *; clearbody X Y.
+
+ assert ((X+Y+1) mod wB ?= X+Y+1 <> Eq -> [+|C1 (phi_inv (X+Y+1))|] = X+Y+1).
+ unfold interp_carry; rewrite phi_phi_inv, Z.compare_eq_iff; intros.
+ destruct (Z_lt_le_dec (X+Y+1) wB).
+ contradict H1; auto using Zmod_small with zarith.
+ rewrite <- (Z_mod_plus_full (X+Y+1) (-1) wB).
+ rewrite Zmod_small; romega.
+
+ generalize (Z.compare_eq ((X+Y+1) mod wB) (X+Y+1)); intros Heq.
+ destruct Z.compare; intros;
+ [ rewrite phi_phi_inv; auto | now apply H1 | now apply H1].
+ Qed.
+
+ Lemma spec_add : forall x y, [|x+y|] = ([|x|] + [|y|]) mod wB.
+ Proof.
+ intros; apply phi_phi_inv.
+ Qed.
+
+ Lemma spec_add_carry :
+ forall x y, [|x+y+1|] = ([|x|] + [|y|] + 1) mod wB.
+ Proof.
+ unfold add63; intros.
+ repeat rewrite phi_phi_inv.
+ apply Zplus_mod_idemp_l.
+ Qed.
+
+ Lemma spec_succ : forall x, [|x+1|] = ([|x|] + 1) mod wB.
+ Proof.
+ intros; rewrite <- spec_1; apply spec_add.
+ Qed.
+
+ (** Substraction *)
+
+ Lemma spec_sub_c : forall x y, [-|sub63c x y|] = [|x|] - [|y|].
+ Proof.
+ unfold sub63c, sub63, interp_carry; intros.
+ rewrite phi_phi_inv.
+ generalize (phi_bounded x)(phi_bounded y); intros.
+ set (X:=[|x|]) in *; set (Y:=[|y|]) in *; clearbody X Y.
+
+ assert ((X-Y) mod wB ?= X-Y <> Eq -> [-|C1 (phi_inv (X-Y))|] = X-Y).
+ unfold interp_carry; rewrite phi_phi_inv, Z.compare_eq_iff; intros.
+ destruct (Z_lt_le_dec (X-Y) 0).
+ rewrite <- (Z_mod_plus_full (X-Y) 1 wB).
+ rewrite Zmod_small; romega.
+ contradict H1; apply Zmod_small; romega.
+
+ generalize (Z.compare_eq ((X-Y) mod wB) (X-Y)); intros Heq.
+ destruct Z.compare; intros;
+ [ rewrite phi_phi_inv; auto | now apply H1 | now apply H1].
+ Qed.
+
+ Lemma spec_sub_carry_c : forall x y, [-|sub63carryc x y|] = [|x|] - [|y|] - 1.
+ Proof.
+ unfold sub63carryc, sub63, interp_carry; intros.
+ rewrite phi_phi_inv.
+ generalize (phi_bounded x)(phi_bounded y); intros.
+ set (X:=[|x|]) in *; set (Y:=[|y|]) in *; clearbody X Y.
+
+ assert ((X-Y-1) mod wB ?= X-Y-1 <> Eq -> [-|C1 (phi_inv (X-Y-1))|] = X-Y-1).
+ unfold interp_carry; rewrite phi_phi_inv, Z.compare_eq_iff; intros.
+ destruct (Z_lt_le_dec (X-Y-1) 0).
+ rewrite <- (Z_mod_plus_full (X-Y-1) 1 wB).
+ rewrite Zmod_small; romega.
+ contradict H1; apply Zmod_small; romega.
+
+ generalize (Z.compare_eq ((X-Y-1) mod wB) (X-Y-1)); intros Heq.
+ destruct Z.compare; intros;
+ [ rewrite phi_phi_inv; auto | now apply H1 | now apply H1].
+ Qed.
+
+ Lemma spec_sub : forall x y, [|x-y|] = ([|x|] - [|y|]) mod wB.
+ Proof.
+ intros; apply phi_phi_inv.
+ Qed.
+
+ Lemma spec_sub_carry :
+ forall x y, [|x-y-1|] = ([|x|] - [|y|] - 1) mod wB.
+ Proof.
+ unfold sub63; intros.
+ repeat rewrite phi_phi_inv.
+ apply Zminus_mod_idemp_l.
+ Qed.
+
+ Lemma spec_opp_c : forall x, [-|sub63c 0 x|] = -[|x|].
+ Proof.
+ intros; apply spec_sub_c.
+ Qed.
+
+ Lemma spec_opp : forall x, [|0 - x|] = (-[|x|]) mod wB.
+ Proof.
+ intros; apply phi_phi_inv.
+ Qed.
+
+ Lemma spec_opp_carry : forall x, [|0 - x - 1|] = wB - [|x|] - 1.
+ Proof.
+ unfold sub63; intros.
+ repeat rewrite phi_phi_inv.
+ change [|1|] with 1; change [|0|] with 0.
+ rewrite <- (Z_mod_plus_full (0-[|x|]) 1 wB).
+ rewrite Zminus_mod_idemp_l.
+ rewrite Zmod_small; generalize (phi_bounded x); romega.
+ Qed.
+
+ Lemma spec_pred_c : forall x, [-|sub63c x 1|] = [|x|] - 1.
+ Proof.
+ intros; apply spec_sub_c.
+ Qed.
+
+ Lemma spec_pred : forall x, [|x-1|] = ([|x|] - 1) mod wB.
+ Proof.
+ intros; apply spec_sub.
+ Qed.
+
+ (** Multiplication *)
+
+ Lemma phi2_phi_inv2 : forall x, [||phi_inv2 x||] = x mod (wB^2).
+ Proof.
+ assert (forall z, (z / wB) mod wB * wB + z mod wB = z mod wB ^ 2).
+ intros.
+ assert ((z/wB) mod wB = z/wB - (z/wB/wB)*wB).
+ rewrite (Z_div_mod_eq (z/wB) wB wB_pos) at 2; ring.
+ assert (z mod wB = z - (z/wB)*wB).
+ rewrite (Z_div_mod_eq z wB wB_pos) at 2; ring.
+ rewrite H.
+ rewrite H0 at 1.
+ ring_simplify.
+ rewrite Zdiv_Zdiv; auto with zarith.
+ rewrite (Z_div_mod_eq z (wB*wB)) at 2; auto with zarith.
+ change (wB*wB) with (wB^2); ring.
+
+ unfold phi_inv2.
+ destruct x; unfold zn2z_to_Z; rewrite ?phi_phi_inv;
+ change base with wB; auto.
+ Qed.
+
+ Lemma spec_mul_c : forall x y, [|| mul63c x y ||] = [|x|] * [|y|].
+ Proof.
+ unfold mul63c; intros.
+ rewrite phi2_phi_inv2.
+ apply Zmod_small.
+ generalize (phi_bounded x)(phi_bounded y); intros.
+ change (wB^2) with (wB * wB).
+ auto using Z.mul_lt_mono_nonneg with zarith.
+ Qed.
+
+ Lemma spec_mul : forall x y, [|x*y|] = ([|x|] * [|y|]) mod wB.
+ Proof.
+ intros; apply phi_phi_inv.
+ Qed.
+
+ Lemma spec_square_c : forall x, [|| mul63c x x ||] = [|x|] * [|x|].
+ Proof.
+ intros; apply spec_mul_c.
+ Qed.
+
+ (** Division *)
+
+ Lemma spec_div21 : forall a1 a2 b,
+ wB/2 <= [|b|] ->
+ [|a1|] < [|b|] ->
+ let (q,r) := div6321 a1 a2 b in
+ [|a1|] *wB+ [|a2|] = [|q|] * [|b|] + [|r|] /\
+ 0 <= [|r|] < [|b|].
+ Proof.
+ unfold div6321; intros.
+ generalize (phi_bounded a1)(phi_bounded a2)(phi_bounded b); intros.
+ assert ([|b|]>0) by (auto with zarith).
+ generalize (Z_div_mod (phi2 a1 a2) [|b|] H4) (Z_div_pos (phi2 a1 a2) [|b|] H4).
+ unfold Z.div; destruct (Z.div_eucl (phi2 a1 a2) [|b|]); simpl.
+ rewrite ?phi_phi_inv.
+ destruct 1; intros.
+ unfold phi2 in *.
+ change base with wB; change base with wB in H5.
+ change (Z.pow_pos 2 63) with wB; change (Z.pow_pos 2 63) with wB in H.
+ rewrite H5, Z.mul_comm.
+ replace (z0 mod wB) with z0 by (symmetry; apply Zmod_small; omega).
+ replace (z mod wB) with z; auto with zarith.
+ symmetry; apply Zmod_small.
+ split.
+ apply H7; change base with wB; auto with zarith.
+ apply Z.mul_lt_mono_pos_r with [|b|]; [omega| ].
+ rewrite Z.mul_comm.
+ apply Z.le_lt_trans with ([|b|]*z+z0); [omega| ].
+ rewrite <- H5.
+ apply Z.le_lt_trans with ([|a1|]*wB+(wB-1)); [omega | ].
+ replace ([|a1|]*wB+(wB-1)) with (wB*([|a1|]+1)-1) by ring.
+ assert (wB*([|a1|]+1) <= wB*[|b|]); try omega.
+ apply Z.mul_le_mono_nonneg; omega.
+ Qed.
+
+ Lemma spec_div : forall a b, 0 < [|b|] ->
+ let (q,r) := div63 a b in
+ [|a|] = [|q|] * [|b|] + [|r|] /\
+ 0 <= [|r|] < [|b|].
+ Proof.
+ unfold div63; intros.
+ assert ([|b|]>0) by (auto with zarith).
+ generalize (Z_div_mod [|a|] [|b|] H0) (Z_div_pos [|a|] [|b|] H0).
+ unfold Z.div; destruct (Z.div_eucl [|a|] [|b|]); simpl.
+ rewrite ?phi_phi_inv.
+ destruct 1; intros.
+ rewrite H1, Z.mul_comm.
+ generalize (phi_bounded a)(phi_bounded b); intros.
+ replace (z0 mod wB) with z0 by (symmetry; apply Zmod_small; omega).
+ replace (z mod wB) with z; auto with zarith.
+ symmetry; apply Zmod_small.
+ split; auto with zarith.
+ apply Z.le_lt_trans with [|a|]; auto with zarith.
+ rewrite H1.
+ apply Z.le_trans with ([|b|]*z); try omega.
+ rewrite <- (Z.mul_1_l z) at 1.
+ apply Z.mul_le_mono_nonneg; auto with zarith.
+ Qed.
+
+ Lemma spec_mod : forall a b, 0 < [|b|] ->
+ [|let (_,r) := (a/b)%int in r|] = [|a|] mod [|b|].
+ Proof.
+ unfold div63; intros.
+ assert ([|b|]>0) by (auto with zarith).
+ unfold Z.modulo.
+ generalize (Z_div_mod [|a|] [|b|] H0).
+ destruct (Z.div_eucl [|a|] [|b|]); simpl.
+ rewrite ?phi_phi_inv.
+ destruct 1; intros.
+ generalize (phi_bounded b); intros.
+ apply Zmod_small; omega.
+ Qed.
+
+ Lemma phi_gcd : forall i j,
+ [|gcd63 i j|] = Zgcdn (2*size) [|j|] [|i|].
+ Proof.
+ unfold gcd63.
+ induction (2*size)%nat; intros.
+ reflexivity.
+ simpl.
+ unfold compare63.
+ change [|On|] with 0.
+ generalize (phi_bounded j)(phi_bounded i); intros.
+ case_eq [|j|]; intros.
+ simpl; intros.
+ generalize (Zabs_spec [|i|]); omega.
+ simpl.
+ rewrite IHn, H1; f_equal.
+ rewrite spec_mod, H1; auto.
+ rewrite H1; compute; auto.
+ rewrite H1 in H; destruct H as [H _]; compute in H; elim H; auto.
+ Qed.
+
+ Lemma spec_gcd : forall a b, Zis_gcd [|a|] [|b|] [|gcd63 a b|].
+ Proof.
+ intros.
+ rewrite phi_gcd.
+ apply Zis_gcd_sym.
+ apply Zgcdn_is_gcd.
+ unfold Zgcd_bound.
+ generalize (phi_bounded b).
+ destruct [|b|].
+ unfold size; auto with zarith.
+ intros (_,H).
+ cut (Pos.size_nat p <= size)%nat; [ omega | rewrite <- Zpower2_Psize; auto].
+ intros (H,_); compute in H; elim H; auto.
+ Qed.
+
+ Lemma iter_int63_iter_nat : forall A f i a,
+ iter_int63 i A f a = iter_nat (Z.abs_nat [|i|]) A f a.
+ Proof.
+ intros.
+ unfold iter_int63.
+ rewrite <- recrbis_equiv; auto; unfold recrbis.
+ rewrite <- phibis_aux_equiv.
+
+ revert i a; induction size.
+ simpl; auto.
+ simpl; intros.
+ case_eq (firstr i); intros H; rewrite 2 IHn;
+ unfold phibis_aux; simpl; rewrite H; fold (phibis_aux n (shiftr i));
+ generalize (phibis_aux_pos n (shiftr i)); intros;
+ set (z := phibis_aux n (shiftr i)) in *; clearbody z;
+ rewrite <- iter_nat_plus.
+
+ f_equal.
+ rewrite Z.double_spec, <- Z.add_diag.
+ symmetry; apply Zabs2Nat.inj_add; auto with zarith.
+
+ change (iter_nat (S (Z.abs_nat z + Z.abs_nat z)) A f a =
+ iter_nat (Z.abs_nat (Z.succ_double z)) A f a); f_equal.
+ rewrite Z.succ_double_spec, <- Z.add_diag.
+ rewrite Zabs2Nat.inj_add; auto with zarith.
+ rewrite Zabs2Nat.inj_add; auto with zarith.
+ change (Z.abs_nat 1) with 1%nat; omega.
+ Qed.
+
+ Fixpoint addmuldiv63_alt n i j :=
+ match n with
+ | O => i
+ | S n => addmuldiv63_alt n (sneakl (firstl j) i) (shiftl j)
+ end.
+
+ Lemma addmuldiv63_equiv : forall p x y,
+ addmuldiv63 p x y = addmuldiv63_alt (Z.abs_nat [|p|]) x y.
+ Proof.
+ intros.
+ unfold addmuldiv63.
+ rewrite iter_int63_iter_nat.
+ set (n:=Z.abs_nat [|p|]); clearbody n; clear p.
+ revert x y; induction n.
+ simpl; auto.
+ intros.
+ simpl addmuldiv63_alt.
+ replace (S n) with (n+1)%nat by (rewrite plus_comm; auto).
+ rewrite iter_nat_plus; simpl; auto.
+ Qed.
+
+ Lemma spec_add_mul_div : forall x y p, [|p|] <= Zpos 63 ->
+ [| addmuldiv63 p x y |] =
+ ([|x|] * (2 ^ [|p|]) + [|y|] / (2 ^ ((Zpos 63) - [|p|]))) mod wB.
+ Proof.
+ intros.
+ rewrite addmuldiv63_equiv.
+ assert ([|p|] = Z.of_nat (Z.abs_nat [|p|])).
+ rewrite Zabs2Nat.id_abs; symmetry; apply Z.abs_eq.
+ destruct (phi_bounded p); auto.
+ rewrite H0; rewrite H0 in H; clear H0; rewrite Zabs2Nat.id.
+ set (n := Z.abs_nat [|p|]) in *; clearbody n.
+ assert (n <= 63)%nat.
+ rewrite Nat2Z.inj_le; auto with zarith.
+ clear p H; revert x y.
+
+ induction n.
+ simpl; intros.
+ change (Z.pow_pos 2 63) with (2^63).
+ rewrite Z.mul_1_r.
+ replace ([|y|] / 2^63) with 0.
+ rewrite Z.add_0_r.
+ symmetry; apply Zmod_small; apply phi_bounded.
+ symmetry; apply Zdiv_small; apply phi_bounded.
+
+ simpl addmuldiv63_alt; intros.
+ rewrite IHn; [ | omega ].
+ case_eq (firstl y); intros.
+
+ rewrite phi_twice, Z.double_spec.
+ rewrite phi_twice_firstl; auto.
+ change (Z.double [|y|]) with (2*[|y|]).
+ rewrite Nat2Z.inj_succ, Z.pow_succ_r; auto with zarith.
+ rewrite Zplus_mod; rewrite Zmult_mod_idemp_l; rewrite <- Zplus_mod.
+ f_equal.
+ f_equal.
+ ring.
+ replace (63-Z.of_nat n) with (Z.succ(63-Z.succ(Z.of_nat n))) by ring.
+ rewrite Z.pow_succ_r, <- Zdiv_Zdiv; auto with zarith.
+ rewrite Z.mul_comm, Z_div_mult; auto with zarith.
+
+ rewrite phi_twice_plus_one, Z.succ_double_spec.
+ rewrite phi_twice; auto.
+ change (Z.double [|y|]) with (2*[|y|]).
+ rewrite Nat2Z.inj_succ, Z.pow_succ_r; auto with zarith.
+ rewrite Zplus_mod; rewrite Zmult_mod_idemp_l; rewrite <- Zplus_mod.
+ rewrite Z.mul_add_distr_r, Z.mul_1_l, <- Z.add_assoc.
+ f_equal.
+ f_equal.
+ ring.
+ assert ((2*[|y|]) mod wB = 2*[|y|] - wB).
+ clear - H. symmetry. apply Zmod_unique with 1; [ | ring ].
+ generalize (phi_lowerbound _ H) (phi_bounded y).
+ set (wB' := 2^Z.of_nat (pred size)).
+ replace wB with (2*wB'); [ omega | ].
+ unfold wB'. rewrite <- Z.pow_succ_r, <- Nat2Z.inj_succ by (auto with zarith).
+ f_equal.
+ rewrite H1.
+ replace wB with (2^(Z.of_nat n)*2^(63-Z.of_nat n)) by
+ (rewrite <- Zpower_exp; auto with zarith; f_equal; unfold size; ring).
+ unfold Z.sub; rewrite <- Z.mul_opp_l.
+ rewrite Z_div_plus; auto with zarith.
+ ring_simplify.
+ replace (63+-Z.of_nat n) with (Z.succ(63-Z.succ(Z.of_nat n))) by ring.
+ rewrite Z.pow_succ_r, <- Zdiv_Zdiv; auto with zarith.
+ rewrite Z.mul_comm, Z_div_mult; auto with zarith.
+ Qed.
+
+ Lemma spec_pos_mod : forall w p,
+ [|ZnZ.pos_mod p w|] = [|w|] mod (2 ^ [|p|]).
+ Proof.
+ unfold ZnZ.pos_mod, int63_ops, compare63.
+ change [|63|] with 63%Z.
+ assert (forall w p, 63<=p -> [|w|] = [|w|] mod 2^p).
+ intros.
+ generalize (phi_bounded w).
+ symmetry; apply Zmod_small.
+ split; auto with zarith.
+ apply Z.lt_le_trans with wB; auto with zarith.
+ apply Zpower_le_monotone; auto with zarith.
+ intros.
+ case_eq ([|p|] ?= 63); intros;
+ [ apply H; rewrite (Z.compare_eq _ _ H0); auto with zarith | |
+ apply H; change ([|p|]>63)%Z in H0; auto with zarith ].
+ change ([|p|]<63) in H0.
+ rewrite spec_add_mul_div by auto with zarith.
+ change [|0|] with 0%Z; rewrite Z.mul_0_l, Z.add_0_l.
+ generalize (phi_bounded p)(phi_bounded w); intros.
+ assert (63-[|p|]<wB).
+ apply Z.le_lt_trans with 63%Z; auto with zarith.
+ compute; auto.
+ assert ([|63-p|]=63-[|p|]).
+ unfold sub63; rewrite phi_phi_inv.
+ change [|63|] with 63%Z.
+ apply Zmod_small; auto with zarith.
+ rewrite spec_add_mul_div by (rewrite H4; auto with zarith).
+ change [|0|] with 0%Z; rewrite Zdiv_0_l, Z.add_0_r.
+ rewrite H4.
+ apply shift_unshift_mod_2; auto with zarith.
+ Qed.
+
+
+ (** Shift operations *)
+
+ Lemma spec_head00: forall x, [|x|] = 0 -> [|head063 x|] = Zpos 63.
+ Proof.
+ intros.
+ generalize (phi_inv_phi x).
+ rewrite H; simpl.
+ intros H'; rewrite <- H'.
+ simpl; auto.
+ Qed.
+
+ Fixpoint head063_alt n x :=
+ match n with
+ | O => 0%nat
+ | S n => match firstl x with
+ | D0 => S (head063_alt n (shiftl x))
+ | D1 => 0%nat
+ end
+ end.
+
+ Lemma head063_equiv :
+ forall x, [|head063 x|] = Z.of_nat (head063_alt size x).
+ Proof.
+ intros.
+ case_eq (iszero x); intros.
+ rewrite (iszero_eq0 _ H).
+ simpl; auto.
+
+ unfold head063, recl.
+ change On with (phi_inv (Z.of_nat (63-size))).
+ replace (head063_alt size x) with
+ (head063_alt size x + (63 - size))%nat by auto.
+ assert (size <= 63)%nat by auto with arith.
+
+ revert x H; induction size; intros.
+ simpl; auto.
+ unfold recl_aux; fold recl_aux.
+ unfold head063_alt; fold head063_alt.
+ rewrite H.
+ assert ([|phi_inv (Z.of_nat (63-S n))|] = Z.of_nat (63 - S n)).
+ rewrite phi_phi_inv.
+ apply Zmod_small.
+ split.
+ change 0 with (Z.of_nat O); apply inj_le; omega.
+ apply Z.le_lt_trans with (Z.of_nat 63).
+ apply inj_le; omega.
+ compute; auto.
+ case_eq (firstl x); intros; auto.
+ rewrite plus_Sn_m, plus_n_Sm.
+ replace (S (63 - S n)) with (63 - n)%nat by omega.
+ rewrite <- IHn; [ | omega | ].
+ f_equal; f_equal.
+ unfold add63.
+ rewrite H1.
+ f_equal.
+ change [|In|] with 1.
+ replace (63-n)%nat with (S (63 - S n))%nat by omega.
+ rewrite Nat2Z.inj_succ; ring.
+
+ clear - H H2.
+ rewrite (sneakr_shiftl x) in H.
+ rewrite H2 in H.
+ case_eq (iszero (shiftl x)); intros; auto.
+ rewrite (iszero_eq0 _ H0) in H; discriminate.
+ Qed.
+
+ Lemma phi_nz : forall x, 0 < [|x|] <-> x <> 0%int.
+ Proof.
+ split; intros.
+ red; intro; subst x; discriminate.
+ assert ([|x|]<>0%Z).
+ contradict H.
+ rewrite <- (phi_inv_phi x); rewrite H; auto.
+ generalize (phi_bounded x); auto with zarith.
+ Qed.
+
+ Lemma spec_head0 : forall x, 0 < [|x|] ->
+ wB/ 2 <= 2 ^ ([|head063 x|]) * [|x|] < wB.
+ Proof.
+ intros.
+ rewrite head063_equiv.
+ assert (nshiftl size x = 0%int).
+ apply nshiftl_size.
+ revert x H H0.
+ unfold size at 2 5.
+ induction size.
+ simpl Z.of_nat.
+ intros.
+ compute in H0; rewrite H0 in H; discriminate.
+
+ intros.
+ simpl head063_alt.
+ case_eq (firstl x); intros.
+ rewrite (Nat2Z.inj_succ (head063_alt n (shiftl x))), Z.pow_succ_r; auto with zarith.
+ rewrite <- Z.mul_assoc, Z.mul_comm, <- Z.mul_assoc, <-(Z.mul_comm 2).
+ rewrite <- Z.double_spec, <- (phi_twice_firstl _ H1).
+ apply IHn.
+
+ rewrite phi_nz; rewrite phi_nz in H; contradict H.
+ change twice with shiftl in H.
+ rewrite (sneakr_shiftl x), H1, H; auto.
+
+ rewrite <- nshiftl_S_tail; auto.
+
+ change (2^(Z.of_nat 0)) with 1; rewrite Z.mul_1_l.
+ generalize (phi_bounded x); unfold size; split; auto with zarith.
+ change (2^(Z.of_nat 63)/2) with (2^(Z.of_nat (pred size))).
+ apply phi_lowerbound; auto.
+ Qed.
+
+ Lemma spec_tail00: forall x, [|x|] = 0 -> [|tail063 x|] = Zpos 63.
+ Proof.
+ intros.
+ generalize (phi_inv_phi x).
+ rewrite H; simpl.
+ intros H'; rewrite <- H'.
+ simpl; auto.
+ Qed.
+
+ Fixpoint tail063_alt n x :=
+ match n with
+ | O => 0%nat
+ | S n => match firstr x with
+ | D0 => S (tail063_alt n (shiftr x))
+ | D1 => 0%nat
+ end
+ end.
+
+ Lemma tail063_equiv :
+ forall x, [|tail063 x|] = Z.of_nat (tail063_alt size x).
+ Proof.
+ intros.
+ case_eq (iszero x); intros.
+ rewrite (iszero_eq0 _ H).
+ simpl; auto.
+
+ unfold tail063, recr.
+ change On with (phi_inv (Z.of_nat (63-size))).
+ replace (tail063_alt size x) with
+ (tail063_alt size x + (63 - size))%nat by auto.
+ assert (size <= 63)%nat by auto with arith.
+
+ revert x H; induction size; intros.
+ simpl; auto.
+ unfold recr_aux; fold recr_aux.
+ unfold tail063_alt; fold tail063_alt.
+ rewrite H.
+ assert ([|phi_inv (Z.of_nat (63-S n))|] = Z.of_nat (63 - S n)).
+ rewrite phi_phi_inv.
+ apply Zmod_small.
+ split.
+ change 0 with (Z.of_nat O); apply inj_le; omega.
+ apply Z.le_lt_trans with (Z.of_nat 63).
+ apply inj_le; omega.
+ compute; auto.
+ case_eq (firstr x); intros; auto.
+ rewrite plus_Sn_m, plus_n_Sm.
+ replace (S (63 - S n)) with (63 - n)%nat by omega.
+ rewrite <- IHn; [ | omega | ].
+ f_equal; f_equal.
+ unfold add63.
+ rewrite H1.
+ f_equal.
+ change [|In|] with 1.
+ replace (63-n)%nat with (S (63 - S n))%nat by omega.
+ rewrite Nat2Z.inj_succ; ring.
+
+ clear - H H2.
+ rewrite (sneakl_shiftr x) in H.
+ rewrite H2 in H.
+ case_eq (iszero (shiftr x)); intros; auto.
+ rewrite (iszero_eq0 _ H0) in H; discriminate.
+ Qed.
+
+ Lemma spec_tail0 : forall x, 0 < [|x|] ->
+ exists y, 0 <= y /\ [|x|] = (2 * y + 1) * (2 ^ [|tail063 x|]).
+ Proof.
+ intros.
+ rewrite tail063_equiv.
+ assert (nshiftr size x = 0%int).
+ apply nshiftr_size.
+ revert x H H0.
+ induction size.
+ simpl Z.of_nat.
+ intros.
+ compute in H0; rewrite H0 in H; discriminate.
+
+ intros.
+ simpl tail063_alt.
+ case_eq (firstr x); intros.
+ rewrite (Nat2Z.inj_succ (tail063_alt n (shiftr x))), Z.pow_succ_r; auto with zarith.
+ destruct (IHn (shiftr x)) as (y & Hy1 & Hy2).
+
+ rewrite phi_nz; rewrite phi_nz in H; contradict H.
+ rewrite (sneakl_shiftr x), H1, H; auto.
+
+ rewrite <- nshiftr_S_tail; auto.
+
+ exists y; split; auto.
+ rewrite phi_eqn1; auto.
+ rewrite Z.double_spec, Hy2; ring.
+
+ exists [|shiftr x|].
+ split.
+ generalize (phi_bounded (shiftr x)); auto with zarith.
+ rewrite phi_eqn2; auto.
+ rewrite Z.succ_double_spec; simpl; ring.
+ Qed.
+
+ (* Sqrt *)
+
+ (* Direct transcription of an old proof
+ of a fortran program in boyer-moore *)
+
+ Lemma quotient_by_2 a: a - 1 <= (a/2) + (a/2).
+ Proof.
+ case (Z_mod_lt a 2); auto with zarith.
+ intros H1; rewrite Zmod_eq_full; auto with zarith.
+ Qed.
+
+ Lemma sqrt_main_trick j k: 0 <= j -> 0 <= k ->
+ (j * k) + j <= ((j + k)/2 + 1) ^ 2.
+ Proof.
+ intros Hj; generalize Hj k; pattern j; apply natlike_ind;
+ auto; clear k j Hj.
+ intros _ k Hk; repeat rewrite Z.add_0_l.
+ apply Z.mul_nonneg_nonneg; generalize (Z_div_pos k 2); auto with zarith.
+ intros j Hj Hrec _ k Hk; pattern k; apply natlike_ind; auto; clear k Hk.
+ rewrite Z.mul_0_r, Z.add_0_r, Z.add_0_l.
+ generalize (sqr_pos (Z.succ j / 2)) (quotient_by_2 (Z.succ j));
+ unfold Z.succ.
+ rewrite Z.pow_2_r, Z.mul_add_distr_r; repeat rewrite Z.mul_add_distr_l.
+ auto with zarith.
+ intros k Hk _.
+ replace ((Z.succ j + Z.succ k) / 2) with ((j + k)/2 + 1).
+ generalize (Hrec Hj k Hk) (quotient_by_2 (j + k)).
+ unfold Z.succ; repeat rewrite Z.pow_2_r;
+ repeat rewrite Z.mul_add_distr_r; repeat rewrite Z.mul_add_distr_l.
+ repeat rewrite Z.mul_1_l; repeat rewrite Z.mul_1_r.
+ auto with zarith.
+ rewrite Z.add_comm, <- Z_div_plus_full_l; auto with zarith.
+ apply f_equal2 with (f := Z.div); auto with zarith.
+ Qed.
+
+ Lemma sqrt_main i j: 0 <= i -> 0 < j -> i < ((j + (i/j))/2 + 1) ^ 2.
+ Proof.
+ intros Hi Hj.
+ assert (Hij: 0 <= i/j) by (apply Z_div_pos; auto with zarith).
+ apply Z.lt_le_trans with (2 := sqrt_main_trick _ _ (Z.lt_le_incl _ _ Hj) Hij).
+ pattern i at 1; rewrite (Z_div_mod_eq i j); case (Z_mod_lt i j); auto with zarith.
+ Qed.
+
+ Lemma sqrt_init i: 1 < i -> i < (i/2 + 1) ^ 2.
+ Proof.
+ intros Hi.
+ assert (H1: 0 <= i - 2) by auto with zarith.
+ assert (H2: 1 <= (i / 2) ^ 2); auto with zarith.
+ replace i with (1* 2 + (i - 2)); auto with zarith.
+ rewrite Z.pow_2_r, Z_div_plus_full_l; auto with zarith.
+ generalize (sqr_pos ((i - 2)/ 2)) (Z_div_pos (i - 2) 2).
+ rewrite Z.mul_add_distr_r; repeat rewrite Z.mul_add_distr_l.
+ auto with zarith.
+ generalize (quotient_by_2 i).
+ rewrite Z.pow_2_r in H2 |- *;
+ repeat (rewrite Z.mul_add_distr_r ||
+ rewrite Z.mul_add_distr_l ||
+ rewrite Z.mul_1_l || rewrite Z.mul_1_r).
+ auto with zarith.
+ Qed.
+
+ Lemma sqrt_test_true i j: 0 <= i -> 0 < j -> i/j >= j -> j ^ 2 <= i.
+ Proof.
+ intros Hi Hj Hd; rewrite Z.pow_2_r.
+ apply Z.le_trans with (j * (i/j)); auto with zarith.
+ apply Z_mult_div_ge; auto with zarith.
+ Qed.
+
+ Lemma sqrt_test_false i j: 0 <= i -> 0 < j -> i/j < j -> (j + (i/j))/2 < j.
+ Proof.
+ intros Hi Hj H; case (Z.le_gt_cases j ((j + (i/j))/2)); auto.
+ intros H1; contradict H; apply Z.le_ngt.
+ assert (2 * j <= j + (i/j)); auto with zarith.
+ apply Z.le_trans with (2 * ((j + (i/j))/2)); auto with zarith.
+ apply Z_mult_div_ge; auto with zarith.
+ Qed.
+
+ Lemma sqrt63_step_def rec i j:
+ sqrt63_step rec i j =
+ match (fst (i/j) ?= j)%int with
+ Lt => rec i (fst ((j + fst(i/j))/2))%int
+ | _ => j
+ end.
+ Proof.
+ unfold sqrt63_step; case div63; intros.
+ simpl; case compare63; auto.
+ Qed.
+
+ Lemma div63_phi i j: 0 < [|j|] -> [|fst (i/j)%int|] = [|i|]/[|j|].
+ intros Hj; generalize (spec_div i j Hj).
+ case div63; intros q r; simpl fst.
+ intros (H1,H2); apply Zdiv_unique with [|r|]; auto with zarith.
+ rewrite H1; ring.
+ Qed.
+
+ Lemma sqrt63_step_correct rec i j:
+ 0 < [|i|] -> 0 < [|j|] -> [|i|] < ([|j|] + 1) ^ 2 ->
+ 2 * [|j|] < wB ->
+ (forall j1 : int63,
+ 0 < [|j1|] < [|j|] -> [|i|] < ([|j1|] + 1) ^ 2 ->
+ [|rec i j1|] ^ 2 <= [|i|] < ([|rec i j1|] + 1) ^ 2) ->
+ [|sqrt63_step rec i j|] ^ 2 <= [|i|] < ([|sqrt63_step rec i j|] + 1) ^ 2.
+ Proof.
+ assert (Hp2: 0 < [|2|]) by exact (eq_refl Lt).
+ intros Hi Hj Hij H63 Hrec; rewrite sqrt63_step_def.
+ rewrite spec_compare, div63_phi; auto.
+ case Z.compare_spec; auto; intros Hc;
+ try (split; auto; apply sqrt_test_true; auto with zarith; fail).
+ apply Hrec; repeat rewrite div63_phi; auto with zarith.
+ replace [|(j + fst (i / j)%int)|] with ([|j|] + [|i|] / [|j|]).
+ split.
+ apply Z.le_succ_l in Hj. change (1 <= [|j|]) in Hj.
+ Z.le_elim Hj.
+ replace ([|j|] + [|i|]/[|j|]) with
+ (1 * 2 + (([|j|] - 2) + [|i|] / [|j|])); try ring.
+ rewrite Z_div_plus_full_l; auto with zarith.
+ assert (0 <= [|i|]/ [|j|]) by (apply Z_div_pos; auto with zarith).
+ assert (0 <= ([|j|] - 2 + [|i|] / [|j|]) / [|2|]) ; auto with zarith.
+ rewrite <- Hj, Zdiv_1_r.
+ replace (1 + [|i|])%Z with (1 * 2 + ([|i|] - 1))%Z; try ring.
+ rewrite Z_div_plus_full_l; auto with zarith.
+ assert (0 <= ([|i|] - 1) /2)%Z by (apply Z_div_pos; auto with zarith).
+ change ([|2|]) with 2%Z; auto with zarith.
+ apply sqrt_test_false; auto with zarith.
+ rewrite spec_add, div63_phi; auto.
+ symmetry; apply Zmod_small.
+ split; auto with zarith.
+ replace [|j + fst (i / j)%int|] with ([|j|] + [|i|] / [|j|]).
+ apply sqrt_main; auto with zarith.
+ rewrite spec_add, div63_phi; auto.
+ symmetry; apply Zmod_small.
+ split; auto with zarith.
+ Qed.
+
+ Lemma iter63_sqrt_correct n rec i j: 0 < [|i|] -> 0 < [|j|] ->
+ [|i|] < ([|j|] + 1) ^ 2 -> 2 * [|j|] < 2 ^ (Z.of_nat size) ->
+ (forall j1, 0 < [|j1|] -> 2^(Z.of_nat n) + [|j1|] <= [|j|] ->
+ [|i|] < ([|j1|] + 1) ^ 2 -> 2 * [|j1|] < 2 ^ (Z.of_nat size) ->
+ [|rec i j1|] ^ 2 <= [|i|] < ([|rec i j1|] + 1) ^ 2) ->
+ [|iter63_sqrt n rec i j|] ^ 2 <= [|i|] < ([|iter63_sqrt n rec i j|] + 1) ^ 2.
+ Proof.
+ revert rec i j; elim n; unfold iter63_sqrt; fold iter63_sqrt; clear n.
+ intros rec i j Hi Hj Hij H63 Hrec; apply sqrt63_step_correct; auto with zarith.
+ intros; apply Hrec; auto with zarith.
+ rewrite Z.pow_0_r; auto with zarith.
+ intros n Hrec rec i j Hi Hj Hij H63 HHrec.
+ apply sqrt63_step_correct; auto.
+ intros j1 Hj1 Hjp1; apply Hrec; auto with zarith.
+ intros j2 Hj2 H2j2 Hjp2 Hj63; apply Hrec; auto with zarith.
+ intros j3 Hj3 Hpj3.
+ apply HHrec; auto.
+ rewrite Nat2Z.inj_succ, Z.pow_succ_r.
+ apply Z.le_trans with (2 ^Z.of_nat n + [|j2|]); auto with zarith.
+ apply Nat2Z.is_nonneg.
+ Qed.
+
+ Lemma spec_sqrt : forall x,
+ [|sqrt63 x|] ^ 2 <= [|x|] < ([|sqrt63 x|] + 1) ^ 2.
+ Proof.
+ intros i; unfold sqrt63.
+ fold On In Twon.
+ rewrite spec_compare. case Z.compare_spec; change [|1|] with 1;
+ intros Hi; auto with zarith.
+ repeat rewrite Z.pow_2_r; auto with zarith.
+ apply iter63_sqrt_correct; auto with zarith.
+ rewrite div63_phi; change ([|2|]) with 2; auto with zarith.
+ replace ([|i|]) with (1 * 2 + ([|i|] - 2))%Z; try ring.
+ assert (0 <= ([|i|] - 2)/2)%Z by (apply Z_div_pos; auto with zarith).
+ rewrite Z_div_plus_full_l; auto with zarith.
+ rewrite div63_phi; change ([|2|]) with 2; auto with zarith.
+ apply sqrt_init; auto.
+ rewrite div63_phi; change ([|2|]) with 2; auto with zarith.
+ apply Z.le_lt_trans with ([|i|]).
+ apply Z_mult_div_ge; auto with zarith.
+ case (phi_bounded i); auto.
+ intros j2 H1 H2; contradict H2; apply Z.lt_nge.
+ rewrite div63_phi; change ([|2|]) with 2; auto with zarith.
+ apply Z.le_lt_trans with ([|i|]); auto with zarith.
+ assert (0 <= [|i|]/2)%Z by (apply Z_div_pos; auto with zarith).
+ apply Z.le_trans with (2 * ([|i|]/2)); auto with zarith.
+ apply Z_mult_div_ge; auto with zarith.
+ case (phi_bounded i); unfold size; auto with zarith.
+ change [|0|] with 0; auto with zarith.
+ case (phi_bounded i); repeat rewrite Z.pow_2_r; auto with zarith.
+ Qed.
+
+ Lemma sqrt632_step_def rec ih il j:
+ sqrt632_step rec ih il j =
+ match (ih ?= j)%int with
+ Eq => j
+ | Gt => j
+ | _ =>
+ match (fst (div6321 ih il j) ?= j)%int with
+ Lt => let m := match j +c fst (div6321 ih il j) with
+ C0 m1 => fst (m1/2)%int
+ | C1 m1 => (fst (m1/2) + v30)%int
+ end in rec ih il m
+ | _ => j
+ end
+ end.
+ Proof.
+ unfold sqrt632_step; case div6321; intros.
+ simpl; case compare63; auto.
+ Qed.
+
+ Lemma sqrt632_lower_bound ih il j:
+ phi2 ih il < ([|j|] + 1) ^ 2 -> [|ih|] <= [|j|].
+ Proof.
+ intros H1.
+ case (phi_bounded j); intros Hbj _.
+ case (phi_bounded il); intros Hbil _.
+ case (phi_bounded ih); intros Hbih Hbih1.
+ assert (([|ih|] < [|j|] + 1)%Z); auto with zarith.
+ apply Z.square_lt_simpl_nonneg; auto with zarith.
+ repeat rewrite <-Z.pow_2_r; apply Z.le_lt_trans with (2 := H1).
+ apply Z.le_trans with ([|ih|] * base)%Z; unfold phi2, base;
+ try rewrite Z.pow_2_r; auto with zarith.
+ Qed.
+
+ Lemma div632_phi ih il j: (2^62 <= [|j|] -> [|ih|] < [|j|] ->
+ [|fst (div6321 ih il j)|] = phi2 ih il/[|j|])%Z.
+ Proof.
+ intros Hj Hj1.
+ generalize (spec_div21 ih il j Hj Hj1).
+ case div6321; intros q r (Hq, Hr).
+ apply Zdiv_unique with (phi r); auto with zarith.
+ simpl fst; apply eq_trans with (1 := Hq); ring.
+ Qed.
+
+ Lemma sqrt632_step_correct rec ih il j:
+ 2 ^ 61 <= [|ih|] -> 0 < [|j|] -> phi2 ih il < ([|j|] + 1) ^ 2 ->
+ (forall j1, 0 < [|j1|] < [|j|] -> phi2 ih il < ([|j1|] + 1) ^ 2 ->
+ [|rec ih il j1|] ^ 2 <= phi2 ih il < ([|rec ih il j1|] + 1) ^ 2) ->
+ [|sqrt632_step rec ih il j|] ^ 2 <= phi2 ih il
+ < ([|sqrt632_step rec ih il j|] + 1) ^ 2.
+ Proof.
+ assert (Hp2: (0 < [|2|])%Z) by exact (eq_refl Lt).
+ intros Hih Hj Hij Hrec; rewrite sqrt632_step_def.
+ assert (H1: ([|ih|] <= [|j|])%Z) by (apply sqrt632_lower_bound with il; auto).
+ case (phi_bounded ih); intros Hih1 _.
+ case (phi_bounded il); intros Hil1 _.
+ case (phi_bounded j); intros _ Hj1.
+ assert (Hp3: (0 < phi2 ih il)).
+ unfold phi2; apply Z.lt_le_trans with ([|ih|] * base)%Z; auto with zarith.
+ apply Z.mul_pos_pos; auto with zarith.
+ apply Z.lt_le_trans with (2:= Hih); auto with zarith.
+ rewrite spec_compare. case Z.compare_spec; intros Hc1.
+ split; auto.
+ apply sqrt_test_true; auto.
+ unfold phi2, base; auto with zarith.
+ unfold phi2; rewrite Hc1.
+ assert (0 <= [|il|]/[|j|]) by (apply Z_div_pos; auto with zarith).
+ rewrite Z.mul_comm, Z_div_plus_full_l; unfold base; auto with zarith.
+ unfold Z.pow, Z.pow_pos in Hj1; simpl in Hj1; auto with zarith.
+ case (Z.le_gt_cases (2 ^ 62) [|j|]); intros Hjj.
+ rewrite spec_compare; case Z.compare_spec;
+ rewrite div632_phi; auto; intros Hc;
+ try (split; auto; apply sqrt_test_true; auto with zarith; fail).
+ apply Hrec.
+ assert (Hf1: 0 <= phi2 ih il/ [|j|]) by (apply Z_div_pos; auto with zarith).
+ apply Z.le_succ_l in Hj. change (1 <= [|j|]) in Hj.
+ Z.le_elim Hj.
+ 2: contradict Hc; apply Z.le_ngt; rewrite <- Hj, Zdiv_1_r; auto with zarith.
+ assert (Hf3: 0 < ([|j|] + phi2 ih il / [|j|]) / 2).
+ replace ([|j|] + phi2 ih il/ [|j|])%Z with
+ (1 * 2 + (([|j|] - 2) + phi2 ih il / [|j|])); try ring.
+ rewrite Z_div_plus_full_l; auto with zarith.
+ assert (0 <= ([|j|] - 2 + phi2 ih il / [|j|]) / 2) ; auto with zarith.
+ assert (Hf4: ([|j|] + phi2 ih il / [|j|]) / 2 < [|j|]).
+ apply sqrt_test_false; auto with zarith.
+ generalize (spec_add_c j (fst (div6321 ih il j))).
+ unfold interp_carry; case add63c; intros r;
+ rewrite div632_phi; auto with zarith.
+ rewrite div63_phi; change [|2|] with 2%Z; auto with zarith.
+ intros HH; rewrite HH; clear HH; auto with zarith.
+ rewrite spec_add, div63_phi; change [|2|] with 2%Z; auto.
+ rewrite Z.mul_1_l; intros HH.
+ rewrite Z.add_comm, <- Z_div_plus_full_l; auto with zarith.
+ change (phi v30 * 2) with (2 ^ Z.of_nat size).
+ rewrite HH, Zmod_small; auto with zarith.
+ replace (phi
+ match j +c fst (div6321 ih il j) with
+ | C0 m1 => fst (m1 / 2)%int
+ | C1 m1 => fst (m1 / 2)%int + v30
+ end) with ((([|j|] + (phi2 ih il)/([|j|]))/2)).
+ apply sqrt_main; auto with zarith.
+ generalize (spec_add_c j (fst (div6321 ih il j))).
+ unfold interp_carry; case add63c; intros r;
+ rewrite div632_phi; auto with zarith.
+ rewrite div63_phi; auto with zarith.
+ intros HH; rewrite HH; auto with zarith.
+ intros HH; rewrite <- HH.
+ change (1 * 2 ^ Z.of_nat size) with (phi (v30) * 2).
+ rewrite Z_div_plus_full_l; auto with zarith.
+ rewrite Z.add_comm.
+ rewrite spec_add, Zmod_small.
+ rewrite div63_phi; auto.
+ split; auto with zarith.
+ case (phi_bounded (fst (r/2)%int));
+ case (phi_bounded v30); auto with zarith.
+ rewrite div63_phi; change (phi 2) with 2%Z; auto.
+ change (2 ^Z.of_nat size) with (base/2 + phi v30).
+ assert (phi r / 2 < base/2); auto with zarith.
+ apply Z.mul_lt_mono_pos_r with 2; auto with zarith.
+ change (base/2 * 2) with base.
+ apply Z.le_lt_trans with (phi r).
+ rewrite Z.mul_comm; apply Z_mult_div_ge; auto with zarith.
+ case (phi_bounded r); auto with zarith.
+ contradict Hij; apply Z.le_ngt.
+ assert ((1 + [|j|]) <= 2 ^ 62); auto with zarith.
+ apply Z.le_trans with ((2 ^ 62) * (2 ^ 62)); auto with zarith.
+ assert (0 <= 1 + [|j|]); auto with zarith.
+ apply Z.mul_le_mono_nonneg; auto with zarith.
+ change ((2 ^ 62) * (2 ^ 62)) with ((2 ^ 61) * base).
+ apply Z.le_trans with ([|ih|] * base); auto with zarith.
+ unfold phi2, base; auto with zarith.
+ split; auto.
+ apply sqrt_test_true; auto.
+ unfold phi2, base; auto with zarith.
+ apply Z.le_ge; apply Z.le_trans with (([|j|] * base)/[|j|]).
+ rewrite Z.mul_comm, Z_div_mult; auto with zarith.
+ apply Z.ge_le; apply Z_div_ge; auto with zarith.
+ Qed.
+
+ Lemma iter632_sqrt_correct n rec ih il j:
+ 2^61 <= [|ih|] -> 0 < [|j|] -> phi2 ih il < ([|j|] + 1) ^ 2 ->
+ (forall j1, 0 < [|j1|] -> 2^(Z.of_nat n) + [|j1|] <= [|j|] ->
+ phi2 ih il < ([|j1|] + 1) ^ 2 ->
+ [|rec ih il j1|] ^ 2 <= phi2 ih il < ([|rec ih il j1|] + 1) ^ 2) ->
+ [|iter632_sqrt n rec ih il j|] ^ 2 <= phi2 ih il
+ < ([|iter632_sqrt n rec ih il j|] + 1) ^ 2.
+ Proof.
+ revert rec ih il j; elim n; unfold iter632_sqrt; fold iter632_sqrt; clear n.
+ intros rec ih il j Hi Hj Hij Hrec; apply sqrt632_step_correct; auto with zarith.
+ intros; apply Hrec; auto with zarith.
+ rewrite Z.pow_0_r; auto with zarith.
+ intros n Hrec rec ih il j Hi Hj Hij HHrec.
+ apply sqrt632_step_correct; auto.
+ intros j1 Hj1 Hjp1; apply Hrec; auto with zarith.
+ intros j2 Hj2 H2j2 Hjp2; apply Hrec; auto with zarith.
+ intros j3 Hj3 Hpj3.
+ apply HHrec; auto.
+ rewrite Nat2Z.inj_succ, Z.pow_succ_r.
+ apply Z.le_trans with (2 ^Z.of_nat n + [|j2|])%Z; auto with zarith.
+ apply Nat2Z.is_nonneg.
+ Qed.
+
+ Lemma spec_sqrt2 : forall x y,
+ wB/ 4 <= [|x|] ->
+ let (s,r) := sqrt632 x y in
+ [||WW x y||] = [|s|] ^ 2 + [+|r|] /\
+ [+|r|] <= 2 * [|s|].
+ Proof.
+ intros ih il Hih; unfold sqrt632.
+ fold On In.
+ change [||WW ih il||] with (phi2 ih il).
+ assert (Hbin: forall s, s * s + 2* s + 1 = (s + 1) ^ 2) by
+ (intros s; ring).
+ assert (Hb: 0 <= base) by (red; intros HH; discriminate).
+ assert (Hi2: phi2 ih il < (phi Tn + 1) ^ 2).
+ { change ((phi Tn + 1) ^ 2) with (2^126).
+ apply Z.le_lt_trans with ((2^63 -1) * base + (2^63 - 1)); auto with zarith.
+ 2: simpl; unfold Z.pow_pos; simpl; auto with zarith.
+ case (phi_bounded ih); case (phi_bounded il); intros H1 H2 H3 H4.
+ unfold base, Z.pow, Z.pow_pos in H2,H4; simpl in H2,H4.
+ unfold phi2,Z.pow, Z.pow_pos. simpl Pos.iter; auto with zarith. }
+ case (iter632_sqrt_correct 63 (fun _ _ j => j) ih il Tn); auto with zarith.
+ change [|Tn|] with 9223372036854775807; auto with zarith.
+ intros j1 _ HH; contradict HH.
+ apply Z.lt_nge.
+ change [|Tn|] with 9223372036854775807; auto with zarith.
+ change (2 ^ Z.of_nat 63) with 9223372036854775808; auto with zarith.
+ case (phi_bounded j1); auto with zarith.
+ set (s := iter632_sqrt 63 (fun _ _ j : int63 => j) ih il Tn).
+ intros Hs1 Hs2.
+ generalize (spec_mul_c s s); case mul63c.
+ simpl zn2z_to_Z; intros HH.
+ assert ([|s|] = 0).
+ { symmetry in HH. rewrite Z.mul_eq_0 in HH. destruct HH; auto. }
+ contradict Hs2; apply Z.le_ngt; rewrite H.
+ change ((0 + 1) ^ 2) with 1.
+ apply Z.le_trans with (2 ^ Z.of_nat size / 4 * base).
+ simpl; auto with zarith.
+ apply Z.le_trans with ([|ih|] * base); auto with zarith.
+ unfold phi2; case (phi_bounded il); auto with zarith.
+ intros ih1 il1.
+ change [||WW ih1 il1||] with (phi2 ih1 il1).
+ intros Hihl1.
+ generalize (spec_sub_c il il1).
+ case sub63c; intros il2 Hil2.
+ simpl interp_carry in Hil2.
+ rewrite spec_compare; case Z.compare_spec.
+ unfold interp_carry.
+ intros H1; split.
+ rewrite Z.pow_2_r, <- Hihl1.
+ unfold phi2; ring[Hil2 H1].
+ replace [|il2|] with (phi2 ih il - phi2 ih1 il1).
+ rewrite Hihl1.
+ rewrite <-Hbin in Hs2; auto with zarith.
+ unfold phi2; rewrite H1, Hil2; ring.
+ unfold interp_carry.
+ intros H1; contradict Hs1.
+ apply Z.lt_nge; rewrite Z.pow_2_r, <-Hihl1.
+ unfold phi2.
+ case (phi_bounded il); intros _ H2.
+ apply Z.lt_le_trans with (([|ih|] + 1) * base + 0).
+ rewrite Z.mul_add_distr_r, Z.add_0_r; auto with zarith.
+ case (phi_bounded il1); intros H3 _.
+ apply Z.add_le_mono; auto with zarith.
+ unfold interp_carry; change (1 * 2 ^ Z.of_nat size) with base.
+ rewrite Z.pow_2_r, <- Hihl1, Hil2.
+ intros H1.
+ rewrite <- Z.le_succ_l, <- Z.add_1_r in H1.
+ Z.le_elim H1.
+ contradict Hs2; apply Z.le_ngt.
+ replace (([|s|] + 1) ^ 2) with (phi2 ih1 il1 + 2 * [|s|] + 1).
+ unfold phi2.
+ case (phi_bounded il); intros Hpil _.
+ assert (Hl1l: [|il1|] <= [|il|]).
+ { case (phi_bounded il2); rewrite Hil2; auto with zarith. }
+ assert ([|ih1|] * base + 2 * [|s|] + 1 <= [|ih|] * base); auto with zarith.
+ case (phi_bounded s); change (2 ^ Z.of_nat size) with base; intros _ Hps.
+ case (phi_bounded ih1); intros Hpih1 _; auto with zarith.
+ apply Z.le_trans with (([|ih1|] + 2) * base); auto with zarith.
+ rewrite Z.mul_add_distr_r.
+ assert (2 * [|s|] + 1 <= 2 * base); auto with zarith.
+ rewrite Hihl1, Hbin; auto.
+ split.
+ unfold phi2; rewrite <- H1; ring.
+ replace (base + ([|il|] - [|il1|])) with (phi2 ih il - ([|s|] * [|s|])).
+ rewrite <-Hbin in Hs2; auto with zarith.
+ rewrite <- Hihl1; unfold phi2; rewrite <- H1; ring.
+ unfold interp_carry in Hil2 |- *.
+ unfold interp_carry; change (1 * 2 ^ Z.of_nat size) with base.
+ assert (Hsih: [|ih - 1|] = [|ih|] - 1).
+ { rewrite spec_sub, Zmod_small; auto; change [|1|] with 1.
+ case (phi_bounded ih); intros H1 H2.
+ generalize Hih; change (2 ^ Z.of_nat size / 4) with 2305843009213693952.
+ split; auto with zarith. }
+ rewrite spec_compare; case Z.compare_spec.
+ rewrite Hsih.
+ intros H1; split.
+ rewrite Z.pow_2_r, <- Hihl1.
+ unfold phi2; rewrite <-H1.
+ transitivity ([|ih|] * base + [|il1|] + ([|il|] - [|il1|])).
+ ring.
+ rewrite <-Hil2.
+ change (2 ^ Z.of_nat size) with base; ring.
+ replace [|il2|] with (phi2 ih il - phi2 ih1 il1).
+ rewrite Hihl1.
+ rewrite <-Hbin in Hs2; auto with zarith.
+ unfold phi2.
+ rewrite <-H1.
+ ring_simplify.
+ transitivity (base + ([|il|] - [|il1|])).
+ ring.
+ rewrite <-Hil2.
+ change (2 ^ Z.of_nat size) with base; ring.
+ rewrite Hsih; intros H1.
+ assert (He: [|ih|] = [|ih1|]).
+ { apply Z.le_antisymm; auto with zarith.
+ case (Z.le_gt_cases [|ih1|] [|ih|]); auto; intros H2.
+ contradict Hs1; apply Z.lt_nge; rewrite Z.pow_2_r, <-Hihl1.
+ unfold phi2.
+ case (phi_bounded il); change (2 ^ Z.of_nat size) with base;
+ intros _ Hpil1.
+ apply Z.lt_le_trans with (([|ih|] + 1) * base).
+ rewrite Z.mul_add_distr_r, Z.mul_1_l; auto with zarith.
+ case (phi_bounded il1); intros Hpil2 _.
+ apply Z.le_trans with (([|ih1|]) * base); auto with zarith. }
+ rewrite Z.pow_2_r, <-Hihl1; unfold phi2; rewrite <-He.
+ contradict Hs1; apply Z.lt_nge; rewrite Z.pow_2_r, <-Hihl1.
+ unfold phi2; rewrite He.
+ assert (phi il - phi il1 < 0); auto with zarith.
+ rewrite <-Hil2.
+ case (phi_bounded il2); auto with zarith.
+ intros H1.
+ rewrite Z.pow_2_r, <-Hihl1.
+ assert (H2 : [|ih1|]+2 <= [|ih|]); auto with zarith.
+ Z.le_elim H2.
+ contradict Hs2; apply Z.le_ngt.
+ replace (([|s|] + 1) ^ 2) with (phi2 ih1 il1 + 2 * [|s|] + 1).
+ unfold phi2.
+ assert ([|ih1|] * base + 2 * phi s + 1 <= [|ih|] * base + ([|il|] - [|il1|]));
+ auto with zarith.
+ rewrite <-Hil2.
+ change (-1 * 2 ^ Z.of_nat size) with (-base).
+ case (phi_bounded il2); intros Hpil2 _.
+ apply Z.le_trans with ([|ih|] * base + - base); auto with zarith.
+ case (phi_bounded s); change (2 ^ Z.of_nat size) with base; intros _ Hps.
+ assert (2 * [|s|] + 1 <= 2 * base); auto with zarith.
+ apply Z.le_trans with ([|ih1|] * base + 2 * base); auto with zarith.
+ assert (Hi: ([|ih1|] + 3) * base <= [|ih|] * base); auto with zarith.
+ rewrite Z.mul_add_distr_r in Hi; auto with zarith.
+ rewrite Hihl1, Hbin; auto.
+ unfold phi2; rewrite <-H2.
+ split.
+ replace [|il|] with (([|il|] - [|il1|]) + [|il1|]); try ring.
+ rewrite <-Hil2.
+ change (-1 * 2 ^ Z.of_nat size) with (-base); ring.
+ replace (base + [|il2|]) with (phi2 ih il - phi2 ih1 il1).
+ rewrite Hihl1.
+ rewrite <-Hbin in Hs2; auto with zarith.
+ unfold phi2; rewrite <-H2.
+ replace [|il|] with (([|il|] - [|il1|]) + [|il1|]); try ring.
+ rewrite <-Hil2.
+ change (-1 * 2 ^ Z.of_nat size) with (-base); ring.
+Qed.
+
+ (** [iszero] *)
+
+ Lemma spec_eq0 : forall x, ZnZ.eq0 x = true -> [|x|] = 0.
+ Proof.
+ clear; unfold ZnZ.eq0; simpl.
+ unfold compare63; simpl; intros.
+ change [|0|] with 0 in H.
+ apply Z.compare_eq.
+ now destruct ([|x|] ?= 0).
+ Qed.
+
+ (* Even *)
+
+ Lemma spec_is_even : forall x,
+ if ZnZ.is_even x then [|x|] mod 2 = 0 else [|x|] mod 2 = 1.
+ Proof.
+ unfold ZnZ.is_even; simpl; intros.
+ generalize (spec_div x 2).
+ destruct (x/2)%int as (q,r); intros.
+ unfold compare63.
+ change [|2|] with 2 in H.
+ change [|0|] with 0.
+ destruct H; auto with zarith.
+ replace ([|x|] mod 2) with [|r|].
+ destruct H; auto with zarith.
+ case Z.compare_spec; auto with zarith.
+ apply Zmod_unique with [|q|]; auto with zarith.
+ Qed.
+
+ Global Instance int63_specs : ZnZ.Specs int63_ops := {
+ spec_to_Z := phi_bounded;
+ spec_of_pos := positive_to_int63_spec;
+ spec_zdigits := spec_zdigits;
+ spec_more_than_1_digit := spec_more_than_1_digit;
+ spec_0 := spec_0;
+ spec_1 := spec_1;
+ spec_m1 := spec_m1;
+ spec_compare := spec_compare;
+ spec_eq0 := spec_eq0;
+ spec_opp_c := spec_opp_c;
+ spec_opp := spec_opp;
+ spec_opp_carry := spec_opp_carry;
+ spec_succ_c := spec_succ_c;
+ spec_add_c := spec_add_c;
+ spec_add_carry_c := spec_add_carry_c;
+ spec_succ := spec_succ;
+ spec_add := spec_add;
+ spec_add_carry := spec_add_carry;
+ spec_pred_c := spec_pred_c;
+ spec_sub_c := spec_sub_c;
+ spec_sub_carry_c := spec_sub_carry_c;
+ spec_pred := spec_pred;
+ spec_sub := spec_sub;
+ spec_sub_carry := spec_sub_carry;
+ spec_mul_c := spec_mul_c;
+ spec_mul := spec_mul;
+ spec_square_c := spec_square_c;
+ spec_div21 := spec_div21;
+ spec_div_gt := fun a b _ => spec_div a b;
+ spec_div := spec_div;
+ spec_modulo_gt := fun a b _ => spec_mod a b;
+ spec_modulo := spec_mod;
+ spec_gcd_gt := fun a b _ => spec_gcd a b;
+ spec_gcd := spec_gcd;
+ spec_head00 := spec_head00;
+ spec_head0 := spec_head0;
+ spec_tail00 := spec_tail00;
+ spec_tail0 := spec_tail0;
+ spec_add_mul_div := spec_add_mul_div;
+ spec_pos_mod := spec_pos_mod;
+ spec_is_even := spec_is_even;
+ spec_sqrt2 := spec_sqrt2;
+ spec_sqrt := spec_sqrt }.
+
+End Int63_Specs.
+
+
+Module Int63Cyclic <: CyclicType.
+ Definition t := int63.
+ Definition ops := int63_ops.
+ Definition specs := int63_specs.
+End Int63Cyclic.