aboutsummaryrefslogtreecommitdiffstats
path: root/src/classes/SMT_classes_instances.v
blob: 50c02b70e03afc0e301101d18dec463f03da22cf (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
(**************************************************************************)
(*                                                                        *)
(*     SMTCoq                                                             *)
(*     Copyright (C) 2011 - 2019                                          *)
(*                                                                        *)
(*     See file "AUTHORS" for the list of authors                         *)
(*                                                                        *)
(*   This file is distributed under the terms of the CeCILL-C licence     *)
(*                                                                        *)
(**************************************************************************)


Require Import Bool OrderedType BinPos ZArith OrderedTypeEx.
Require Import Int63.
Require Import State BVList FArray.
Require Structures.
Require Export SMT_classes.


Section Unit.

  Let eqb : unit -> unit -> bool := fun _ _ => true.

  Let lt : unit -> unit -> Prop := fun _ _ => False.
  
  Instance unit_ord : OrdType unit.
  Proof. exists lt; unfold lt; trivial.
    intros; contradict H; trivial.
  Defined.

  Instance unit_eqbtype : EqbType unit.
  Proof.
    exists eqb. intros. destruct x, y. unfold eqb. split; trivial.
  Defined.

  Instance unit_comp : @Comparable unit unit_ord.
  Proof.
    split. intros. destruct x, y.
    apply OrderedType.EQ; trivial.
  Defined.

  Instance unit_inh : Inhabited unit := {| default_value := tt |}.
  
  Instance unit_compdec : CompDec unit := {|
    Eqb := unit_eqbtype;
    Ordered := unit_ord;
    Comp := unit_comp;
    Inh := unit_inh
  |}.


  
  Definition unit_typ_compdec := Typ_compdec unit unit_compdec.


  Lemma eqb_eq_unit : forall x y, eqb x y <-> x = y.
  Proof. intros. split; case x; case y; unfold eqb; intros; now auto.
  Qed.
  
End Unit.


Section Bool.

  Definition ltb_bool x y := negb x && y.

  Definition lt_bool x y := ltb_bool x y = true.
  
  Instance bool_ord : OrdType bool.
  Proof.
    exists lt_bool.
    intros x y z.
    case x; case y; case z; intros; simpl; subst; auto. 
    intros x y.
    case x; case y; intros; simpl in H; easy. 
  Defined.

  Instance bool_eqbtype : EqbType bool :=
    {| eqb := Bool.eqb; eqb_spec := eqb_true_iff |}.
  
  Instance bool_dec : DecType bool :=
    EqbToDecType _ bool_eqbtype.

  Instance bool_comp: Comparable bool.
  Proof.
    constructor.
    intros x y.
    case_eq (ltb_bool x y).
    intros.
    apply OrderedType.LT.
    unfold lt, bool_ord, lt_bool. auto.
    case_eq (Bool.eqb x y).
    intros.
    apply OrderedType.EQ.
    apply Bool.eqb_prop. auto.
    intros.
    apply OrderedType.GT.
    unfold lt, bool_ord, lt_bool. auto.
    case x in *; case y in *; auto.
  Defined.

  Instance bool_inh : Inhabited bool := {| default_value := false|}.

  Instance bool_compdec : CompDec bool := {|
    Eqb := bool_eqbtype;                                    
    Ordered := bool_ord;                                    
    Comp := bool_comp;
    Inh := bool_inh
  |}.


  Lemma ltb_bool_iff_lt: forall x y, ltb_bool x y = true <-> lt_bool x y.
  Proof. intros x y; split; intro H;
         case_eq x; case_eq y; intros; subst; compute in *; easy.
  Qed.

End Bool.


Section Z.

  Instance Z_ord : OrdType Z.
  Proof.
    exists Z_as_OT.lt.
    exact Z_as_OT.lt_trans.
    exact Z_as_OT.lt_not_eq.
  Defined.

  Instance Z_eqbtype : EqbType Z :=
    {| eqb := Z.eqb; eqb_spec := Z.eqb_eq |}.

  (* Instance Z_eqbtype : EqbType Z := *)
  (*   {| eqb := Zeq_bool; eqb_spec := fun x y => symmetry (Zeq_is_eq_bool x y) |}. *)
  
  Instance Z_dec : DecType Z :=
    EqbToDecType _ Z_eqbtype.

  
  Instance Z_comp: Comparable Z.
  Proof.
    constructor.
    apply Z_as_OT.compare.
  Defined.


  Instance Z_inh : Inhabited Z := {| default_value := 0%Z |}.

    
  Instance Z_compdec : CompDec Z := {|
    Eqb := Z_eqbtype;                                    
    Ordered := Z_ord;                                    
    Comp := Z_comp;
    Inh := Z_inh
  |}.

  (** lt and eq predicates in Prop and their equivalences with the ones in bool *)
  Definition eqP_Z x y := if Z.eqb x y then True else False.
  Definition ltP_Z x y := if Z.ltb x y then True else False.
  Definition leP_Z x y := if Z.leb x y then True else False.
  Definition gtP_Z x y := if Z.gtb x y then True else False.
  Definition geP_Z x y := if Z.geb x y then True else False.

  Lemma eq_Z_B2P: forall x y, Z.eqb x y = true <-> eqP_Z x y.
  Proof. intros x y; split; intro H.
         unfold eqP_Z; now rewrite H.
         unfold eqP_Z in H.
         case_eq ((x =? y)%Z ); intros; try now subst.
         rewrite H0 in H. now contradict H.
  Qed.

  Lemma lt_Z_B2P: forall x y, Z.ltb x y = true <-> ltP_Z x y.
  Proof. intros x y; split; intro H.
         unfold ltP_Z; now rewrite H.
         unfold ltP_Z in H.
         case_eq ((x <? y)%Z ); intros; try now subst.
         rewrite H0 in H. now contradict H.
  Qed.

  Lemma le_Z_B2P: forall x y, Z.leb x y = true <-> leP_Z x y.
  Proof. intros x y; split; intro H.
         unfold leP_Z; now rewrite H.
         unfold leP_Z in H.
         case_eq ((x <=? y)%Z ); intros; try now subst.
         rewrite H0 in H. now contradict H.
  Qed.

  Lemma gt_Z_B2P: forall x y, Z.gtb x y = true <-> gtP_Z x y.
  Proof. intros x y; split; intro H.
         unfold gtP_Z; now rewrite H.
         unfold gtP_Z in H.
         case_eq ((x >? y)%Z ); intros; try now subst.
         rewrite H0 in H. now contradict H.
  Qed.

  Lemma ge_Z_B2P: forall x y, Z.geb x y = true <-> geP_Z x y.
  Proof. intros x y; split; intro H.
         unfold geP_Z; now rewrite H.
         unfold geP_Z in H.
         case_eq ((x >=? y)%Z ); intros; try now subst.
         rewrite H0 in H. now contradict H.
  Qed.

  Lemma lt_Z_B2P': forall x y, ltP_Z x y <-> Z.lt x y.
  Proof. intros x y; split; intro H.
         unfold ltP_Z in H. 
         case_eq ((x <? y)%Z ); intros; rewrite H0 in H; try easy.
         now apply Z.ltb_lt in H0.
         apply lt_Z_B2P.
         now apply Z.ltb_lt.
  Qed.

  Lemma le_Z_B2P': forall x y, leP_Z x y <-> Z.le x y.
  Proof. intros x y; split; intro H.
         unfold leP_Z in H. 
         case_eq ((x <=? y)%Z ); intros; rewrite H0 in H; try easy.
         now apply Z.leb_le in H0.
         apply le_Z_B2P.
         now apply Z.leb_le.
  Qed.

  Lemma gt_Z_B2P': forall x y, gtP_Z x y <-> Z.gt x y.
  Proof. intros x y; split; intro H.
         unfold gtP_Z in H. 
         case_eq ((x >? y)%Z ); intros; rewrite H0 in H; try easy.
         now apply Zgt_is_gt_bool in H0.
         apply gt_Z_B2P.
         now apply Zgt_is_gt_bool.
  Qed.

  Lemma ge_Z_B2P': forall x y, geP_Z x y <-> Z.ge x y.
  Proof. intros x y; split; intro H.
         unfold geP_Z in H. 
         case_eq ((x >=? y)%Z ); intros; rewrite H0 in H; try easy.
         rewrite Z.geb_leb in H0. rewrite le_Z_B2P in H0.
         apply le_Z_B2P' in H0. now apply Z.ge_le_iff.
         apply ge_Z_B2P.
         rewrite Z.geb_leb. rewrite le_Z_B2P.
         apply le_Z_B2P'. now apply Z.ge_le_iff.
  Qed.

  Lemma leibniz_eq_Z_B2P: forall x y, eqP_Z x y <-> Logic.eq x y.
  Proof. intros x y; split; intro H.
         unfold eqP_Z in H. case_eq ((x =? y)%Z); intros.
         now apply Z.eqb_eq in H0. rewrite H0 in H. now contradict H.
         rewrite H. unfold eqP_Z. now rewrite Z.eqb_refl.
  Qed.

End Z.


Section Nat.

  Instance Nat_ord : OrdType nat.
  Proof.
    
    exists Nat_as_OT.lt.
    exact Nat_as_OT.lt_trans.
    exact Nat_as_OT.lt_not_eq.
  Defined.

  Instance Nat_eqbtype : EqbType nat :=
    {| eqb := Structures.nat_eqb; eqb_spec := Structures.nat_eqb_eq |}.
  
  Instance Nat_dec : DecType nat :=
    EqbToDecType _ Nat_eqbtype.

  
  Instance Nat_comp: Comparable nat.
  Proof.
    constructor.
    apply Nat_as_OT.compare.
  Defined.


  Instance Nat_inh : Inhabited nat := {| default_value := O%nat |}.

    
  Instance Nat_compdec : CompDec nat := {|
    Eqb := Nat_eqbtype;                                    
    Ordered := Nat_ord;                                    
    Comp := Nat_comp;
    Inh := Nat_inh
  |}.

End Nat.


Section Positive.

  Instance Positive_ord : OrdType positive.
  Proof.
    exists Positive_as_OT.lt.
    exact Positive_as_OT.lt_trans.
    exact Positive_as_OT.lt_not_eq.
  Defined.

  Instance Positive_eqbtype : EqbType positive :=
    {| eqb := Pos.eqb; eqb_spec := Pos.eqb_eq |}.
  
  Instance Positive_dec : DecType positive :=
    EqbToDecType _ Positive_eqbtype.

  Instance Positive_comp: Comparable positive.
  Proof.
    constructor.
    apply Positive_as_OT.compare.
  Defined.

  Instance Positive_inh : Inhabited positive := {| default_value := 1%positive |}.

  Instance Positive_compdec : CompDec positive := {|
    Eqb := Positive_eqbtype;                                    
    Ordered := Positive_ord;                                    
    Comp := Positive_comp;
    Inh := Positive_inh
  |}.


End Positive.


Section BV.

  Import BITVECTOR_LIST.

  
  Instance BV_ord n : OrdType (bitvector n).
  Proof.
    exists (fun a b => (bv_ult a b)).
    unfold bv_ult, RAWBITVECTOR_LIST.bv_ult.
    intros x y z; destruct x, y, z.
    simpl. rewrite wf0, wf1, wf2. rewrite N.eqb_refl. simpl.
    apply RAWBITVECTOR_LIST.ult_list_trans.
    intros x y; destruct x, y.
    simpl.
    intros. unfold not.
    intros. rewrite H0 in H.
    unfold bv_ult, bv in *.
    unfold RAWBITVECTOR_LIST.bv_ult, RAWBITVECTOR_LIST.size in H.
    rewrite N.eqb_refl in H.
    apply RAWBITVECTOR_LIST.ult_list_not_eq in H.
    apply H. easy.
  Defined.

  Instance BV_eqbtype n : EqbType (bitvector n) :=
    {| eqb := @bv_eq n;
       eqb_spec := @bv_eq_reflect n |}.

  Instance BV_dec n : DecType (bitvector n) :=
    EqbToDecType _ (BV_eqbtype n).

  
  Instance BV_comp n: Comparable (bitvector n).
  Proof.
    constructor.
    intros x y.
    case_eq (bv_ult x y).
    intros.
    apply OrderedType.LT.
    unfold lt, BV_ord. auto.
    case_eq (bv_eq x y).
    intros.
    apply OrderedType.EQ.
    apply bv_eq_reflect. auto.
    intros.
    apply OrderedType.GT.
    unfold lt, BV_ord. auto.
    destruct (BV_ord n).
    unfold bv_ult.
    unfold bv_eq, RAWBITVECTOR_LIST.bv_eq,
    RAWBITVECTOR_LIST.bits in H.
    unfold bv_ult, RAWBITVECTOR_LIST.bv_ult in H0.
    unfold is_true.

    unfold RAWBITVECTOR_LIST.bv_ult, RAWBITVECTOR_LIST.size.
    destruct x, y. simpl in *.
    unfold RAWBITVECTOR_LIST.size in *.
    rewrite wf0, wf1 in *.
    rewrite N.eqb_refl in *.

    apply RAWBITVECTOR_LIST.nlt_be_neq_gt.
    rewrite !List.rev_length.
    apply (f_equal (N.to_nat)) in wf0.
    apply (f_equal (N.to_nat)) in wf1.
    rewrite Nnat.Nat2N.id in wf0, wf1.
    now rewrite wf0, wf1.
    unfold RAWBITVECTOR_LIST.ult_list in H0. easy.
    now apply RAWBITVECTOR_LIST.rev_neq in H.
  Defined.

  Instance BV_inh n : Inhabited (bitvector n) :=
    {| default_value := zeros n |}.


  Instance BV_compdec n: CompDec (bitvector n) := {|
    Eqb := BV_eqbtype n;                                    
    Ordered := BV_ord n;                                    
    Comp := BV_comp n;
    Inh := BV_inh n
  |}.

End BV.



Section FArray.

  Instance FArray_ord key elt
           `{key_ord: OrdType key}
           `{elt_ord: OrdType elt}
           `{elt_dec: DecType elt}
           `{elt_inh: Inhabited elt}
           `{key_comp: @Comparable key key_ord} : OrdType (farray key elt).
  Proof.
    exists (@lt_farray key elt key_ord key_comp elt_ord elt_inh).
    apply lt_farray_trans.
    unfold not.
    intros.
    apply lt_farray_not_eq in H.
    apply H.
    rewrite H0.
    apply eqfarray_refl. auto.
  Defined.

  Instance FArray_eqbtype key elt
           `{key_ord: OrdType key}
           `{elt_ord: OrdType elt}
           `{elt_eqbtype: EqbType elt}
           `{key_comp: @Comparable key key_ord}
           `{elt_comp: @Comparable elt elt_ord}
           `{elt_inh: Inhabited elt}
    : EqbType (farray key elt).
  Proof.
    exists FArray.equal.
    intros.
    split.
    apply FArray.equal_eq.
    intros. subst. apply eq_equal. apply eqfarray_refl.
    apply EqbToDecType. auto.
  Defined.

  
  Instance FArray_dec key elt
           `{key_ord: OrdType key}
           `{elt_ord: OrdType elt}
           `{elt_eqbtype: EqbType elt}
           `{key_comp: @Comparable key key_ord}
           `{elt_comp: @Comparable elt elt_ord}
           `{elt_inh: Inhabited elt}
    : DecType (farray key elt) :=
    EqbToDecType _ (FArray_eqbtype key elt).

  
  Instance FArray_comp key elt
           `{key_ord: OrdType key}
           `{elt_ord: OrdType elt}
           `{elt_eqbtype: EqbType elt}
           `{key_comp: @Comparable key key_ord}
           `{elt_inh: Inhabited elt}
           `{elt_comp: @Comparable elt elt_ord} : Comparable (farray key elt).
  Proof.
    constructor.
    intros.
    destruct (compare_farray key_comp (EqbToDecType _ elt_eqbtype) elt_comp x y).
    - apply OrderedType.LT. auto.
    - apply OrderedType.EQ.
      specialize (@eq_equal key elt key_ord key_comp elt_ord elt_comp elt_inh x y).
      intros.
      apply H in e.
      now apply equal_eq in e.
    - apply OrderedType.GT. auto.
  Defined.

  Instance FArray_inh key elt
           `{key_ord: OrdType key}
           `{elt_inh: Inhabited elt} : Inhabited (farray key elt) :=
    {| default_value := FArray.empty key_ord elt_inh |}.


  Program Instance FArray_compdec key elt
          `{key_compdec: CompDec key}
          `{elt_compdec: CompDec elt} :
    CompDec (farray key elt) :=
    {|
      Eqb := FArray_eqbtype key elt;
      Ordered := FArray_ord key elt;
      (*  Comp := FArray_comp key elt ; *)
      Inh := FArray_inh key elt
    |}.
  
  Next Obligation.
    constructor.
    destruct key_compdec, elt_compdec.
    simpl in *.
    unfold lt_farray.
    intros. simpl.
    unfold EqbToDecType. simpl.
    case_eq (compare x y); intros.
    apply OrderedType.LT.
    destruct (compare x y); try discriminate H; auto.
    apply OrderedType.EQ.
    destruct (compare x y); try discriminate H; auto.
    apply OrderedType.GT.
    destruct (compare y x); try discriminate H; auto; clear H.
  Defined.

End FArray.


Section Int63.
  
  Local Open Scope int63_scope.

  Let int_lt x y :=
    if Int63Native.ltb x y then True else False.
  
  Instance int63_ord : OrdType int.
  Proof.
    exists int_lt; unfold int_lt.
    - intros x y z. 
      case_eq (x < y); intro;
        case_eq (y < z); intro;
          case_eq (x < z); intro;
            simpl; try easy.
      contradict H1.
      rewrite not_false_iff_true.
      rewrite Int63Axioms.ltb_spec in *.
      exact (Z.lt_trans _ _ _ H H0).
    - intros x y.
      case_eq (x < y); intro; simpl; try easy.
      intros.
      rewrite Int63Axioms.ltb_spec in *.
      rewrite <- Int63Properties.to_Z_eq.
      exact (Z.lt_neq _ _ H).
  Defined.
  
  Instance int63_eqbtype : EqbType int :=
    {| eqb := Int63Native.eqb; eqb_spec := Int63Properties.eqb_spec |}.

  Instance int63_dec : DecType int :=
    EqbToDecType _ int63_eqbtype.


  Instance int63_comp: Comparable int.
  Proof.
    constructor.
    intros x y.
    case_eq (x < y); intro;
      case_eq (x == y); intro; unfold lt in *; simpl.
    - rewrite Int63Properties.eqb_spec in H0.
      contradict H0.
      assert (int_lt x y). unfold int_lt.
      rewrite H; trivial.
      remember lt_not_eq. unfold lt in *. simpl in n.
      exact (n _ _ H0).
    - apply LT. unfold int_lt. rewrite H; trivial.
    - apply EQ. rewrite Int63Properties.eqb_spec in H0; trivial.
    - apply GT. unfold int_lt.
      case_eq (y < x); intro; simpl; try easy.
      specialize (leb_ltb_eqb x y); intro.
      contradict H2.
      rewrite leb_negb_gtb. rewrite H1. simpl.
      red. intro. symmetry in H2.
      rewrite orb_true_iff in H2. destruct H2; contradict H2.
      rewrite H. auto.
      rewrite H0. auto.
  Defined.


  Instance int63_inh : Inhabited int := {| default_value := 0 |}.
    
  Instance int63_compdec : CompDec int := {|
    Eqb := int63_eqbtype;                                    
    Ordered := int63_ord;                                    
    Comp := int63_comp;
    Inh := int63_inh
  |}.
         

End Int63.


Section option.

  Generalizable Variable A.
  Context `{HA : CompDec A}.


  Definition option_eqb (x y : option A) : bool :=
    match x, y with
    | Some a, Some b => eqb a b
    | None, None => true
    | _, _ => false
    end.


  Lemma option_eqb_spec : forall (x y : option A), option_eqb x y = true <-> x = y.
  Proof.
    intros [a| ] [b| ]; simpl; split; try discriminate; auto.
    - intro H. rewrite eqb_spec in H. now subst b.
    - intros H. inversion H as [H1]. now rewrite eqb_spec.
  Qed.


  Instance option_eqbtype : EqbType (option A) := Build_EqbType _ _ option_eqb_spec.


  Definition option_lt (x y : option A) : Prop :=
    match x, y with
    | Some a, Some b => lt a b
    | Some _, None => True
    | None, Some _ => False
    | None, None => False
    end.


  Lemma option_lt_trans : forall (x y z : option A),
      option_lt x y -> option_lt y z -> option_lt x z.
  Proof.
    intros [a| ] [b| ] [c| ]; simpl; auto.
    - apply lt_trans.
    - intros _ [].
  Qed.


  Lemma option_lt_not_eq : forall (x y : option A), option_lt x y -> x <> y.
  Proof.
    intros [a| ] [b| ]; simpl; auto.
    - intros H1 H2. inversion H2 as [H3]. revert H3. now apply lt_not_eq.
    - discriminate.
  Qed.


  Instance option_ord : OrdType (option A) :=
    Build_OrdType _ _ option_lt_trans option_lt_not_eq.


  Definition option_compare : forall (x y : option A), Compare option_lt Logic.eq x y.
  Proof.
    intros [a| ] [b| ]; simpl.
    - case_eq (compare a b); intros l H.
      + now apply LT.
      + apply EQ. now subst b.
      + now apply GT.
    - now apply LT.
    - now apply GT.
    - now apply EQ.
  Defined.


  Instance option_comp : Comparable (option A) := Build_Comparable _ _ option_compare.


  Instance option_inh : Inhabited (option A) := Build_Inhabited _ None.


  Instance option_compdec : CompDec (option A) := {|
    Eqb := option_eqbtype;
    Ordered := option_ord;
    Comp := option_comp;
    Inh := option_inh
  |}.

End option.


Section list.

  Generalizable Variable A.
  Context `{HA : CompDec A}.


  Fixpoint list_eqb (xs ys : list A) : bool :=
    match xs, ys with
    | nil, nil => true
    | x::xs, y::ys => eqb x y && list_eqb xs ys
    | _, _ => false
    end.


  Lemma list_eqb_spec : forall (x y : list A), list_eqb x y = true <-> x = y.
  Proof.
    induction x as [ |x xs IHxs]; intros [ |y ys]; simpl; split; try discriminate; auto.
    - rewrite andb_true_iff. intros [H1 H2]. rewrite eqb_spec in H1. rewrite IHxs in H2. now subst.
    - intros H. inversion H as [H1]. rewrite andb_true_iff; split.
      + now rewrite eqb_spec.
      + subst ys. now rewrite IHxs.
  Qed.


  Instance list_eqbtype : EqbType (list A) := Build_EqbType _ _ list_eqb_spec.


  Fixpoint list_lt (xs ys : list A) : Prop :=
    match xs, ys with
    | nil, nil => False
    | nil, _::_ => True
    | _::_, nil => False
    | x::xs, y::ys => (lt x y) \/ (eqb x y /\ list_lt xs ys)
    end.


  Lemma list_lt_trans : forall (x y z : list A),
      list_lt x y -> list_lt y z -> list_lt x z.
  Proof.
    induction x as [ |x xs IHxs]; intros [ |y ys] [ |z zs]; simpl; auto.
    - inversion 1.
    - intros [H1|[H1a H1b]] [H2|[H2a H2b]].
      + left; eapply lt_trans; eauto.
      + left. unfold is_true in H2a. rewrite eqb_spec in H2a. now subst z.
      + left. unfold is_true in H1a. rewrite eqb_spec in H1a. now subst y.
      + right. split.
        * unfold is_true in H1a. rewrite eqb_spec in H1a. now subst y.
        * eapply IHxs; eauto.
  Qed.


  Lemma list_lt_not_eq : forall (x y : list A), list_lt x y -> x <> y.
  Proof.
    induction x as [ |x xs IHxs]; intros [ |y ys]; simpl; auto.
    - discriminate.
    - intros [H1|[H1 H2]]; intros H; inversion H; subst.
      + eapply lt_not_eq; eauto.
      + eapply IHxs; eauto.
  Qed.


  Instance list_ord : OrdType (list A) :=
    Build_OrdType _ _ list_lt_trans list_lt_not_eq.


  Definition list_compare : forall (x y : list A), Compare list_lt Logic.eq x y.
  Proof.
    induction x as [ |x xs IHxs]; intros [ |y ys]; simpl.
    - now apply EQ.
    - now apply LT.
    - now apply GT.
    - case_eq (compare x y); intros l H.
      + apply LT. simpl. now left.
      + case_eq (IHxs ys); intros l1 H1.
        * apply LT. simpl. right. split; auto. now apply eqb_spec.
        * apply EQ. now rewrite l, l1.
        * apply GT. simpl. right. split; auto. now apply eqb_spec.
      + apply GT. simpl. now left.
  Defined.


  Instance list_comp : Comparable (list A) := Build_Comparable _ _ list_compare.


  Instance list_inh : Inhabited (list A) := Build_Inhabited _ nil.


  Instance list_compdec : CompDec (list A) := {|
    Eqb := list_eqbtype;
    Ordered := list_ord;
    Comp := list_comp;
    Inh := list_inh
  |}.

End list.


Hint Resolve unit_ord unit_eqbtype unit_comp unit_inh unit_compdec : typeclass_instances.
Hint Resolve bool_ord bool_eqbtype bool_dec bool_comp bool_inh bool_compdec : typeclass_instances.
Hint Resolve Z_ord Z_eqbtype Z_dec Z_comp Z_inh Z_compdec : typeclass_instances.
Hint Resolve Nat_ord Nat_eqbtype Nat_dec Nat_comp Nat_inh Nat_compdec : typeclass_instances.
Hint Resolve Positive_ord Positive_eqbtype Positive_dec Positive_comp Positive_inh Positive_compdec : typeclass_instances.
Hint Resolve BV_ord BV_eqbtype BV_dec BV_comp BV_inh BV_compdec : typeclass_instances.
Hint Resolve FArray_ord FArray_eqbtype FArray_dec FArray_comp FArray_inh FArray_compdec : typeclass_instances.
Hint Resolve int63_ord int63_inh int63_eqbtype int63_dec int63_comp int63_compdec option_compdec list_compdec : typeclass_instances.
Hint Resolve option_ord option_eqbtype option_comp option_inh : typeclass_instances.
Hint Resolve list_ord list_eqbtype list_comp list_inh : typeclass_instances.