aboutsummaryrefslogtreecommitdiffstats
path: root/src/verilog/Verilog.v
diff options
context:
space:
mode:
Diffstat (limited to 'src/verilog/Verilog.v')
-rw-r--r--src/verilog/Verilog.v345
1 files changed, 251 insertions, 94 deletions
diff --git a/src/verilog/Verilog.v b/src/verilog/Verilog.v
index 555ddbd..06e250a 100644
--- a/src/verilog/Verilog.v
+++ b/src/verilog/Verilog.v
@@ -29,11 +29,9 @@ Require Import Lia.
Import ListNotations.
-From coqup Require Import common.Coquplib common.Show verilog.Value AssocMap Array.
-From compcert Require Integers Events.
-From compcert Require Import Errors Smallstep Globalenvs.
-
-Import HexNotationValue.
+From coqup Require Import common.Coquplib common.Show verilog.ValueInt IntegerExtra AssocMap Array.
+From compcert Require Events.
+From compcert Require Import Integers Errors Smallstep Globalenvs.
Local Open Scope assocmap.
@@ -80,7 +78,7 @@ Definition merge_arrs (new : assocmap_arr) (old : assocmap_arr) : assocmap_arr :
Definition arr_assocmap_lookup (a : assocmap_arr) (r : reg) (i : nat) : option value :=
match a ! r with
| None => None
- | Some arr => Some (Option.default (NToValue 32 0) (Option.join (array_get_error i arr)))
+ | Some arr => Some (Option.default (NToValue 0) (Option.join (array_get_error i arr)))
end.
Definition arr_assocmap_set (r : reg) (i : nat) (v : value) (a : assocmap_arr) : assocmap_arr :=
@@ -145,7 +143,8 @@ Inductive binop : Type :=
| Vxor : binop (** xor (binary [^|]) *)
| Vshl : binop (** shift left ([<<]) *)
| Vshr : binop (** shift right ([>>>]) *)
-| Vshru : binop. (** shift right unsigned ([>>]) *)
+| Vshru : binop (** shift right unsigned ([>>]) *)
+| Vror : binop. (** shift right unsigned ([>>]) *)
(** ** Unary Operators *)
@@ -156,16 +155,21 @@ Inductive unop : Type :=
(** ** Expressions *)
Inductive expr : Type :=
-| Vlit : value -> expr
-| Vvar : reg -> expr
-| Vvari : reg -> expr -> expr
+| Vlit : value -> expr (** literal *)
+| Vvar : reg -> expr (** reg *)
+| Vvarb0 : reg -> expr (** 1st byte projection of reg *)
+| Vvarb1 : reg -> expr
+| Vvarb2 : reg -> expr
+| Vvarb3 : reg -> expr
+| Vvari : reg -> expr -> expr (** array *)
| Vinputvar : reg -> expr
| Vbinop : binop -> expr -> expr -> expr
| Vunop : unop -> expr -> expr
-| Vternary : expr -> expr -> expr -> expr.
+| Vternary : expr -> expr -> expr -> expr
+| Vload : reg -> expr -> expr. (** 4-byte concatenation load *)
-Definition posToExpr (sz : nat) (p : positive) : expr :=
- Vlit (posToValue sz p).
+Definition posToExpr (p : positive) : expr :=
+ Vlit (posToValue p).
(** ** Statements *)
@@ -245,12 +249,9 @@ Definition program := AST.program fundef unit.
(** Convert a [positive] to an expression directly, setting it to the right
size. *)
Definition posToLit (p : positive) : expr :=
- Vlit (posToValueAuto p).
-
-Coercion Vlit : value >-> expr.
-Coercion Vvar : reg >-> expr.
+ Vlit (posToValue p).
-Definition fext := assocmap.
+Definition fext := unit.
Definition fextclk := nat -> fext.
(** ** State
@@ -298,81 +299,99 @@ Inductive state : Type :=
(m : module)
(args : list value), state.
-Definition binop_run (op : binop) : forall v1 v2 : value, vsize v1 = vsize v2 -> value :=
+Definition binop_run (op : binop) (v1 v2 : value) : option value :=
match op with
- | Vadd => vplus
- | Vsub => vminus
- | Vmul => vmul
- | Vdiv => vdivs
- | Vdivu => vdiv
- | Vmod => vmods
- | Vmodu => vmod
- | Vlt => vlts
- | Vltu => vlt
- | Vgt => vgts
- | Vgtu => vgt
- | Vle => vles
- | Vleu => vle
- | Vge => vges
- | Vgeu => vge
- | Veq => veq
- | Vne => vne
- | Vand => vand
- | Vor => vor
- | Vxor => vxor
- | Vshl => vshl
- | Vshr => vshr
- | Vshru => vshr (* FIXME: should not be the same operation. *)
+ | Vadd => Some (Int.add v1 v2)
+ | Vsub => Some (Int.sub v1 v2)
+ | Vmul => Some (Int.mul v1 v2)
+ | Vdiv => if Int.eq v2 Int.zero
+ || Int.eq v1 (Int.repr Int.min_signed) && Int.eq v2 Int.mone
+ then None
+ else Some (Int.divs v1 v2)
+ | Vdivu => if Int.eq v2 Int.zero then None else Some (Int.divu v1 v2)
+ | Vmod => if Int.eq v2 Int.zero
+ || Int.eq v1 (Int.repr Int.min_signed) && Int.eq v2 Int.mone
+ then None
+ else Some (Int.mods v1 v2)
+ | Vmodu => if Int.eq v2 Int.zero then None else Some (Int.modu v1 v2)
+ | Vlt => Some (boolToValue (Int.lt v1 v2))
+ | Vltu => Some (boolToValue (Int.ltu v1 v2))
+ | Vgt => Some (boolToValue (Int.lt v2 v1))
+ | Vgtu => Some (boolToValue (Int.ltu v2 v1))
+ | Vle => Some (boolToValue (negb (Int.lt v2 v1)))
+ | Vleu => Some (boolToValue (negb (Int.ltu v2 v1)))
+ | Vge => Some (boolToValue (negb (Int.lt v1 v2)))
+ | Vgeu => Some (boolToValue (negb (Int.ltu v1 v2)))
+ | Veq => Some (boolToValue (Int.eq v1 v2))
+ | Vne => Some (boolToValue (negb (Int.eq v1 v2)))
+ | Vand => Some (Int.and v1 v2)
+ | Vor => Some (Int.or v1 v2)
+ | Vxor => Some (Int.xor v1 v2)
+ | Vshl => Some (Int.shl v1 v2)
+ | Vshr => Some (Int.shr v1 v2)
+ | Vshru => Some (Int.shru v1 v2)
+ | Vror => Some (Int.ror v1 v2)
end.
-Definition unop_run (op : unop) : value -> value :=
+Definition unop_run (op : unop) (v1 : value) : value :=
match op with
- | Vneg => vnot
- | Vnot => vbitneg
+ | Vneg => Int.neg v1
+ | Vnot => Int.not v1
end.
Inductive expr_runp : fext -> assocmap -> assocmap_arr -> expr -> value -> Prop :=
| erun_Vlit :
- forall fext reg stack v,
- expr_runp fext reg stack (Vlit v) v
+ forall fext asr asa v,
+ expr_runp fext asr asa (Vlit v) v
| erun_Vvar :
- forall fext reg stack v r,
- reg#r = v ->
- expr_runp fext reg stack (Vvar r) v
+ forall fext asr asa v r,
+ asr#r = v ->
+ expr_runp fext asr asa (Vvar r) v
+ | erun_Vvarb0 :
+ forall fext asr asa v r,
+ asr#r = v ->
+ expr_runp fext asr asa (Vvarb0 r) (IntExtra.ibyte0 v)
+ | erun_Vvarb1 :
+ forall fext asr asa v r,
+ asr#r = v ->
+ expr_runp fext asr asa (Vvarb1 r) (IntExtra.ibyte1 v)
+ | erun_Vvarb2 :
+ forall fext asr asa v r,
+ asr#r = v ->
+ expr_runp fext asr asa (Vvarb2 r) (IntExtra.ibyte2 v)
+ | erun_Vvarb3 :
+ forall fext asr asa v r,
+ asr#r = v ->
+ expr_runp fext asr asa (Vvarb3 r) (IntExtra.ibyte3 v)
| erun_Vvari :
- forall fext reg stack v iexp i r,
- expr_runp fext reg stack iexp i ->
- arr_assocmap_lookup stack r (valueToNat i) = Some v ->
- expr_runp fext reg stack (Vvari r iexp) v
- | erun_Vinputvar :
- forall fext reg stack r v,
- fext!r = Some v ->
- expr_runp fext reg stack (Vinputvar r) v
+ forall fext asr asa v iexp i r,
+ expr_runp fext asr asa iexp i ->
+ arr_assocmap_lookup asa r (valueToNat i) = Some v ->
+ expr_runp fext asr asa (Vvari r iexp) v
| erun_Vbinop :
- forall fext reg stack op l r lv rv oper EQ resv,
- expr_runp fext reg stack l lv ->
- expr_runp fext reg stack r rv ->
- oper = binop_run op ->
- resv = oper lv rv EQ ->
- expr_runp fext reg stack (Vbinop op l r) resv
+ forall fext asr asa op l r lv rv resv,
+ expr_runp fext asr asa l lv ->
+ expr_runp fext asr asa r rv ->
+ Some resv = binop_run op lv rv ->
+ expr_runp fext asr asa (Vbinop op l r) resv
| erun_Vunop :
- forall fext reg stack u vu op oper resv,
- expr_runp fext reg stack u vu ->
+ forall fext asr asa u vu op oper resv,
+ expr_runp fext asr asa u vu ->
oper = unop_run op ->
resv = oper vu ->
- expr_runp fext reg stack (Vunop op u) resv
+ expr_runp fext asr asa (Vunop op u) resv
| erun_Vternary_true :
- forall fext reg stack c ts fs vc vt,
- expr_runp fext reg stack c vc ->
- expr_runp fext reg stack ts vt ->
+ forall fext asr asa c ts fs vc vt,
+ expr_runp fext asr asa c vc ->
+ expr_runp fext asr asa ts vt ->
valueToBool vc = true ->
- expr_runp fext reg stack (Vternary c ts fs) vt
+ expr_runp fext asr asa (Vternary c ts fs) vt
| erun_Vternary_false :
- forall fext reg stack c ts fs vc vf,
- expr_runp fext reg stack c vc ->
- expr_runp fext reg stack fs vf ->
+ forall fext asr asa c ts fs vc vf,
+ expr_runp fext asr asa c vc ->
+ expr_runp fext asr asa fs vf ->
valueToBool vc = false ->
- expr_runp fext reg stack (Vternary c ts fs) vf.
+ expr_runp fext asr asa (Vternary c ts fs) vf.
Hint Constructors expr_runp : verilog.
Definition handle_opt {A : Type} (err : errmsg) (val : option A)
@@ -391,11 +410,11 @@ Definition handle_def {A : Type} (a : A) (val : option A)
Local Open Scope error_monad_scope.
-Definition access_fext (f : fext) (r : reg) : res value :=
+(*Definition access_fext (f : fext) (r : reg) : res value :=
match AssocMap.get r f with
| Some v => OK v
- | _ => OK (ZToValue 1 0)
- end.
+ | _ => OK (ZToValue 0)
+ end.*)
(* TODO FIX Vvar case without default *)
(*Fixpoint expr_run (assoc : assocmap) (e : expr)
@@ -432,8 +451,8 @@ Inductive location : Type :=
| LocArray (_ : reg) (_ : nat).
Inductive location_is : fext -> assocmap -> assocmap_arr -> expr -> location -> Prop :=
-| Base : forall f asr asa r, location_is f asr asa (Vvar r) (LocReg r)
-| Indexed : forall f asr asa r iexp iv,
+| Reg : forall f asr asa r, location_is f asr asa (Vvar r) (LocReg r)
+| RegIndexed : forall f asr asa r iexp iv,
expr_runp f asr asa iexp iv ->
location_is f asr asa (Vvari r iexp) (LocArray r (valueToNat iv)).
@@ -519,7 +538,7 @@ Inductive stmnt_runp: fext -> reg_associations -> arr_associations ->
forall f st1 st2 asr0 asa0 asr1 asa1 asr2 asa2,
stmnt_runp f asr0 asa0 st1 asr1 asa1 ->
stmnt_runp f asr1 asa1 st2 asr2 asa2 ->
- stmnt_runp f asr0 asa1 (Vseq st1 st2) asr2 asa2
+ stmnt_runp f asr0 asa0 (Vseq st1 st2) asr2 asa2
| stmnt_runp_Vcond_true:
forall asr0 asa0 asr1 asa1 f c vc stt stf,
expr_runp f asr0.(assoc_blocking) asa0.(assoc_blocking) c vc ->
@@ -530,7 +549,7 @@ Inductive stmnt_runp: fext -> reg_associations -> arr_associations ->
forall asr0 asa0 asr1 asa1 f c vc stt stf,
expr_runp f asr0.(assoc_blocking) asa0.(assoc_blocking) c vc ->
valueToBool vc = false ->
- stmnt_runp f asr0 asa0 stt asr1 asa1 ->
+ stmnt_runp f asr0 asa0 stf asr1 asa1 ->
stmnt_runp f asr0 asa0 (Vcond c stt stf) asr1 asa1
| stmnt_runp_Vcase_nomatch:
forall e ve asr0 asa0 f asr1 asa1 me mve sc cs def,
@@ -599,7 +618,7 @@ Inductive mi_stepp : fext -> reg_associations -> arr_associations ->
module_item -> reg_associations -> arr_associations -> Prop :=
| mi_stepp_Valways :
forall f sr0 sa0 st sr1 sa1 c,
- stmnt_runp f sr0 sa0 st sr1 sa0 ->
+ stmnt_runp f sr0 sa0 st sr1 sa1 ->
mi_stepp f sr0 sa0 (Valways c st) sr1 sa1
| mi_stepp_Valways_ff :
forall f sr0 sa0 st sr1 sa1 c,
@@ -610,8 +629,8 @@ Inductive mi_stepp : fext -> reg_associations -> arr_associations ->
stmnt_runp f sr0 sa0 st sr1 sa1 ->
mi_stepp f sr0 sa0 (Valways_comb c st) sr1 sa1
| mi_stepp_Vdecl :
- forall f sr sa lhs rhs io,
- mi_stepp f sr sa (Vdeclaration (Vdecl io lhs rhs)) sr sa.
+ forall f sr sa d,
+ mi_stepp f sr sa (Vdeclaration d) sr sa.
Hint Constructors mi_stepp : verilog.
Inductive mis_stepp : fext -> reg_associations -> arr_associations ->
@@ -650,11 +669,11 @@ Fixpoint mi_run (f : fextclk) (assoc : assocmap) (m : list module_item) (n : nat
assumed to be the starting state of the module, and may have to be changed if
other arguments to the module are also to be supported. *)
-Definition initial_fextclk (m : module) : fextclk :=
+(*Definition initial_fextclk (m : module) : fextclk :=
fun x => match x with
- | S O => (AssocMap.set (mod_reset m) (ZToValue 1 1) empty_assocmap)
- | _ => (AssocMap.set (mod_reset m) (ZToValue 1 0) empty_assocmap)
- end.
+ | S O => (AssocMap.set (mod_reset m) (ZToValue 1) empty_assocmap)
+ | _ => (AssocMap.set (mod_reset m) (ZToValue 0) empty_assocmap)
+ end.*)
(*Definition module_run (n : nat) (m : module) : res assocmap :=
mi_run (initial_fextclk m) empty_assocmap (mod_body m) n.*)
@@ -713,6 +732,8 @@ Definition empty_stack (m : module) : assocmap_arr :=
Inductive step : genv -> state -> Events.trace -> state -> Prop :=
| step_module :
forall asr asa asr' asa' basr1 nasr1 basa1 nasa1 f stval pstval m sf st g ist,
+ asr!(m.(mod_reset)) = Some (ZToValue 0) ->
+ asr!(m.(mod_finish)) = Some (ZToValue 0) ->
asr!(m.(mod_st)) = Some ist ->
valueToPos ist = st ->
mis_stepp f (mkassociations asr empty_assocmap)
@@ -727,22 +748,23 @@ Inductive step : genv -> state -> Events.trace -> state -> Prop :=
step g (State sf m st asr asa) Events.E0 (State sf m pstval asr' asa')
| step_finish :
forall asr asa sf retval m st g,
- asr!(m.(mod_finish)) = Some (1'h"1") ->
+ asr!(m.(mod_finish)) = Some (ZToValue 1) ->
asr!(m.(mod_return)) = Some retval ->
step g (State sf m st asr asa) Events.E0 (Returnstate sf retval)
| step_call :
forall g res m args,
step g (Callstate res m args) Events.E0
(State res m m.(mod_entrypoint)
- (AssocMap.set m.(mod_st) (posToValue 32 m.(mod_entrypoint))
- (init_params args m.(mod_args)))
+ (AssocMap.set (mod_reset m) (ZToValue 0)
+ (AssocMap.set (mod_finish m) (ZToValue 0)
+ (AssocMap.set m.(mod_st) (posToValue m.(mod_entrypoint))
+ (init_params args m.(mod_args)))))
(empty_stack m))
| step_return :
forall g m asr i r sf pc mst asa,
mst = mod_st m ->
step g (Returnstate (Stackframe r m pc asr asa :: sf) i) Events.E0
- (State sf m pc ((asr # mst <- (posToValue 32 pc)) # r <- i)
- (empty_stack m)).
+ (State sf m pc ((asr # mst <- (posToValue pc)) # r <- i) asa).
Hint Constructors step : verilog.
Inductive initial_state (p: program): state -> Prop :=
@@ -761,3 +783,138 @@ Inductive final_state : state -> Integers.int -> Prop :=
Definition semantics (m : program) :=
Smallstep.Semantics step (initial_state m) final_state
(Globalenvs.Genv.globalenv m).
+
+Lemma expr_runp_determinate :
+ forall f e asr asa v,
+ expr_runp f asr asa e v ->
+ forall v',
+ expr_runp f asr asa e v' ->
+ v' = v.
+Proof.
+ induction e; intros;
+
+ repeat (try match goal with
+ | [ H : expr_runp _ _ _ (Vlit _) _ |- _ ] => invert H
+ | [ H : expr_runp _ _ _ (Vvar _) _ |- _ ] => invert H
+ | [ H : expr_runp _ _ _ (Vvarb0 _) _ |- _ ] => invert H
+ | [ H : expr_runp _ _ _ (Vvarb1 _) _ |- _ ] => invert H
+ | [ H : expr_runp _ _ _ (Vvarb2 _) _ |- _ ] => invert H
+ | [ H : expr_runp _ _ _ (Vvarb3 _) _ |- _ ] => invert H
+ | [ H : expr_runp _ _ _ (Vvari _ _) _ |- _ ] => invert H
+ | [ H : expr_runp _ _ _ (Vinputvar _) _ |- _ ] => invert H
+ | [ H : expr_runp _ _ _ (Vbinop _ _ _) _ |- _ ] => invert H
+ | [ H : expr_runp _ _ _ (Vunop _ _) _ |- _ ] => invert H
+ | [ H : expr_runp _ _ _ (Vternary _ _ _) _ |- _ ] => invert H
+ | [ H : expr_runp _ _ _ (Vload _ _) _ |- _ ] => invert H
+
+ | [ H1 : forall asr asa v, expr_runp _ asr asa ?e v -> _,
+ H2 : expr_runp _ _ _ ?e _ |- _ ] =>
+ learn (H1 _ _ _ H2)
+ | [ H1 : forall v, expr_runp _ ?asr ?asa ?e v -> _,
+ H2 : expr_runp _ ?asr ?asa ?e _ |- _ ] =>
+ learn (H1 _ H2)
+ end; crush).
+Qed.
+Hint Resolve expr_runp_determinate : verilog.
+
+Lemma location_is_determinate :
+ forall f asr asa e l,
+ location_is f asr asa e l ->
+ forall l',
+ location_is f asr asa e l' ->
+ l' = l.
+Proof.
+ induction 1; intros;
+
+ repeat (try match goal with
+ | [ H : location_is _ _ _ _ _ |- _ ] => invert H
+ | [ H1 : expr_runp _ ?asr ?asa ?e _,
+ H2 : expr_runp _ ?asr ?asa ?e _ |- _ ] =>
+ learn (expr_runp_determinate H1 H2)
+ end; crush).
+Qed.
+
+Lemma stmnt_runp_determinate :
+ forall f s asr0 asa0 asr1 asa1,
+ stmnt_runp f asr0 asa0 s asr1 asa1 ->
+ forall asr1' asa1',
+ stmnt_runp f asr0 asa0 s asr1' asa1' ->
+ asr1' = asr1 /\ asa1' = asa1.
+ induction 1; intros;
+
+ repeat (try match goal with
+ | [ H : stmnt_runp _ _ _ (Vseq _ _) _ _ |- _ ] => invert H
+ | [ H : stmnt_runp _ _ _ (Vnonblock _ _) _ _ |- _ ] => invert H
+ | [ H : stmnt_runp _ _ _ (Vblock _ _) _ _ |- _ ] => invert H
+ | [ H : stmnt_runp _ _ _ Vskip _ _ |- _ ] => invert H
+ | [ H : stmnt_runp _ _ _ (Vcond _ _ _) _ _ |- _ ] => invert H
+ | [ H : stmnt_runp _ _ _ (Vcase _ (_ :: _) _) _ _ |- _ ] => invert H
+ | [ H : stmnt_runp _ _ _ (Vcase _ [] _) _ _ |- _ ] => invert H
+
+ | [ H1 : expr_runp _ ?asr ?asa ?e _,
+ H2 : expr_runp _ ?asr ?asa ?e _ |- _ ] =>
+ learn (expr_runp_determinate H1 H2)
+
+ | [ H1 : location_is _ ?asr ?asa ?e _,
+ H2 : location_is _ ?asr ?asa ?e _ |- _ ] =>
+ learn (location_is_determinate H1 H2)
+
+ | [ H1 : forall asr1 asa1, stmnt_runp _ ?asr0 ?asa0 ?s asr1 asa1 -> _,
+ H2 : stmnt_runp _ ?asr0 ?asa0 ?s _ _ |- _ ] =>
+ learn (H1 _ _ H2)
+ end; crush).
+Qed.
+Hint Resolve stmnt_runp_determinate : verilog.
+
+Lemma mi_stepp_determinate :
+ forall f asr0 asa0 m asr1 asa1,
+ mi_stepp f asr0 asa0 m asr1 asa1 ->
+ forall asr1' asa1',
+ mi_stepp f asr0 asa0 m asr1' asa1' ->
+ asr1' = asr1 /\ asa1' = asa1.
+Proof.
+ intros. destruct m; invert H; invert H0;
+
+ repeat (try match goal with
+ | [ H1 : stmnt_runp _ ?asr0 ?asa0 ?s _ _,
+ H2 : stmnt_runp _ ?asr0 ?asa0 ?s _ _ |- _ ] =>
+ learn (stmnt_runp_determinate H1 H2)
+ end; crush).
+Qed.
+
+Lemma mis_stepp_determinate :
+ forall f asr0 asa0 m asr1 asa1,
+ mis_stepp f asr0 asa0 m asr1 asa1 ->
+ forall asr1' asa1',
+ mis_stepp f asr0 asa0 m asr1' asa1' ->
+ asr1' = asr1 /\ asa1' = asa1.
+Proof.
+ induction 1; intros;
+
+ repeat (try match goal with
+ | [ H : mis_stepp _ _ _ [] _ _ |- _ ] => invert H
+ | [ H : mis_stepp _ _ _ ( _ :: _ ) _ _ |- _ ] => invert H
+
+ | [ H1 : mi_stepp _ ?asr0 ?asa0 ?s _ _,
+ H2 : mi_stepp _ ?asr0 ?asa0 ?s _ _ |- _ ] =>
+ learn (mi_stepp_determinate H1 H2)
+
+ | [ H1 : forall asr1 asa1, mis_stepp _ ?asr0 ?asa0 ?m asr1 asa1 -> _,
+ H2 : mis_stepp _ ?asr0 ?asa0 ?m _ _ |- _ ] =>
+ learn (H1 _ _ H2)
+ end; crush).
+Qed.
+
+Lemma semantics_determinate :
+ forall (p: program), Smallstep.determinate (semantics p).
+Proof.
+ intros. constructor; set (ge := Globalenvs.Genv.globalenv p); simplify.
+ - invert H; invert H0; constructor. (* Traces are always empty *)
+ - invert H; invert H0; crush. assert (f = f0) by (destruct f; destruct f0; auto); subst.
+ pose proof (mis_stepp_determinate H5 H15).
+ crush.
+ - constructor. invert H; crush.
+ - invert H; invert H0; unfold ge0, ge1 in *; crush.
+ - red; simplify; intro; invert H0; invert H; crush.
+ - invert H; invert H0; crush.
+Qed.