aboutsummaryrefslogtreecommitdiffstats
path: root/src/translation/HTLgenspec.v
diff options
context:
space:
mode:
authorYann Herklotz <git@yannherklotz.com>2020-08-30 14:03:40 +0100
committerYann Herklotz <git@yannherklotz.com>2020-08-30 14:03:40 +0100
commitec319c9ec0acc975fcdfbfa2e378b82c9be9ab0a (patch)
treeaba30758bbbf10ab3d975367f48a695b81afb179 /src/translation/HTLgenspec.v
parent9d6979baa0e4b505862bcedee1dfd075f36579c3 (diff)
downloadvericert-kvx-ec319c9ec0acc975fcdfbfa2e378b82c9be9ab0a.tar.gz
vericert-kvx-ec319c9ec0acc975fcdfbfa2e378b82c9be9ab0a.zip
Add RTLBlock intermediate language
Diffstat (limited to 'src/translation/HTLgenspec.v')
-rw-r--r--src/translation/HTLgenspec.v641
1 files changed, 0 insertions, 641 deletions
diff --git a/src/translation/HTLgenspec.v b/src/translation/HTLgenspec.v
deleted file mode 100644
index 541f9fa..0000000
--- a/src/translation/HTLgenspec.v
+++ /dev/null
@@ -1,641 +0,0 @@
-(*
- * Vericert: Verified high-level synthesis.
- * Copyright (C) 2020 Yann Herklotz <yann@yannherklotz.com>
- *
- * This program is free software: you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation, either version 3 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program. If not, see <https://www.gnu.org/licenses/>.
- *)
-
-From compcert Require RTL Op Maps Errors.
-From compcert Require Import Maps Integers.
-From vericert Require Import Vericertlib Verilog ValueInt HTL HTLgen AssocMap.
-Require Import Lia.
-
-Hint Resolve Maps.PTree.elements_keys_norepet : htlspec.
-Hint Resolve Maps.PTree.elements_correct : htlspec.
-
-Remark bind_inversion:
- forall (A B: Type) (f: mon A) (g: A -> mon B)
- (y: B) (s1 s3: st) (i: st_incr s1 s3),
- bind f g s1 = OK y s3 i ->
- exists x, exists s2, exists i1, exists i2,
- f s1 = OK x s2 i1 /\ g x s2 = OK y s3 i2.
-Proof.
- intros until i. unfold bind. destruct (f s1); intros.
- discriminate.
- exists a; exists s'; exists s.
- destruct (g a s'); inv H.
- exists s0; auto.
-Qed.
-
-Remark bind2_inversion:
- forall (A B C: Type) (f: mon (A*B)) (g: A -> B -> mon C)
- (z: C) (s1 s3: st) (i: st_incr s1 s3),
- bind2 f g s1 = OK z s3 i ->
- exists x, exists y, exists s2, exists i1, exists i2,
- f s1 = OK (x, y) s2 i1 /\ g x y s2 = OK z s3 i2.
-Proof.
- unfold bind2; intros.
- exploit bind_inversion; eauto.
- intros [[x y] [s2 [i1 [i2 [P Q]]]]]. simpl in Q.
- exists x; exists y; exists s2; exists i1; exists i2; auto.
-Qed.
-
-Ltac monadInv1 H :=
- match type of H with
- | (OK _ _ _ = OK _ _ _) =>
- inversion H; clear H; try subst
- | (Error _ _ = OK _ _ _) =>
- discriminate
- | (ret _ _ = OK _ _ _) =>
- inversion H; clear H; try subst
- | (error _ _ = OK _ _ _) =>
- discriminate
- | (bind ?F ?G ?S = OK ?X ?S' ?I) =>
- let x := fresh "x" in (
- let s := fresh "s" in (
- let i1 := fresh "INCR" in (
- let i2 := fresh "INCR" in (
- let EQ1 := fresh "EQ" in (
- let EQ2 := fresh "EQ" in (
- destruct (bind_inversion _ _ F G X S S' I H) as [x [s [i1 [i2 [EQ1 EQ2]]]]];
- clear H;
- try (monadInv1 EQ2)))))))
- | (bind2 ?F ?G ?S = OK ?X ?S' ?I) =>
- let x1 := fresh "x" in (
- let x2 := fresh "x" in (
- let s := fresh "s" in (
- let i1 := fresh "INCR" in (
- let i2 := fresh "INCR" in (
- let EQ1 := fresh "EQ" in (
- let EQ2 := fresh "EQ" in (
- destruct (bind2_inversion _ _ _ F G X S S' I H) as [x1 [x2 [s [i1 [i2 [EQ1 EQ2]]]]]];
- clear H;
- try (monadInv1 EQ2))))))))
- end.
-
-Ltac monadInv H :=
- match type of H with
- | (ret _ _ = OK _ _ _) => monadInv1 H
- | (error _ _ = OK _ _ _) => monadInv1 H
- | (bind ?F ?G ?S = OK ?X ?S' ?I) => monadInv1 H
- | (bind2 ?F ?G ?S = OK ?X ?S' ?I) => monadInv1 H
- | (?F _ _ _ _ _ _ _ _ = OK _ _ _) =>
- ((progress simpl in H) || unfold F in H); monadInv1 H
- | (?F _ _ _ _ _ _ _ = OK _ _ _) =>
- ((progress simpl in H) || unfold F in H); monadInv1 H
- | (?F _ _ _ _ _ _ = OK _ _ _) =>
- ((progress simpl in H) || unfold F in H); monadInv1 H
- | (?F _ _ _ _ _ = OK _ _ _) =>
- ((progress simpl in H) || unfold F in H); monadInv1 H
- | (?F _ _ _ _ = OK _ _ _) =>
- ((progress simpl in H) || unfold F in H); monadInv1 H
- | (?F _ _ _ = OK _ _ _) =>
- ((progress simpl in H) || unfold F in H); monadInv1 H
- | (?F _ _ = OK _ _ _) =>
- ((progress simpl in H) || unfold F in H); monadInv1 H
- | (?F _ = OK _ _ _) =>
- ((progress simpl in H) || unfold F in H); monadInv1 H
- end.
-
-(** * Relational specification of the translation *)
-
-(** We now define inductive predicates that characterise the fact that the
-statemachine that is created by the translation contains the correct
-translations for each of the elements *)
-
-Inductive tr_instr (fin rtrn st stk : reg) : RTL.instruction -> stmnt -> stmnt -> Prop :=
-| tr_instr_Inop :
- forall n,
- Z.pos n <= Int.max_unsigned ->
- tr_instr fin rtrn st stk (RTL.Inop n) Vskip (state_goto st n)
-| tr_instr_Iop :
- forall n op args dst s s' e i,
- Z.pos n <= Int.max_unsigned ->
- translate_instr op args s = OK e s' i ->
- tr_instr fin rtrn st stk (RTL.Iop op args dst n) (Vnonblock (Vvar dst) e) (state_goto st n)
-| tr_instr_Icond :
- forall n1 n2 cond args s s' i c,
- Z.pos n1 <= Int.max_unsigned ->
- Z.pos n2 <= Int.max_unsigned ->
- translate_condition cond args s = OK c s' i ->
- tr_instr fin rtrn st stk (RTL.Icond cond args n1 n2) Vskip (state_cond st c n1 n2)
-| tr_instr_Ireturn_None :
- tr_instr fin rtrn st stk (RTL.Ireturn None) (Vseq (block fin (Vlit (ZToValue 1%Z)))
- (block rtrn (Vlit (ZToValue 0%Z)))) Vskip
-| tr_instr_Ireturn_Some :
- forall r,
- tr_instr fin rtrn st stk (RTL.Ireturn (Some r))
- (Vseq (block fin (Vlit (ZToValue 1%Z))) (block rtrn (Vvar r))) Vskip
-| tr_instr_Iload :
- forall mem addr args s s' i c dst n,
- Z.pos n <= Int.max_unsigned ->
- translate_arr_access mem addr args stk s = OK c s' i ->
- tr_instr fin rtrn st stk (RTL.Iload mem addr args dst n) (nonblock dst c) (state_goto st n)
-| tr_instr_Istore :
- forall mem addr args s s' i c src n,
- Z.pos n <= Int.max_unsigned ->
- translate_arr_access mem addr args stk s = OK c s' i ->
- tr_instr fin rtrn st stk (RTL.Istore mem addr args src n) (Vnonblock c (Vvar src))
- (state_goto st n).
-(*| tr_instr_Ijumptable :
- forall cexpr tbl r,
- cexpr = tbl_to_case_expr st tbl ->
- tr_instr fin rtrn st stk (RTL.Ijumptable r tbl) (Vskip) (Vcase (Vvar r) cexpr (Some Vskip)).*)
-Hint Constructors tr_instr : htlspec.
-
-Inductive tr_code (c : RTL.code) (pc : RTL.node) (i : RTL.instruction) (stmnts trans : PTree.t stmnt)
- (fin rtrn st stk : reg) : Prop :=
- tr_code_intro :
- forall s t,
- c!pc = Some i ->
- stmnts!pc = Some s ->
- trans!pc = Some t ->
- tr_instr fin rtrn st stk i s t ->
- tr_code c pc i stmnts trans fin rtrn st stk.
-Hint Constructors tr_code : htlspec.
-
-Inductive tr_module (f : RTL.function) : module -> Prop :=
- tr_module_intro :
- forall data control fin rtrn st stk stk_len m start rst clk scldecls arrdecls wf,
- m = (mkmodule f.(RTL.fn_params)
- data
- control
- f.(RTL.fn_entrypoint)
- st stk stk_len fin rtrn start rst clk scldecls arrdecls wf) ->
- (forall pc i, Maps.PTree.get pc f.(RTL.fn_code) = Some i ->
- tr_code f.(RTL.fn_code) pc i data control fin rtrn st stk) ->
- stk_len = Z.to_nat (f.(RTL.fn_stacksize) / 4) ->
- Z.modulo (f.(RTL.fn_stacksize)) 4 = 0 ->
- 0 <= f.(RTL.fn_stacksize) < Integers.Ptrofs.modulus ->
- st = ((RTL.max_reg_function f) + 1)%positive ->
- fin = ((RTL.max_reg_function f) + 2)%positive ->
- rtrn = ((RTL.max_reg_function f) + 3)%positive ->
- stk = ((RTL.max_reg_function f) + 4)%positive ->
- start = ((RTL.max_reg_function f) + 5)%positive ->
- rst = ((RTL.max_reg_function f) + 6)%positive ->
- clk = ((RTL.max_reg_function f) + 7)%positive ->
- tr_module f m.
-Hint Constructors tr_module : htlspec.
-
-Lemma create_reg_datapath_trans :
- forall sz s s' x i iop,
- create_reg iop sz s = OK x s' i ->
- s.(st_datapath) = s'.(st_datapath).
-Proof. intros. monadInv H. trivial. Qed.
-Hint Resolve create_reg_datapath_trans : htlspec.
-
-Lemma create_reg_controllogic_trans :
- forall sz s s' x i iop,
- create_reg iop sz s = OK x s' i ->
- s.(st_controllogic) = s'.(st_controllogic).
-Proof. intros. monadInv H. trivial. Qed.
-Hint Resolve create_reg_controllogic_trans : htlspec.
-
-Lemma declare_reg_datapath_trans :
- forall sz s s' x i iop r,
- declare_reg iop r sz s = OK x s' i ->
- s.(st_datapath) = s'.(st_datapath).
-Proof. intros. monadInv H. trivial. Qed.
-Hint Resolve create_reg_datapath_trans : htlspec.
-
-Lemma declare_reg_controllogic_trans :
- forall sz s s' x i iop r,
- declare_reg iop r sz s = OK x s' i ->
- s.(st_controllogic) = s'.(st_controllogic).
-Proof. intros. monadInv H. trivial. Qed.
-Hint Resolve create_reg_controllogic_trans : htlspec.
-
-Lemma declare_reg_freshreg_trans :
- forall sz s s' x i iop r,
- declare_reg iop r sz s = OK x s' i ->
- s.(st_freshreg) = s'.(st_freshreg).
-Proof. inversion 1; auto. Qed.
-Hint Resolve declare_reg_freshreg_trans : htlspec.
-
-Lemma create_arr_datapath_trans :
- forall sz ln s s' x i iop,
- create_arr iop sz ln s = OK x s' i ->
- s.(st_datapath) = s'.(st_datapath).
-Proof. intros. monadInv H. trivial. Qed.
-Hint Resolve create_arr_datapath_trans : htlspec.
-
-Lemma create_arr_controllogic_trans :
- forall sz ln s s' x i iop,
- create_arr iop sz ln s = OK x s' i ->
- s.(st_controllogic) = s'.(st_controllogic).
-Proof. intros. monadInv H. trivial. Qed.
-Hint Resolve create_arr_controllogic_trans : htlspec.
-
-Lemma get_refl_x :
- forall s s' x i,
- get s = OK x s' i ->
- s = x.
-Proof. inversion 1. trivial. Qed.
-Hint Resolve get_refl_x : htlspec.
-
-Lemma get_refl_s :
- forall s s' x i,
- get s = OK x s' i ->
- s = s'.
-Proof. inversion 1. trivial. Qed.
-Hint Resolve get_refl_s : htlspec.
-
-Ltac inv_incr :=
- repeat match goal with
- | [ H: create_reg _ _ ?s = OK _ ?s' _ |- _ ] =>
- let H1 := fresh "H" in
- assert (H1 := H); eapply create_reg_datapath_trans in H;
- eapply create_reg_controllogic_trans in H1
- | [ H: create_arr _ _ _ ?s = OK _ ?s' _ |- _ ] =>
- let H1 := fresh "H" in
- assert (H1 := H); eapply create_arr_datapath_trans in H;
- eapply create_arr_controllogic_trans in H1
- | [ H: get ?s = OK _ _ _ |- _ ] =>
- let H1 := fresh "H" in
- assert (H1 := H); apply get_refl_x in H; apply get_refl_s in H1;
- subst
- | [ H: st_prop _ _ |- _ ] => unfold st_prop in H; destruct H
- | [ H: st_incr _ _ |- _ ] => destruct st_incr
- end.
-
-Lemma collect_controllogic_trans :
- forall A f l cs cs' ci,
- (forall s s' x i y, f y s = OK x s' i -> s.(st_controllogic) = s'.(st_controllogic)) ->
- @HTLMonadExtra.collectlist A f l cs = OK tt cs' ci -> cs.(st_controllogic) = cs'.(st_controllogic).
-Proof.
- induction l; intros; monadInv H0.
- - trivial.
- - apply H in EQ. rewrite EQ. eauto.
-Qed.
-
-Lemma collect_datapath_trans :
- forall A f l cs cs' ci,
- (forall s s' x i y, f y s = OK x s' i -> s.(st_datapath) = s'.(st_datapath)) ->
- @HTLMonadExtra.collectlist A f l cs = OK tt cs' ci -> cs.(st_datapath) = cs'.(st_datapath).
-Proof.
- induction l; intros; monadInv H0.
- - trivial.
- - apply H in EQ. rewrite EQ. eauto.
-Qed.
-
-Lemma collect_freshreg_trans :
- forall A f l cs cs' ci,
- (forall s s' x i y, f y s = OK x s' i -> s.(st_freshreg) = s'.(st_freshreg)) ->
- @HTLMonadExtra.collectlist A f l cs = OK tt cs' ci -> cs.(st_freshreg) = cs'.(st_freshreg).
-Proof.
- induction l; intros; monadInv H0.
- - trivial.
- - apply H in EQ. rewrite EQ. eauto.
-Qed.
-
-Lemma collect_declare_controllogic_trans :
- forall io n l s s' i,
- HTLMonadExtra.collectlist (fun r : reg => declare_reg io r n) l s = OK tt s' i ->
- s.(st_controllogic) = s'.(st_controllogic).
-Proof.
- intros. eapply collect_controllogic_trans; try eassumption.
- intros. eapply declare_reg_controllogic_trans. simpl in H0. eassumption.
-Qed.
-
-Lemma collect_declare_datapath_trans :
- forall io n l s s' i,
- HTLMonadExtra.collectlist (fun r : reg => declare_reg io r n) l s = OK tt s' i ->
- s.(st_datapath) = s'.(st_datapath).
-Proof.
- intros. eapply collect_datapath_trans; try eassumption.
- intros. eapply declare_reg_datapath_trans. simpl in H0. eassumption.
-Qed.
-
-Lemma collect_declare_freshreg_trans :
- forall io n l s s' i,
- HTLMonadExtra.collectlist (fun r : reg => declare_reg io r n) l s = OK tt s' i ->
- s.(st_freshreg) = s'.(st_freshreg).
-Proof.
- intros. eapply collect_freshreg_trans; try eassumption.
- inversion 1. auto.
-Qed.
-
-Ltac unfold_match H :=
- match type of H with
- | context[match ?g with _ => _ end] => destruct g eqn:?; try discriminate
- end.
-
-Lemma translate_eff_addressing_freshreg_trans :
- forall op args s r s' i,
- translate_eff_addressing op args s = OK r s' i ->
- s.(st_freshreg) = s'.(st_freshreg).
-Proof.
- destruct op; intros; simpl in *; repeat (unfold_match H); inv H; auto.
-Qed.
-Hint Resolve translate_eff_addressing_freshreg_trans : htlspec.
-
-Lemma translate_comparison_freshreg_trans :
- forall op args s r s' i,
- translate_comparison op args s = OK r s' i ->
- s.(st_freshreg) = s'.(st_freshreg).
-Proof.
- destruct op; intros; simpl in *; repeat (unfold_match H); inv H; auto.
-Qed.
-Hint Resolve translate_comparison_freshreg_trans : htlspec.
-
-Lemma translate_comparisonu_freshreg_trans :
- forall op args s r s' i,
- translate_comparisonu op args s = OK r s' i ->
- s.(st_freshreg) = s'.(st_freshreg).
-Proof.
- destruct op; intros; simpl in *; repeat (unfold_match H); inv H; auto.
-Qed.
-Hint Resolve translate_comparisonu_freshreg_trans : htlspec.
-
-Lemma translate_comparison_imm_freshreg_trans :
- forall op args s r s' i n,
- translate_comparison_imm op args n s = OK r s' i ->
- s.(st_freshreg) = s'.(st_freshreg).
-Proof.
- destruct op; intros; simpl in *; repeat (unfold_match H); inv H; auto.
-Qed.
-Hint Resolve translate_comparison_imm_freshreg_trans : htlspec.
-
-Lemma translate_comparison_immu_freshreg_trans :
- forall op args s r s' i n,
- translate_comparison_immu op args n s = OK r s' i ->
- s.(st_freshreg) = s'.(st_freshreg).
-Proof.
- destruct op; intros; simpl in *; repeat (unfold_match H); inv H; auto.
-Qed.
-Hint Resolve translate_comparison_immu_freshreg_trans : htlspec.
-
-Lemma translate_condition_freshreg_trans :
- forall op args s r s' i,
- translate_condition op args s = OK r s' i ->
- s.(st_freshreg) = s'.(st_freshreg).
-Proof.
- destruct op; intros; simpl in *; repeat (unfold_match H); inv H; eauto with htlspec.
-Qed.
-Hint Resolve translate_condition_freshreg_trans : htlspec.
-
-Lemma translate_instr_freshreg_trans :
- forall op args s r s' i,
- translate_instr op args s = OK r s' i ->
- s.(st_freshreg) = s'.(st_freshreg).
-Proof.
- destruct op; intros; simpl in *; repeat (unfold_match H); inv H; eauto with htlspec.
- monadInv H1. eauto with htlspec.
-Qed.
-Hint Resolve translate_instr_freshreg_trans : htlspec.
-
-Lemma translate_arr_access_freshreg_trans :
- forall mem addr args st s r s' i,
- translate_arr_access mem addr args st s = OK r s' i ->
- s.(st_freshreg) = s'.(st_freshreg).
-Proof.
- intros. unfold translate_arr_access in H. repeat (unfold_match H); inv H; eauto with htlspec.
-Qed.
-Hint Resolve translate_arr_access_freshreg_trans : htlspec.
-
-Lemma add_instr_freshreg_trans :
- forall n n' st s r s' i,
- add_instr n n' st s = OK r s' i ->
- s.(st_freshreg) = s'.(st_freshreg).
-Proof. intros. unfold add_instr in H. repeat (unfold_match H). inv H. auto. Qed.
-Hint Resolve add_instr_freshreg_trans : htlspec.
-
-Lemma add_branch_instr_freshreg_trans :
- forall n n0 n1 e s r s' i,
- add_branch_instr e n n0 n1 s = OK r s' i ->
- s.(st_freshreg) = s'.(st_freshreg).
-Proof. intros. unfold add_branch_instr in H. repeat (unfold_match H). inv H. auto. Qed.
-Hint Resolve add_branch_instr_freshreg_trans : htlspec.
-
-Lemma add_node_skip_freshreg_trans :
- forall n1 n2 s r s' i,
- add_node_skip n1 n2 s = OK r s' i ->
- s.(st_freshreg) = s'.(st_freshreg).
-Proof. intros. unfold add_node_skip in H. repeat (unfold_match H). inv H. auto. Qed.
-Hint Resolve add_node_skip_freshreg_trans : htlspec.
-
-Lemma add_instr_skip_freshreg_trans :
- forall n1 n2 s r s' i,
- add_instr_skip n1 n2 s = OK r s' i ->
- s.(st_freshreg) = s'.(st_freshreg).
-Proof. intros. unfold add_instr_skip in H. repeat (unfold_match H). inv H. auto. Qed.
-Hint Resolve add_instr_skip_freshreg_trans : htlspec.
-
-Lemma transf_instr_freshreg_trans :
- forall fin ret st instr s v s' i,
- transf_instr fin ret st instr s = OK v s' i ->
- s.(st_freshreg) = s'.(st_freshreg).
-Proof.
- intros. destruct instr eqn:?. subst. unfold transf_instr in H.
- destruct i0; try (monadInv H); try (unfold_match H); eauto with htlspec.
- - monadInv H. apply add_instr_freshreg_trans in EQ2. apply translate_instr_freshreg_trans in EQ.
- apply declare_reg_freshreg_trans in EQ1. congruence.
- - monadInv H. apply add_instr_freshreg_trans in EQ2. apply translate_arr_access_freshreg_trans in EQ.
- apply declare_reg_freshreg_trans in EQ1. congruence.
- - monadInv H. apply add_instr_freshreg_trans in EQ0. apply translate_arr_access_freshreg_trans in EQ. congruence.
- - monadInv H. apply translate_condition_freshreg_trans in EQ. apply add_branch_instr_freshreg_trans in EQ0.
- congruence.
- (*- inv EQ. apply add_node_skip_freshreg_trans in EQ0. congruence.*)
-Qed.
-Hint Resolve transf_instr_freshreg_trans : htlspec.
-
-Lemma collect_trans_instr_freshreg_trans :
- forall fin ret st l s s' i,
- HTLMonadExtra.collectlist (transf_instr fin ret st) l s = OK tt s' i ->
- s.(st_freshreg) = s'.(st_freshreg).
-Proof.
- intros. eapply collect_freshreg_trans; try eassumption.
- eauto with htlspec.
-Qed.
-
-Ltac rewrite_states :=
- match goal with
- | [ H: ?x ?s = ?x ?s' |- _ ] =>
- let c1 := fresh "c" in
- let c2 := fresh "c" in
- remember (?x ?s) as c1; remember (?x ?s') as c2; try subst
- end.
-
-Ltac inv_add_instr' H :=
- match type of H with
- | ?f _ _ = OK _ _ _ => unfold f in H
- | ?f _ _ _ = OK _ _ _ => unfold f in H
- | ?f _ _ _ _ = OK _ _ _ => unfold f in H
- | ?f _ _ _ _ _ = OK _ _ _ => unfold f in H
- | ?f _ _ _ _ _ _ = OK _ _ _ => unfold f in H
- end; repeat unfold_match H; inversion H.
-
-Ltac inv_add_instr :=
- match goal with
- | H: (if ?c then _ else _) _ = OK _ _ _ |- _ => destruct c eqn:EQN; try discriminate; inv_add_instr
- | H: context[add_instr_skip _ _ _] |- _ =>
- inv_add_instr' H
- | H: context[add_instr_skip _ _] |- _ =>
- monadInv H; inv_incr; inv_add_instr
- | H: context[add_instr _ _ _ _] |- _ =>
- inv_add_instr' H
- | H: context[add_instr _ _ _] |- _ =>
- monadInv H; inv_incr; inv_add_instr
- | H: context[add_branch_instr _ _ _ _ _] |- _ =>
- inv_add_instr' H
- | H: context[add_branch_instr _ _ _ _] |- _ =>
- monadInv H; inv_incr; inv_add_instr
- | H: context[add_node_skip _ _ _] |- _ =>
- inv_add_instr' H
- | H: context[add_node_skip _ _] |- _ =>
- monadInv H; inv_incr; inv_add_instr
- end.
-
-Ltac destruct_optional :=
- match goal with H: option ?r |- _ => destruct H end.
-
-Lemma iter_expand_instr_spec :
- forall l fin rtrn stack s s' i x c,
- HTLMonadExtra.collectlist (transf_instr fin rtrn stack) l s = OK x s' i ->
- list_norepet (List.map fst l) ->
- (forall pc instr, In (pc, instr) l -> c!pc = Some instr) ->
- (forall pc instr, In (pc, instr) l ->
- c!pc = Some instr ->
- tr_code c pc instr s'.(st_datapath) s'.(st_controllogic) fin rtrn s'.(st_st) stack).
-Proof.
- induction l; simpl; intros; try contradiction.
- destruct a as [pc1 instr1]; simpl in *. inv H0. monadInv H. inv_incr.
- destruct (peq pc pc1).
- - subst.
- destruct instr1 eqn:?; try discriminate;
- try destruct_optional; inv_add_instr; econstructor; try assumption.
- + destruct o with pc1; destruct H11; simpl in *; rewrite AssocMap.gss in H9; eauto; congruence.
- + destruct o0 with pc1; destruct H11; simpl in *; rewrite AssocMap.gss in H9; eauto; congruence.
- + inversion H2. inversion H9. rewrite H. apply tr_instr_Inop.
- apply Z.leb_le. assumption.
- eapply in_map with (f := fst) in H9. contradiction.
-
- + destruct o with pc1; destruct H16; simpl in *; rewrite AssocMap.gss in H14; eauto; congruence.
- + destruct o0 with pc1; destruct H16; simpl in *; rewrite AssocMap.gss in H14; eauto; congruence.
- + inversion H2. inversion H14. unfold nonblock. replace (st_st s4) with (st_st s2) by congruence.
- econstructor. apply Z.leb_le; assumption.
- apply EQ1. eapply in_map with (f := fst) in H14. contradiction.
-
- + destruct o with pc1; destruct H16; simpl in *; rewrite AssocMap.gss in H14; eauto; congruence.
- + destruct o0 with pc1; destruct H16; simpl in *; rewrite AssocMap.gss in H14; eauto; congruence.
- + inversion H2. inversion H14. rewrite <- e2. replace (st_st s2) with (st_st s0) by congruence.
- econstructor. apply Z.leb_le; assumption.
- apply EQ1. eapply in_map with (f := fst) in H14. contradiction.
-
- + destruct o with pc1; destruct H11; simpl in *; rewrite AssocMap.gss in H9; eauto; congruence.
- + destruct o0 with pc1; destruct H11; simpl in *; rewrite AssocMap.gss in H9; eauto; congruence.
- + destruct H2.
- * inversion H2.
- replace (st_st s2) with (st_st s0) by congruence.
- econstructor. apply Z.leb_le; assumption.
- eauto with htlspec.
- * apply in_map with (f := fst) in H2. contradiction.
-
- + destruct o with pc1; destruct H11; simpl in *; rewrite AssocMap.gss in H9; eauto; congruence.
- + destruct o0 with pc1; destruct H11; simpl in *; rewrite AssocMap.gss in H9; eauto; congruence.
- + destruct H2.
- * inversion H2.
- replace (st_st s2) with (st_st s0) by congruence.
- econstructor; try (apply Z.leb_le; apply andb_prop in EQN; apply EQN).
- eauto with htlspec.
- * apply in_map with (f := fst) in H2. contradiction.
-
- (*+ destruct o with pc1; destruct H16; simpl in *; rewrite AssocMap.gss in H14; eauto; congruence.
- + destruct o0 with pc1; destruct H16; simpl in *; rewrite AssocMap.gss in H14; eauto; congruence.
- + inversion H2.
- * inversion H14. constructor. congruence.
- * apply in_map with (f := fst) in H14. contradiction.
- *)
- + destruct o with pc1; destruct H11; simpl in *; rewrite AssocMap.gss in H9; eauto; congruence.
- + destruct o0 with pc1; destruct H11; simpl in *; rewrite AssocMap.gss in H9; eauto; congruence.
- + inversion H2.
- * inversion H9.
- replace (st_st s2) with (st_st s0) by congruence.
- eauto with htlspec.
- * apply in_map with (f := fst) in H9. contradiction.
-
- + destruct o with pc1; destruct H11; simpl in *; rewrite AssocMap.gss in H9; eauto; congruence.
- + destruct o0 with pc1; destruct H11; simpl in *; rewrite AssocMap.gss in H9; eauto; congruence.
- + inversion H2.
- * inversion H9.
- replace (st_st s2) with (st_st s0) by congruence.
- eauto with htlspec.
- * apply in_map with (f := fst) in H9. contradiction.
-
- - eapply IHl. apply EQ0. assumption.
- destruct H2. inversion H2. subst. contradiction.
- intros. specialize H1 with pc0 instr0. destruct H1. tauto. trivial.
- destruct H2. inv H2. contradiction. assumption. assumption.
-Qed.
-Hint Resolve iter_expand_instr_spec : htlspec.
-
-Lemma create_arr_inv : forall w x y z a b c d,
- create_arr w x y z = OK (a, b) c d ->
- y = b /\ a = z.(st_freshreg) /\ c.(st_freshreg) = Pos.succ (z.(st_freshreg)).
-Proof.
- inversion 1; split; auto.
-Qed.
-
-Lemma create_reg_inv : forall a b s r s' i,
- create_reg a b s = OK r s' i ->
- r = s.(st_freshreg) /\ s'.(st_freshreg) = Pos.succ (s.(st_freshreg)).
-Proof.
- inversion 1; auto.
-Qed.
-
-Theorem transl_module_correct :
- forall f m,
- transl_module f = Errors.OK m -> tr_module f m.
-Proof.
- intros until m.
- unfold transl_module.
- unfold run_mon.
- destruct (transf_module f (max_state f)) eqn:?; try discriminate.
- intros. inv H.
- inversion s; subst.
-
- unfold transf_module in *.
- unfold stack_correct in *.
- destruct (0 <=? RTL.fn_stacksize f) eqn:STACK_BOUND_LOW;
- destruct (RTL.fn_stacksize f <? Integers.Ptrofs.modulus) eqn:STACK_BOUND_HIGH;
- destruct (RTL.fn_stacksize f mod 4 =? 0) eqn:STACK_ALIGN;
- crush;
- monadInv Heqr.
-
- repeat unfold_match EQ9. monadInv EQ9.
-
- (* TODO: We should be able to fold this into the automation. *)
- pose proof (create_arr_inv _ _ _ _ _ _ _ _ EQ0) as STK_LEN. inv STK_LEN. inv H5.
- pose proof (create_reg_inv _ _ _ _ _ _ EQ) as FIN_VAL. inv FIN_VAL.
- pose proof (create_reg_inv _ _ _ _ _ _ EQ1) as RET_VAL. inv RET_VAL.
- destruct x3. destruct x4.
- pose proof (collect_trans_instr_freshreg_trans _ _ _ _ _ _ _ EQ2) as TR_INSTR.
- pose proof (collect_declare_freshreg_trans _ _ _ _ _ _ EQ3) as TR_DEC.
- pose proof (create_reg_inv _ _ _ _ _ _ EQ4) as START_VAL. inv START_VAL.
- pose proof (create_reg_inv _ _ _ _ _ _ EQ5) as RESET_VAL. inv RESET_VAL.
- pose proof (create_reg_inv _ _ _ _ _ _ EQ6) as CLK_VAL. inv CLK_VAL.
- rewrite H9 in *. rewrite H8 in *. replace (st_freshreg s4) with (st_freshreg s2) in * by congruence.
- rewrite H6 in *. rewrite H7 in *. rewrite H5 in *. simpl in *.
- inv_incr.
- econstructor; simpl; auto; try lia.
- intros.
- assert (EQ3D := EQ3).
- apply collect_declare_datapath_trans in EQ3.
- apply collect_declare_controllogic_trans in EQ3D.
- replace (st_controllogic s10) with (st_controllogic s3) by congruence.
- replace (st_datapath s10) with (st_datapath s3) by congruence.
- replace (st_st s10) with (st_st s3) by congruence.
- eapply iter_expand_instr_spec; eauto with htlspec.
- apply PTree.elements_complete.
-Qed.