aboutsummaryrefslogtreecommitdiffstats
path: root/src/common/IntegerExtra.v
blob: ac694835e2f08be19766291fefbfdf4f03ff874f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
Require Import BinInt.
Require Import Lia.
Require Import ZBinary.

From bbv Require Import ZLib.
From compcert Require Import Integers Coqlib.

Require Import Vericertlib.

Local Open Scope Z_scope.

Module PtrofsExtra.

  Ltac ptrofs_mod_match m :=
    match goal with
    | [ H : ?x = 0 |- context[?x] ] => rewrite H
    | [ _ : _ |- context[_ - 0] ] => rewrite Z.sub_0_r
    | [ _ : _ |- context[0 + _] ] => rewrite Z.add_0_l
    | [ _ : _ |- context[_ + 0] ] => rewrite Z.add_0_r
    | [ _ : _ |- context[0 * _] ] => rewrite Z.mul_0_l
    | [ _ : _ |- context[_ * 0] ] => rewrite Z.mul_0_r
    | [ _ : _ |- context[?m mod ?m] ] =>
      rewrite Z_mod_same_full with (a := m)
    | [ _ : _ |- context[0 mod _] ] =>
      rewrite Z.mod_0_l
    | [ _ : _ |- context[(_ mod ?m) mod ?m] ] =>
      rewrite Zmod_mod
    | [ _ : _ |- context[(_ mod Ptrofs.modulus) mod m ] ] =>
      rewrite <- Zmod_div_mod;
      try (crush; lia || assumption)

    | [ _ : _ |- context[Ptrofs.modulus mod m] ] =>
      rewrite Zdivide_mod with (a := Ptrofs.modulus);
      try (lia || assumption)

    | [ _ : _ |- context[Ptrofs.signed ?a mod Ptrofs.modulus] ] =>
      rewrite Z.mod_small with (a := Ptrofs.signed a) (b := Ptrofs.modulus)

    | [ _ : _ |- context[(?x - ?y) mod ?m] ] =>
      rewrite Zminus_mod with (a := x) (b := y) (n := m)

    | [ _ : _ |- context[((?x + ?y) mod ?m) + _] ] =>
      rewrite Zplus_mod with (a := x) (b := y) (n := m)
    | [ _ : _ |- context[(?x + ?y) mod ?m] ] =>
      rewrite Zplus_mod with (a := x) (b := y) (n := m)

    | [ _ : _ |- context[(?x * ?y) mod ?m] ] =>
      rewrite Zmult_mod with (a := x) (b := y) (n := m)
    end.

  Ltac ptrofs_mod_tac m :=
    repeat (ptrofs_mod_match m); lia.

  Lemma signed_mod_unsigned_mod :
    forall x m,
      0 < m ->
      Ptrofs.modulus mod m = 0 ->
      Ptrofs.signed x mod m = 0 ->
      Ptrofs.unsigned x mod m = 0.
  Proof.
    intros.

    repeat match goal with
           | [ _ : _ |- context[if ?x then _ else _] ] => destruct x
           | [ _ : _ |- context[_ mod Ptrofs.modulus mod m] ] =>
             rewrite <- Zmod_div_mod; try lia; try assumption
           | [ _ : _ |- context[Ptrofs.unsigned _] ] => rewrite Ptrofs.unsigned_signed
           end; try crush; ptrofs_mod_tac m.
  Qed.

  Lemma of_int_mod :
    forall x m,
      Int.unsigned x mod m = 0 ->
      Ptrofs.unsigned (Ptrofs.of_int x) mod m = 0.
  Proof.
    intros.
    unfold Ptrofs.of_int.
    rewrite Ptrofs.unsigned_repr; crush;
      apply Int.unsigned_range_2.
  Qed.

  Lemma mul_mod :
    forall x y m,
      0 < m ->
      (m | Ptrofs.modulus) ->
      Ptrofs.unsigned x mod m = 0 ->
      Ptrofs.unsigned y mod m = 0 ->
      (Ptrofs.signed (Ptrofs.mul x y)) mod m = 0.
  Proof.
    intros. unfold Ptrofs.mul.
    rewrite Ptrofs.signed_repr_eq.

    repeat match goal with
           | [ _ : _ |- context[if ?x then _ else _] ] => destruct x
           | [ _ : _ |- context[_ mod Ptrofs.modulus mod m] ] =>
             rewrite <- Zmod_div_mod; try lia; try assumption
           end; try(crush; lia); ptrofs_mod_tac m.
  Qed.

  Lemma add_mod :
    forall x y m,
      0 < m ->
      (m | Ptrofs.modulus) ->
      Ptrofs.unsigned x mod m = 0 ->
      Ptrofs.unsigned y mod m = 0 ->
      (Ptrofs.unsigned (Ptrofs.add x y)) mod m = 0.
  Proof.
    intros. unfold Ptrofs.add.
    rewrite Ptrofs.unsigned_repr_eq.

    repeat match goal with
           | [ _ : _ |- context[if ?x then _ else _] ] => destruct x
           | [ _ : _ |- context[_ mod Ptrofs.modulus mod m] ] =>
             rewrite <- Zmod_div_mod; try lia; try assumption
           end; try (crush; lia); ptrofs_mod_tac m.
  Qed.

  Lemma mul_divu :
    forall x y,
      0 < Ptrofs.unsigned x ->
      Ptrofs.unsigned y mod Ptrofs.unsigned x = 0 ->
      (Integers.Ptrofs.mul x (Integers.Ptrofs.divu y x)) = y.
  Proof.
    intros.

    assert (x <> Ptrofs.zero).
    { intro.
      rewrite H1 in H.
      replace (Ptrofs.unsigned Ptrofs.zero) with 0 in H by reflexivity.
      lia. }

    exploit (Ptrofs.modu_divu_Euclid y x); auto; intros.
    unfold Ptrofs.modu in H2. rewrite H0 in H2.
    replace (Ptrofs.repr 0) with Ptrofs.zero in H2 by reflexivity.
    rewrite Ptrofs.add_zero in H2.
    rewrite Ptrofs.mul_commut.
    congruence.
  Qed.

  Lemma divu_unsigned :
    forall x y,
      0 < Ptrofs.unsigned y ->
      Ptrofs.unsigned x <= Ptrofs.max_unsigned ->
      Ptrofs.unsigned (Ptrofs.divu x y) = Ptrofs.unsigned x / Ptrofs.unsigned y.
  Proof.
    intros.
    unfold Ptrofs.divu.
    rewrite Ptrofs.unsigned_repr; auto.
    split.
    apply Z.div_pos; auto.
    apply Ptrofs.unsigned_range.
    apply Z.div_le_upper_bound; auto.
    eapply Z.le_trans.
    exact H0.
    rewrite Z.mul_comm.
    apply Z.le_mul_diag_r; crush.
  Qed.

  Lemma mul_unsigned :
    forall x y,
      Ptrofs.mul x y =
      Ptrofs.repr (Ptrofs.unsigned x * Ptrofs.unsigned y).
  Proof.
    intros; unfold Ptrofs.mul.
    apply Ptrofs.eqm_samerepr.
    apply Ptrofs.eqm_mult; exists 0; lia.
  Qed.

  Lemma pos_signed_unsigned :
    forall x,
      0 <= Ptrofs.signed x ->
      Ptrofs.signed x = Ptrofs.unsigned x.
  Proof.
    intros.
    rewrite Ptrofs.unsigned_signed.
    destruct (Ptrofs.lt x Ptrofs.zero) eqn:EQ.
    unfold Ptrofs.lt in EQ.
    destruct (zlt (Ptrofs.signed x) (Ptrofs.signed Ptrofs.zero)); try discriminate.
    replace (Ptrofs.signed (Ptrofs.zero)) with 0 in l by reflexivity. lia.
    reflexivity.
  Qed.
End PtrofsExtra.

Ltac ptrofs :=
  repeat match goal with
         | [ |- context[Ptrofs.add (Ptrofs.zero) _] ] => setoid_rewrite Ptrofs.add_zero_l
         | [ H : context[Ptrofs.add (Ptrofs.zero) _] |- _ ] => setoid_rewrite Ptrofs.add_zero_l in H

         | [ |- context[Ptrofs.repr 0] ] => replace (Ptrofs.repr 0) with Ptrofs.zero by reflexivity
         | [ H : context[Ptrofs.repr 0] |- _ ] =>
           replace (Ptrofs.repr 0) with Ptrofs.zero in H by reflexivity

         | [ H: context[Ptrofs.unsigned (Ptrofs.repr (Ptrofs.unsigned _))] |- _ ] =>
           setoid_rewrite Ptrofs.unsigned_repr in H; [>| apply Ptrofs.unsigned_range_2]
         | [ |- context[Ptrofs.unsigned (Ptrofs.repr (Ptrofs.unsigned _))] ] =>
           rewrite Ptrofs.unsigned_repr; [>| apply Ptrofs.unsigned_range_2]

         | [ |- context[0 <= Ptrofs.unsigned _] ] => apply Ptrofs.unsigned_range_2
         end.

Module IntExtra.
  Import Int.
  Ltac int_mod_match m :=
    match goal with
    | [ H : ?x = 0 |- context[?x] ] => rewrite H
    | [ _ : _ |- context[_ - 0] ] => rewrite Z.sub_0_r
    | [ _ : _ |- context[0 + _] ] => rewrite Z.add_0_l
    | [ _ : _ |- context[_ + 0] ] => rewrite Z.add_0_r
    | [ _ : _ |- context[0 * _] ] => rewrite Z.mul_0_l
    | [ _ : _ |- context[_ * 0] ] => rewrite Z.mul_0_r
    | [ _ : _ |- context[?m mod ?m] ] =>
      rewrite Z_mod_same_full with (a := m)
    | [ _ : _ |- context[0 mod _] ] =>
      rewrite Z.mod_0_l
    | [ _ : _ |- context[(_ mod ?m) mod ?m] ] =>
      rewrite Zmod_mod
    | [ _ : _ |- context[(_ mod Int.modulus) mod m ] ] =>
      rewrite <- Zmod_div_mod;
      try (crush; lia || assumption)

    | [ _ : _ |- context[Int.modulus mod m] ] =>
      rewrite Zdivide_mod with (a := Int.modulus);
      try (lia || assumption)

    | [ _ : _ |- context[Int.signed ?a mod Int.modulus] ] =>
      rewrite Z.mod_small with (a := Int.signed a) (b := Int.modulus)

    | [ _ : _ |- context[(?x - ?y) mod ?m] ] =>
      rewrite Zminus_mod with (a := x) (b := y) (n := m)

    | [ _ : _ |- context[((?x + ?y) mod ?m) + _] ] =>
      rewrite Zplus_mod with (a := x) (b := y) (n := m)
    | [ _ : _ |- context[(?x + ?y) mod ?m] ] =>
      rewrite Zplus_mod with (a := x) (b := y) (n := m)

    | [ _ : _ |- context[(?x * ?y) mod ?m] ] =>
      rewrite Zmult_mod with (a := x) (b := y) (n := m)
    end.

  Ltac int_mod_tac m :=
    repeat (int_mod_match m); lia.

  Lemma mul_mod1 :
    forall x y m,
      0 < m ->
      (m | Int.modulus) ->
      Int.unsigned x mod m = 0 ->
      (Int.unsigned (Int.mul x y)) mod m = 0.
  Proof.
    intros. unfold Int.mul.
    rewrite Int.unsigned_repr_eq.

    repeat match goal with
           | [ _ : _ |- context[if ?x then _ else _] ] => destruct x
           | [ _ : _ |- context[_ mod Int.modulus mod m] ] =>
             rewrite <- Zmod_div_mod; try lia; try assumption
           end; try (crush; lia); int_mod_tac m.
  Qed.

  Lemma mul_mod2 :
    forall x y m,
      0 < m ->
      (m | Int.modulus) ->
      Int.unsigned y mod m = 0 ->
      (Int.unsigned (Int.mul x y)) mod m = 0.
  Proof.
    intros. unfold Int.mul.
    rewrite Int.unsigned_repr_eq.

    repeat match goal with
           | [ _ : _ |- context[if ?x then _ else _] ] => destruct x
           | [ _ : _ |- context[_ mod Int.modulus mod m] ] =>
             rewrite <- Zmod_div_mod; try lia; try assumption
           end; try (crush; lia); int_mod_tac m.
  Qed.

  Lemma add_mod :
    forall x y m,
      0 < m ->
      (m | Int.modulus) ->
      Int.unsigned x mod m = 0 ->
      Int.unsigned y mod m = 0 ->
      (Int.unsigned (Int.add x y)) mod m = 0.
  Proof.
    intros. unfold Int.add.
    rewrite Int.unsigned_repr_eq.

    repeat match goal with
           | [ _ : _ |- context[if ?x then _ else _] ] => destruct x
           | [ _ : _ |- context[_ mod Int.modulus mod m] ] =>
             rewrite <- Zmod_div_mod; try lia; try assumption
           end; try (crush; lia); int_mod_tac m.
  Qed.

  Definition ofbytes (a b c d : byte) : int :=
    or (shl (repr (Byte.unsigned a)) (repr (3 * Byte.zwordsize)))
       (or (shl (repr (Byte.unsigned b)) (repr (2 * Byte.zwordsize)))
           (or (shl (repr (Byte.unsigned c)) (repr Byte.zwordsize))
               (repr (Byte.unsigned d)))).

  Definition byte1 (n: int) : byte := Byte.repr (unsigned n).

  Definition byte2 (n: int) : byte := Byte.repr (unsigned (shru n (repr Byte.zwordsize))).

  Definition byte3 (n: int) : byte := Byte.repr (unsigned (shru n (repr (2 * Byte.zwordsize)))).

  Definition byte4 (n: int) : byte := Byte.repr (unsigned (shru n (repr (3 * Byte.zwordsize)))).

  Lemma bits_byte1:
    forall n i, 0 <= i < Byte.zwordsize -> Byte.testbit (byte1 n) i = testbit n i.
  Proof.
    intros. unfold byte1. rewrite Byte.testbit_repr; auto.
  Qed.

  Lemma bits_byte2:
    forall n i, 0 <= i < Byte.zwordsize -> Byte.testbit (byte2 n) i = testbit n (i + Byte.zwordsize).
  Proof.
    intros. unfold byte2. rewrite Byte.testbit_repr; auto.
    assert (zwordsize = 4 * Byte.zwordsize) by reflexivity.
    fold (testbit (shru n (repr Byte.zwordsize)) i). rewrite bits_shru.
    change (unsigned (repr Byte.zwordsize)) with Byte.zwordsize.
    apply zlt_true. omega. omega.
  Qed.

  Lemma bits_byte3:
    forall n i, 0 <= i < Byte.zwordsize -> Byte.testbit (byte3 n) i = testbit n (i + (2 * Byte.zwordsize)).
  Proof.
    intros. unfold byte3. rewrite Byte.testbit_repr; auto.
    assert (zwordsize = 4 * Byte.zwordsize) by reflexivity.
    fold (testbit (shru n (repr (2 * Byte.zwordsize))) i). rewrite bits_shru.
    change (unsigned (repr (2 * Byte.zwordsize))) with (2 * Byte.zwordsize).
    apply zlt_true. omega. omega.
  Qed.

  Lemma bits_byte4:
    forall n i, 0 <= i < Byte.zwordsize -> Byte.testbit (byte4 n) i = testbit n (i + (3 * Byte.zwordsize)).
  Proof.
    intros. unfold byte4. rewrite Byte.testbit_repr; auto.
    assert (zwordsize = 4 * Byte.zwordsize) by reflexivity.
    fold (testbit (shru n (repr (3 * Byte.zwordsize))) i). rewrite bits_shru.
    change (unsigned (repr (3 * Byte.zwordsize))) with (3 * Byte.zwordsize).
    apply zlt_true. omega. omega.
  Qed.

  Lemma bits_ofwords:
    forall b4 b3 b2 b1 i, 0 <= i < zwordsize ->
                          testbit (ofbytes b4 b3 b2 b1) i =
                          if zlt i Byte.zwordsize
                          then Byte.testbit b1 i
                          else (if zlt i (2 * Byte.zwordsize)
                                then Byte.testbit b2 (i - Byte.zwordsize)
                                else (if zlt i (3 * Byte.zwordsize)
                                      then Byte.testbit b2 (i - 2 * Byte.zwordsize)
                                      else Byte.testbit b2 (i - 3 * Byte.zwordsize))).
  Proof.
    intros. unfold ofbytes. repeat (rewrite bits_or; auto). repeat (rewrite bits_shl; auto).
    change (unsigned (repr Byte.zwordsize)) with Byte.zwordsize.
    change (unsigned (repr (2 * Byte.zwordsize))) with (2 * Byte.zwordsize).
    change (unsigned (repr (3 * Byte.zwordsize))) with (3 * Byte.zwordsize).
    assert (zwordsize = 4 * Byte.zwordsize) by reflexivity.
    destruct (zlt i Byte.zwordsize).
    rewrite testbit_repr; auto.
    Abort.

  Definition shrx2 (x y : int) : int :=
    if zlt (signed x) 0
    then neg (shru (neg x) y)
    else shru x y.

  Lemma div_divs_equiv :
    forall x y,
      signed x >= 0 ->
      signed y >= 0 ->
      divs x y = divu x y.
  Proof.
    unfold divs, divu.
    intros.
    rewrite signed_eq_unsigned. rewrite signed_eq_unsigned.
    rewrite Zquot.Zquot_Zdiv_pos. reflexivity.
    rewrite <- signed_eq_unsigned.
    apply Z.ge_le; assumption.
    rewrite <- signed_positive; assumption.
    rewrite <- signed_eq_unsigned.
    apply Z.ge_le.
    assumption.
    rewrite <- signed_positive. assumption.
    rewrite <- signed_positive. assumption.
    rewrite <- signed_positive.
    assumption.
  Qed.

  Lemma neg_signed' :
    forall x,
      signed (neg x) = - signed x.
  Proof.
    intros.
    Transparent repr.
    Transparent signed.
    unfold repr.
    unfold signed.
    simpl.
    rewrite Z_mod_modulus_eq.
    replace modulus with 4294967296; auto.
    replace half_modulus with 2147483648; auto.
    simpl.
    repeat match goal with | |- context[if ?x then _ else _] => destruct x end.
    - destruct (Z.eq_dec (unsigned x) 0).
      + rewrite e. auto.
      + pose proof (Z.mod_opp_l_nz (unsigned x) 4294967296).
        assert (4294967296 <> 0). lia.
        apply H in H0.
        rewrite H0 in l.
        pose proof (Z.mod_small (unsigned x) 4294967296).
        assert (0 <= unsigned x < 4294967296).
        pose proof (unsigned_range_2 x).
        replace max_unsigned with 4294967295 in *; auto. lia.
        apply H1 in H2. rewrite H2 in l. lia.
        rewrite Z.mod_small. assumption.
        pose proof (unsigned_range_2 x).
        replace max_unsigned with 4294967295 in *; auto. lia.
    - destruct (Z.eq_dec (unsigned x) 0).
      + lia.
      + rewrite Z.mod_opp_l_nz.
        rewrite Z.opp_sub_distr.
        rewrite Z.mod_small. lia.
        pose proof (unsigned_range_2 x).
        replace max_unsigned with 4294967295 in *; auto. lia.
        lia.
        rewrite Z.mod_small. assumption.
        pose proof (unsigned_range_2 x).
        replace max_unsigned with 4294967295 in *; auto. lia.
    - destruct (Z.eq_dec (unsigned x) 0).
      + rewrite e in *. rewrite Z.opp_0 in *. rewrite Zmod_0_l in g. lia.
      + rewrite Z.mod_opp_l_nz.
        rewrite Z.mod_small. lia.
        pose proof (unsigned_range_2 x).
        replace max_unsigned with 4294967295 in *; auto. lia.
        lia.
        rewrite Z.mod_small.
        assumption.
        pose proof (unsigned_range_2 x).
        replace max_unsigned with 4294967295 in *; auto. lia.
    - destruct (Z.eq_dec (unsigned x) 0).
      + lia.
      + rewrite Z.mod_opp_l_nz in g.
        rewrite Z.mod_small in g.
        assert (- unsigned x >= - 2147483648) by lia.


  Lemma neg_divs_distr_l :
    forall x y,
      neg (divs x y) = divs (neg x) y.
  Proof.
    intros. unfold divs, neg.
    set (x' := signed x). set (y' := signed y).
    apply eqm_samerepr.
    apply eqm_trans with (- (Z.quot x' y')).
    auto with ints.
    replace (- (Z.quot x' y')) with (Z.quot (- x') y').
    2: {
      rewrite Zquot.Zquot_opp_l. auto.
    }
    unfold x'.
    rewrite <- neg_signed'.
    auto with ints.
  Qed.

  Lemma neg_signed :
    forall x : int,
      signed x < 0 ->
      signed (neg x) >= 0.
  Proof.
    intros.
    rewrite neg_signed'.
    lia.
  Qed.

  Lemma shl_signed_positive :
    forall y,
      unsigned y <= 30 ->
      signed (shl one y) >= 0.
  Proof.
    intros.
    unfold signed, shl.
    destruct (zlt (unsigned (repr (Z.shiftl (unsigned one) (unsigned y)))) half_modulus).
    - rewrite unsigned_repr.
      + rewrite Z.shiftl_1_l.
        apply Z.le_ge. apply Z.pow_nonneg. lia.
      + rewrite Z.shiftl_1_l. split.
        apply Z.pow_nonneg. lia.
        simplify.
        replace (4294967295) with (2 ^ 32 - 1); try lia.
        transitivity (2 ^ 31); try lia.
        apply Z.pow_le_mono_r; lia.
    - simplify. rewrite Z.shiftl_1_l in g.
      unfold half_modulus, modulus, wordsize,
      Wordsize_32.wordsize in *. unfold two_power_nat in *. simplify.
      unfold Z_mod_modulus in *.
      destruct (2 ^ unsigned y) eqn:?.
      apply Z.ge_le in g. exfalso.
      replace (4294967296 / 2) with (2147483648) in g; auto.
      rewrite Z.shiftl_1_l. rewrite Heqz.
      unfold wordsize in *. unfold Wordsize_32.wordsize in *.
      rewrite Zbits.P_mod_two_p_eq in *.
      replace (4294967296 / 2) with (2147483648) in g; auto.
      rewrite <- Heqz in g.
      rewrite Z.mod_small in g.
      replace (2147483648) with (2 ^ 31) in g.
      pose proof (Z.pow_le_mono_r 2 (unsigned y) 30).
      apply Z.ge_le in g.
      assert (0 < 2) by lia. apply H0 in H1. lia. assumption. lia.
      split. lia. rewrite two_power_nat_equiv.
      apply Z.pow_lt_mono_r; lia.

      pose proof (Zlt_neg_0 p).
      pose proof (pow2_nonneg (unsigned y)). rewrite <- Heqz in H0.
      lia.
  Qed.

  Lemma is_power2_shl :
    forall y,
      unsigned y <= 30 ->
      is_power2 (shl one y) = Some y.
  Proof.
    intros.
    unfold is_power2, shl.
    destruct (Zbits.Z_is_power2 (unsigned (repr (Z.shiftl (unsigned one) (unsigned y))))) eqn:?.
    - simplify.
      rewrite Z_mod_modulus_eq in Heqo.
      rewrite Z.mod_small in Heqo. rewrite Z.shiftl_1_l in Heqo.
      rewrite <- two_p_correct in Heqo.
      rewrite Zbits.Z_is_power2_complete in Heqo. inv Heqo.
      rewrite repr_unsigned. auto.
      pose proof (unsigned_range_2 y). lia.
      rewrite Z.shiftl_1_l. unfold modulus, wordsize, Wordsize_32.wordsize.
      rewrite two_power_nat_equiv.
      split. apply pow2_nonneg.
      apply Z.pow_lt_mono_r; lia.
    - simplify.
      rewrite Z_mod_modulus_eq in Heqo.
      rewrite Z.mod_small in Heqo. rewrite Z.shiftl_1_l in Heqo.
      rewrite <- two_p_correct in Heqo.
      rewrite Zbits.Z_is_power2_complete in Heqo. discriminate.
      pose proof (unsigned_range_2 y). lia.
      rewrite Z.shiftl_1_l. unfold modulus, wordsize, Wordsize_32.wordsize.
      rewrite two_power_nat_equiv.
      split. apply pow2_nonneg.
      apply Z.pow_lt_mono_r; lia.
  Qed.

  Theorem shrx_shrx2_equiv :
    forall x y,
      unsigned y <= 30 ->
      shrx x y = shrx2 x y.
  Proof.
    intros.
    unfold shrx, shrx2, lt.
    destruct (Z_ge_lt_dec (signed x) 0).
    - rewrite zlt_false; try assumption.
      pose proof (divu_pow2 x (shl one y) y).
      rewrite <- H0.
      apply div_divs_equiv. assumption.
      apply shl_signed_positive; assumption.
      apply is_power2_shl; assumption.
    - rewrite zlt_true; try assumption.
      rewrite <- neg_involutive at 1.
      rewrite neg_divs_distr_l.
      f_equal.
      pose proof (divu_pow2 (neg x) (shl one y) y).
      rewrite <- H0.
      apply div_divs_equiv.
      apply neg_signed; assumption.
      apply shl_signed_positive; assumption.
      apply is_power2_shl; assumption.
  Qed.

End IntExtra.