aboutsummaryrefslogtreecommitdiffstats
path: root/src/translation/HTLgenspec.v
blob: 0cdecba94036e9bc25df43451129bb794af3301a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
(*
 * CoqUp: Verified high-level synthesis.
 * Copyright (C) 2020 Yann Herklotz <yann@yannherklotz.com>
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <https://www.gnu.org/licenses/>.
 *)

From compcert Require RTL Op Maps Errors.
From compcert Require Import Maps.
From coqup Require Import Coquplib Verilog Value HTL HTLgen AssocMap.

Hint Resolve Maps.PTree.elements_keys_norepet : htlspec.
Hint Resolve Maps.PTree.elements_correct : htlspec.

Remark bind_inversion:
  forall (A B: Type) (f: mon A) (g: A -> mon B)
         (y: B) (s1 s3: st) (i: st_incr s1 s3),
    bind f g s1 = OK y s3 i ->
    exists x, exists s2, exists i1, exists i2,
            f s1 = OK x s2 i1 /\ g x s2 = OK y s3 i2.
Proof.
  intros until i. unfold bind. destruct (f s1); intros.
  discriminate.
  exists a; exists s'; exists s.
  destruct (g a s'); inv H.
  exists s0; auto.
Qed.

Remark bind2_inversion:
  forall (A B C: Type) (f: mon (A*B)) (g: A -> B -> mon C)
         (z: C) (s1 s3: st) (i: st_incr s1 s3),
    bind2 f g s1 = OK z s3 i ->
    exists x, exists y, exists s2, exists i1, exists i2,
              f s1 = OK (x, y) s2 i1 /\ g x y s2 = OK z s3 i2.
Proof.
  unfold bind2; intros.
  exploit bind_inversion; eauto.
  intros [[x y] [s2 [i1 [i2 [P Q]]]]]. simpl in Q.
  exists x; exists y; exists s2; exists i1; exists i2; auto.
Qed.

Ltac monadInv1 H :=
  match type of H with
  | (OK _ _ _ = OK _ _ _) =>
    inversion H; clear H; try subst
  | (Error _ _ = OK _ _ _) =>
    discriminate
  | (ret _ _ = OK _ _ _) =>
    inversion H; clear H; try subst
  | (error _ _ = OK _ _ _) =>
    discriminate
  | (bind ?F ?G ?S = OK ?X ?S' ?I) =>
    let x := fresh "x" in (
      let s := fresh "s" in (
        let i1 := fresh "INCR" in (
          let i2 := fresh "INCR" in (
            let EQ1 := fresh "EQ" in (
              let EQ2 := fresh "EQ" in (
                destruct (bind_inversion _ _ F G X S S' I H) as [x [s [i1 [i2 [EQ1 EQ2]]]]];
                clear H;
                try (monadInv1 EQ2)))))))
  | (bind2 ?F ?G ?S = OK ?X ?S' ?I) =>
    let x1 := fresh "x" in (
      let x2 := fresh "x" in (
        let s := fresh "s" in (
          let i1 := fresh "INCR" in (
            let i2 := fresh "INCR" in (
              let EQ1 := fresh "EQ" in (
                let EQ2 := fresh "EQ" in (
                  destruct (bind2_inversion _ _ _ F G X S S' I H) as [x1 [x2 [s [i1 [i2 [EQ1 EQ2]]]]]];
                  clear H;
                  try (monadInv1 EQ2))))))))
  end.

Ltac monadInv H :=
  match type of H with
  | (ret _ _ = OK _ _ _) => monadInv1 H
  | (error _ _ = OK _ _ _) => monadInv1 H
  | (bind ?F ?G ?S = OK ?X ?S' ?I) => monadInv1 H
  | (bind2 ?F ?G ?S = OK ?X ?S' ?I) => monadInv1 H
  | (?F _ _ _ _ _ _ _ _ = OK _ _ _) =>
    ((progress simpl in H) || unfold F in H); monadInv1 H
  | (?F _ _ _ _ _ _ _ = OK _ _ _) =>
    ((progress simpl in H) || unfold F in H); monadInv1 H
  | (?F _ _ _ _ _ _ = OK _ _ _) =>
    ((progress simpl in H) || unfold F in H); monadInv1 H
  | (?F _ _ _ _ _ = OK _ _ _) =>
    ((progress simpl in H) || unfold F in H); monadInv1 H
  | (?F _ _ _ _ = OK _ _ _) =>
    ((progress simpl in H) || unfold F in H); monadInv1 H
  | (?F _ _ _ = OK _ _ _) =>
    ((progress simpl in H) || unfold F in H); monadInv1 H
  | (?F _ _ = OK _ _ _) =>
    ((progress simpl in H) || unfold F in H); monadInv1 H
  | (?F _ = OK _ _ _) =>
    ((progress simpl in H) || unfold F in H); monadInv1 H
  end.

(** * Relational specification of the translation *)

(** We now define inductive predicates that characterise the fact that the
statemachine that is created by the translation contains the correct
translations for each of the elements *)

Inductive tr_instr (fin rtrn st stk : reg) : RTL.instruction -> stmnt -> stmnt -> Prop :=
| tr_instr_Inop :
    forall n,
      tr_instr fin rtrn st stk (RTL.Inop n) Vskip (state_goto st n)
| tr_instr_Iop :
    forall n op args dst s s' e i,
      translate_instr op args s = OK e s' i ->
      tr_instr fin rtrn st stk (RTL.Iop op args dst n) (Vnonblock (Vvar dst) e) (state_goto st n)
| tr_instr_Icond :
    forall n1 n2 cond args s s' i c,
      translate_condition cond args s = OK c s' i ->
      tr_instr fin rtrn st stk (RTL.Icond cond args n1 n2) Vskip (state_cond st c n1 n2)
| tr_instr_Ireturn_None :
    tr_instr fin rtrn st stk (RTL.Ireturn None) (Vseq (block fin (Vlit (ZToValue 1%nat 1%Z)))
                                                  (block rtrn (Vlit (ZToValue 1%nat 0%Z)))) Vskip
| tr_instr_Ireturn_Some :
    forall r,
      tr_instr fin rtrn st stk (RTL.Ireturn (Some r))
               (Vseq (block fin (Vlit (ZToValue 1%nat 1%Z))) (block rtrn (Vvar r))) Vskip
| tr_instr_Iload :
    forall mem addr args s s' i c dst n,
      translate_arr_access mem addr args stk s = OK c s' i ->
      tr_instr fin rtrn st stk (RTL.Iload mem addr args dst n) (nonblock dst c) (state_goto st n)
| tr_instr_Istore :
    forall mem addr args s s' i c src n,
      translate_arr_access mem addr args stk s = OK c s' i ->
      tr_instr fin rtrn st stk (RTL.Istore mem addr args src n) (Vnonblock c (Vvar src))
               (state_goto st n)
| tr_instr_Ijumptable :
    forall cexpr tbl r,
    cexpr = tbl_to_case_expr st tbl ->
    tr_instr fin rtrn st stk (RTL.Ijumptable r tbl) (Vskip) (Vcase (Vvar r) cexpr (Some Vskip)).
Hint Constructors tr_instr : htlspec.

Inductive tr_code (c : RTL.code) (pc : RTL.node) (i : RTL.instruction) (stmnts trans : PTree.t stmnt)
          (fin rtrn st stk : reg) : Prop :=
  tr_code_intro :
    forall s t,
      c!pc = Some i ->
      stmnts!pc = Some s ->
      trans!pc = Some t ->
      tr_instr fin rtrn st stk i s t ->
      tr_code c pc i stmnts trans fin rtrn st stk.
Hint Constructors tr_code : htlspec.

Inductive tr_module (f : RTL.function) : module -> Prop :=
  tr_module_intro :
    forall data control fin rtrn st stk stk_len m start rst clk scldecls arrdecls,
      (forall pc i, Maps.PTree.get pc f.(RTL.fn_code) = Some i ->
               tr_code f.(RTL.fn_code) pc i data control fin rtrn st stk) ->
      stk_len = Z.to_nat (f.(RTL.fn_stacksize) / 4) ->
      Z.modulo (f.(RTL.fn_stacksize)) 4 = 0 ->
      0 <= f.(RTL.fn_stacksize) < Integers.Ptrofs.modulus ->
      m = (mkmodule f.(RTL.fn_params)
                        data
                        control
                        f.(RTL.fn_entrypoint)
                        st stk stk_len fin rtrn start rst clk scldecls arrdecls) ->
      tr_module f m.
Hint Constructors tr_module : htlspec.

Lemma create_reg_datapath_trans :
  forall sz s s' x i iop,
    create_reg iop sz s = OK x s' i ->
    s.(st_datapath) = s'.(st_datapath).
Proof. intros. monadInv H. trivial. Qed.
Hint Resolve create_reg_datapath_trans : htlspec.

Lemma create_reg_controllogic_trans :
  forall sz s s' x i iop,
    create_reg iop sz s = OK x s' i ->
    s.(st_controllogic) = s'.(st_controllogic).
Proof. intros. monadInv H. trivial. Qed.
Hint Resolve create_reg_controllogic_trans : htlspec.

Lemma declare_reg_datapath_trans :
  forall sz s s' x i iop r,
    declare_reg iop r sz s = OK x s' i ->
    s.(st_datapath) = s'.(st_datapath).
Proof. intros. monadInv H. trivial. Qed.
Hint Resolve create_reg_datapath_trans : htlspec.

Lemma declare_reg_controllogic_trans :
  forall sz s s' x i iop r,
    declare_reg iop r sz s = OK x s' i ->
    s.(st_controllogic) = s'.(st_controllogic).
Proof. intros. monadInv H. trivial. Qed.
Hint Resolve create_reg_controllogic_trans : htlspec.

Lemma create_arr_datapath_trans :
  forall sz ln s s' x i iop,
    create_arr iop sz ln s = OK x s' i ->
    s.(st_datapath) = s'.(st_datapath).
Proof. intros. monadInv H. trivial. Qed.
Hint Resolve create_arr_datapath_trans : htlspec.

Lemma create_arr_controllogic_trans :
  forall sz ln s s' x i iop,
    create_arr iop sz ln s = OK x s' i ->
    s.(st_controllogic) = s'.(st_controllogic).
Proof. intros. monadInv H. trivial. Qed.
Hint Resolve create_arr_controllogic_trans : htlspec.

Lemma get_refl_x :
  forall s s' x i,
    get s = OK x s' i ->
    s = x.
Proof. inversion 1. trivial. Qed.
Hint Resolve get_refl_x : htlspec.

Lemma get_refl_s :
  forall s s' x i,
    get s = OK x s' i ->
    s = s'.
Proof. inversion 1. trivial. Qed.
Hint Resolve get_refl_s : htlspec.

Ltac inv_incr :=
  repeat match goal with
  | [ H: create_reg _ _ ?s = OK _ ?s' _ |- _ ] =>
    let H1 := fresh "H" in
    assert (H1 := H); eapply create_reg_datapath_trans in H;
    eapply create_reg_controllogic_trans in H1
  | [ H: create_arr _ _ _ ?s = OK _ ?s' _ |- _ ] =>
    let H1 := fresh "H" in
    assert (H1 := H); eapply create_arr_datapath_trans in H;
    eapply create_arr_controllogic_trans in H1
  | [ H: get ?s = OK _ _ _ |- _ ] =>
    let H1 := fresh "H" in
    assert (H1 := H); apply get_refl_x in H; apply get_refl_s in H1;
    subst
  | [ H: st_prop _ _ |- _ ] => unfold st_prop in H; destruct H
  | [ H: st_incr _ _ |- _ ] => destruct st_incr
  end.

Lemma collect_controllogic_trans :
  forall A f l cs cs' ci,
  (forall s s' x i y, f y s = OK x s' i -> s.(st_controllogic) = s'.(st_controllogic)) ->
  @HTLMonadExtra.collectlist A f l cs = OK tt cs' ci -> cs.(st_controllogic) = cs'.(st_controllogic).
Proof.
  induction l; intros; monadInv H0.
  - trivial.
  - apply H in EQ. rewrite EQ. eauto.
Qed.

Lemma collect_datapath_trans :
  forall A f l cs cs' ci,
  (forall s s' x i y, f y s = OK x s' i -> s.(st_datapath) = s'.(st_datapath)) ->
  @HTLMonadExtra.collectlist A f l cs = OK tt cs' ci -> cs.(st_datapath) = cs'.(st_datapath).
Proof.
  induction l; intros; monadInv H0.
  - trivial.
  - apply H in EQ. rewrite EQ. eauto.
Qed.

Lemma collect_declare_controllogic_trans :
  forall io n l s s' i,
  HTLMonadExtra.collectlist (fun r : reg => declare_reg io r n) l s = OK tt s' i ->
  s.(st_controllogic) = s'.(st_controllogic).
Proof.
  intros. eapply collect_controllogic_trans; try eassumption.
  intros. eapply declare_reg_controllogic_trans. simpl in H0. eassumption.
Qed.

Lemma collect_declare_datapath_trans :
  forall io n l s s' i,
  HTLMonadExtra.collectlist (fun r : reg => declare_reg io r n) l s = OK tt s' i ->
  s.(st_datapath) = s'.(st_datapath).
Proof.
  intros. eapply collect_datapath_trans; try eassumption.
  intros. eapply declare_reg_datapath_trans. simpl in H0. eassumption.
Qed.

Ltac rewrite_states :=
  match goal with
  | [ H: ?x ?s = ?x ?s' |- _ ] =>
    let c1 := fresh "c" in
    let c2 := fresh "c" in
    remember (?x ?s) as c1; remember (?x ?s') as c2; try subst
  end.

Ltac unfold_match H :=
  match type of H with
  | context[match ?g with _ => _ end] => destruct g eqn:?; try discriminate
  end.

Ltac inv_add_instr' H :=
  match type of H with
  | ?f _ _ _ = OK _ _ _ => unfold f in H
  | ?f _ _ _ _ = OK _ _ _ => unfold f in H
  | ?f _ _ _ _ _ = OK _ _ _ => unfold f in H
  end; repeat unfold_match H; inversion H.

Ltac inv_add_instr :=
  lazymatch goal with
  | H: context[add_instr_skip _ _ _] |- _ =>
    inv_add_instr' H
  | H: context[add_instr_skip _ _] |- _ =>
    monadInv H; inv_incr; inv_add_instr
  | H: context[add_instr _ _ _ _] |- _ =>
    inv_add_instr' H
  | H: context[add_instr _ _ _] |- _ =>
    monadInv H; inv_incr; inv_add_instr
  | H: context[add_branch_instr _ _ _ _ _] |- _ =>
    inv_add_instr' H
  | H: context[add_branch_instr _ _ _ _] |- _ =>
    monadInv H; inv_incr; inv_add_instr
  | H: context[add_node_skip _ _ _] |- _ =>
    inv_add_instr' H
  | H: context[add_node_skip _ _] |- _ =>
    monadInv H; inv_incr; inv_add_instr
  end.

Ltac destruct_optional :=
  match goal with H: option ?r |- _ => destruct H end.

Lemma iter_expand_instr_spec :
  forall l fin rtrn stack s s' i x c,
    HTLMonadExtra.collectlist (transf_instr fin rtrn stack) l s = OK x s' i ->
    list_norepet (List.map fst l) ->
    (forall pc instr, In (pc, instr) l -> c!pc = Some instr) ->
    (forall pc instr, In (pc, instr) l ->
                      c!pc = Some instr ->
                      tr_code c pc instr s'.(st_datapath) s'.(st_controllogic) fin rtrn s'.(st_st) stack).
Proof.
  induction l; simpl; intros; try contradiction.
  destruct a as [pc1 instr1]; simpl in *. inv H0. monadInv H. inv_incr.
  destruct (peq pc pc1).
  - subst.
    destruct instr1 eqn:?; try discriminate;
      try destruct_optional; inv_add_instr; econstructor; try assumption.
    + destruct o with pc1; destruct H11; simpl in *; rewrite AssocMap.gss in H9; eauto; congruence.
    + destruct o0 with pc1; destruct H11; simpl in *; rewrite AssocMap.gss in H9; eauto; congruence.
    + inversion H2. inversion H9. rewrite H. apply tr_instr_Inop.
      eapply in_map with (f := fst) in H9. contradiction.

    + destruct o with pc1; destruct H16; simpl in *; rewrite AssocMap.gss in H14; eauto; congruence.
    + destruct o0 with pc1; destruct H16; simpl in *; rewrite AssocMap.gss in H14; eauto; congruence.
    + inversion H2. inversion H14. unfold nonblock. replace (st_st s4) with (st_st s2) by congruence.
      econstructor. apply EQ1. eapply in_map with (f := fst) in H14. contradiction.

    + destruct o with pc1; destruct H16; simpl in *; rewrite AssocMap.gss in H14; eauto; congruence.
    + destruct o0 with pc1; destruct H16; simpl in *; rewrite AssocMap.gss in H14; eauto; congruence.
    + inversion H2. inversion H14. rewrite <- e2. replace (st_st s2) with (st_st s0) by congruence.
      econstructor. apply EQ1. eapply in_map with (f := fst) in H14. contradiction.

    + destruct o with pc1; destruct H11; simpl in *; rewrite AssocMap.gss in H9; eauto; congruence.
    + destruct o0 with pc1; destruct H11; simpl in *; rewrite AssocMap.gss in H9; eauto; congruence.
    + destruct H2.
      * inversion H2.
        replace (st_st s2) with (st_st s0) by congruence.
        eauto with htlspec.
      * apply in_map with (f := fst) in H2. contradiction.

    + destruct o with pc1; destruct H11; simpl in *; rewrite AssocMap.gss in H9; eauto; congruence.
    + destruct o0 with pc1; destruct H11; simpl in *; rewrite AssocMap.gss in H9; eauto; congruence.
    + destruct H2.
      * inversion H2.
        replace (st_st s2) with (st_st s0) by congruence.
        eauto with htlspec.
      * apply in_map with (f := fst) in H2. contradiction.

    + destruct o with pc1; destruct H16; simpl in *; rewrite AssocMap.gss in H14; eauto; congruence.
    + destruct o0 with pc1; destruct H16; simpl in *; rewrite AssocMap.gss in H14; eauto; congruence.
    + inversion H2.
      * inversion H14. constructor. congruence.
      * apply in_map with (f := fst) in H14. contradiction.

    + destruct o with pc1; destruct H11; simpl in *; rewrite AssocMap.gss in H9; eauto; congruence.
    + destruct o0 with pc1; destruct H11; simpl in *; rewrite AssocMap.gss in H9; eauto; congruence.
    + inversion H2.
      * inversion H9.
        replace (st_st s2) with (st_st s0) by congruence.
        eauto with htlspec.
      * apply in_map with (f := fst) in H9. contradiction.

    + destruct o with pc1; destruct H11; simpl in *; rewrite AssocMap.gss in H9; eauto; congruence.
    + destruct o0 with pc1; destruct H11; simpl in *; rewrite AssocMap.gss in H9; eauto; congruence.
    + inversion H2.
      * inversion H9.
        replace (st_st s2) with (st_st s0) by congruence.
        eauto with htlspec.
      * apply in_map with (f := fst) in H9. contradiction.

  - eapply IHl. apply EQ0. assumption.
    destruct H2. inversion H2. subst. contradiction.
    intros. specialize H1 with pc0 instr0. destruct H1. tauto. trivial.
    destruct H2. inv H2. contradiction. assumption. assumption.
Qed.
Hint Resolve iter_expand_instr_spec : htlspec.

Lemma create_arr_inv : forall w x y z a b c d,
    create_arr w x y z = OK (a, b) c d -> y = b.
Proof.
  inversion 1. reflexivity.
Qed.

Theorem transl_module_correct :
  forall f m,
    transl_module f = Errors.OK m -> tr_module f m.
Proof.
  intros until m.
  unfold transl_module.
  unfold run_mon.
  destruct (transf_module f (max_state f)) eqn:?; try discriminate.
  intros. inv H.
  inversion s; subst.

  unfold transf_module in *.
  unfold stack_correct in *.
  destruct (0 <=? RTL.fn_stacksize f) eqn:STACK_BOUND_LOW;
    destruct (RTL.fn_stacksize f <? Integers.Ptrofs.modulus) eqn:STACK_BOUND_HIGH;
    destruct (RTL.fn_stacksize f mod 4 =? 0) eqn:STACK_ALIGN;
    crush;
    monadInv Heqr.

  (* TODO: We should be able to fold this into the automation. *)
  pose proof (create_arr_inv _ _ _ _ _ _ _ _ EQ0) as STK_LEN.
  rewrite <- STK_LEN.

  econstructor; simpl; auto.
  intros.
  inv_incr.
  assert (EQ3D := EQ3).
  destruct x4.
  apply collect_declare_datapath_trans in EQ3.
  apply collect_declare_controllogic_trans in EQ3D.
  assert (STC: st_controllogic s10 = st_controllogic s3) by congruence.
  assert (STD: st_datapath s10 = st_datapath s3) by congruence.
  assert (STST: st_st s10 = st_st s3) by congruence.
  rewrite STC. rewrite STD. rewrite STST.
  eapply iter_expand_instr_spec; eauto with htlspec.
  apply PTree.elements_complete.
Qed.