aboutsummaryrefslogtreecommitdiffstats
path: root/benchmarks/CHStone/gsm/gsm.c
blob: ff472c3dec5750c9170d1dd1b1e66c52f7b83d8c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
/*
+--------------------------------------------------------------------------+
| CHStone : a suite of benchmark programs for C-based High-Level Synthesis |
| ======================================================================== |
|                                                                          |
| * Collected and Modified : Y. Hara, H. Tomiyama, S. Honda,               |
|                            H. Takada and K. Ishii                        |
|                            Nagoya University, Japan                      |
|                                                                          |
| * Remark :                                                               |
|    1. This source code is modified to unify the formats of the benchmark |
|       programs in CHStone.                                               |
|    2. Test vectors are added for CHStone.                                |
|    3. If "main_result" is 0 at the end of the program, the program is    |
|       correctly executed.                                                |
|    4. Please follow the copyright of each benchmark program.             |
+--------------------------------------------------------------------------+
*/
//#include <stdio.h>
typedef int word;		/* 16 bit signed int    */
typedef long longword;		/* 32 bit signed int    */

#define	MIN_WORD	((-32767)-1)
#define	MAX_WORD	( 32767)

#define	SASR(x, by)	((x) >> (by))

#define GSM_MULT_R(a, b)	gsm_mult_r(a, b)
#define GSM_MULT(a, b)		gsm_mult(a, b)
#define GSM_ADD(a, b)		gsm_add(a, b)
#define GSM_ABS(a)		gsm_abs(a)

#define	saturate(x) 	\
	((x) < MIN_WORD ? MIN_WORD : (x) > MAX_WORD ? MAX_WORD: (x))

word
gsm_add (word a, word b)
{
  longword sum;
  sum = (longword) a + (longword) b;
  return saturate (sum);
}

word
gsm_mult (word a, word b)
{
  if (a == MIN_WORD && b == MIN_WORD)
    return MAX_WORD;
  else
    return SASR ((longword) a * (longword) b, 15);
}

word
gsm_mult_r (word a, word b)
{
  longword prod;
  if (b == MIN_WORD && a == MIN_WORD)
    return MAX_WORD;
  else
    {
      prod = (longword) a *(longword) b + 16384;
      prod >>= 15;
      return prod & 0xFFFF;
    }
}

word
gsm_abs (word a)
{
  return a < 0 ? (a == MIN_WORD ? MAX_WORD : -a) : a;
}

word
gsm_norm (longword a)
/*
 * the number of left shifts needed to normalize the 32 bit
 * variable L_var1 for positive values on the interval
 *
 * with minimum of
 * minimum of 1073741824  (01000000000000000000000000000000) and 
 * maximum of 2147483647  (01111111111111111111111111111111)
 *
 *
 * and for negative values on the interval with
 * minimum of -2147483648 (-10000000000000000000000000000000) and
 * maximum of -1073741824 ( -1000000000000000000000000000000).
 *
 * in order to normalize the result, the following
 * operation must be done: L_norm_var1 = L_var1 << norm( L_var1 );
 *
 * (That's 'ffs', only from the left, not the right..)
 */
{
  const unsigned int bitoff[256] = {
    8, 7, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4,
    3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
    2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
    2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
  };

  if (a < 0)
    {
      if (a <= -1073741824)
	return 0;
      a = ~a;
    }

  return a & 0xffff0000 ?
    (a & 0xff000000 ? -1 + bitoff[0xFF & (a >> 24)] :
     7 + bitoff[0xFF & (a >> 16)])
    : (a & 0xff00 ? 15 + bitoff[0xFF & (a >> 8)] : 23 + bitoff[0xFF & a]);
}

word
gsm_div (word num, word denum)
{
  longword L_num;
  longword L_denum;
  word div;
  int k;

  L_num = num;
  L_denum = denum;
  div = 0;
  k = 15;
  /* The parameter num sometimes becomes zero.
   * Although this is explicitly guarded against in 4.2.5,
   * we assume that the result should then be zero as well.
   */

  if (num == 0)
    return 0;

  while (k--)
    {
      div <<= 1;
      L_num <<= 1;

      if (L_num >= L_denum)
	{
	  L_num -= L_denum;
	  div++;
	}
    }

  return div;
}

void
Autocorrelation (word * s /* [0..159]     IN/OUT  */ ,
		 longword * L_ACF /* [0..8]       OUT     */ )
/*
 *  The goal is to compute the array L_ACF[k].  The signal s[i] must
 *  be scaled in order to avoid an overflow situation.
 */
{
  register int k, i;

  word temp;
  word smax;
  word scalauto, n;
  word *sp;
  word sl;

  /*  Search for the maximum.
   */
  smax = 0;
  for (k = 0; k <= 159; k++)
    {
      temp = GSM_ABS (s[k]);
      if (temp > smax)
	smax = temp;
    }

  /*  Computation of the scaling factor.
   */
  if (smax == 0)
    scalauto = 0;
  else
    scalauto = 4 - gsm_norm ((longword) smax << 16);	/* sub(4,..) */

  if (scalauto > 0 && scalauto <= 4)
    {
      n = scalauto;
      for (k = 0; k <= 159; k++)
	s[k] = GSM_MULT_R (s[k], 16384 >> (n - 1));
    }

  /*  Compute the L_ACF[..].
   */
  {
    sp = s;
    sl = *sp;

#define STEP(k)	 L_ACF[k] += ((longword)sl * sp[ -(k) ]);

#define NEXTI	 sl = *++sp
    for (k = 8; k >= 0; k--)
      L_ACF[k] = 0;

    STEP (0);
    NEXTI;
    STEP (0);
    STEP (1);
    NEXTI;
    STEP (0);
    STEP (1);
    STEP (2);
    NEXTI;
    STEP (0);
    STEP (1);
    STEP (2);
    STEP (3);
    NEXTI;
    STEP (0);
    STEP (1);
    STEP (2);
    STEP (3);
    STEP (4);
    NEXTI;
    STEP (0);
    STEP (1);
    STEP (2);
    STEP (3);
    STEP (4);
    STEP (5);
    NEXTI;
    STEP (0);
    STEP (1);
    STEP (2);
    STEP (3);
    STEP (4);
    STEP (5);
    STEP (6);
    NEXTI;
    STEP (0);
    STEP (1);
    STEP (2);
    STEP (3);
    STEP (4);
    STEP (5);
    STEP (6);
    STEP (7);

    for (i = 8; i <= 159; i++)
      {

	NEXTI;

	STEP (0);
	STEP (1);
	STEP (2);
	STEP (3);
	STEP (4);
	STEP (5);
	STEP (6);
	STEP (7);
	STEP (8);
      }

    for (k = 8; k >= 0; k--)
      L_ACF[k] <<= 1;

  }
  /*   Rescaling of the array s[0..159]
   */
  if (scalauto > 0)
    for (k = 159; k >= 0; k--)
      *s++ <<= scalauto;
}

/* 4.2.5 */

void
Reflection_coefficients (longword * L_ACF /* 0...8        IN      */ ,
			 register word * r /* 0...7        OUT     */ )
{
  register int i, m, n;
  register word temp;
  word ACF[9];			/* 0..8 */
  word P[9];			/* 0..8 */
  word K[9];			/* 2..8 */

  /*  Schur recursion with 16 bits arithmetic.
   */

  if (L_ACF[0] == 0)
    {
      for (i = 8; i > 0; i--)
	*r++ = 0;
      return;
    }

  temp = gsm_norm (L_ACF[0]);
  for (i = 0; i <= 8; i++)
    ACF[i] = SASR (L_ACF[i] << temp, 16);

  /*   Initialize array P[..] and K[..] for the recursion.
   */

  for (i = 1; i <= 7; i++)
    K[i] = ACF[i];
  for (i = 0; i <= 8; i++)
    P[i] = ACF[i];

  /*   Compute reflection coefficients
   */
  for (n = 1; n <= 8; n++, r++)
    {

      temp = P[1];
      temp = GSM_ABS (temp);
      if (P[0] < temp)
	{
	  for (i = n; i <= 8; i++)
	    *r++ = 0;
	  return;
	}

      *r = gsm_div (temp, P[0]);

      if (P[1] > 0)
	*r = -*r;		/* r[n] = sub(0, r[n]) */
      if (n == 8)
	return;

      /*  Schur recursion
       */
      temp = GSM_MULT_R (P[1], *r);
      P[0] = GSM_ADD (P[0], temp);

      for (m = 1; m <= 8 - n; m++)
	{
	  temp = GSM_MULT_R (K[m], *r);
	  P[m] = GSM_ADD (P[m + 1], temp);

	  temp = GSM_MULT_R (P[m + 1], *r);
	  K[m] = GSM_ADD (K[m], temp);
	}
    }
}

/* 4.2.6 */

void
Transformation_to_Log_Area_Ratios (register word * r /* 0..7    IN/OUT */ )
/*
 *  The following scaling for r[..] and LAR[..] has been used:
 *
 *  r[..]   = integer( real_r[..]*32768. ); -1 <= real_r < 1.
 *  LAR[..] = integer( real_LAR[..] * 16384 );
 *  with -1.625 <= real_LAR <= 1.625
 */
{
  register word temp;
  register int i;


  /* Computation of the LAR[0..7] from the r[0..7]
   */
  for (i = 1; i <= 8; i++, r++)
    {

      temp = *r;
      temp = GSM_ABS (temp);

      if (temp < 22118)
	{
	  temp >>= 1;
	}
      else if (temp < 31130)
	{
	  temp -= 11059;
	}
      else
	{
	  temp -= 26112;
	  temp <<= 2;
	}

      *r = *r < 0 ? -temp : temp;
    }
}

/* 4.2.7 */

void
Quantization_and_coding (register word * LAR /* [0..7]       IN/OUT  */ )
{
  register word temp;


  /*  This procedure needs four tables; the following equations
   *  give the optimum scaling for the constants:
   *  
   *  A[0..7] = integer( real_A[0..7] * 1024 )
   *  B[0..7] = integer( real_B[0..7] *  512 )
   *  MAC[0..7] = maximum of the LARc[0..7]
   *  MIC[0..7] = minimum of the LARc[0..7]
   */

#	undef STEP
#	define	STEP( A, B, MAC, MIC )		\
		temp = GSM_MULT( A,   *LAR );	\
		temp = GSM_ADD(  temp,   B );	\
		temp = GSM_ADD(  temp, 256 );	\
		temp = SASR(     temp,   9 );	\
		*LAR  =  temp>MAC ? MAC - MIC : (temp<MIC ? 0 : temp - MIC); \
		LAR++;

  STEP (20480, 0, 31, -32);
  STEP (20480, 0, 31, -32);
  STEP (20480, 2048, 15, -16);
  STEP (20480, -2560, 15, -16);

  STEP (13964, 94, 7, -8);
  STEP (15360, -1792, 7, -8);
  STEP (8534, -341, 3, -4);
  STEP (9036, -1144, 3, -4);

#	undef	STEP
}

void
Gsm_LPC_Analysis (word * s /* 0..159 signals       IN/OUT  */ ,
		  word * LARc /* 0..7   LARc's        OUT     */ )
{
  longword L_ACF[9];

  Autocorrelation (s, L_ACF);
  Reflection_coefficients (L_ACF, LARc);
  Transformation_to_Log_Area_Ratios (LARc);
  Quantization_and_coding (LARc);
}

#define N 160
#define M 8


int
main ()
{
  const word inData[N] =
  { 81, 10854, 1893, -10291, 7614, 29718, 20475, -29215, -18949, -29806,
    -32017, 1596, 15744, -3088, -17413, -22123, 6798, -13276, 3819, -16273,
    -1573, -12523, -27103,
    -193, -25588, 4698, -30436, 15264, -1393, 11418, 11370, 4986, 7869, -1903,
    9123, -31726,
    -25237, -14155, 17982, 32427, -12439, -15931, -21622, 7896, 1689, 28113,
    3615, 22131, -5572,
    -20110, 12387, 9177, -24544, 12480, 21546, -17842, -13645, 20277, 9987,
    17652, -11464, -17326,
    -10552, -27100, 207, 27612, 2517, 7167, -29734, -22441, 30039, -2368, 12813,
    300, -25555, 9087,
    29022, -6559, -20311, -14347, -7555, -21709, -3676, -30082, -3190, -30979,
    8580, 27126, 3414,
    -4603, -22303, -17143, 13788, -1096, -14617, 22071, -13552, 32646, 16689,
    -8473, -12733, 10503,
    20745, 6696, -26842, -31015, 3792, -19864, -20431, -30307, 32421, -13237,
    9006, 18249, 2403,
    -7996, -14827, -5860, 7122, 29817, -31894, 17955, 28836, -31297, 31821,
    -27502, 12276, -5587,
    -22105, 9192, -22549, 15675, -12265, 7212, -23749, -12856, -5857, 7521,
    17349, 13773, -3091,
    -17812, -9655, 26667, 7902, 2487, 3177, 29412, -20224, -2776, 24084, -7963,
    -10438, -11938,
    -14833, -6658, 32058, 4020, 10461, 15159
  };

  const word outData[N] =
  { 80, 10848, 1888, -10288, 7616, 29712, 20480, -29216, -18944, -29808,
    -32016, 1600, 15744, -3088, -17408, -22128, 6800, -13280, 3824, -16272,
    -1568, -12528, -27104,
    -192, -25584, 4704, -30432, 15264, -1392, 11424, 11376, 4992, 7872, -1904,
    9120, -31728, -25232,
    -14160, 17984, 32432, -12432, -15936, -21616, 7904, 1696, 28112, 3616,
    22128, -5568, -20112,
    12384, 9184, -24544, 12480, 21552, -17840, -13648, 20272, 9984, 17648,
    -11456, -17328, -10544,
    -27104, 208, 27616, 2512, 7168, -29728, -22448, 30032, -2368, 12816, 304,
    -25552, 9088, 29024,
    -6560, -20304, -14352, -7552, -21712, -3680, -30080, -3184, -30976, 8576,
    27120, 3408, -4608,
    -22304, -17136, 13792, -1088, -14624, 22064, -13552, 32640, 16688, -8480,
    -12736, 10496, 20752,
    6704, -26848, -31008, 3792, -19856, -20432, -30304, 32416, -13232, 9008,
    18256, 2400, -8000,
    -14832, -5856, 7120, 29824, -31888, 17952, 28832, -31296, 31824, -27504,
    12272, -5584, -22112,
    9200, -22544, 15680, -12272, 7216, -23744, -12848, -5856, 7520, 17344,
    13776, -3088, -17808,
    -9648, 26672, 7904, 2480, 3184, 29408, -20224, -2768, 24080, -7968, -10432,
    -11936, -14832,
    -6656, 32064, 4016, 10464, 15152
  };

  const word outLARc[M] = { 32, 33, 22, 13, 7, 5, 3, 2 };

  int i;
  int main_result;
  word so[N];
  word LARc[M];
  main_result = 0;

  for (i = 0; i < N; i++)
    so[i] = inData[i];

  Gsm_LPC_Analysis (so, LARc);

  for (i = 0; i < N; i++)
    main_result += (so[i] != outData[i]);
  for (i = 0; i < M; i++)
    main_result += (LARc[i] != outLARc[i]);

  //printf ("%d\n", main_result);
  return main_result;
}