aboutsummaryrefslogtreecommitdiffstats
path: root/src/versions/standard/Int63/Int63Op_standard.v
blob: 119e6bd80e235d3ba5e71d6bb93254ed2eabe8f8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
(**************************************************************************)
(*                                                                        *)
(*     SMTCoq                                                             *)
(*     Copyright (C) 2011 - 2015                                          *)
(*                                                                        *)
(*     Chantal Keller                                                     *)
(*                                                                        *)
(*       from the Int63 library of native-coq                             *)
(*       by Benjamin Gregoire and Laurent Thery                           *)
(*                                                                        *)
(*     Inria - École Polytechnique - MSR-Inria Joint Lab                  *)
(*                                                                        *)
(*   This file is distributed under the terms of the CeCILL-C licence     *)
(*                                                                        *)
(**************************************************************************)


Require Import Int63Lib Cyclic63.
Require Export Int63Native.
Require Import BigNumPrelude.
Require Import Bvector.


Local Open Scope int63_scope.

(** The number of digits as a int *)
Definition digits := zdigits.

(** The bigger int *)
Definition max_int := Eval vm_compute in 0 - 1.

(** Access to the nth digits *)
Definition get_digit x p := (0 < (x land (1 << p))).

Definition set_digit x p (b:bool) :=
  if (0 <= p) && (p < digits) then
    if b then x lor (1 << p)
    else x land (max_int lxor (1 << p))
  else x.

(** Equality to 0 *)
Definition is_zero (i:int) := i == 0.

(** Parity *)
Definition is_even (i:int) := is_zero (i land 1).

(** Bit *)

Definition bit i n :=  negb (is_zero ((i >> n) << (digits - 1))).
(* Register bit as PrimInline. *)

(** Extra modulo operations *)
Definition opp (i:int) := 0 - i.
Notation "- x" := (opp x) : int63_scope.

Definition oppcarry i := max_int - i.

Definition succ i := i + 1.

Definition pred i := i - 1.

Definition addcarry i j := i + j + 1.

Definition subcarry i j := i - j - 1.

(** Exact arithmetic operations *)

Definition addc_def x y :=
  let r := x + y in
  if r < x then C1 r else C0 r.
(* the same but direct implementation for efficiancy *)
Definition addc : int -> int -> carry int := add63c.
Notation "n '+c' m" := (addc n m) (at level 50, no associativity) : int63_scope.

Definition addcarryc_def x y :=
  let r := addcarry x y in
  if r <= x then C1 r else C0 r.
(* the same but direct implementation for efficiancy *)
Definition addcarryc : int -> int -> carry int := add63carryc.

Definition subc_def x y :=
  if y <= x then C0 (x - y) else C1 (x - y).
(* the same but direct implementation for efficiancy *)
Definition subc : int -> int -> carry int := sub63c.
Notation "n '-c' m" := (subc n m) (at level 50, no associativity) : int63_scope.

Definition subcarryc_def x y :=
  if y < x then C0 (x - y - 1) else C1 (x - y - 1).
(* the same but direct implementation for efficiancy *)
Definition subcarryc : int -> int -> carry int := sub63carryc.

Definition diveucl_def x y := (x/y, x\%y).
(* the same but direct implementation for efficiancy *)
Definition diveucl : int -> int -> int * int := div63.

Definition diveucl_21 : int -> int -> int -> int * int := div6321.

Definition addmuldiv_def p x y :=
  (x << p) lor (y >> (digits - p)).
(* the same but direct implementation for efficiancy *)
Definition addmuldiv : int -> int -> int -> int := addmuldiv63.

Definition oppc (i:int) := 0 -c i.

Definition succc i := i +c 1.

Definition predc i := i -c 1.

(** Comparison *)
Definition compare_def x y :=
  if x < y then Lt
  else if (x == y) then Eq else Gt.

Definition compare : int -> int -> comparison := compare63.
Notation "n ?= m" := (compare n m) (at level 70, no associativity) : int63_scope.

(** Exotic operations *)

(** I should add the definition (like for compare) *)
Definition head0 : int -> int := head063.
Definition tail0 : int -> int := tail063.

(** Iterators *)

Definition foldi {A} (f:int -> A -> A) from to :=
  foldi_cont (fun i cont a => cont (f i a)) from to (fun a => a).

Definition fold {A} (f: A -> A) from to :=
  foldi_cont (fun i cont a => cont (f a)) from to (fun a => a).

Definition foldi_down {A} (f:int -> A -> A) from downto :=
  foldi_down_cont (fun i cont a => cont (f i a)) from downto (fun a => a).

Definition fold_down {A} (f:A -> A) from downto :=
  foldi_down_cont (fun i cont a => cont (f a)) from downto (fun a => a).

Definition forallb (f:int -> bool) from to :=
  foldi_cont (fun i cont _ => if f i then cont tt else false) from to (fun _ => true) tt.

Definition existsb (f:int -> bool) from to :=
  foldi_cont (fun i cont _ => if f i then true else cont tt) from to (fun _ => false) tt.

(** Translation to Z *)

(* Fixpoint to_Z_rec (n:nat) (i:int) := *)
(*   match n with *)
(*   | O => 0%Z *)
(*   | S n => *)
(*     (if is_even i then Zdouble else Zdouble_plus_one) (to_Z_rec n (i >> 1)) *)
(*   end. *)

(* Definition to_Z := to_Z_rec size. *)

Definition to_Z := phi.

Fixpoint of_pos_rec (n:nat) (p:positive) :=
  match n, p with
  | O, _ => 0
  | S n, xH => 1
  | S n, xO p => (of_pos_rec n p) << 1
  | S n, xI p => (of_pos_rec n p) << 1 lor 1
  end.

Definition of_pos := of_pos_rec size.

Definition of_Z z :=
  match z with
  | Zpos p => of_pos p
  | Z0 => 0
  | Zneg p => - (of_pos p)
  end.

(** Gcd **)
Fixpoint gcd_rec (guard:nat) (i j:int) {struct guard} :=
   match guard with
   | O => 1
   | S p => if j == 0 then i else gcd_rec p j (i \% j)
   end.

Definition gcd := gcd_rec (2*size).

(** Square root functions using newton iteration **)

Definition sqrt_step (rec: int -> int -> int) (i j: int)  :=
  let quo := i/j in
  if quo < j then rec i ((j + i/j) >> 1)
  else j.

Definition iter_sqrt :=
 Eval lazy beta delta [sqrt_step] in
 fix iter_sqrt (n: nat) (rec: int -> int -> int)
          (i j: int) {struct n} : int :=
  sqrt_step
   (fun i j => match n with
      O =>  rec i j
   | S n => (iter_sqrt n (iter_sqrt n rec)) i j
   end) i j.

Definition sqrt i :=
  match compare 1 i with
    Gt => 0
  | Eq => 1
  | Lt => iter_sqrt size (fun i j => j) i (i >> 1)
  end.

Definition high_bit := 1 << (digits - 1).

Definition sqrt2_step (rec: int -> int -> int -> int)
   (ih il j: int)  :=
  if ih < j then
    let (quo,_) := diveucl_21 ih il j in
    if quo < j then
      match j +c quo with
      | C0 m1 => rec ih il (m1 >> 1)
      | C1 m1 => rec ih il ((m1 >> 1) + high_bit)
      end
    else j
  else j.

Definition iter2_sqrt :=
 Eval lazy beta delta [sqrt2_step] in
 fix iter2_sqrt (n: nat)
          (rec: int  -> int -> int -> int)
          (ih il j: int) {struct n} : int :=
  sqrt2_step
   (fun ih il j =>
     match n with
     | O =>  rec ih il j
     | S n => (iter2_sqrt n (iter2_sqrt n rec)) ih il j
   end) ih il j.

Definition sqrt2 ih il :=
  let s := iter2_sqrt size (fun ih il j => j) ih il max_int in
  let (ih1, il1) := mulc s s in
  match il -c il1 with
  | C0 il2 =>
    if ih1 < ih then (s, C1 il2) else (s, C0 il2)
  | C1 il2 =>
    if ih1 < (ih - 1) then (s, C1 il2) else (s, C0 il2)
  end.

(* Extra function on equality *)

Definition cast i j :=
     (if i == j as b return ((b = true -> i = j) -> option (forall P : int -> Type, P i -> P j))
      then fun Heq : true = true -> i = j =>
             Some
             (fun (P : int -> Type) (Hi : P i) =>
               match Heq (eq_refl true) in (_ = y) return (P y) with
               | eq_refl => Hi
               end)
      else fun _ : false = true -> i = j => None) (eqb_correct i j).

Definition eqo i j :=
   (if i == j as b return ((b = true -> i = j) -> option (i=j))
    then fun Heq : true = true -> i = j =>
             Some (Heq (eq_refl true))
     else fun _ : false = true -> i = j => None) (eqb_correct i j).