aboutsummaryrefslogtreecommitdiffstats
path: root/src/hls/HTLgenproof.v
diff options
context:
space:
mode:
authorYann Herklotz <git@yannherklotz.com>2020-08-30 14:03:40 +0100
committerYann Herklotz <git@yannherklotz.com>2020-08-30 14:03:40 +0100
commitec319c9ec0acc975fcdfbfa2e378b82c9be9ab0a (patch)
treeaba30758bbbf10ab3d975367f48a695b81afb179 /src/hls/HTLgenproof.v
parent9d6979baa0e4b505862bcedee1dfd075f36579c3 (diff)
downloadvericert-ec319c9ec0acc975fcdfbfa2e378b82c9be9ab0a.tar.gz
vericert-ec319c9ec0acc975fcdfbfa2e378b82c9be9ab0a.zip
Add RTLBlock intermediate language
Diffstat (limited to 'src/hls/HTLgenproof.v')
-rw-r--r--src/hls/HTLgenproof.v2683
1 files changed, 2683 insertions, 0 deletions
diff --git a/src/hls/HTLgenproof.v b/src/hls/HTLgenproof.v
new file mode 100644
index 0000000..22f8f57
--- /dev/null
+++ b/src/hls/HTLgenproof.v
@@ -0,0 +1,2683 @@
+ (*
+ * Vericert: Verified high-level synthesis.
+ * Copyright (C) 2020 Yann Herklotz <yann@yannherklotz.com>
+ *
+ * This program is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program. If not, see <https://www.gnu.org/licenses/>.
+ *)
+
+From compcert Require RTL Registers AST.
+From compcert Require Import Integers Globalenvs Memory Linking.
+From vericert Require Import Vericertlib HTLgenspec HTLgen ValueInt AssocMap Array IntegerExtra ZExtra.
+From vericert Require HTL Verilog.
+
+Require Import Lia.
+
+Local Open Scope assocmap.
+
+Hint Resolve Smallstep.forward_simulation_plus : htlproof.
+Hint Resolve AssocMap.gss : htlproof.
+Hint Resolve AssocMap.gso : htlproof.
+
+Hint Unfold find_assocmap AssocMapExt.get_default : htlproof.
+
+Inductive match_assocmaps : RTL.function -> RTL.regset -> assocmap -> Prop :=
+ match_assocmap : forall f rs am,
+ (forall r, Ple r (RTL.max_reg_function f) ->
+ val_value_lessdef (Registers.Regmap.get r rs) am#r) ->
+ match_assocmaps f rs am.
+Hint Constructors match_assocmaps : htlproof.
+
+Definition state_st_wf (m : HTL.module) (s : HTL.state) :=
+ forall st asa asr res,
+ s = HTL.State res m st asa asr ->
+ asa!(m.(HTL.mod_st)) = Some (posToValue st).
+Hint Unfold state_st_wf : htlproof.
+
+Inductive match_arrs (m : HTL.module) (f : RTL.function) (sp : Values.val) (mem : mem) :
+ Verilog.assocmap_arr -> Prop :=
+| match_arr : forall asa stack,
+ asa ! (m.(HTL.mod_stk)) = Some stack /\
+ stack.(arr_length) = Z.to_nat (f.(RTL.fn_stacksize) / 4) /\
+ (forall ptr,
+ 0 <= ptr < Z.of_nat m.(HTL.mod_stk_len) ->
+ opt_val_value_lessdef (Mem.loadv AST.Mint32 mem
+ (Values.Val.offset_ptr sp (Integers.Ptrofs.repr (4 * ptr))))
+ (Option.default (NToValue 0)
+ (Option.join (array_get_error (Z.to_nat ptr) stack)))) ->
+ match_arrs m f sp mem asa.
+
+Definition stack_based (v : Values.val) (sp : Values.block) : Prop :=
+ match v with
+ | Values.Vptr sp' off => sp' = sp
+ | _ => True
+ end.
+
+Definition reg_stack_based_pointers (sp : Values.block) (rs : Registers.Regmap.t Values.val) : Prop :=
+ forall r, stack_based (Registers.Regmap.get r rs) sp.
+
+Definition arr_stack_based_pointers (spb : Values.block) (m : mem) (stack_length : Z)
+ (sp : Values.val) : Prop :=
+ forall ptr,
+ 0 <= ptr < (stack_length / 4) ->
+ stack_based (Option.default
+ Values.Vundef
+ (Mem.loadv AST.Mint32 m
+ (Values.Val.offset_ptr sp (Integers.Ptrofs.repr (4 * ptr)))))
+ spb.
+
+Definition stack_bounds (sp : Values.val) (hi : Z) (m : mem) : Prop :=
+ forall ptr v,
+ hi <= ptr <= Integers.Ptrofs.max_unsigned ->
+ Z.modulo ptr 4 = 0 ->
+ Mem.loadv AST.Mint32 m (Values.Val.offset_ptr sp (Integers.Ptrofs.repr ptr )) = None /\
+ Mem.storev AST.Mint32 m (Values.Val.offset_ptr sp (Integers.Ptrofs.repr ptr )) v = None.
+
+Inductive match_frames : list RTL.stackframe -> list HTL.stackframe -> Prop :=
+| match_frames_nil :
+ match_frames nil nil.
+
+Inductive match_constants : HTL.module -> assocmap -> Prop :=
+ match_constant :
+ forall m asr,
+ asr!(HTL.mod_reset m) = Some (ZToValue 0) ->
+ asr!(HTL.mod_finish m) = Some (ZToValue 0) ->
+ match_constants m asr.
+
+Inductive match_states : RTL.state -> HTL.state -> Prop :=
+| match_state : forall asa asr sf f sp sp' rs mem m st res
+ (MASSOC : match_assocmaps f rs asr)
+ (TF : tr_module f m)
+ (WF : state_st_wf m (HTL.State res m st asr asa))
+ (MF : match_frames sf res)
+ (MARR : match_arrs m f sp mem asa)
+ (SP : sp = Values.Vptr sp' (Integers.Ptrofs.repr 0))
+ (RSBP : reg_stack_based_pointers sp' rs)
+ (ASBP : arr_stack_based_pointers sp' mem (f.(RTL.fn_stacksize)) sp)
+ (BOUNDS : stack_bounds sp (f.(RTL.fn_stacksize)) mem)
+ (CONST : match_constants m asr),
+ match_states (RTL.State sf f sp st rs mem)
+ (HTL.State res m st asr asa)
+| match_returnstate :
+ forall
+ v v' stack mem res
+ (MF : match_frames stack res),
+ val_value_lessdef v v' ->
+ match_states (RTL.Returnstate stack v mem) (HTL.Returnstate res v')
+| match_initial_call :
+ forall f m m0
+ (TF : tr_module f m),
+ match_states (RTL.Callstate nil (AST.Internal f) nil m0) (HTL.Callstate nil m nil).
+Hint Constructors match_states : htlproof.
+
+Definition match_prog (p: RTL.program) (tp: HTL.program) :=
+ Linking.match_program (fun cu f tf => transl_fundef f = Errors.OK tf) eq p tp /\
+ main_is_internal p = true.
+
+Instance TransfHTLLink (tr_fun: RTL.program -> Errors.res HTL.program):
+ TransfLink (fun (p1: RTL.program) (p2: HTL.program) => match_prog p1 p2).
+Proof.
+ red. intros. exfalso. destruct (link_linkorder _ _ _ H) as [LO1 LO2].
+ apply link_prog_inv in H.
+
+ unfold match_prog in *.
+ unfold main_is_internal in *. simplify. repeat (unfold_match H4).
+ repeat (unfold_match H3). simplify.
+ subst. rewrite H0 in *. specialize (H (AST.prog_main p2)).
+ exploit H.
+ apply Genv.find_def_symbol. exists b. split.
+ assumption. apply Genv.find_funct_ptr_iff. eassumption.
+ apply Genv.find_def_symbol. exists b0. split.
+ assumption. apply Genv.find_funct_ptr_iff. eassumption.
+ intros. inv H3. inv H5. destruct H6. inv H5.
+Qed.
+
+Definition match_prog' (p: RTL.program) (tp: HTL.program) :=
+ Linking.match_program (fun cu f tf => transl_fundef f = Errors.OK tf) eq p tp.
+
+Lemma match_prog_matches :
+ forall p tp, match_prog p tp -> match_prog' p tp.
+Proof. unfold match_prog. tauto. Qed.
+
+Lemma transf_program_match:
+ forall p tp, HTLgen.transl_program p = Errors.OK tp -> match_prog p tp.
+Proof.
+ intros. unfold transl_program in H.
+ destruct (main_is_internal p) eqn:?; try discriminate.
+ unfold match_prog. split.
+ apply Linking.match_transform_partial_program; auto.
+ assumption.
+Qed.
+
+Lemma regs_lessdef_add_greater :
+ forall f rs1 rs2 n v,
+ Plt (RTL.max_reg_function f) n ->
+ match_assocmaps f rs1 rs2 ->
+ match_assocmaps f rs1 (AssocMap.set n v rs2).
+Proof.
+ inversion 2; subst.
+ intros. constructor.
+ intros. unfold find_assocmap. unfold AssocMapExt.get_default.
+ rewrite AssocMap.gso. eauto.
+ apply Pos.le_lt_trans with _ _ n in H2.
+ unfold not. intros. subst. eapply Pos.lt_irrefl. eassumption. assumption.
+Qed.
+Hint Resolve regs_lessdef_add_greater : htlproof.
+
+Lemma regs_lessdef_add_match :
+ forall f rs am r v v',
+ val_value_lessdef v v' ->
+ match_assocmaps f rs am ->
+ match_assocmaps f (Registers.Regmap.set r v rs) (AssocMap.set r v' am).
+Proof.
+ inversion 2; subst.
+ constructor. intros.
+ destruct (peq r0 r); subst.
+ rewrite Registers.Regmap.gss.
+ unfold find_assocmap. unfold AssocMapExt.get_default.
+ rewrite AssocMap.gss. assumption.
+
+ rewrite Registers.Regmap.gso; try assumption.
+ unfold find_assocmap. unfold AssocMapExt.get_default.
+ rewrite AssocMap.gso; eauto.
+Qed.
+Hint Resolve regs_lessdef_add_match : htlproof.
+
+Lemma list_combine_none :
+ forall n l,
+ length l = n ->
+ list_combine Verilog.merge_cell (list_repeat None n) l = l.
+Proof.
+ induction n; intros; crush.
+ - symmetry. apply length_zero_iff_nil. auto.
+ - destruct l; crush.
+ rewrite list_repeat_cons.
+ crush. f_equal.
+ eauto.
+Qed.
+
+Lemma combine_none :
+ forall n a,
+ a.(arr_length) = n ->
+ arr_contents (combine Verilog.merge_cell (arr_repeat None n) a) = arr_contents a.
+Proof.
+ intros.
+ unfold combine.
+ crush.
+
+ rewrite <- (arr_wf a) in H.
+ apply list_combine_none.
+ assumption.
+Qed.
+
+Lemma list_combine_lookup_first :
+ forall l1 l2 n,
+ length l1 = length l2 ->
+ nth_error l1 n = Some None ->
+ nth_error (list_combine Verilog.merge_cell l1 l2) n = nth_error l2 n.
+Proof.
+ induction l1; intros; crush.
+
+ rewrite nth_error_nil in H0.
+ discriminate.
+
+ destruct l2 eqn:EQl2. crush.
+ simpl in H. invert H.
+ destruct n; simpl in *.
+ invert H0. simpl. reflexivity.
+ eauto.
+Qed.
+
+Lemma combine_lookup_first :
+ forall a1 a2 n,
+ a1.(arr_length) = a2.(arr_length) ->
+ array_get_error n a1 = Some None ->
+ array_get_error n (combine Verilog.merge_cell a1 a2) = array_get_error n a2.
+Proof.
+ intros.
+
+ unfold array_get_error in *.
+ apply list_combine_lookup_first; eauto.
+ rewrite a1.(arr_wf). rewrite a2.(arr_wf).
+ assumption.
+Qed.
+
+Lemma list_combine_lookup_second :
+ forall l1 l2 n x,
+ length l1 = length l2 ->
+ nth_error l1 n = Some (Some x) ->
+ nth_error (list_combine Verilog.merge_cell l1 l2) n = Some (Some x).
+Proof.
+ induction l1; intros; crush; auto.
+
+ destruct l2 eqn:EQl2. crush.
+ simpl in H. invert H.
+ destruct n; simpl in *.
+ invert H0. simpl. reflexivity.
+ eauto.
+Qed.
+
+Lemma combine_lookup_second :
+ forall a1 a2 n x,
+ a1.(arr_length) = a2.(arr_length) ->
+ array_get_error n a1 = Some (Some x) ->
+ array_get_error n (combine Verilog.merge_cell a1 a2) = Some (Some x).
+Proof.
+ intros.
+
+ unfold array_get_error in *.
+ apply list_combine_lookup_second; eauto.
+ rewrite a1.(arr_wf). rewrite a2.(arr_wf).
+ assumption.
+Qed.
+
+Ltac inv_state :=
+ match goal with
+ MSTATE : match_states _ _ |- _ =>
+ inversion MSTATE;
+ match goal with
+ TF : tr_module _ _ |- _ =>
+ inversion TF;
+ match goal with
+ TC : forall _ _,
+ Maps.PTree.get _ _ = Some _ -> tr_code _ _ _ _ _ _ _ _ _,
+ H : Maps.PTree.get _ _ = Some _ |- _ =>
+ apply TC in H; inversion H;
+ match goal with
+ TI : context[tr_instr] |- _ =>
+ inversion TI
+ end
+ end
+ end
+end; subst.
+
+Ltac unfold_func H :=
+ match type of H with
+ | ?f = _ => unfold f in H; repeat (unfold_match H)
+ | ?f _ = _ => unfold f in H; repeat (unfold_match H)
+ | ?f _ _ = _ => unfold f in H; repeat (unfold_match H)
+ | ?f _ _ _ = _ => unfold f in H; repeat (unfold_match H)
+ | ?f _ _ _ _ = _ => unfold f in H; repeat (unfold_match H)
+ end.
+
+Lemma init_reg_assoc_empty :
+ forall f l,
+ match_assocmaps f (RTL.init_regs nil l) (HTL.init_regs nil l).
+Proof.
+ induction l; simpl; constructor; intros.
+ - rewrite Registers.Regmap.gi. unfold find_assocmap.
+ unfold AssocMapExt.get_default. rewrite AssocMap.gempty.
+ constructor.
+
+ - rewrite Registers.Regmap.gi. unfold find_assocmap.
+ unfold AssocMapExt.get_default. rewrite AssocMap.gempty.
+ constructor.
+Qed.
+
+Lemma arr_lookup_some:
+ forall (z : Z) (r0 : Registers.reg) (r : Verilog.reg) (asr : assocmap) (asa : Verilog.assocmap_arr)
+ (stack : Array (option value)) (H5 : asa ! r = Some stack) n,
+ exists x, Verilog.arr_assocmap_lookup asa r n = Some x.
+Proof.
+ intros z r0 r asr asa stack H5 n.
+ eexists.
+ unfold Verilog.arr_assocmap_lookup. rewrite H5. reflexivity.
+Qed.
+Hint Resolve arr_lookup_some : htlproof.
+
+Section CORRECTNESS.
+
+ Variable prog : RTL.program.
+ Variable tprog : HTL.program.
+
+ Hypothesis TRANSL : match_prog prog tprog.
+
+ Lemma TRANSL' :
+ Linking.match_program (fun cu f tf => transl_fundef f = Errors.OK tf) eq prog tprog.
+ Proof. intros; apply match_prog_matches; assumption. Qed.
+
+ Let ge : RTL.genv := Globalenvs.Genv.globalenv prog.
+ Let tge : HTL.genv := Globalenvs.Genv.globalenv tprog.
+
+ Lemma symbols_preserved:
+ forall (s: AST.ident), Genv.find_symbol tge s = Genv.find_symbol ge s.
+ Proof. intros. eapply (Genv.find_symbol_match TRANSL'). Qed.
+
+ Lemma function_ptr_translated:
+ forall (b: Values.block) (f: RTL.fundef),
+ Genv.find_funct_ptr ge b = Some f ->
+ exists tf,
+ Genv.find_funct_ptr tge b = Some tf /\ transl_fundef f = Errors.OK tf.
+ Proof.
+ intros. exploit (Genv.find_funct_ptr_match TRANSL'); eauto.
+ intros (cu & tf & P & Q & R); exists tf; auto.
+ Qed.
+
+ Lemma functions_translated:
+ forall (v: Values.val) (f: RTL.fundef),
+ Genv.find_funct ge v = Some f ->
+ exists tf,
+ Genv.find_funct tge v = Some tf /\ transl_fundef f = Errors.OK tf.
+ Proof.
+ intros. exploit (Genv.find_funct_match TRANSL'); eauto.
+ intros (cu & tf & P & Q & R); exists tf; auto.
+ Qed.
+
+ Lemma senv_preserved:
+ Senv.equiv (Genv.to_senv ge) (Genv.to_senv tge).
+ Proof
+ (Genv.senv_transf_partial TRANSL').
+ Hint Resolve senv_preserved : htlproof.
+
+ Lemma ptrofs_inj :
+ forall a b,
+ Ptrofs.unsigned a = Ptrofs.unsigned b -> a = b.
+ Proof.
+ intros. rewrite <- Ptrofs.repr_unsigned. symmetry. rewrite <- Ptrofs.repr_unsigned.
+ rewrite H. auto.
+ Qed.
+
+ Lemma op_stack_based :
+ forall F V sp v m args rs op ge pc' res0 pc f e fin rtrn st stk,
+ tr_instr fin rtrn st stk (RTL.Iop op args res0 pc')
+ (Verilog.Vnonblock (Verilog.Vvar res0) e)
+ (state_goto st pc') ->
+ reg_stack_based_pointers sp rs ->
+ (RTL.fn_code f) ! pc = Some (RTL.Iop op args res0 pc') ->
+ @Op.eval_operation F V ge (Values.Vptr sp Ptrofs.zero) op
+ (map (fun r : positive => Registers.Regmap.get r rs) args) m = Some v ->
+ stack_based v sp.
+ Proof.
+ Ltac solve_no_ptr :=
+ match goal with
+ | H: reg_stack_based_pointers ?sp ?rs |- stack_based (Registers.Regmap.get ?r ?rs) _ =>
+ solve [apply H]
+ | H1: reg_stack_based_pointers ?sp ?rs, H2: Registers.Regmap.get _ _ = Values.Vptr ?b ?i
+ |- context[Values.Vptr ?b _] =>
+ let H := fresh "H" in
+ assert (H: stack_based (Values.Vptr b i) sp) by (rewrite <- H2; apply H1); simplify; solve [auto]
+ | |- context[Registers.Regmap.get ?lr ?lrs] =>
+ destruct (Registers.Regmap.get lr lrs) eqn:?; simplify; auto
+ | |- stack_based (?f _) _ => unfold f
+ | |- stack_based (?f _ _) _ => unfold f
+ | |- stack_based (?f _ _ _) _ => unfold f
+ | |- stack_based (?f _ _ _ _) _ => unfold f
+ | H: ?f _ _ = Some _ |- _ =>
+ unfold f in H; repeat (unfold_match H); inv H
+ | H: ?f _ _ _ _ _ _ = Some _ |- _ =>
+ unfold f in H; repeat (unfold_match H); inv H
+ | H: map (fun r : positive => Registers.Regmap.get r _) ?args = _ |- _ =>
+ destruct args; inv H
+ | |- context[if ?c then _ else _] => destruct c; try discriminate
+ | H: match _ with _ => _ end = Some _ |- _ => repeat (unfold_match H)
+ | H: match _ with _ => _ end = OK _ _ _ |- _ => repeat (unfold_match H)
+ | |- context[match ?g with _ => _ end] => destruct g; try discriminate
+ | |- _ => simplify; solve [auto]
+ end.
+ intros F V sp v m args rs op g pc' res0 pc f e fin rtrn st stk INSTR RSBP SEL EVAL.
+ inv INSTR. unfold translate_instr in H5.
+ unfold_match H5; repeat (unfold_match H5); repeat (simplify; solve_no_ptr).
+ Qed.
+
+ Lemma int_inj :
+ forall x y,
+ Int.unsigned x = Int.unsigned y ->
+ x = y.
+ Proof.
+ intros. rewrite <- Int.repr_unsigned at 1. rewrite <- Int.repr_unsigned.
+ rewrite <- H. trivial.
+ Qed.
+
+ Ltac eval_correct_tac :=
+ match goal with
+ | |- context[valueToPtr] => unfold valueToPtr
+ | |- context[valueToInt] => unfold valueToInt
+ | |- context[bop] => unfold bop
+ | H : context[bop] |- _ => unfold bop in H
+ | |- context[boplit] => unfold boplit
+ | H : context[boplit] |- _ => unfold boplit in H
+ | |- context[boplitz] => unfold boplitz
+ | H : context[boplitz] |- _ => unfold boplitz in H
+ | |- val_value_lessdef Values.Vundef _ => solve [constructor]
+ | H : val_value_lessdef _ _ |- val_value_lessdef (Values.Vint _) _ => constructor; inv H
+ | |- val_value_lessdef (Values.Vint _) _ => constructor; auto
+ | H : ret _ _ = OK _ _ _ |- _ => inv H
+ | H : context[RTL.max_reg_function ?f]
+ |- context[_ (Registers.Regmap.get ?r ?rs) (Registers.Regmap.get ?r0 ?rs)] =>
+ let HPle1 := fresh "HPle" in
+ let HPle2 := fresh "HPle" in
+ assert (HPle1 : Ple r (RTL.max_reg_function f)) by (eapply RTL.max_reg_function_use; eauto; simpl; auto);
+ assert (HPle2 : Ple r0 (RTL.max_reg_function f)) by (eapply RTL.max_reg_function_use; eauto; simpl; auto);
+ apply H in HPle1; apply H in HPle2; eexists; split;
+ [econstructor; eauto; constructor; trivial | inv HPle1; inv HPle2; try (constructor; auto)]
+ | H : context[RTL.max_reg_function ?f]
+ |- context[_ (Registers.Regmap.get ?r ?rs) _] =>
+ let HPle1 := fresh "HPle" in
+ assert (HPle1 : Ple r (RTL.max_reg_function f)) by (eapply RTL.max_reg_function_use; eauto; simpl; auto);
+ apply H in HPle1; eexists; split;
+ [econstructor; eauto; constructor; trivial | inv HPle1; try (constructor; auto)]
+ | H : _ :: _ = _ :: _ |- _ => inv H
+ | |- context[match ?d with _ => _ end] => destruct d eqn:?; try discriminate
+ | H : match ?d with _ => _ end = _ |- _ => repeat unfold_match H
+ | H : match ?d with _ => _ end _ = _ |- _ => repeat unfold_match H
+ | |- Verilog.expr_runp _ _ _ _ _ => econstructor
+ | |- val_value_lessdef (?f _ _) _ => unfold f
+ | |- val_value_lessdef (?f _) _ => unfold f
+ | H : ?f (Registers.Regmap.get _ _) _ = Some _ |- _ =>
+ unfold f in H; repeat (unfold_match H)
+ | H1 : Registers.Regmap.get ?r ?rs = Values.Vint _, H2 : val_value_lessdef (Registers.Regmap.get ?r ?rs) _
+ |- _ => rewrite H1 in H2; inv H2
+ | |- _ => eexists; split; try constructor; solve [eauto]
+ | H : context[RTL.max_reg_function ?f] |- context[_ (Verilog.Vvar ?r) (Verilog.Vvar ?r0)] =>
+ let HPle1 := fresh "H" in
+ let HPle2 := fresh "H" in
+ assert (HPle1 : Ple r (RTL.max_reg_function f)) by (eapply RTL.max_reg_function_use; eauto; simpl; auto);
+ assert (HPle2 : Ple r0 (RTL.max_reg_function f)) by (eapply RTL.max_reg_function_use; eauto; simpl; auto);
+ apply H in HPle1; apply H in HPle2; eexists; split; try constructor; eauto
+ | H : context[RTL.max_reg_function ?f] |- context[Verilog.Vvar ?r] =>
+ let HPle := fresh "H" in
+ assert (HPle : Ple r (RTL.max_reg_function f)) by (eapply RTL.max_reg_function_use; eauto; simpl; auto);
+ apply H in HPle; eexists; split; try constructor; eauto
+ | |- context[if ?c then _ else _] => destruct c eqn:?; try discriminate
+ | H : ?b = _ |- _ = boolToValue ?b => rewrite H
+ end.
+ Ltac inv_lessdef := lazymatch goal with
+ | H2 : context[RTL.max_reg_function ?f],
+ H : Registers.Regmap.get ?r ?rs = _,
+ H1 : Registers.Regmap.get ?r0 ?rs = _ |- _ =>
+ let HPle1 := fresh "HPle" in
+ assert (HPle1 : Ple r (RTL.max_reg_function f))
+ by (eapply RTL.max_reg_function_use; eauto; simpl; auto);
+ apply H2 in HPle1; inv HPle1;
+ let HPle2 := fresh "HPle" in
+ assert (HPle2 : Ple r0 (RTL.max_reg_function f))
+ by (eapply RTL.max_reg_function_use; eauto; simpl; auto);
+ apply H2 in HPle2; inv HPle2
+ | H2 : context[RTL.max_reg_function ?f], H : Registers.Regmap.get ?r ?rs = _ |- _ =>
+ let HPle1 := fresh "HPle" in
+ assert (HPle1 : Ple r (RTL.max_reg_function f))
+ by (eapply RTL.max_reg_function_use; eauto; simpl; auto);
+ apply H2 in HPle1; inv HPle1
+ end.
+ Ltac solve_cond :=
+ match goal with
+ | H : context[match _ with _ => _ end] |- _ => repeat (unfold_merge H)
+ | H : ?f = _ |- context[boolToValue ?f] => rewrite H; solve [auto]
+ | H : Values.Vptr _ _ = Registers.Regmap.get ?r ?rs,
+ H2 : Registers.Regmap.get ?r ?rs = Values.Vint _ |- _ =>
+ rewrite H2 in H; discriminate
+ | H : Values.Vundef = Registers.Regmap.get ?r ?rs,
+ H2 : Registers.Regmap.get ?r ?rs = Values.Vint _ |- _ =>
+ rewrite H2 in H; discriminate
+ | H : Values.Vint _ = Registers.Regmap.get ?r ?rs,
+ H2 : Registers.Regmap.get ?r ?rs = Values.Vundef |- _ =>
+ rewrite H2 in H; discriminate
+ | H : Values.Vint _ = Registers.Regmap.get ?r ?rs,
+ H2 : Registers.Regmap.get ?r ?rs = Values.Vtrue |- _ =>
+ rewrite H2 in H; discriminate
+ | H : Values.Vint _ = Registers.Regmap.get ?r ?rs,
+ H2 : Registers.Regmap.get ?r ?rs = Values.Vfalse |- _ =>
+ rewrite H2 in H; discriminate
+ | H : Values.Vint _ = Registers.Regmap.get ?r ?rs,
+ H2 : Registers.Regmap.get ?r ?rs = Values.Vptr _ _ |- _ =>
+ rewrite H2 in H; discriminate
+ | H : Values.Vundef = Registers.Regmap.get ?r ?rs,
+ H2 : Registers.Regmap.get ?r ?rs = Values.Vptr _ _ |- _ =>
+ rewrite H2 in H; discriminate
+ | H : Values.Vundef = Registers.Regmap.get ?r ?rs,
+ H2 : Registers.Regmap.get ?r ?rs = Values.Vtrue |- _ =>
+ rewrite H2 in H; discriminate
+ | H : Values.Vundef = Registers.Regmap.get ?r ?rs,
+ H2 : Registers.Regmap.get ?r ?rs = Values.Vfalse |- _ =>
+ rewrite H2 in H; discriminate
+ | H : Values.Vptr _ _ = Registers.Regmap.get ?r ?rs,
+ H2 : Registers.Regmap.get ?r ?rs = Values.Vundef |- _ =>
+ rewrite H2 in H; discriminate
+ | H : Values.Vptr _ _ = Registers.Regmap.get ?r ?rs,
+ H2 : Registers.Regmap.get ?r ?rs = Values.Vtrue |- _ =>
+ rewrite H2 in H; discriminate
+ | H : Values.Vptr _ _ = Registers.Regmap.get ?r ?rs,
+ H2 : Registers.Regmap.get ?r ?rs = Values.Vfalse |- _ =>
+ rewrite H2 in H; discriminate
+ | |- context[val_value_lessdef Values.Vundef _] =>
+ econstructor; split; econstructor; econstructor; auto; solve [constructor]
+ | H1 : Registers.Regmap.get ?r ?rs = Values.Vint _,
+ H2 : Values.Vint _ = Registers.Regmap.get ?r ?rs,
+ H3 : Registers.Regmap.get ?r0 ?rs = Values.Vint _,
+ H4 : Values.Vint _ = Registers.Regmap.get ?r0 ?rs|- _ =>
+ rewrite H1 in H2; rewrite H3 in H4; inv H2; inv H4; unfold valueToInt in *; constructor
+ | H1 : Registers.Regmap.get ?r ?rs = Values.Vptr _ _,
+ H2 : Values.Vptr _ _ = Registers.Regmap.get ?r ?rs,
+ H3 : Registers.Regmap.get ?r0 ?rs = Values.Vptr _ _,
+ H4 : Values.Vptr _ _ = Registers.Regmap.get ?r0 ?rs|- _ =>
+ rewrite H1 in H2; rewrite H3 in H4; inv H2; inv H4; unfold valueToInt in *; constructor;
+ unfold Ptrofs.ltu, Int.ltu in *; unfold Ptrofs.of_int in *;
+ repeat (rewrite Ptrofs.unsigned_repr in *; auto using Int.unsigned_range_2)
+ | H : _ :: _ = _ :: _ |- _ => inv H
+ | H : ret _ _ = OK _ _ _ |- _ => inv H
+ | |- _ =>
+ eexists; split; [ econstructor; econstructor; auto
+ | simplify; inv_lessdef; repeat (unfold valueToPtr, valueToInt in *; solve_cond);
+ unfold valueToPtr in *
+ ]
+ end.
+
+ Lemma eval_cond_correct :
+ forall stk f sp pc rs m res ml st asr asa e b f' s s' args i cond,
+ match_states (RTL.State stk f sp pc rs m) (HTL.State res ml st asr asa) ->
+ (forall v, In v args -> Ple v (RTL.max_reg_function f)) ->
+ Op.eval_condition cond (map (fun r : positive => Registers.Regmap.get r rs) args) m = Some b ->
+ translate_condition cond args s = OK e s' i ->
+ Verilog.expr_runp f' asr asa e (boolToValue b).
+ Proof.
+ intros stk f sp pc rs m res ml st asr asa e b f' s s' args i cond MSTATE MAX_FUN EVAL TR_INSTR.
+ pose proof MSTATE as MSTATE_2. inv MSTATE.
+ inv MASSOC. unfold translate_condition, translate_comparison,
+ translate_comparisonu, translate_comparison_imm,
+ translate_comparison_immu in TR_INSTR;
+ repeat unfold_match TR_INSTR; try inv TR_INSTR; simplify_val;
+ unfold Values.Val.cmp_bool, Values.Val.of_optbool, bop, Values.Val.cmpu_bool,
+ Int.cmpu in *;
+ repeat unfold_match EVAL.
+ - repeat econstructor. repeat unfold_match Heqo. simplify_val.
+ pose proof (MAX_FUN p) as MAX_FUN_P. apply H in MAX_FUN_P; auto.
+ pose proof (MAX_FUN p0) as MAX_FUN_P0. apply H in MAX_FUN_P0; auto.
+ inv MAX_FUN_P; inv MAX_FUN_P0; solve_cond.
+ - repeat econstructor. repeat unfold_match Heqo. simplify_val.
+ pose proof (MAX_FUN p) as MAX_FUN_P. apply H in MAX_FUN_P; auto.
+ pose proof (MAX_FUN p0) as MAX_FUN_P0. apply H in MAX_FUN_P0; auto.
+ inv MAX_FUN_P; inv MAX_FUN_P0; solve_cond.
+ - repeat econstructor. repeat unfold_match Heqo. simplify_val.
+ pose proof (MAX_FUN p) as MAX_FUN_P. apply H in MAX_FUN_P; auto.
+ pose proof (MAX_FUN p0) as MAX_FUN_P0. apply H in MAX_FUN_P0; auto.
+ inv MAX_FUN_P; inv MAX_FUN_P0; solve_cond.
+ - repeat econstructor. repeat unfold_match Heqo. simplify_val.
+ pose proof (MAX_FUN p) as MAX_FUN_P. apply H in MAX_FUN_P; auto.
+ pose proof (MAX_FUN p0) as MAX_FUN_P0. apply H in MAX_FUN_P0; auto.
+ inv MAX_FUN_P; inv MAX_FUN_P0; solve_cond.
+ - repeat econstructor. repeat unfold_match Heqo. simplify_val.
+ pose proof (MAX_FUN p) as MAX_FUN_P. apply H in MAX_FUN_P; auto.
+ pose proof (MAX_FUN p0) as MAX_FUN_P0. apply H in MAX_FUN_P0; auto.
+ inv MAX_FUN_P; inv MAX_FUN_P0; solve_cond.
+ - repeat econstructor. repeat unfold_match Heqo. simplify_val.
+ pose proof (MAX_FUN p) as MAX_FUN_P. apply H in MAX_FUN_P; auto.
+ pose proof (MAX_FUN p0) as MAX_FUN_P0. apply H in MAX_FUN_P0; auto.
+ inv MAX_FUN_P; inv MAX_FUN_P0; solve_cond.
+ - repeat econstructor. repeat unfold_match Heqo; simplify_val.
+ pose proof (MAX_FUN p) as MAX_FUN_P. apply H in MAX_FUN_P; auto.
+ pose proof (MAX_FUN p0) as MAX_FUN_P0. apply H in MAX_FUN_P0; auto.
+ inv MAX_FUN_P; inv MAX_FUN_P0; solve_cond.
+ - repeat econstructor. repeat unfold_match Heqo; simplify_val.
+ pose proof (MAX_FUN p) as MAX_FUN_P. apply H in MAX_FUN_P; auto.
+ pose proof (MAX_FUN p0) as MAX_FUN_P0. apply H in MAX_FUN_P0; auto.
+ inv MAX_FUN_P; inv MAX_FUN_P0; try solve_cond. simplify_val.
+ rewrite Heqv0 in H3. rewrite Heqv in H2. inv H2. inv H3.
+ unfold Ptrofs.ltu. unfold Int.ltu.
+ rewrite Ptrofs.unsigned_repr by apply Int.unsigned_range_2.
+ rewrite Ptrofs.unsigned_repr by apply Int.unsigned_range_2. auto.
+ - repeat econstructor. unfold Verilog.binop_run.
+ pose proof (MAX_FUN p) as MAX_FUN_P. apply H in MAX_FUN_P; auto.
+ pose proof (MAX_FUN p0) as MAX_FUN_P0. apply H in MAX_FUN_P0; auto.
+ inv MAX_FUN_P; inv MAX_FUN_P0; simplify_val; solve_cond.
+ - repeat econstructor. simplify_val.
+ pose proof (MAX_FUN p) as MAX_FUN_P. apply H in MAX_FUN_P; auto.
+ pose proof (MAX_FUN p0) as MAX_FUN_P0. apply H in MAX_FUN_P0; auto.
+ inv MAX_FUN_P; inv MAX_FUN_P0; try solve_cond. simplify_val.
+ rewrite Heqv0 in H3. rewrite Heqv in H2. inv H2. inv H3.
+ unfold Ptrofs.ltu. unfold Int.ltu.
+ rewrite Ptrofs.unsigned_repr by apply Int.unsigned_range_2.
+ rewrite Ptrofs.unsigned_repr by apply Int.unsigned_range_2. auto.
+ - repeat econstructor. unfold Verilog.binop_run.
+ pose proof (MAX_FUN p) as MAX_FUN_P. apply H in MAX_FUN_P; auto.
+ pose proof (MAX_FUN p0) as MAX_FUN_P0. apply H in MAX_FUN_P0; auto.
+ inv MAX_FUN_P; inv MAX_FUN_P0; simplify_val; solve_cond.
+ - repeat econstructor. simplify_val.
+ pose proof (MAX_FUN p) as MAX_FUN_P. apply H in MAX_FUN_P; auto.
+ pose proof (MAX_FUN p0) as MAX_FUN_P0. apply H in MAX_FUN_P0; auto.
+ inv MAX_FUN_P; inv MAX_FUN_P0; try solve_cond. simplify_val.
+ rewrite Heqv0 in H3. rewrite Heqv in H2. inv H2. inv H3.
+ unfold Ptrofs.ltu. unfold Int.ltu.
+ rewrite Ptrofs.unsigned_repr by apply Int.unsigned_range_2.
+ rewrite Ptrofs.unsigned_repr by apply Int.unsigned_range_2. auto.
+ - repeat econstructor. unfold Verilog.binop_run.
+ pose proof (MAX_FUN p) as MAX_FUN_P. apply H in MAX_FUN_P; auto.
+ pose proof (MAX_FUN p0) as MAX_FUN_P0. apply H in MAX_FUN_P0; auto.
+ inv MAX_FUN_P; inv MAX_FUN_P0; simplify_val; solve_cond.
+ - repeat econstructor. simplify_val.
+ pose proof (MAX_FUN p) as MAX_FUN_P. apply H in MAX_FUN_P; auto.
+ pose proof (MAX_FUN p0) as MAX_FUN_P0. apply H in MAX_FUN_P0; auto.
+ inv MAX_FUN_P; inv MAX_FUN_P0; try solve_cond. simplify_val.
+ rewrite Heqv0 in H3. rewrite Heqv in H2. inv H2. inv H3.
+ unfold Ptrofs.ltu. unfold Int.ltu.
+ rewrite Ptrofs.unsigned_repr by apply Int.unsigned_range_2.
+ rewrite Ptrofs.unsigned_repr by apply Int.unsigned_range_2. auto.
+ - repeat econstructor. simplify_val.
+ pose proof (MAX_FUN p) as MAX_FUN_P. apply H in MAX_FUN_P; auto.
+ inv MAX_FUN_P; simplify_val; try solve_cond.
+ rewrite Heqv in H0. inv H0. auto.
+ - repeat econstructor. simplify_val.
+ pose proof (MAX_FUN p) as MAX_FUN_P. apply H in MAX_FUN_P; auto.
+ inv MAX_FUN_P; simplify_val; try solve_cond.
+ rewrite Heqv in H0. inv H0. auto.
+ - repeat econstructor. simplify_val.
+ pose proof (MAX_FUN p) as MAX_FUN_P. apply H in MAX_FUN_P; auto.
+ inv MAX_FUN_P; simplify_val; try solve_cond.
+ rewrite Heqv in H0. inv H0. auto.
+ - repeat econstructor. simplify_val.
+ pose proof (MAX_FUN p) as MAX_FUN_P. apply H in MAX_FUN_P; auto.
+ inv MAX_FUN_P; simplify_val; try solve_cond.
+ rewrite Heqv in H0. inv H0. auto.
+ - repeat econstructor. simplify_val.
+ pose proof (MAX_FUN p) as MAX_FUN_P. apply H in MAX_FUN_P; auto.
+ inv MAX_FUN_P; simplify_val; try solve_cond.
+ rewrite Heqv in H0. inv H0. auto.
+ - repeat econstructor. simplify_val.
+ pose proof (MAX_FUN p) as MAX_FUN_P. apply H in MAX_FUN_P; auto.
+ inv MAX_FUN_P; simplify_val; try solve_cond.
+ rewrite Heqv in H0. inv H0. auto.
+ - repeat econstructor. simplify_val.
+ pose proof (MAX_FUN p) as MAX_FUN_P. apply H in MAX_FUN_P; auto.
+ inv MAX_FUN_P; simplify_val; try solve_cond.
+ rewrite Heqv in H0. inv H0. auto.
+ - repeat econstructor. simplify_val.
+ pose proof (MAX_FUN p) as MAX_FUN_P. apply H in MAX_FUN_P; auto.
+ inv MAX_FUN_P; simplify_val; try solve_cond.
+ rewrite Heqv in H0. inv H0. auto.
+ - repeat econstructor. simplify_val.
+ pose proof (MAX_FUN p) as MAX_FUN_P. apply H in MAX_FUN_P; auto.
+ inv MAX_FUN_P; simplify_val; try solve_cond.
+ rewrite Heqv in H0. inv H0. auto.
+ - repeat econstructor. simplify_val.
+ pose proof (MAX_FUN p) as MAX_FUN_P. apply H in MAX_FUN_P; auto.
+ inv MAX_FUN_P; simplify_val; try solve_cond.
+ rewrite Heqv in H0. inv H0. auto.
+ Qed.
+
+ Lemma eval_cond_correct' :
+ forall e stk f sp pc rs m res ml st asr asa v f' s s' args i cond,
+ match_states (RTL.State stk f sp pc rs m) (HTL.State res ml st asr asa) ->
+ (forall v, In v args -> Ple v (RTL.max_reg_function f)) ->
+ Values.Val.of_optbool None = v ->
+ translate_condition cond args s = OK e s' i ->
+ exists v', Verilog.expr_runp f' asr asa e v' /\ val_value_lessdef v v'.
+ intros e stk f sp pc rs m res ml st asr asa v f' s s' args i cond MSTATE MAX_FUN EVAL TR_INSTR.
+ unfold translate_condition, translate_comparison, translate_comparisonu,
+ translate_comparison_imm, translate_comparison_immu, bop, boplit in *.
+ repeat unfold_match TR_INSTR; inv TR_INSTR; repeat econstructor.
+ Qed.
+
+ Lemma eval_correct :
+ forall s sp op rs m v e asr asa f f' stk s' i pc res0 pc' args res ml st,
+ match_states (RTL.State stk f sp pc rs m) (HTL.State res ml st asr asa) ->
+ (RTL.fn_code f) ! pc = Some (RTL.Iop op args res0 pc') ->
+ Op.eval_operation ge sp op
+ (List.map (fun r : BinNums.positive => Registers.Regmap.get r rs) args) m = Some v ->
+ translate_instr op args s = OK e s' i ->
+ exists v', Verilog.expr_runp f' asr asa e v' /\ val_value_lessdef v v'.
+ Proof.
+ intros s sp op rs m v e asr asa f f' stk s' i pc pc' res0 args res ml st MSTATE INSTR EVAL TR_INSTR.
+ pose proof MSTATE as MSTATE_2. inv MSTATE.
+ inv MASSOC. unfold translate_instr in TR_INSTR; repeat (unfold_match TR_INSTR); inv TR_INSTR;
+ unfold Op.eval_operation in EVAL; repeat (unfold_match EVAL); inv EVAL;
+ repeat (simplify; eval_correct_tac; unfold valueToInt in *).
+ - pose proof Integers.Ptrofs.agree32_sub as H2; unfold Integers.Ptrofs.agree32 in H2.
+ unfold Ptrofs.of_int. simpl.
+ apply ptrofs_inj. assert (Archi.ptr64 = false) by auto. eapply H2 in H3.
+ rewrite Ptrofs.unsigned_repr. apply H3. replace Ptrofs.max_unsigned with Int.max_unsigned; auto.
+ apply Int.unsigned_range_2.
+ auto. rewrite Ptrofs.unsigned_repr. replace Ptrofs.max_unsigned with Int.max_unsigned; auto.
+ apply Int.unsigned_range_2. rewrite Ptrofs.unsigned_repr. auto.
+ replace Ptrofs.max_unsigned with Int.max_unsigned; auto.
+ apply Int.unsigned_range_2.
+ - pose proof Integers.Ptrofs.agree32_sub as AGR; unfold Integers.Ptrofs.agree32 in AGR.
+ assert (ARCH: Archi.ptr64 = false) by auto. eapply AGR in ARCH.
+ apply int_inj. unfold Ptrofs.to_int. rewrite Int.unsigned_repr.
+ apply ARCH. pose proof Ptrofs.unsigned_range_2.
+ replace Ptrofs.max_unsigned with Int.max_unsigned; auto.
+ pose proof Ptrofs.agree32_of_int. unfold Ptrofs.agree32 in H2.
+ eapply H2 in ARCH. apply ARCH.
+ pose proof Ptrofs.agree32_of_int. unfold Ptrofs.agree32 in H2.
+ eapply H2 in ARCH. apply ARCH.
+ - rewrite H0 in Heqb. rewrite H1 in Heqb. discriminate.
+ - rewrite Heqb in Heqb0. discriminate.
+ - rewrite H0 in Heqb. rewrite H1 in Heqb. discriminate.
+ - rewrite Heqb in Heqb0. discriminate.
+ (*- unfold Int.ror. unfold Int.or. unfold Int.shru, Int.shl, Int.sub. unfold intToValue. unfold Int.modu,
+ repeat (rewrite Int.unsigned_repr). auto.*)
+ - unfold Op.eval_addressing32 in *. repeat (unfold_match H2); inv H2.
+ + unfold translate_eff_addressing in *. repeat (unfold_match H1).
+ destruct v0; inv Heql; rewrite H2; inv H1; repeat eval_correct_tac.
+ pose proof Integers.Ptrofs.agree32_add as AGR; unfold Integers.Ptrofs.agree32 in AGR. unfold ZToValue.
+ apply ptrofs_inj. unfold Ptrofs.of_int. rewrite Ptrofs.unsigned_repr.
+ apply AGR. auto. rewrite H2 in H0. inv H0. unfold valueToPtr. unfold Ptrofs.of_int.
+ rewrite Ptrofs.unsigned_repr. auto. replace Ptrofs.max_unsigned with Int.max_unsigned by auto.
+ apply Int.unsigned_range_2.
+ rewrite Ptrofs.unsigned_repr. auto. replace Ptrofs.max_unsigned with Int.max_unsigned by auto.
+ apply Int.unsigned_range_2.
+ replace Ptrofs.max_unsigned with Int.max_unsigned by auto.
+ apply Int.unsigned_range_2.
+ + unfold translate_eff_addressing in *. repeat (unfold_match H1). inv H1.
+ inv Heql. unfold boplitz. repeat (simplify; eval_correct_tac).
+ all: repeat (unfold_match Heqv).
+ * inv Heqv. unfold valueToInt in *. inv H2. inv H0. unfold valueToInt in *. trivial.
+ * constructor. unfold valueToPtr, ZToValue in *.
+ pose proof Integers.Ptrofs.agree32_add as AGR; unfold Integers.Ptrofs.agree32 in AGR. unfold ZToValue.
+ apply ptrofs_inj. unfold Ptrofs.of_int. rewrite Ptrofs.unsigned_repr.
+ apply AGR. auto. inv Heqv. rewrite Int.add_commut.
+ apply AGR. auto. inv H1. inv H0. unfold valueToPtr. unfold Ptrofs.of_int.
+ rewrite Ptrofs.unsigned_repr. auto. replace Ptrofs.max_unsigned with Int.max_unsigned by auto.
+ apply Int.unsigned_range_2.
+ unfold Ptrofs.of_int.
+ rewrite Ptrofs.unsigned_repr. inv H0. auto. replace Ptrofs.max_unsigned with Int.max_unsigned by auto.
+ apply Int.unsigned_range_2.
+ rewrite Ptrofs.unsigned_repr. auto. replace Ptrofs.max_unsigned with Int.max_unsigned by auto.
+ apply Int.unsigned_range_2.
+ apply Int.unsigned_range_2.
+ * constructor. unfold valueToPtr, ZToValue in *.
+ pose proof Integers.Ptrofs.agree32_add as AGR; unfold Integers.Ptrofs.agree32 in AGR. unfold ZToValue.
+ apply ptrofs_inj. unfold Ptrofs.of_int. rewrite Ptrofs.unsigned_repr.
+ apply AGR. auto. inv Heqv.
+ apply AGR. auto. inv H0. unfold valueToPtr, Ptrofs.of_int. rewrite Ptrofs.unsigned_repr. auto.
+ replace Ptrofs.max_unsigned with Int.max_unsigned by auto.
+ apply Int.unsigned_range_2.
+ inv H1. unfold valueToPtr, Ptrofs.of_int. rewrite Ptrofs.unsigned_repr. auto.
+ replace Ptrofs.max_unsigned with Int.max_unsigned by auto.
+ apply Int.unsigned_range_2.
+ rewrite Ptrofs.unsigned_repr. auto.
+ replace Ptrofs.max_unsigned with Int.max_unsigned by auto.
+ apply Int.unsigned_range_2. apply Int.unsigned_range_2.
+ + unfold translate_eff_addressing in *. repeat (unfold_match H1). inv H1.
+ inv Heql. unfold boplitz. repeat (simplify; eval_correct_tac).
+ all: repeat (unfold_match Heqv).
+ * unfold Values.Val.mul in Heqv. repeat (unfold_match Heqv). inv Heqv. inv H3.
+ unfold valueToInt, ZToValue. auto.
+ * unfold Values.Val.mul in Heqv. repeat (unfold_match Heqv).
+ * unfold Values.Val.mul in Heqv. repeat (unfold_match Heqv).
+ * constructor. unfold valueToPtr, ZToValue. unfold Values.Val.mul in Heqv. repeat (unfold_match Heqv).
+ + unfold translate_eff_addressing in *. repeat (unfold_match H1). inv H1.
+ inv Heql. unfold boplitz. repeat (simplify; eval_correct_tac).
+ all: repeat (unfold_match Heqv).
+ unfold valueToPtr, ZToValue.
+ repeat unfold_match Heqv0. unfold Values.Val.mul in Heqv1. repeat unfold_match Heqv1.
+ inv Heqv1. inv Heqv0. unfold valueToInt in *.
+ assert (HPle1 : Ple r0 (RTL.max_reg_function f)) by (eapply RTL.max_reg_function_use; eauto; simpl; auto).
+ apply H in HPle1. inv HPle1. unfold valueToInt in *. rewrite Heqv2 in H2. inv H2. auto.
+ rewrite Heqv2 in H2. inv H2.
+ rewrite Heqv2 in H3. discriminate.
+ repeat unfold_match Heqv0. unfold Values.Val.mul in Heqv1. repeat unfold_match Heqv1.
+ repeat unfold_match Heqv0. unfold Values.Val.mul in Heqv1. repeat unfold_match Heqv1.
+ constructor. unfold valueToPtr, ZToValue. inv Heqv0. inv Heqv1.
+ assert (HPle1 : Ple r0 (RTL.max_reg_function f)) by (eapply RTL.max_reg_function_use; eauto; simpl; auto).
+ apply H in HPle1. inv HPle1. unfold valueToInt in *. rewrite Heqv2 in H3. inv H3.
+
+ pose proof Integers.Ptrofs.agree32_add as AGR; unfold Integers.Ptrofs.agree32 in AGR. unfold ZToValue.
+ apply ptrofs_inj. unfold Ptrofs.of_int. rewrite Ptrofs.unsigned_repr.
+ apply AGR. auto. inv H2. unfold valueToPtr, Ptrofs.of_int. rewrite Ptrofs.unsigned_repr. auto.
+ replace Ptrofs.max_unsigned with Int.max_unsigned by auto. apply Int.unsigned_range_2.
+ apply Ptrofs.unsigned_repr. apply Int.unsigned_range_2. apply Int.unsigned_range_2.
+
+ rewrite Heqv2 in H3. inv H3.
+
+ rewrite Heqv2 in H4. inv H4.
+ + unfold translate_eff_addressing in *. repeat (unfold_match H1). inv H1.
+ inv Heql. unfold boplitz. repeat (simplify; eval_correct_tac).
+ all: repeat (unfold_match Heqv).
+ eexists. split. constructor.
+ constructor. unfold valueToPtr, ZToValue. rewrite Ptrofs.add_zero_l. unfold Ptrofs.of_int.
+ rewrite Int.unsigned_repr. symmetry. apply Ptrofs.repr_unsigned.
+ unfold check_address_parameter_unsigned in *. apply Ptrofs.unsigned_range_2.
+ - destruct (Op.eval_condition cond (map (fun r : positive => Registers.Regmap.get r rs) args) m) eqn:EQ.
+ + exploit eval_cond_correct; eauto. intros. eapply RTL.max_reg_function_use. apply INSTR. auto.
+ intros. econstructor. econstructor. eassumption. unfold boolToValue, Values.Val.of_optbool.
+ destruct b; constructor; auto.
+ + eapply eval_cond_correct'; eauto. intros. eapply RTL.max_reg_function_use. apply INSTR. auto.
+ - monadInv H1.
+ destruct (Op.eval_condition c (map (fun r1 : positive => Registers.Regmap.get r1 rs) l0) m) eqn:EQN;
+ simplify. destruct b eqn:B.
+ + exploit eval_cond_correct; eauto. intros. eapply RTL.max_reg_function_use. apply INSTR.
+ simplify; tauto. intros.
+ econstructor. econstructor. eapply Verilog.erun_Vternary_true. eassumption. econstructor. auto.
+ auto. unfold Values.Val.normalize.
+ destruct (Registers.Regmap.get r rs) eqn:EQN2; constructor.
+ * assert (HPle1 : Ple r (RTL.max_reg_function f)) by (eapply RTL.max_reg_function_use; eauto; simpl; auto).
+ apply H in HPle1. inv HPle1. unfold valueToInt in H1. rewrite EQN2 in H1. inv H1. auto.
+ rewrite EQN2 in H1. discriminate. rewrite EQN2 in H2. discriminate.
+ * assert (HPle1 : Ple r (RTL.max_reg_function f)) by (eapply RTL.max_reg_function_use; eauto; simpl; auto).
+ apply H in HPle1. inv HPle1. rewrite EQN2 in H1. inv H1. rewrite EQN2 in H1. inv H1. auto.
+ rewrite EQN2 in H2. discriminate.
+ + exploit eval_cond_correct; eauto. intros. eapply RTL.max_reg_function_use. apply INSTR.
+ simplify; tauto. intros.
+ econstructor. econstructor. eapply Verilog.erun_Vternary_false. eassumption. econstructor. auto.
+ auto. unfold Values.Val.normalize.
+ destruct (Registers.Regmap.get r0 rs) eqn:EQN2; constructor.
+ * assert (HPle1 : Ple r0 (RTL.max_reg_function f)) by (eapply RTL.max_reg_function_use; eauto; simpl; auto).
+ apply H in HPle1. inv HPle1. unfold valueToInt in H1. rewrite EQN2 in H1. inv H1. auto.
+ rewrite EQN2 in H1. discriminate. rewrite EQN2 in H2. discriminate.
+ * assert (HPle1 : Ple r0 (RTL.max_reg_function f)) by (eapply RTL.max_reg_function_use; eauto; simpl; auto).
+ apply H in HPle1. inv HPle1. rewrite EQN2 in H1. inv H1. rewrite EQN2 in H1. inv H1. auto.
+ rewrite EQN2 in H2. discriminate.
+ + exploit eval_cond_correct'; eauto. intros. eapply RTL.max_reg_function_use. apply INSTR.
+ simplify; tauto. intros. inv H0. inv H1. destruct (Int.eq_dec x0 Int.zero).
+ econstructor. econstructor. eapply Verilog.erun_Vternary_false.
+ eassumption. econstructor. auto. subst. auto. constructor.
+ econstructor. econstructor. eapply Verilog.erun_Vternary_true.
+ eassumption. econstructor. auto. unfold valueToBool. pose proof n. apply Int.eq_false in n.
+ unfold uvalueToZ. unfold Int.eq in n. unfold zeq in *.
+ destruct (Int.unsigned x0 ==Z Int.unsigned Int.zero); try discriminate.
+ rewrite <- Z.eqb_neq in n0. rewrite Int.unsigned_zero in n0. rewrite n0. auto.
+ constructor.
+ Qed.
+
+ (** The proof of semantic preservation for the translation of instructions
+ is a simulation argument based on diagrams of the following form:
+<<
+ match_states
+ code st rs ---------------- State m st assoc
+ || |
+ || |
+ || |
+ \/ v
+ code st rs' --------------- State m st assoc'
+ match_states
+>>
+ where [tr_code c data control fin rtrn st] is assumed to hold.
+
+ The precondition and postcondition is that that should hold is [match_assocmaps rs assoc].
+ *)
+
+ Definition transl_instr_prop (instr : RTL.instruction) : Prop :=
+ forall m asr asa fin rtrn st stmt trans res,
+ tr_instr fin rtrn st (m.(HTL.mod_stk)) instr stmt trans ->
+ exists asr' asa',
+ HTL.step tge (HTL.State res m st asr asa) Events.E0 (HTL.State res m st asr' asa').
+
+ Opaque combine.
+
+ Ltac tac0 :=
+ match goal with
+ | [ |- context[Verilog.merge_arrs _ _] ] => unfold Verilog.merge_arrs
+ | [ |- context[Verilog.merge_arr] ] => unfold Verilog.merge_arr
+ | [ |- context[Verilog.merge_regs _ _] ] => unfold Verilog.merge_regs; crush; unfold_merge
+ | [ |- context[reg_stack_based_pointers] ] => unfold reg_stack_based_pointers; intros
+ | [ |- context[Verilog.arr_assocmap_set _ _ _ _] ] => unfold Verilog.arr_assocmap_set
+
+ | [ |- context[HTL.empty_stack] ] => unfold HTL.empty_stack
+
+ | [ |- context[_ # ?d <- _ ! ?d] ] => rewrite AssocMap.gss
+ | [ |- context[_ # ?d <- _ ! ?s] ] => rewrite AssocMap.gso
+ | [ |- context[(AssocMap.empty _) ! _] ] => rewrite AssocMap.gempty
+
+ | [ |- context[array_get_error _ (combine Verilog.merge_cell (arr_repeat None _) _)] ] =>
+ rewrite combine_lookup_first
+
+ | [ |- state_st_wf _ _ ] => unfold state_st_wf; inversion 1
+ | [ |- context[match_states _ _] ] => econstructor; auto
+ | [ |- match_arrs _ _ _ _ _ ] => econstructor; auto
+ | [ |- match_assocmaps _ _ _ # _ <- (posToValue _) ] =>
+ apply regs_lessdef_add_greater; [> unfold Plt; lia | assumption]
+
+ | [ H : ?asa ! ?r = Some _ |- Verilog.arr_assocmap_lookup ?asa ?r _ = Some _ ] =>
+ unfold Verilog.arr_assocmap_lookup; setoid_rewrite H; f_equal
+ | [ |- context[(AssocMap.combine _ _ _) ! _] ] =>
+ try (rewrite AssocMap.gcombine; [> | reflexivity])
+
+ | [ |- context[Registers.Regmap.get ?d (Registers.Regmap.set ?d _ _)] ] =>
+ rewrite Registers.Regmap.gss
+ | [ |- context[Registers.Regmap.get ?s (Registers.Regmap.set ?d _ _)] ] =>
+ let EQ := fresh "EQ" in
+ destruct (Pos.eq_dec s d) as [EQ|EQ];
+ [> rewrite EQ | rewrite Registers.Regmap.gso; auto]
+
+ | [ H : opt_val_value_lessdef _ _ |- _ ] => invert H
+ | [ H : context[Z.of_nat (Z.to_nat _)] |- _ ] => rewrite Z2Nat.id in H; [> solve crush |]
+ | [ H : _ ! _ = Some _ |- _] => setoid_rewrite H
+ end.
+
+ Ltac small_tac := repeat (crush_val; try array; try ptrofs); crush_val; auto.
+ Ltac big_tac := repeat (crush_val; try array; try ptrofs; try tac0); crush_val; auto.
+
+ Lemma transl_inop_correct:
+ forall (s : list RTL.stackframe) (f : RTL.function) (sp : Values.val) (pc : positive)
+ (rs : RTL.regset) (m : mem) (pc' : RTL.node),
+ (RTL.fn_code f) ! pc = Some (RTL.Inop pc') ->
+ forall R1 : HTL.state,
+ match_states (RTL.State s f sp pc rs m) R1 ->
+ exists R2 : HTL.state,
+ Smallstep.plus HTL.step tge R1 Events.E0 R2 /\ match_states (RTL.State s f sp pc' rs m) R2.
+ Proof.
+ intros s f sp pc rs m pc' H R1 MSTATE.
+ inv_state.
+
+ unfold match_prog in TRANSL.
+ econstructor.
+ split.
+ apply Smallstep.plus_one.
+ eapply HTL.step_module; eauto.
+ inv CONST; assumption.
+ inv CONST; assumption.
+ (* processing of state *)
+ econstructor.
+ crush.
+ econstructor.
+ econstructor.
+ econstructor.
+
+ all: invert MARR; big_tac.
+
+ inv CONST; constructor; simplify; rewrite AssocMap.gso; auto; lia.
+
+ Unshelve. exact tt.
+ Qed.
+ Hint Resolve transl_inop_correct : htlproof.
+
+ Lemma transl_iop_correct:
+ forall (s : list RTL.stackframe) (f : RTL.function) (sp : Values.val) (pc : positive)
+ (rs : Registers.Regmap.t Values.val) (m : mem) (op : Op.operation) (args : list Registers.reg)
+ (res0 : Registers.reg) (pc' : RTL.node) (v : Values.val),
+ (RTL.fn_code f) ! pc = Some (RTL.Iop op args res0 pc') ->
+ Op.eval_operation ge sp op (map (fun r : positive => Registers.Regmap.get r rs) args) m = Some v ->
+ forall R1 : HTL.state,
+ match_states (RTL.State s f sp pc rs m) R1 ->
+ exists R2 : HTL.state,
+ Smallstep.plus HTL.step tge R1 Events.E0 R2 /\
+ match_states (RTL.State s f sp pc' (Registers.Regmap.set res0 v rs) m) R2.
+ Proof.
+ intros s f sp pc rs m op args res0 pc' v H H0 R1 MSTATE.
+ inv_state. inv MARR.
+ exploit eval_correct; eauto. intros. inversion H1. inversion H2.
+ econstructor. split.
+ apply Smallstep.plus_one.
+ eapply HTL.step_module; eauto.
+ inv CONST. assumption.
+ inv CONST. assumption.
+ econstructor; simpl; trivial.
+ constructor; trivial.
+ econstructor; simpl; eauto.
+ simpl. econstructor. econstructor.
+ apply H5. simplify.
+
+ all: big_tac.
+
+ assert (HPle: Ple res0 (RTL.max_reg_function f))
+ by (eapply RTL.max_reg_function_def; eauto; simpl; auto).
+
+ unfold Ple in HPle. lia.
+ apply regs_lessdef_add_match. assumption.
+ apply regs_lessdef_add_greater. unfold Plt; lia. assumption.
+ assert (HPle: Ple res0 (RTL.max_reg_function f))
+ by (eapply RTL.max_reg_function_def; eauto; simpl; auto).
+ unfold Ple in HPle; lia.
+ eapply op_stack_based; eauto.
+ inv CONST. constructor; simplify. rewrite AssocMap.gso. rewrite AssocMap.gso.
+ assumption. lia.
+ assert (HPle: Ple res0 (RTL.max_reg_function f))
+ by (eapply RTL.max_reg_function_def; eauto; simpl; auto).
+ unfold Ple in HPle. lia.
+ rewrite AssocMap.gso. rewrite AssocMap.gso.
+ assumption. lia.
+ assert (HPle: Ple res0 (RTL.max_reg_function f))
+ by (eapply RTL.max_reg_function_def; eauto; simpl; auto).
+ unfold Ple in HPle. lia.
+ Unshelve. exact tt.
+ Qed.
+ Hint Resolve transl_iop_correct : htlproof.
+
+ Ltac tac :=
+ repeat match goal with
+ | [ _ : error _ _ = OK _ _ _ |- _ ] => discriminate
+ | [ _ : context[if (?x && ?y) then _ else _] |- _ ] =>
+ let EQ1 := fresh "EQ" in
+ let EQ2 := fresh "EQ" in
+ destruct x eqn:EQ1; destruct y eqn:EQ2; simpl in *
+ | [ _ : context[if ?x then _ else _] |- _ ] =>
+ let EQ := fresh "EQ" in
+ destruct x eqn:EQ; simpl in *
+ | [ H : ret _ _ = _ |- _ ] => invert H
+ | [ _ : context[match ?x with | _ => _ end] |- _ ] => destruct x
+ end.
+
+ Ltac inv_arr_access :=
+ match goal with
+ | [ _ : translate_arr_access ?chunk ?addr ?args _ _ = OK ?c _ _ |- _] =>
+ destruct c, chunk, addr, args; crush; tac; crush
+ end.
+
+ Lemma offset_expr_ok :
+ forall v z, (Z.to_nat
+ (Integers.Ptrofs.unsigned
+ (Integers.Ptrofs.divu
+ (Integers.Ptrofs.add (Integers.Ptrofs.repr (uvalueToZ v))
+ (Integers.Ptrofs.of_int (Integers.Int.repr z)))
+ (Integers.Ptrofs.repr 4)))
+ = valueToNat (Int.divu (Int.add v (ZToValue z)) (ZToValue 4))).
+ Proof.
+ simplify_val. unfold valueToNat. unfold Int.divu, Ptrofs.divu.
+ pose proof Integers.Ptrofs.agree32_add as AGR.
+ unfold Integers.Ptrofs.agree32 in AGR.
+ assert (Ptrofs.unsigned (Ptrofs.add (Ptrofs.repr (Int.unsigned v))
+ (Ptrofs.repr (Int.unsigned (Int.repr z)))) =
+ Int.unsigned (Int.add v (ZToValue z))).
+ apply AGR; auto.
+ apply Ptrofs.unsigned_repr. apply Int.unsigned_range_2.
+ apply Ptrofs.unsigned_repr. apply Int.unsigned_range_2.
+ rewrite H. replace (Ptrofs.unsigned (Ptrofs.repr 4)) with 4.
+ replace (Int.unsigned (ZToValue 4)) with 4.
+ pose proof Ptrofs.agree32_repr. unfold Ptrofs.agree32 in *.
+ rewrite H0. trivial. auto.
+ unfold ZToValue. symmetry. apply Int.unsigned_repr.
+ unfold_constants. lia.
+ unfold ZToValue. symmetry. apply Int.unsigned_repr.
+ unfold_constants. lia.
+ Qed.
+
+ Lemma offset_expr_ok_2 :
+ forall v0 v1 z0 z1,
+ (Z.to_nat
+ (Integers.Ptrofs.unsigned
+ (Integers.Ptrofs.divu
+ (Integers.Ptrofs.add (Integers.Ptrofs.repr (uvalueToZ v0))
+ (Integers.Ptrofs.of_int
+ (Integers.Int.add
+ (Integers.Int.mul (valueToInt v1) (Integers.Int.repr z1))
+ (Integers.Int.repr z0)))) (Ptrofs.repr 4))))
+ = valueToNat (Int.divu (Int.add (Int.add v0 (ZToValue z0))
+ (Int.mul v1 (ZToValue z1))) (ZToValue 4)).
+ intros. unfold ZToValue, valueToNat, valueToInt, Ptrofs.divu, Int.divu, Ptrofs.of_int.
+
+ assert (H : (Ptrofs.unsigned
+ (Ptrofs.add (Ptrofs.repr (uvalueToZ v0))
+ (Ptrofs.of_int (Int.add (Int.mul (valueToInt v1) (Int.repr z1)) (Int.repr z0)))) /
+ Ptrofs.unsigned (Ptrofs.repr 4))
+ = (Int.unsigned (Int.add (Int.add v0 (Int.repr z0)) (Int.mul v1 (Int.repr z1))) /
+ Int.unsigned (Int.repr 4))).
+ { unfold ZToValue, valueToNat, valueToInt, Ptrofs.divu, Int.divu, Ptrofs.of_int.
+ rewrite Ptrofs.unsigned_repr by (unfold_constants; lia).
+ rewrite Int.unsigned_repr by (unfold_constants; lia).
+
+ unfold Ptrofs.of_int. rewrite Int.add_commut.
+ pose proof Integers.Ptrofs.agree32_add as AGR. unfold Ptrofs.agree32 in *.
+ erewrite AGR.
+ 3: { unfold uvalueToZ. rewrite Ptrofs.unsigned_repr. trivial. apply Int.unsigned_range_2. }
+ 3: { rewrite Ptrofs.unsigned_repr. trivial. apply Int.unsigned_range_2. }
+ rewrite Int.add_assoc. trivial. auto.
+ }
+
+ rewrite <- H. auto.
+
+ Qed.
+
+ Lemma offset_expr_ok_3 :
+ forall OFFSET,
+ Z.to_nat (Ptrofs.unsigned (Ptrofs.divu OFFSET (Ptrofs.repr 4)))
+ = valueToNat (ZToValue (Ptrofs.unsigned OFFSET / 4)).
+ Proof. auto. Qed.
+
+ Lemma transl_iload_correct:
+ forall (s : list RTL.stackframe) (f : RTL.function) (sp : Values.val) (pc : positive)
+ (rs : Registers.Regmap.t Values.val) (m : mem) (chunk : AST.memory_chunk)
+ (addr : Op.addressing) (args : list Registers.reg) (dst : Registers.reg)
+ (pc' : RTL.node) (a v : Values.val),
+ (RTL.fn_code f) ! pc = Some (RTL.Iload chunk addr args dst pc') ->
+ Op.eval_addressing ge sp addr (map (fun r : positive => Registers.Regmap.get r rs) args) = Some a ->
+ Mem.loadv chunk m a = Some v ->
+ forall R1 : HTL.state,
+ match_states (RTL.State s f sp pc rs m) R1 ->
+ exists R2 : HTL.state,
+ Smallstep.plus HTL.step tge R1 Events.E0 R2 /\
+ match_states (RTL.State s f sp pc' (Registers.Regmap.set dst v rs) m) R2.
+ Proof.
+ intros s f sp pc rs m chunk addr args dst pc' a v H H0 H1 R1 MSTATE.
+ inv_state. inv_arr_access.
+
+ + (** Preamble *)
+ invert MARR. inv CONST. crush.
+
+ unfold Op.eval_addressing in H0.
+ destruct (Archi.ptr64) eqn:ARCHI; crush.
+
+ unfold reg_stack_based_pointers in RSBP.
+ pose proof (RSBP r0) as RSBPr0.
+
+ destruct (Registers.Regmap.get r0 rs) eqn:EQr0; crush.
+
+ rewrite ARCHI in H1. crush.
+ subst.
+
+ pose proof MASSOC as MASSOC'.
+ invert MASSOC'.
+ pose proof (H0 r0).
+ assert (HPler0 : Ple r0 (RTL.max_reg_function f))
+ by (eapply RTL.max_reg_function_use; eauto; crush; eauto).
+ apply H0 in HPler0.
+ invert HPler0; try congruence.
+ rewrite EQr0 in H11.
+ invert H11.
+
+ unfold check_address_parameter_signed in *;
+ unfold check_address_parameter_unsigned in *; crush.
+
+ remember (Integers.Ptrofs.add (Integers.Ptrofs.repr (uvalueToZ asr # r0))
+ (Integers.Ptrofs.of_int (Integers.Int.repr z))) as OFFSET.
+
+ (** Modular preservation proof *)
+ assert (Integers.Ptrofs.unsigned OFFSET mod 4 = 0) as MOD_PRESERVE.
+ { apply Mem.load_valid_access in H1. unfold Mem.valid_access in *. simplify.
+ apply Zdivide_mod. assumption. }
+
+ (** Read bounds proof *)
+ assert (Integers.Ptrofs.unsigned OFFSET < f.(RTL.fn_stacksize)) as READ_BOUND_HIGH.
+ { destruct (Integers.Ptrofs.unsigned OFFSET <? f.(RTL.fn_stacksize)) eqn:EQ; crush; auto.
+ unfold stack_bounds in BOUNDS.
+ exploit (BOUNDS (Integers.Ptrofs.unsigned OFFSET)); auto.
+ split; try lia; apply Integers.Ptrofs.unsigned_range_2.
+ small_tac. }
+
+ (** Normalisation proof *)
+ assert (Integers.Ptrofs.repr
+ (4 * Integers.Ptrofs.unsigned
+ (Integers.Ptrofs.divu OFFSET (Integers.Ptrofs.repr 4))) = OFFSET)
+ as NORMALISE.
+ { replace 4 with (Integers.Ptrofs.unsigned (Integers.Ptrofs.repr 4)) at 1 by reflexivity.
+ rewrite <- PtrofsExtra.mul_unsigned.
+ apply PtrofsExtra.mul_divu; crush; auto. }
+
+ (** Normalised bounds proof *)
+ assert (0 <=
+ Integers.Ptrofs.unsigned (Integers.Ptrofs.divu OFFSET (Integers.Ptrofs.repr 4))
+ < (RTL.fn_stacksize f / 4))
+ as NORMALISE_BOUND.
+ { split.
+ apply Integers.Ptrofs.unsigned_range_2.
+ assert (HDIV: forall x y, Integers.Ptrofs.divu x y = Integers.Ptrofs.divu x y ) by reflexivity.
+ unfold Integers.Ptrofs.divu at 2 in HDIV.
+ rewrite HDIV. clear HDIV.
+ rewrite Integers.Ptrofs.unsigned_repr; crush.
+ apply Zmult_lt_reg_r with (p := 4); try lia.
+ repeat rewrite ZLib.div_mul_undo; try lia.
+ apply Z.div_pos; small_tac.
+ apply Z.div_le_upper_bound; small_tac. }
+
+ inversion NORMALISE_BOUND as [ NORMALISE_BOUND_LOW NORMALISE_BOUND_HIGH ];
+ clear NORMALISE_BOUND.
+
+ (** Start of proof proper *)
+ eexists. split.
+ eapply Smallstep.plus_one.
+ eapply HTL.step_module; eauto.
+ econstructor. econstructor. econstructor. crush.
+ econstructor. econstructor. econstructor. crush.
+ econstructor. econstructor.
+ econstructor. econstructor. econstructor. econstructor.
+ econstructor. econstructor.
+
+ all: big_tac.
+
+ 1: {
+ assert (HPle : Ple dst (RTL.max_reg_function f)).
+ eapply RTL.max_reg_function_def. eassumption. auto.
+ apply ZExtra.Pge_not_eq. apply ZExtra.Ple_Plt_Succ. assumption.
+ }
+
+ 2: {
+ assert (HPle : Ple dst (RTL.max_reg_function f)).
+ eapply RTL.max_reg_function_def. eassumption. auto.
+ apply ZExtra.Pge_not_eq. apply ZExtra.Ple_Plt_Succ. assumption.
+ }
+
+ (** Match assocmaps *)
+ apply regs_lessdef_add_match; big_tac.
+
+ (** Equality proof *)
+ rewrite <- offset_expr_ok.
+
+ specialize (H9 (Integers.Ptrofs.unsigned
+ (Integers.Ptrofs.divu
+ OFFSET
+ (Integers.Ptrofs.repr 4)))).
+ exploit H9; big_tac.
+
+ (** RSBP preservation *)
+ unfold arr_stack_based_pointers in ASBP.
+ specialize (ASBP (Integers.Ptrofs.unsigned
+ (Integers.Ptrofs.divu OFFSET (Integers.Ptrofs.repr 4)))).
+ exploit ASBP; big_tac.
+ rewrite NORMALISE in H14. rewrite HeqOFFSET in H14. rewrite H1 in H14. assumption.
+ constructor; simplify. rewrite AssocMap.gso. rewrite AssocMap.gso.
+ assumption. lia.
+ assert (HPle: Ple dst (RTL.max_reg_function f))
+ by (eapply RTL.max_reg_function_def; eauto; simpl; auto).
+ unfold Ple in HPle. lia.
+ rewrite AssocMap.gso. rewrite AssocMap.gso.
+ assumption. lia.
+ assert (HPle: Ple dst (RTL.max_reg_function f))
+ by (eapply RTL.max_reg_function_def; eauto; simpl; auto).
+ unfold Ple in HPle. lia.
+ + (** Preamble *)
+ invert MARR. inv CONST. crush.
+
+ unfold Op.eval_addressing in H0.
+ destruct (Archi.ptr64) eqn:ARCHI; crush.
+
+ unfold reg_stack_based_pointers in RSBP.
+ pose proof (RSBP r0) as RSBPr0.
+ pose proof (RSBP r1) as RSBPr1.
+
+ destruct (Registers.Regmap.get r0 rs) eqn:EQr0;
+ destruct (Registers.Regmap.get r1 rs) eqn:EQr1; crush.
+
+ rewrite ARCHI in H1. crush.
+ subst.
+ clear RSBPr1.
+
+ pose proof MASSOC as MASSOC'.
+ invert MASSOC'.
+ pose proof (H0 r0).
+ pose proof (H0 r1).
+ assert (HPler0 : Ple r0 (RTL.max_reg_function f))
+ by (eapply RTL.max_reg_function_use; eauto; crush; eauto).
+ assert (HPler1 : Ple r1 (RTL.max_reg_function f))
+ by (eapply RTL.max_reg_function_use; eauto; simpl; auto).
+ apply H8 in HPler0.
+ apply H11 in HPler1.
+ invert HPler0; invert HPler1; try congruence.
+ rewrite EQr0 in H13.
+ rewrite EQr1 in H14.
+ invert H13. invert H14.
+ clear H0. clear H8. clear H11.
+
+ unfold check_address_parameter_signed in *;
+ unfold check_address_parameter_unsigned in *; crush.
+
+ remember (Integers.Ptrofs.add (Integers.Ptrofs.repr (uvalueToZ asr # r0))
+ (Integers.Ptrofs.of_int
+ (Integers.Int.add (Integers.Int.mul (valueToInt asr # r1) (Integers.Int.repr z))
+ (Integers.Int.repr z0)))) as OFFSET.
+
+ (** Modular preservation proof *)
+ assert (Integers.Ptrofs.unsigned OFFSET mod 4 = 0) as MOD_PRESERVE.
+ { apply Mem.load_valid_access in H1. unfold Mem.valid_access in *. simplify.
+ apply Zdivide_mod. assumption. }
+
+ (** Read bounds proof *)
+ assert (Integers.Ptrofs.unsigned OFFSET < f.(RTL.fn_stacksize)) as READ_BOUND_HIGH.
+ { destruct (Integers.Ptrofs.unsigned OFFSET <? f.(RTL.fn_stacksize)) eqn:EQ; crush; auto.
+ unfold stack_bounds in BOUNDS.
+ exploit (BOUNDS (Integers.Ptrofs.unsigned OFFSET)); auto.
+ split; try lia; apply Integers.Ptrofs.unsigned_range_2.
+ small_tac. }
+
+ (** Normalisation proof *)
+ assert (Integers.Ptrofs.repr
+ (4 * Integers.Ptrofs.unsigned
+ (Integers.Ptrofs.divu OFFSET (Integers.Ptrofs.repr 4))) = OFFSET)
+ as NORMALISE.
+ { replace 4 with (Integers.Ptrofs.unsigned (Integers.Ptrofs.repr 4)) at 1 by reflexivity.
+ rewrite <- PtrofsExtra.mul_unsigned.
+ apply PtrofsExtra.mul_divu; crush. }
+
+ (** Normalised bounds proof *)
+ assert (0 <=
+ Integers.Ptrofs.unsigned (Integers.Ptrofs.divu OFFSET (Integers.Ptrofs.repr 4))
+ < (RTL.fn_stacksize f / 4))
+ as NORMALISE_BOUND.
+ { split.
+ apply Integers.Ptrofs.unsigned_range_2.
+ assert (forall x y, Integers.Ptrofs.divu x y = Integers.Ptrofs.divu x y ) by reflexivity.
+ unfold Integers.Ptrofs.divu at 2 in H14.
+ rewrite H14. clear H14.
+ rewrite Integers.Ptrofs.unsigned_repr; crush.
+ apply Zmult_lt_reg_r with (p := 4); try lia.
+ repeat rewrite ZLib.div_mul_undo; try lia.
+ apply Z.div_pos; small_tac.
+ apply Z.div_le_upper_bound; lia. }
+
+ inversion NORMALISE_BOUND as [ NORMALISE_BOUND_LOW NORMALISE_BOUND_HIGH ];
+ clear NORMALISE_BOUND.
+
+ (** Start of proof proper *)
+ eexists. split.
+ eapply Smallstep.plus_one.
+ eapply HTL.step_module; eauto.
+ econstructor. econstructor. econstructor. crush.
+ econstructor. econstructor. econstructor. crush.
+ econstructor. econstructor. econstructor.
+ econstructor. econstructor. econstructor. econstructor.
+ econstructor. econstructor. auto. econstructor.
+ econstructor. econstructor. econstructor. econstructor.
+ all: big_tac.
+
+ 1: { assert (HPle : Ple dst (RTL.max_reg_function f)).
+ eapply RTL.max_reg_function_def. eassumption. auto.
+ apply ZExtra.Pge_not_eq. apply ZExtra.Ple_Plt_Succ. assumption. }
+
+ 2: { assert (HPle : Ple dst (RTL.max_reg_function f)).
+ eapply RTL.max_reg_function_def. eassumption. auto.
+ apply ZExtra.Pge_not_eq. apply ZExtra.Ple_Plt_Succ. assumption. }
+
+ (** Match assocmaps *)
+ apply regs_lessdef_add_match; big_tac.
+
+ (** Equality proof *)
+ rewrite <- offset_expr_ok_2.
+
+ specialize (H9 (Integers.Ptrofs.unsigned
+ (Integers.Ptrofs.divu
+ OFFSET
+ (Integers.Ptrofs.repr 4)))).
+ exploit H9; big_tac.
+
+ (** RSBP preservation *)
+ unfold arr_stack_based_pointers in ASBP.
+ specialize (ASBP (Integers.Ptrofs.unsigned
+ (Integers.Ptrofs.divu OFFSET (Integers.Ptrofs.repr 4)))).
+ exploit ASBP; big_tac.
+ rewrite NORMALISE in H14. rewrite HeqOFFSET in H14. rewrite H1 in H14. assumption.
+
+ constructor; simplify. rewrite AssocMap.gso. rewrite AssocMap.gso.
+ assumption. lia.
+ assert (HPle: Ple dst (RTL.max_reg_function f))
+ by (eapply RTL.max_reg_function_def; eauto; simpl; auto).
+ unfold Ple in HPle. lia.
+ rewrite AssocMap.gso. rewrite AssocMap.gso.
+ assumption. lia.
+ assert (HPle: Ple dst (RTL.max_reg_function f))
+ by (eapply RTL.max_reg_function_def; eauto; simpl; auto).
+ unfold Ple in HPle. lia.
+
+ + invert MARR. inv CONST. crush.
+
+ unfold Op.eval_addressing in H0.
+ destruct (Archi.ptr64) eqn:ARCHI; crush.
+ rewrite ARCHI in H0. crush.
+
+ unfold check_address_parameter_unsigned in *;
+ unfold check_address_parameter_signed in *; crush.
+
+ assert (Integers.Ptrofs.repr 0 = Integers.Ptrofs.zero) as ZERO by reflexivity.
+ rewrite ZERO in H1. clear ZERO.
+ rewrite Integers.Ptrofs.add_zero_l in H1.
+
+ remember i0 as OFFSET.
+
+ (** Modular preservation proof *)
+ assert (Integers.Ptrofs.unsigned OFFSET mod 4 = 0) as MOD_PRESERVE.
+ { apply Mem.load_valid_access in H1. unfold Mem.valid_access in *. simplify.
+ apply Zdivide_mod. assumption. }
+
+ (** Read bounds proof *)
+ assert (Integers.Ptrofs.unsigned OFFSET < f.(RTL.fn_stacksize)) as READ_BOUND_HIGH.
+ { destruct (Integers.Ptrofs.unsigned OFFSET <? f.(RTL.fn_stacksize)) eqn:?EQ; crush; auto.
+ unfold stack_bounds in BOUNDS.
+ exploit (BOUNDS (Integers.Ptrofs.unsigned OFFSET)); big_tac. }
+
+ (** Normalisation proof *)
+ assert (Integers.Ptrofs.repr
+ (4 * Integers.Ptrofs.unsigned
+ (Integers.Ptrofs.divu OFFSET (Integers.Ptrofs.repr 4))) = OFFSET)
+ as NORMALISE.
+ { replace 4 with (Integers.Ptrofs.unsigned (Integers.Ptrofs.repr 4)) at 1 by reflexivity.
+ rewrite <- PtrofsExtra.mul_unsigned.
+ apply PtrofsExtra.mul_divu; crush. }
+
+ (** Normalised bounds proof *)
+ assert (0 <=
+ Integers.Ptrofs.unsigned (Integers.Ptrofs.divu OFFSET (Integers.Ptrofs.repr 4))
+ < (RTL.fn_stacksize f / 4))
+ as NORMALISE_BOUND.
+ { split.
+ apply Integers.Ptrofs.unsigned_range_2.
+ assert (forall x y, Integers.Ptrofs.divu x y = Integers.Ptrofs.divu x y ) by reflexivity.
+ unfold Integers.Ptrofs.divu at 2 in H0.
+ rewrite H0. clear H0.
+ rewrite Integers.Ptrofs.unsigned_repr; crush.
+ apply Zmult_lt_reg_r with (p := 4); try lia.
+ repeat rewrite ZLib.div_mul_undo; try lia.
+ apply Z.div_pos; small_tac.
+ apply Z.div_le_upper_bound; lia. }
+
+ inversion NORMALISE_BOUND as [ NORMALISE_BOUND_LOW NORMALISE_BOUND_HIGH ];
+ clear NORMALISE_BOUND.
+
+ (** Start of proof proper *)
+ eexists. split.
+ eapply Smallstep.plus_one.
+ eapply HTL.step_module; eauto.
+ econstructor. econstructor. econstructor. crush.
+ econstructor. econstructor. econstructor. econstructor. crush.
+
+ all: big_tac.
+
+ 1: { assert (HPle : Ple dst (RTL.max_reg_function f)).
+ eapply RTL.max_reg_function_def. eassumption. auto.
+ apply ZExtra.Pge_not_eq. apply ZExtra.Ple_Plt_Succ. assumption. }
+
+ 2: { assert (HPle : Ple dst (RTL.max_reg_function f)).
+ eapply RTL.max_reg_function_def. eassumption. auto.
+ apply ZExtra.Pge_not_eq. apply ZExtra.Ple_Plt_Succ. assumption. }
+
+ (** Match assocmaps *)
+ apply regs_lessdef_add_match; big_tac.
+
+ (** Equality proof *)
+ rewrite <- offset_expr_ok_3.
+
+ specialize (H9 (Integers.Ptrofs.unsigned
+ (Integers.Ptrofs.divu
+ OFFSET
+ (Integers.Ptrofs.repr 4)))).
+ exploit H9; big_tac.
+
+ (** RSBP preservation *)
+ unfold arr_stack_based_pointers in ASBP.
+ specialize (ASBP (Integers.Ptrofs.unsigned
+ (Integers.Ptrofs.divu OFFSET (Integers.Ptrofs.repr 4)))).
+ exploit ASBP; big_tac.
+ rewrite NORMALISE in H0. rewrite H1 in H0. assumption.
+
+ constructor; simplify. rewrite AssocMap.gso. rewrite AssocMap.gso.
+ assumption. lia.
+ assert (HPle: Ple dst (RTL.max_reg_function f))
+ by (eapply RTL.max_reg_function_def; eauto; simpl; auto).
+ unfold Ple in HPle. lia.
+ rewrite AssocMap.gso. rewrite AssocMap.gso.
+ assumption. lia.
+ assert (HPle: Ple dst (RTL.max_reg_function f))
+ by (eapply RTL.max_reg_function_def; eauto; simpl; auto).
+ unfold Ple in HPle. lia.
+
+ Unshelve.
+ exact (Values.Vint (Int.repr 0)).
+ exact tt.
+ exact (Values.Vint (Int.repr 0)).
+ exact tt.
+ exact (Values.Vint (Int.repr 0)).
+ exact tt.
+ Qed.
+ Hint Resolve transl_iload_correct : htlproof.
+
+ Lemma transl_istore_correct:
+ forall (s : list RTL.stackframe) (f : RTL.function) (sp : Values.val) (pc : positive)
+ (rs : Registers.Regmap.t Values.val) (m : mem) (chunk : AST.memory_chunk)
+ (addr : Op.addressing) (args : list Registers.reg) (src : Registers.reg)
+ (pc' : RTL.node) (a : Values.val) (m' : mem),
+ (RTL.fn_code f) ! pc = Some (RTL.Istore chunk addr args src pc') ->
+ Op.eval_addressing ge sp addr (map (fun r : positive => Registers.Regmap.get r rs) args) = Some a ->
+ Mem.storev chunk m a (Registers.Regmap.get src rs) = Some m' ->
+ forall R1 : HTL.state,
+ match_states (RTL.State s f sp pc rs m) R1 ->
+ exists R2 : HTL.state,
+ Smallstep.plus HTL.step tge R1 Events.E0 R2 /\ match_states (RTL.State s f sp pc' rs m') R2.
+ Proof.
+ intros s f sp pc rs m chunk addr args src pc' a m' H H0 H1 R1 MSTATES.
+ inv_state. inv_arr_access.
+
+ + (** Preamble *)
+ invert MARR. inv CONST. crush.
+
+ unfold Op.eval_addressing in H0.
+ destruct (Archi.ptr64) eqn:ARCHI; crush.
+
+ unfold reg_stack_based_pointers in RSBP.
+ pose proof (RSBP r0) as RSBPr0.
+
+ destruct (Registers.Regmap.get r0 rs) eqn:EQr0; crush.
+
+ rewrite ARCHI in H1. crush.
+ subst.
+
+ pose proof MASSOC as MASSOC'.
+ invert MASSOC'.
+ pose proof (H0 r0).
+ assert (HPler0 : Ple r0 (RTL.max_reg_function f))
+ by (eapply RTL.max_reg_function_use; eauto; crush; eauto).
+ apply H8 in HPler0.
+ invert HPler0; try congruence.
+ rewrite EQr0 in H11.
+ invert H11.
+ clear H0. clear H8.
+
+ unfold check_address_parameter_unsigned in *;
+ unfold check_address_parameter_signed in *; crush.
+
+ remember (Integers.Ptrofs.add (Integers.Ptrofs.repr (uvalueToZ asr # r0))
+ (Integers.Ptrofs.of_int (Integers.Int.repr z))) as OFFSET.
+
+ (** Modular preservation proof *)
+ assert (Integers.Ptrofs.unsigned OFFSET mod 4 = 0) as MOD_PRESERVE.
+ { apply Mem.store_valid_access_3 in H1. unfold Mem.valid_access in *. simplify.
+ apply Zdivide_mod. assumption. }
+
+ (** Write bounds proof *)
+ assert (Integers.Ptrofs.unsigned OFFSET < f.(RTL.fn_stacksize)) as WRITE_BOUND_HIGH.
+ { destruct (Integers.Ptrofs.unsigned OFFSET <? f.(RTL.fn_stacksize)) eqn:EQ; crush; auto.
+ unfold stack_bounds in BOUNDS.
+ exploit (BOUNDS (Integers.Ptrofs.unsigned OFFSET) (Registers.Regmap.get src rs)); big_tac.
+ apply Integers.Ptrofs.unsigned_range_2. }
+
+ (** Start of proof proper *)
+ eexists. split.
+ eapply Smallstep.plus_one.
+ eapply HTL.step_module; eauto.
+ econstructor. econstructor. econstructor.
+ eapply Verilog.stmnt_runp_Vnonblock_arr. crush.
+ econstructor.
+ econstructor.
+ econstructor.
+ econstructor. econstructor. econstructor. econstructor.
+ econstructor. econstructor. econstructor. econstructor.
+
+ all: crush.
+
+ (** State Lookup *)
+ unfold Verilog.merge_regs.
+ crush.
+ unfold_merge.
+ apply AssocMap.gss.
+
+ (** Match states *)
+ econstructor; eauto.
+
+ (** Match assocmaps *)
+ unfold Verilog.merge_regs. crush. unfold_merge.
+ apply regs_lessdef_add_greater.
+ unfold Plt; lia.
+ assumption.
+
+ (** States well formed *)
+ unfold state_st_wf. inversion 1. crush.
+ unfold Verilog.merge_regs.
+ unfold_merge.
+ apply AssocMap.gss.
+
+ (** Equality proof *)
+
+ assert (Integers.Ptrofs.repr 0 = Integers.Ptrofs.zero) as ZERO by reflexivity.
+ inversion MASSOC; revert HeqOFFSET; subst; clear MASSOC; intros HeqOFFSET.
+
+ econstructor.
+ repeat split; crush.
+ unfold HTL.empty_stack.
+ crush.
+ unfold Verilog.merge_arrs.
+
+ rewrite AssocMap.gcombine.
+ 2: { reflexivity. }
+ unfold Verilog.arr_assocmap_set.
+ rewrite AssocMap.gss.
+ unfold Verilog.merge_arr.
+ rewrite AssocMap.gss.
+ setoid_rewrite H7.
+ reflexivity.
+
+ rewrite combine_length.
+ rewrite <- array_set_len.
+ unfold arr_repeat. crush.
+ apply list_repeat_len.
+
+ rewrite <- array_set_len.
+ unfold arr_repeat. crush.
+ rewrite list_repeat_len.
+ rewrite H4. reflexivity.
+
+ remember (Integers.Ptrofs.add (Integers.Ptrofs.repr (uvalueToZ asr # r0))
+ (Integers.Ptrofs.of_int (Integers.Int.repr z))) as OFFSET.
+
+ destruct (4 * ptr ==Z Integers.Ptrofs.unsigned OFFSET).
+
+ erewrite Mem.load_store_same.
+ 2: { rewrite ZERO.
+ rewrite Integers.Ptrofs.add_zero_l.
+ rewrite e.
+ rewrite Integers.Ptrofs.unsigned_repr.
+ rewrite HeqOFFSET.
+ exact H1.
+ apply Integers.Ptrofs.unsigned_range_2. }
+ constructor.
+ erewrite combine_lookup_second.
+ simplify.
+ assert (HPle : Ple src (RTL.max_reg_function f))
+ by (eapply RTL.max_reg_function_use; eauto; simpl; auto);
+ apply H11 in HPle.
+ destruct (Registers.Regmap.get src rs) eqn:EQ_SRC; constructor; invert HPle; eauto.
+
+ rewrite <- array_set_len.
+ unfold arr_repeat. crush.
+ rewrite list_repeat_len. auto.
+
+ assert (HMul : 4 * ptr / 4 = Integers.Ptrofs.unsigned OFFSET / 4) by (f_equal; assumption).
+ rewrite Z.mul_comm in HMul.
+ rewrite Z_div_mult in HMul; try lia.
+ replace 4 with (Integers.Ptrofs.unsigned (Integers.Ptrofs.repr 4)) in HMul by reflexivity.
+ rewrite <- PtrofsExtra.divu_unsigned in HMul; unfold_constants; try lia.
+ rewrite HMul. rewrite <- offset_expr_ok.
+ rewrite HeqOFFSET.
+ rewrite array_get_error_set_bound.
+ reflexivity.
+ unfold arr_length, arr_repeat. simpl.
+ rewrite list_repeat_len. rewrite HeqOFFSET in HMul. lia.
+
+ erewrite Mem.load_store_other with (m1 := m).
+ 2: { exact H1. }
+ 2: { right.
+ rewrite ZERO.
+ rewrite Integers.Ptrofs.add_zero_l.
+ rewrite Integers.Ptrofs.unsigned_repr.
+ simpl.
+ rewrite HeqOFFSET in *. simplify_val.
+ destruct (Z_le_gt_dec (4 * ptr + 4) (Integers.Ptrofs.unsigned OFFSET)); eauto.
+ rewrite HeqOFFSET in *. simplify_val.
+ left; auto.
+ rewrite HeqOFFSET in *. simplify_val.
+ right.
+ apply ZExtra.mod_0_bounds; try lia.
+ apply ZLib.Z_mod_mult'.
+ rewrite Z2Nat.id in H15; try lia.
+ apply Zmult_lt_compat_r with (p := 4) in H15; try lia.
+ rewrite ZLib.div_mul_undo in H15; try lia.
+ split; try lia.
+ apply Z.le_trans with (m := RTL.fn_stacksize f); crush; lia.
+ }
+
+ rewrite <- offset_expr_ok.
+ rewrite PtrofsExtra.divu_unsigned; auto; try (unfold_constants; lia).
+ destruct (ptr ==Z Integers.Ptrofs.unsigned OFFSET / 4).
+ apply Z.mul_cancel_r with (p := 4) in e; try lia.
+ rewrite ZLib.div_mul_undo in e; try lia.
+ rewrite combine_lookup_first.
+ eapply H9; eauto.
+
+ rewrite <- array_set_len.
+ unfold arr_repeat. crush.
+ rewrite list_repeat_len. auto.
+ rewrite array_gso.
+ unfold array_get_error.
+ unfold arr_repeat.
+ crush.
+ apply list_repeat_lookup.
+ lia.
+ unfold_constants.
+ intro.
+ apply Z2Nat.inj_iff in H13; rewrite HeqOFFSET in n0; try lia.
+ apply Z.div_pos; try lia.
+ apply Integers.Ptrofs.unsigned_range.
+ apply Integers.Ptrofs.unsigned_range_2.
+
+ assert (Integers.Ptrofs.repr 0 = Integers.Ptrofs.zero) as ZERO1 by reflexivity.
+ unfold arr_stack_based_pointers.
+ intros.
+ destruct (4 * ptr ==Z Integers.Ptrofs.unsigned OFFSET).
+
+ crush.
+ erewrite Mem.load_store_same.
+ 2: { rewrite ZERO1.
+ rewrite Integers.Ptrofs.add_zero_l.
+ rewrite e.
+ rewrite Integers.Ptrofs.unsigned_repr.
+ exact H1.
+ apply Integers.Ptrofs.unsigned_range_2. }
+ crush.
+ destruct (Registers.Regmap.get src rs) eqn:EQ_SRC; try constructor.
+ destruct (Archi.ptr64); try discriminate.
+ pose proof (RSBP src). rewrite EQ_SRC in H11.
+ assumption.
+
+ simpl.
+ erewrite Mem.load_store_other with (m1 := m).
+ 2: { exact H1. }
+ 2: { right.
+ rewrite ZERO1.
+ rewrite Integers.Ptrofs.add_zero_l.
+ rewrite Integers.Ptrofs.unsigned_repr.
+ simpl.
+ destruct (Z_le_gt_dec (4 * ptr + 4) (Integers.Ptrofs.unsigned OFFSET)); eauto.
+ rewrite HeqOFFSET in *. simplify_val.
+ left; auto.
+ rewrite HeqOFFSET in *. simplify_val.
+ right.
+ apply ZExtra.mod_0_bounds; try lia.
+ apply ZLib.Z_mod_mult'.
+ invert H11.
+ apply Zmult_lt_compat_r with (p := 4) in H14; try lia.
+ rewrite ZLib.div_mul_undo in H14; try lia.
+ split; try lia.
+ apply Z.le_trans with (m := RTL.fn_stacksize f); crush; lia.
+ }
+ apply ASBP; assumption.
+
+ unfold stack_bounds in *. intros.
+ simpl.
+ assert (Integers.Ptrofs.repr 0 = Integers.Ptrofs.zero) as ZERO by reflexivity.
+ erewrite Mem.load_store_other with (m1 := m).
+ 2: { exact H1. }
+ 2: { rewrite HeqOFFSET in *. simplify_val.
+ right. right. simpl.
+ rewrite ZERO.
+ rewrite Integers.Ptrofs.add_zero_l.
+ rewrite Integers.Ptrofs.unsigned_repr; crush; try lia.
+ apply ZExtra.mod_0_bounds; crush; try lia. }
+ crush.
+ exploit (BOUNDS ptr); try lia. intros. crush.
+ exploit (BOUNDS ptr v); try lia. intros.
+ invert H11.
+ match goal with | |- ?x = _ => destruct x eqn:EQ end; try reflexivity.
+ assert (Mem.valid_access m AST.Mint32 sp'
+ (Integers.Ptrofs.unsigned
+ (Integers.Ptrofs.add (Integers.Ptrofs.repr 0)
+ (Integers.Ptrofs.repr ptr))) Writable).
+ { pose proof H1. eapply Mem.store_valid_access_2 in H11.
+ exact H11. eapply Mem.store_valid_access_3. eassumption. }
+ pose proof (Mem.valid_access_store m AST.Mint32 sp'
+ (Integers.Ptrofs.unsigned
+ (Integers.Ptrofs.add (Integers.Ptrofs.repr 0)
+ (Integers.Ptrofs.repr ptr))) v).
+ apply X in H11. invert H11. congruence.
+
+ constructor; simplify. unfold Verilog.merge_regs. unfold_merge.
+ rewrite AssocMap.gso.
+ assumption. lia.
+ unfold Verilog.merge_regs. unfold_merge.
+ rewrite AssocMap.gso.
+ assumption. lia.
+
+ + (** Preamble *)
+ invert MARR. inv CONST. crush.
+
+ unfold Op.eval_addressing in H0.
+ destruct (Archi.ptr64) eqn:ARCHI; crush.
+
+ unfold reg_stack_based_pointers in RSBP.
+ pose proof (RSBP r0) as RSBPr0.
+ pose proof (RSBP r1) as RSBPr1.
+
+ destruct (Registers.Regmap.get r0 rs) eqn:EQr0;
+ destruct (Registers.Regmap.get r1 rs) eqn:EQr1; crush.
+
+ rewrite ARCHI in H1. crush.
+ subst.
+ clear RSBPr1.
+
+ pose proof MASSOC as MASSOC'.
+ invert MASSOC'.
+ pose proof (H0 r0).
+ pose proof (H0 r1).
+ assert (HPler0 : Ple r0 (RTL.max_reg_function f))
+ by (eapply RTL.max_reg_function_use; eauto; crush; eauto).
+ assert (HPler1 : Ple r1 (RTL.max_reg_function f))
+ by (eapply RTL.max_reg_function_use; eauto; simpl; auto).
+ apply H8 in HPler0.
+ apply H11 in HPler1.
+ invert HPler0; invert HPler1; try congruence.
+ rewrite EQr0 in H13.
+ rewrite EQr1 in H14.
+ invert H13. invert H14.
+ clear H0. clear H8. clear H11.
+
+ unfold check_address_parameter_signed in *;
+ unfold check_address_parameter_unsigned in *; crush.
+
+ remember (Integers.Ptrofs.add (Integers.Ptrofs.repr (uvalueToZ asr # r0))
+ (Integers.Ptrofs.of_int
+ (Integers.Int.add (Integers.Int.mul (valueToInt asr # r1) (Integers.Int.repr z))
+ (Integers.Int.repr z0)))) as OFFSET.
+
+ (** Modular preservation proof *)
+ assert (Integers.Ptrofs.unsigned OFFSET mod 4 = 0) as MOD_PRESERVE.
+ { apply Mem.store_valid_access_3 in H1. unfold Mem.valid_access in *. simplify.
+ apply Zdivide_mod. assumption. }
+
+ (** Write bounds proof *)
+ assert (Integers.Ptrofs.unsigned OFFSET < f.(RTL.fn_stacksize)) as WRITE_BOUND_HIGH.
+ { destruct (Integers.Ptrofs.unsigned OFFSET <? f.(RTL.fn_stacksize)) eqn:EQ; crush; auto.
+ unfold stack_bounds in BOUNDS.
+ exploit (BOUNDS (Integers.Ptrofs.unsigned OFFSET) (Registers.Regmap.get src rs)); auto.
+ split; try lia; apply Integers.Ptrofs.unsigned_range_2.
+ small_tac. }
+
+ (** Start of proof proper *)
+ eexists. split.
+ eapply Smallstep.plus_one.
+ eapply HTL.step_module; eauto.
+ econstructor. econstructor. econstructor.
+ eapply Verilog.stmnt_runp_Vnonblock_arr. crush.
+ econstructor.
+ econstructor. econstructor. econstructor. econstructor.
+ econstructor.
+ econstructor. econstructor. econstructor. econstructor.
+ econstructor. econstructor. econstructor. econstructor.
+ econstructor. econstructor. econstructor. econstructor.
+
+ all: crush.
+
+ (** State Lookup *)
+ unfold Verilog.merge_regs.
+ crush.
+ unfold_merge.
+ apply AssocMap.gss.
+
+ (** Match states *)
+ econstructor; eauto.
+
+ (** Match assocmaps *)
+ unfold Verilog.merge_regs. crush. unfold_merge.
+ apply regs_lessdef_add_greater.
+ unfold Plt; lia.
+ assumption.
+
+ (** States well formed *)
+ unfold state_st_wf. inversion 1. crush.
+ unfold Verilog.merge_regs.
+ unfold_merge.
+ apply AssocMap.gss.
+
+ (** Equality proof *)
+ assert (Integers.Ptrofs.repr 0 = Integers.Ptrofs.zero) as ZERO by reflexivity.
+ inversion MASSOC; revert HeqOFFSET; subst; clear MASSOC; intros HeqOFFSET.
+
+ econstructor.
+ repeat split; crush.
+ unfold HTL.empty_stack.
+ crush.
+ unfold Verilog.merge_arrs.
+
+ rewrite AssocMap.gcombine.
+ 2: { reflexivity. }
+ unfold Verilog.arr_assocmap_set.
+ rewrite AssocMap.gss.
+ unfold Verilog.merge_arr.
+ rewrite AssocMap.gss.
+ setoid_rewrite H7.
+ reflexivity.
+
+ rewrite combine_length.
+ rewrite <- array_set_len.
+ unfold arr_repeat. crush.
+ apply list_repeat_len.
+
+ rewrite <- array_set_len.
+ unfold arr_repeat. crush.
+ rewrite list_repeat_len.
+ rewrite H4. reflexivity.
+
+ remember (Integers.Ptrofs.add (Integers.Ptrofs.repr (uvalueToZ asr # r0))
+ (Integers.Ptrofs.of_int
+ (Integers.Int.add (Integers.Int.mul (valueToInt asr # r1) (Integers.Int.repr z))
+ (Integers.Int.repr z0)))) as OFFSET.
+ destruct (4 * ptr ==Z Integers.Ptrofs.unsigned OFFSET).
+
+ erewrite Mem.load_store_same.
+ 2: { rewrite ZERO.
+ rewrite Integers.Ptrofs.add_zero_l.
+ rewrite e.
+ rewrite Integers.Ptrofs.unsigned_repr.
+ rewrite HeqOFFSET.
+ exact H1.
+ apply Integers.Ptrofs.unsigned_range_2. }
+ constructor.
+ erewrite combine_lookup_second.
+ simpl.
+ assert (Ple src (RTL.max_reg_function f))
+ by (eapply RTL.max_reg_function_use; eauto; simpl; auto);
+ apply H14 in H15.
+ destruct (Registers.Regmap.get src rs) eqn:EQ_SRC; constructor; invert H15; eauto.
+
+ rewrite <- array_set_len.
+ unfold arr_repeat. crush.
+ rewrite list_repeat_len. auto.
+
+ assert (4 * ptr / 4 = Integers.Ptrofs.unsigned OFFSET / 4) by (f_equal; assumption).
+ rewrite Z.mul_comm in H15.
+ rewrite Z_div_mult in H15; try lia.
+ replace 4 with (Integers.Ptrofs.unsigned (Integers.Ptrofs.repr 4)) in H15 by reflexivity.
+ rewrite <- PtrofsExtra.divu_unsigned in H15; unfold_constants; try lia.
+ rewrite H15. rewrite <- offset_expr_ok_2.
+ rewrite HeqOFFSET in *.
+ rewrite array_get_error_set_bound.
+ reflexivity.
+ unfold arr_length, arr_repeat. simpl.
+ rewrite list_repeat_len. lia.
+
+ erewrite Mem.load_store_other with (m1 := m).
+ 2: { exact H1. }
+ 2: { right.
+ rewrite ZERO.
+ rewrite Integers.Ptrofs.add_zero_l.
+ rewrite Integers.Ptrofs.unsigned_repr.
+ simpl.
+ destruct (Z_le_gt_dec (4 * ptr + 4) (Integers.Ptrofs.unsigned OFFSET)); eauto.
+ rewrite HeqOFFSET in *. simplify_val.
+ left; auto.
+ rewrite HeqOFFSET in *. simplify_val.
+ right.
+ apply ZExtra.mod_0_bounds; try lia.
+ apply ZLib.Z_mod_mult'.
+ rewrite Z2Nat.id in H17; try lia.
+ apply Zmult_lt_compat_r with (p := 4) in H17; try lia.
+ rewrite ZLib.div_mul_undo in H17; try lia.
+ split; try lia.
+ apply Z.le_trans with (m := RTL.fn_stacksize f); crush; lia.
+ }
+
+ rewrite <- offset_expr_ok_2.
+ rewrite PtrofsExtra.divu_unsigned; auto; try (unfold_constants; lia).
+ destruct (ptr ==Z Integers.Ptrofs.unsigned OFFSET / 4).
+ apply Z.mul_cancel_r with (p := 4) in e; try lia.
+ rewrite ZLib.div_mul_undo in e; try lia.
+ rewrite combine_lookup_first.
+ eapply H9; eauto.
+
+ rewrite <- array_set_len.
+ unfold arr_repeat. crush.
+ rewrite list_repeat_len. auto.
+ rewrite array_gso.
+ unfold array_get_error.
+ unfold arr_repeat.
+ crush.
+ apply list_repeat_lookup.
+ lia.
+ unfold_constants.
+ intro.
+ rewrite HeqOFFSET in *.
+ apply Z2Nat.inj_iff in H15; try lia.
+ apply Z.div_pos; try lia.
+ apply Integers.Ptrofs.unsigned_range.
+ apply Integers.Ptrofs.unsigned_range_2.
+
+ assert (Integers.Ptrofs.repr 0 = Integers.Ptrofs.zero) as ZERO1 by reflexivity.
+ unfold arr_stack_based_pointers.
+ intros.
+ destruct (4 * ptr ==Z Integers.Ptrofs.unsigned OFFSET).
+
+ crush.
+ erewrite Mem.load_store_same.
+ 2: { rewrite ZERO1.
+ rewrite Integers.Ptrofs.add_zero_l.
+ rewrite e.
+ rewrite Integers.Ptrofs.unsigned_repr.
+ exact H1.
+ apply Integers.Ptrofs.unsigned_range_2. }
+ crush.
+ destruct (Registers.Regmap.get src rs) eqn:EQ_SRC; try constructor.
+ destruct (Archi.ptr64); try discriminate.
+ pose proof (RSBP src). rewrite EQ_SRC in H14.
+ assumption.
+
+ simpl.
+ erewrite Mem.load_store_other with (m1 := m).
+ 2: { exact H1. }
+ 2: { right.
+ rewrite ZERO1.
+ rewrite Integers.Ptrofs.add_zero_l.
+ rewrite Integers.Ptrofs.unsigned_repr.
+ simpl.
+ destruct (Z_le_gt_dec (4 * ptr + 4) (Integers.Ptrofs.unsigned OFFSET)); eauto.
+ rewrite HeqOFFSET in *. simplify_val.
+ left; auto.
+ rewrite HeqOFFSET in *. simplify_val.
+ right.
+ apply ZExtra.mod_0_bounds; try lia.
+ apply ZLib.Z_mod_mult'.
+ invert H14.
+ apply Zmult_lt_compat_r with (p := 4) in H16; try lia.
+ rewrite ZLib.div_mul_undo in H16; try lia.
+ split; try lia.
+ apply Z.le_trans with (m := RTL.fn_stacksize f); crush; lia.
+ }
+ apply ASBP; assumption.
+
+ unfold stack_bounds in *. intros.
+ simpl.
+ assert (Integers.Ptrofs.repr 0 = Integers.Ptrofs.zero) as ZERO by reflexivity.
+ erewrite Mem.load_store_other with (m1 := m).
+ 2: { exact H1. }
+ 2: { rewrite HeqOFFSET in *. simplify_val.
+ right. right. simpl.
+ rewrite ZERO.
+ rewrite Integers.Ptrofs.add_zero_l.
+ rewrite Integers.Ptrofs.unsigned_repr; crush; try lia.
+ apply ZExtra.mod_0_bounds; crush; try lia. }
+ crush.
+ exploit (BOUNDS ptr); try lia. intros. crush.
+ exploit (BOUNDS ptr v); try lia. intros.
+ simplify.
+ match goal with | |- ?x = _ => destruct x eqn:EQ end; try reflexivity.
+ assert (Mem.valid_access m AST.Mint32 sp'
+ (Integers.Ptrofs.unsigned
+ (Integers.Ptrofs.add (Integers.Ptrofs.repr 0)
+ (Integers.Ptrofs.repr ptr))) Writable).
+ { pose proof H1. eapply Mem.store_valid_access_2 in H14.
+ exact H14. eapply Mem.store_valid_access_3. eassumption. }
+ pose proof (Mem.valid_access_store m AST.Mint32 sp'
+ (Integers.Ptrofs.unsigned
+ (Integers.Ptrofs.add (Integers.Ptrofs.repr 0)
+ (Integers.Ptrofs.repr ptr))) v).
+ apply X in H14. invert H14. congruence.
+
+ constructor; simplify. unfold Verilog.merge_regs. unfold_merge. rewrite AssocMap.gso.
+ assumption. lia.
+ unfold Verilog.merge_regs. unfold_merge. rewrite AssocMap.gso.
+ assumption. lia.
+
+ + invert MARR. inv CONST. crush.
+
+ unfold Op.eval_addressing in H0.
+ destruct (Archi.ptr64) eqn:ARCHI; crush.
+ rewrite ARCHI in H0. crush.
+
+ unfold check_address_parameter_unsigned in *;
+ unfold check_address_parameter_signed in *; crush.
+
+ assert (Integers.Ptrofs.repr 0 = Integers.Ptrofs.zero) as ZERO by reflexivity.
+ rewrite ZERO in H1. clear ZERO.
+ rewrite Integers.Ptrofs.add_zero_l in H1.
+
+ remember i0 as OFFSET.
+
+ (** Modular preservation proof *)
+ assert (Integers.Ptrofs.unsigned OFFSET mod 4 = 0) as MOD_PRESERVE.
+ { apply Mem.store_valid_access_3 in H1. unfold Mem.valid_access in *. simplify.
+ apply Zdivide_mod. assumption. }
+
+ (** Write bounds proof *)
+ assert (Integers.Ptrofs.unsigned OFFSET < f.(RTL.fn_stacksize)) as WRITE_BOUND_HIGH.
+ { destruct (Integers.Ptrofs.unsigned OFFSET <? f.(RTL.fn_stacksize)) eqn:?EQ; crush; auto.
+ unfold stack_bounds in BOUNDS.
+ exploit (BOUNDS (Integers.Ptrofs.unsigned OFFSET) (Registers.Regmap.get src rs)); auto.
+ crush.
+ replace (Integers.Ptrofs.repr 0) with (Integers.Ptrofs.zero) by reflexivity.
+ small_tac. }
+
+ (** Start of proof proper *)
+ eexists. split.
+ eapply Smallstep.plus_one.
+ eapply HTL.step_module; eauto.
+ econstructor. econstructor. econstructor.
+ eapply Verilog.stmnt_runp_Vnonblock_arr. crush.
+ econstructor. econstructor. econstructor. econstructor.
+
+ all: crush.
+
+ (** State Lookup *)
+ unfold Verilog.merge_regs.
+ crush.
+ unfold_merge.
+ apply AssocMap.gss.
+
+ (** Match states *)
+ econstructor; eauto.
+
+ (** Match assocmaps *)
+ unfold Verilog.merge_regs. crush. unfold_merge.
+ apply regs_lessdef_add_greater.
+ unfold Plt; lia.
+ assumption.
+
+ (** States well formed *)
+ unfold state_st_wf. inversion 1. crush.
+ unfold Verilog.merge_regs.
+ unfold_merge.
+ apply AssocMap.gss.
+
+ (** Equality proof *)
+
+ assert (Integers.Ptrofs.repr 0 = Integers.Ptrofs.zero) as ZERO by reflexivity.
+ inversion MASSOC; revert HeqOFFSET; subst; clear MASSOC; intros HeqOFFSET.
+
+ econstructor.
+ repeat split; crush.
+ unfold HTL.empty_stack.
+ crush.
+ unfold Verilog.merge_arrs.
+
+ rewrite AssocMap.gcombine.
+ 2: { reflexivity. }
+ unfold Verilog.arr_assocmap_set.
+ rewrite AssocMap.gss.
+ unfold Verilog.merge_arr.
+ rewrite AssocMap.gss.
+ setoid_rewrite H7.
+ reflexivity.
+
+ rewrite combine_length.
+ rewrite <- array_set_len.
+ unfold arr_repeat. crush.
+ apply list_repeat_len.
+
+ rewrite <- array_set_len.
+ unfold arr_repeat. crush.
+ rewrite list_repeat_len.
+ rewrite H4. reflexivity.
+
+ remember i0 as OFFSET.
+ destruct (4 * ptr ==Z Integers.Ptrofs.unsigned OFFSET).
+
+ erewrite Mem.load_store_same.
+ 2: { rewrite ZERO.
+ rewrite Integers.Ptrofs.add_zero_l.
+ rewrite e.
+ rewrite Integers.Ptrofs.unsigned_repr.
+ exact H1.
+ apply Integers.Ptrofs.unsigned_range_2. }
+ constructor.
+ erewrite combine_lookup_second.
+ simpl.
+ assert (Ple src (RTL.max_reg_function f))
+ by (eapply RTL.max_reg_function_use; eauto; simpl; auto);
+ apply H0 in H8.
+ destruct (Registers.Regmap.get src rs) eqn:EQ_SRC; constructor; invert H8; eauto.
+
+ rewrite <- array_set_len.
+ unfold arr_repeat. crush.
+ rewrite list_repeat_len. auto.
+
+ assert (4 * ptr / 4 = Integers.Ptrofs.unsigned OFFSET / 4) by (f_equal; assumption).
+ rewrite Z.mul_comm in H8.
+ rewrite Z_div_mult in H8; try lia.
+ replace 4 with (Integers.Ptrofs.unsigned (Integers.Ptrofs.repr 4)) in H8 by reflexivity.
+ rewrite <- PtrofsExtra.divu_unsigned in H8; unfold_constants; try lia.
+ rewrite H8. rewrite <- offset_expr_ok_3.
+ rewrite array_get_error_set_bound.
+ reflexivity.
+ unfold arr_length, arr_repeat. simpl.
+ rewrite list_repeat_len. lia.
+
+ erewrite Mem.load_store_other with (m1 := m).
+ 2: { exact H1. }
+ 2: { right.
+ rewrite ZERO.
+ rewrite Integers.Ptrofs.add_zero_l.
+ rewrite Integers.Ptrofs.unsigned_repr.
+ simpl.
+ destruct (Z_le_gt_dec (4 * ptr + 4) (Integers.Ptrofs.unsigned OFFSET)); eauto.
+ right.
+ apply ZExtra.mod_0_bounds; try lia.
+ apply ZLib.Z_mod_mult'.
+ rewrite Z2Nat.id in H13; try lia.
+ apply Zmult_lt_compat_r with (p := 4) in H13; try lia.
+ rewrite ZLib.div_mul_undo in H13; try lia.
+ split; try lia.
+ apply Z.le_trans with (m := RTL.fn_stacksize f); crush; lia.
+ }
+
+ rewrite <- offset_expr_ok_3.
+ rewrite PtrofsExtra.divu_unsigned; auto; try (unfold_constants; lia).
+ destruct (ptr ==Z Integers.Ptrofs.unsigned OFFSET / 4).
+ apply Z.mul_cancel_r with (p := 4) in e; try lia.
+ rewrite ZLib.div_mul_undo in e; try lia.
+ rewrite combine_lookup_first.
+ eapply H9; eauto.
+
+ rewrite <- array_set_len.
+ unfold arr_repeat. crush.
+ rewrite list_repeat_len. auto.
+ rewrite array_gso.
+ unfold array_get_error.
+ unfold arr_repeat.
+ crush.
+ apply list_repeat_lookup.
+ lia.
+ unfold_constants.
+ intro.
+ apply Z2Nat.inj_iff in H8; try lia.
+ apply Z.div_pos; try lia.
+ apply Integers.Ptrofs.unsigned_range.
+
+ assert (Integers.Ptrofs.repr 0 = Integers.Ptrofs.zero) as ZERO by reflexivity.
+ unfold arr_stack_based_pointers.
+ intros.
+ destruct (4 * ptr ==Z Integers.Ptrofs.unsigned OFFSET).
+
+ crush.
+ erewrite Mem.load_store_same.
+ 2: { rewrite ZERO.
+ rewrite Integers.Ptrofs.add_zero_l.
+ rewrite e.
+ rewrite Integers.Ptrofs.unsigned_repr.
+ exact H1.
+ apply Integers.Ptrofs.unsigned_range_2. }
+ crush.
+ destruct (Registers.Regmap.get src rs) eqn:EQ_SRC; try constructor.
+ destruct (Archi.ptr64); try discriminate.
+ pose proof (RSBP src). rewrite EQ_SRC in H0.
+ assumption.
+
+ simpl.
+ erewrite Mem.load_store_other with (m1 := m).
+ 2: { exact H1. }
+ 2: { right.
+ rewrite ZERO.
+ rewrite Integers.Ptrofs.add_zero_l.
+ rewrite Integers.Ptrofs.unsigned_repr.
+ simpl.
+ destruct (Z_le_gt_dec (4 * ptr + 4) (Integers.Ptrofs.unsigned OFFSET)); eauto.
+ right.
+ apply ZExtra.mod_0_bounds; try lia.
+ apply ZLib.Z_mod_mult'.
+ invert H0.
+ apply Zmult_lt_compat_r with (p := 4) in H11; try lia.
+ rewrite ZLib.div_mul_undo in H11; try lia.
+ split; try lia.
+ apply Z.le_trans with (m := RTL.fn_stacksize f); crush; lia.
+ }
+ apply ASBP; assumption.
+
+ unfold stack_bounds in *. intros.
+ simpl.
+ assert (Integers.Ptrofs.repr 0 = Integers.Ptrofs.zero) as ZERO by reflexivity.
+ erewrite Mem.load_store_other with (m1 := m).
+ 2: { exact H1. }
+ 2: { right. right. simpl.
+ rewrite ZERO.
+ rewrite Integers.Ptrofs.add_zero_l.
+ rewrite Integers.Ptrofs.unsigned_repr; crush; try lia.
+ apply ZExtra.mod_0_bounds; crush; try lia. }
+ crush.
+ exploit (BOUNDS ptr); try lia. intros. crush.
+ exploit (BOUNDS ptr v); try lia. intros.
+ invert H0.
+ match goal with | |- ?x = _ => destruct x eqn:?EQ end; try reflexivity.
+ assert (Mem.valid_access m AST.Mint32 sp'
+ (Integers.Ptrofs.unsigned
+ (Integers.Ptrofs.add (Integers.Ptrofs.repr 0)
+ (Integers.Ptrofs.repr ptr))) Writable).
+ { pose proof H1. eapply Mem.store_valid_access_2 in H0.
+ exact H0. eapply Mem.store_valid_access_3. eassumption. }
+ pose proof (Mem.valid_access_store m AST.Mint32 sp'
+ (Integers.Ptrofs.unsigned
+ (Integers.Ptrofs.add (Integers.Ptrofs.repr 0)
+ (Integers.Ptrofs.repr ptr))) v).
+ apply X in H0. invert H0. congruence.
+
+ constructor; simplify. unfold Verilog.merge_regs. unfold_merge. rewrite AssocMap.gso.
+ assumption. lia.
+ unfold Verilog.merge_regs. unfold_merge. rewrite AssocMap.gso.
+ assumption. lia.
+
+ Unshelve.
+ exact tt.
+ exact (Values.Vint (Int.repr 0)).
+ exact tt.
+ exact (Values.Vint (Int.repr 0)).
+ exact tt.
+ exact (Values.Vint (Int.repr 0)).
+ Qed.
+ Hint Resolve transl_istore_correct : htlproof.
+
+ Lemma transl_icond_correct:
+ forall (s : list RTL.stackframe) (f : RTL.function) (sp : Values.val) (pc : positive)
+ (rs : Registers.Regmap.t Values.val) (m : mem) (cond : Op.condition) (args : list Registers.reg)
+ (ifso ifnot : RTL.node) (b : bool) (pc' : RTL.node),
+ (RTL.fn_code f) ! pc = Some (RTL.Icond cond args ifso ifnot) ->
+ Op.eval_condition cond (map (fun r : positive => Registers.Regmap.get r rs) args) m = Some b ->
+ pc' = (if b then ifso else ifnot) ->
+ forall R1 : HTL.state,
+ match_states (RTL.State s f sp pc rs m) R1 ->
+ exists R2 : HTL.state,
+ Smallstep.plus HTL.step tge R1 Events.E0 R2 /\ match_states (RTL.State s f sp pc' rs m) R2.
+ Proof.
+ intros s f sp pc rs m cond args ifso ifnot b pc' H H0 H1 R1 MSTATE.
+ inv_state.
+ destruct b.
+ - eexists. split. apply Smallstep.plus_one.
+ clear H33.
+ eapply HTL.step_module; eauto.
+ inv CONST; assumption.
+ inv CONST; assumption.
+ econstructor; simpl; trivial.
+ constructor; trivial.
+ eapply Verilog.erun_Vternary_true; simpl; eauto.
+ eapply eval_cond_correct; eauto. intros.
+ intros. eapply RTL.max_reg_function_use. apply H22. auto.
+ econstructor. auto.
+ simpl. econstructor. unfold Verilog.merge_regs. unfold_merge. simpl.
+ apply AssocMap.gss.
+
+ inv MARR. inv CONST.
+ big_tac.
+ constructor; rewrite AssocMap.gso; simplify; try assumption; lia.
+ - eexists. split. apply Smallstep.plus_one.
+ clear H32.
+ eapply HTL.step_module; eauto.
+ inv CONST; assumption.
+ inv CONST; assumption.
+ econstructor; simpl; trivial.
+ constructor; trivial.
+ eapply Verilog.erun_Vternary_false; simpl; eauto.
+ eapply eval_cond_correct; eauto. intros.
+ intros. eapply RTL.max_reg_function_use. apply H22. auto.
+ econstructor. auto.
+ simpl. econstructor. unfold Verilog.merge_regs. unfold_merge. simpl.
+ apply AssocMap.gss.
+
+ inv MARR. inv CONST.
+ big_tac.
+ constructor; rewrite AssocMap.gso; simplify; try assumption; lia.
+
+ Unshelve. all: exact tt.
+ Qed.
+ Hint Resolve transl_icond_correct : htlproof.
+
+ (*Lemma transl_ijumptable_correct:
+ forall (s : list RTL.stackframe) (f : RTL.function) (sp : Values.val) (pc : positive)
+ (rs : Registers.Regmap.t Values.val) (m : mem) (arg : Registers.reg) (tbl : list RTL.node)
+ (n : Integers.Int.int) (pc' : RTL.node),
+ (RTL.fn_code f) ! pc = Some (RTL.Ijumptable arg tbl) ->
+ Registers.Regmap.get arg rs = Values.Vint n ->
+ list_nth_z tbl (Integers.Int.unsigned n) = Some pc' ->
+ forall R1 : HTL.state,
+ match_states (RTL.State s f sp pc rs m) R1 ->
+ exists R2 : HTL.state,
+ Smallstep.plus HTL.step tge R1 Events.E0 R2 /\ match_states (RTL.State s f sp pc' rs m) R2.
+ Proof.
+ intros s f sp pc rs m arg tbl n pc' H H0 H1 R1 MSTATE.
+
+ Hint Resolve transl_ijumptable_correct : htlproof.*)
+
+ Lemma transl_ireturn_correct:
+ forall (s : list RTL.stackframe) (f : RTL.function) (stk : Values.block)
+ (pc : positive) (rs : RTL.regset) (m : mem) (or : option Registers.reg)
+ (m' : mem),
+ (RTL.fn_code f) ! pc = Some (RTL.Ireturn or) ->
+ Mem.free m stk 0 (RTL.fn_stacksize f) = Some m' ->
+ forall R1 : HTL.state,
+ match_states (RTL.State s f (Values.Vptr stk Integers.Ptrofs.zero) pc rs m) R1 ->
+ exists R2 : HTL.state,
+ Smallstep.plus HTL.step tge R1 Events.E0 R2 /\
+ match_states (RTL.Returnstate s (Registers.regmap_optget or Values.Vundef rs) m') R2.
+ Proof.
+ intros s f stk pc rs m or m' H H0 R1 MSTATE.
+ inv_state.
+
+ - econstructor. split.
+ eapply Smallstep.plus_two.
+
+ eapply HTL.step_module; eauto.
+ inv CONST; assumption.
+ inv CONST; assumption.
+ constructor.
+ econstructor; simpl; trivial.
+ econstructor; simpl; trivial.
+ constructor.
+ econstructor; simpl; trivial.
+ constructor.
+
+ constructor. constructor.
+
+ unfold state_st_wf in WF; big_tac; eauto.
+ destruct wf as [HCTRL HDATA]. apply HCTRL.
+ apply AssocMapExt.elements_iff. eexists.
+ match goal with H: control ! pc = Some _ |- _ => apply H end.
+
+ apply HTL.step_finish.
+ unfold Verilog.merge_regs.
+ unfold_merge; simpl.
+ rewrite AssocMap.gso.
+ apply AssocMap.gss. lia.
+ apply AssocMap.gss.
+ rewrite Events.E0_left. reflexivity.
+
+ constructor; auto.
+ constructor.
+
+ (* FIXME: Duplication *)
+ - econstructor. split.
+ eapply Smallstep.plus_two.
+ eapply HTL.step_module; eauto.
+ inv CONST; assumption.
+ inv CONST; assumption.
+ constructor.
+ econstructor; simpl; trivial.
+ econstructor; simpl; trivial.
+ constructor. constructor. constructor.
+ constructor. constructor. constructor.
+
+ unfold state_st_wf in WF; big_tac; eauto.
+
+ destruct wf as [HCTRL HDATA]. apply HCTRL.
+ apply AssocMapExt.elements_iff. eexists.
+ match goal with H: control ! pc = Some _ |- _ => apply H end.
+
+ apply HTL.step_finish.
+ unfold Verilog.merge_regs.
+ unfold_merge.
+ rewrite AssocMap.gso.
+ apply AssocMap.gss. simpl; lia.
+ apply AssocMap.gss.
+ rewrite Events.E0_left. trivial.
+
+ constructor; auto.
+
+ simpl. inversion MASSOC. subst.
+ unfold find_assocmap, AssocMapExt.get_default. rewrite AssocMap.gso.
+ apply H1. eapply RTL.max_reg_function_use. eauto. simpl; tauto.
+ assert (HPle : Ple r (RTL.max_reg_function f)).
+ eapply RTL.max_reg_function_use. eassumption. simpl; auto.
+ apply ZExtra.Ple_not_eq. apply ZExtra.Ple_Plt_Succ. assumption.
+
+ Unshelve.
+ all: constructor.
+ Qed.
+ Hint Resolve transl_ireturn_correct : htlproof.
+
+ Lemma transl_callstate_correct:
+ forall (s : list RTL.stackframe) (f : RTL.function) (args : list Values.val)
+ (m : mem) (m' : Mem.mem') (stk : Values.block),
+ Mem.alloc m 0 (RTL.fn_stacksize f) = (m', stk) ->
+ forall R1 : HTL.state,
+ match_states (RTL.Callstate s (AST.Internal f) args m) R1 ->
+ exists R2 : HTL.state,
+ Smallstep.plus HTL.step tge R1 Events.E0 R2 /\
+ match_states
+ (RTL.State s f (Values.Vptr stk Integers.Ptrofs.zero) (RTL.fn_entrypoint f)
+ (RTL.init_regs args (RTL.fn_params f)) m') R2.
+ Proof.
+ intros s f args m m' stk H R1 MSTATE.
+
+ inversion MSTATE; subst. inversion TF; subst.
+ econstructor. split. apply Smallstep.plus_one.
+ eapply HTL.step_call. crush.
+
+ apply match_state with (sp' := stk); eauto.
+
+ all: big_tac.
+
+ apply regs_lessdef_add_greater. unfold Plt; lia.
+ apply regs_lessdef_add_greater. unfold Plt; lia.
+ apply regs_lessdef_add_greater. unfold Plt; lia.
+ apply init_reg_assoc_empty.
+
+ constructor.
+
+ destruct (Mem.load AST.Mint32 m' stk
+ (Integers.Ptrofs.unsigned (Integers.Ptrofs.add
+ Integers.Ptrofs.zero
+ (Integers.Ptrofs.repr (4 * ptr))))) eqn:LOAD.
+ pose proof Mem.load_alloc_same as LOAD_ALLOC.
+ pose proof H as ALLOC.
+ eapply LOAD_ALLOC in ALLOC.
+ 2: { exact LOAD. }
+ ptrofs. rewrite LOAD.
+ rewrite ALLOC.
+ repeat constructor.
+
+ ptrofs. rewrite LOAD.
+ repeat constructor.
+
+ unfold reg_stack_based_pointers. intros.
+ unfold RTL.init_regs; crush.
+ destruct (RTL.fn_params f);
+ rewrite Registers.Regmap.gi; constructor.
+
+ unfold arr_stack_based_pointers. intros.
+ crush.
+ destruct (Mem.load AST.Mint32 m' stk
+ (Integers.Ptrofs.unsigned (Integers.Ptrofs.add
+ Integers.Ptrofs.zero
+ (Integers.Ptrofs.repr (4 * ptr))))) eqn:LOAD.
+ pose proof Mem.load_alloc_same as LOAD_ALLOC.
+ pose proof H as ALLOC.
+ eapply LOAD_ALLOC in ALLOC.
+ 2: { exact LOAD. }
+ rewrite ALLOC.
+ repeat constructor.
+ constructor.
+
+ Transparent Mem.alloc. (* TODO: Since there are opaque there's probably a lemma. *)
+ Transparent Mem.load.
+ Transparent Mem.store.
+ unfold stack_bounds.
+ split.
+
+ unfold Mem.alloc in H.
+ invert H.
+ crush.
+ unfold Mem.load.
+ intros.
+ match goal with | |- context[if ?x then _ else _] => destruct x end; try congruence.
+ invert v0. unfold Mem.range_perm in H4.
+ unfold Mem.perm in H4. crush.
+ unfold Mem.perm_order' in H4.
+ small_tac.
+ exploit (H4 ptr). rewrite Integers.Ptrofs.unsigned_repr; small_tac. intros.
+ rewrite Maps.PMap.gss in H8.
+ match goal with | H8 : context[if ?x then _ else _] |- _ => destruct x eqn:EQ end; try contradiction.
+ crush.
+ apply proj_sumbool_true in H10. lia.
+
+ unfold Mem.alloc in H.
+ invert H.
+ crush.
+ unfold Mem.store.
+ intros.
+ match goal with | |- context[if ?x then _ else _] => destruct x end; try congruence.
+ invert v0. unfold Mem.range_perm in H4.
+ unfold Mem.perm in H4. crush.
+ unfold Mem.perm_order' in H4.
+ small_tac.
+ exploit (H4 ptr). rewrite Integers.Ptrofs.unsigned_repr; small_tac. intros.
+ rewrite Maps.PMap.gss in H8.
+ match goal with | H8 : context[if ?x then _ else _] |- _ => destruct x eqn:EQ end; try contradiction.
+ crush.
+ apply proj_sumbool_true in H10. lia.
+ constructor. simplify. rewrite AssocMap.gss.
+ simplify. rewrite AssocMap.gso. apply AssocMap.gss. simplify. lia.
+ Opaque Mem.alloc.
+ Opaque Mem.load.
+ Opaque Mem.store.
+ Qed.
+ Hint Resolve transl_callstate_correct : htlproof.
+
+ Lemma transl_returnstate_correct:
+ forall (res0 : Registers.reg) (f : RTL.function) (sp : Values.val) (pc : RTL.node)
+ (rs : RTL.regset) (s : list RTL.stackframe) (vres : Values.val) (m : mem)
+ (R1 : HTL.state),
+ match_states (RTL.Returnstate (RTL.Stackframe res0 f sp pc rs :: s) vres m) R1 ->
+ exists R2 : HTL.state,
+ Smallstep.plus HTL.step tge R1 Events.E0 R2 /\
+ match_states (RTL.State s f sp pc (Registers.Regmap.set res0 vres rs) m) R2.
+ Proof.
+ intros res0 f sp pc rs s vres m R1 MSTATE.
+ inversion MSTATE. inversion MF.
+ Qed.
+ Hint Resolve transl_returnstate_correct : htlproof.
+
+ Lemma option_inv :
+ forall A x y,
+ @Some A x = Some y -> x = y.
+ Proof. intros. inversion H. trivial. Qed.
+
+ Lemma main_tprog_internal :
+ forall b,
+ Globalenvs.Genv.find_symbol tge tprog.(AST.prog_main) = Some b ->
+ exists f, Genv.find_funct_ptr (Genv.globalenv tprog) b = Some (AST.Internal f).
+ Proof.
+ intros.
+ destruct TRANSL. unfold main_is_internal in H1.
+ repeat (unfold_match H1). replace b with b0.
+ exploit function_ptr_translated; eauto. intros [tf [A B]].
+ unfold transl_fundef, AST.transf_partial_fundef, Errors.bind in B.
+ unfold_match B. inv B. econstructor. apply A.
+
+ apply option_inv. rewrite <- Heqo. rewrite <- H.
+ rewrite symbols_preserved. replace (AST.prog_main tprog) with (AST.prog_main prog).
+ trivial. symmetry; eapply Linking.match_program_main; eauto.
+ Qed.
+
+ Lemma transl_initial_states :
+ forall s1 : Smallstep.state (RTL.semantics prog),
+ Smallstep.initial_state (RTL.semantics prog) s1 ->
+ exists s2 : Smallstep.state (HTL.semantics tprog),
+ Smallstep.initial_state (HTL.semantics tprog) s2 /\ match_states s1 s2.
+ Proof.
+ induction 1.
+ destruct TRANSL. unfold main_is_internal in H4.
+ repeat (unfold_match H4).
+ assert (f = AST.Internal f1). apply option_inv.
+ rewrite <- Heqo0. rewrite <- H1. replace b with b0.
+ auto. apply option_inv. rewrite <- H0. rewrite <- Heqo.
+ trivial.
+ exploit function_ptr_translated; eauto.
+ intros [tf [A B]].
+ unfold transl_fundef, Errors.bind in B.
+ unfold AST.transf_partial_fundef, Errors.bind in B.
+ repeat (unfold_match B). inversion B. subst.
+ exploit main_tprog_internal; eauto; intros.
+ rewrite symbols_preserved. replace (AST.prog_main tprog) with (AST.prog_main prog).
+ apply Heqo. symmetry; eapply Linking.match_program_main; eauto.
+ inversion H5.
+ econstructor; split. econstructor.
+ apply (Genv.init_mem_transf_partial TRANSL'); eauto.
+ replace (AST.prog_main tprog) with (AST.prog_main prog).
+ rewrite symbols_preserved; eauto.
+ symmetry; eapply Linking.match_program_main; eauto.
+ apply H6.
+
+ constructor.
+ apply transl_module_correct.
+ assert (Some (AST.Internal x) = Some (AST.Internal m)).
+ replace (AST.fundef HTL.module) with (HTL.fundef).
+ rewrite <- H6. setoid_rewrite <- A. trivial.
+ trivial. inv H7. assumption.
+ Qed.
+ Hint Resolve transl_initial_states : htlproof.
+
+ Lemma transl_final_states :
+ forall (s1 : Smallstep.state (RTL.semantics prog))
+ (s2 : Smallstep.state (HTL.semantics tprog))
+ (r : Integers.Int.int),
+ match_states s1 s2 ->
+ Smallstep.final_state (RTL.semantics prog) s1 r ->
+ Smallstep.final_state (HTL.semantics tprog) s2 r.
+ Proof.
+ intros. inv H0. inv H. inv H4. invert MF. constructor. reflexivity.
+ Qed.
+ Hint Resolve transl_final_states : htlproof.
+
+ Theorem transl_step_correct:
+ forall (S1 : RTL.state) t S2,
+ RTL.step ge S1 t S2 ->
+ forall (R1 : HTL.state),
+ match_states S1 R1 ->
+ exists R2, Smallstep.plus HTL.step tge R1 t R2 /\ match_states S2 R2.
+ Proof.
+ induction 1; eauto with htlproof; (intros; inv_state).
+ Qed.
+ Hint Resolve transl_step_correct : htlproof.
+
+ Theorem transf_program_correct:
+ Smallstep.forward_simulation (RTL.semantics prog) (HTL.semantics tprog).
+ Proof.
+ eapply Smallstep.forward_simulation_plus; eauto with htlproof.
+ apply senv_preserved.
+ Qed.
+
+End CORRECTNESS.