aboutsummaryrefslogtreecommitdiffstats
path: root/src/hls/HTLgenspec.v
diff options
context:
space:
mode:
authorYann Herklotz <git@yannherklotz.com>2020-08-30 14:03:40 +0100
committerYann Herklotz <git@yannherklotz.com>2020-08-30 14:03:40 +0100
commitec319c9ec0acc975fcdfbfa2e378b82c9be9ab0a (patch)
treeaba30758bbbf10ab3d975367f48a695b81afb179 /src/hls/HTLgenspec.v
parent9d6979baa0e4b505862bcedee1dfd075f36579c3 (diff)
downloadvericert-ec319c9ec0acc975fcdfbfa2e378b82c9be9ab0a.tar.gz
vericert-ec319c9ec0acc975fcdfbfa2e378b82c9be9ab0a.zip
Add RTLBlock intermediate language
Diffstat (limited to 'src/hls/HTLgenspec.v')
-rw-r--r--src/hls/HTLgenspec.v641
1 files changed, 641 insertions, 0 deletions
diff --git a/src/hls/HTLgenspec.v b/src/hls/HTLgenspec.v
new file mode 100644
index 0000000..541f9fa
--- /dev/null
+++ b/src/hls/HTLgenspec.v
@@ -0,0 +1,641 @@
+(*
+ * Vericert: Verified high-level synthesis.
+ * Copyright (C) 2020 Yann Herklotz <yann@yannherklotz.com>
+ *
+ * This program is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program. If not, see <https://www.gnu.org/licenses/>.
+ *)
+
+From compcert Require RTL Op Maps Errors.
+From compcert Require Import Maps Integers.
+From vericert Require Import Vericertlib Verilog ValueInt HTL HTLgen AssocMap.
+Require Import Lia.
+
+Hint Resolve Maps.PTree.elements_keys_norepet : htlspec.
+Hint Resolve Maps.PTree.elements_correct : htlspec.
+
+Remark bind_inversion:
+ forall (A B: Type) (f: mon A) (g: A -> mon B)
+ (y: B) (s1 s3: st) (i: st_incr s1 s3),
+ bind f g s1 = OK y s3 i ->
+ exists x, exists s2, exists i1, exists i2,
+ f s1 = OK x s2 i1 /\ g x s2 = OK y s3 i2.
+Proof.
+ intros until i. unfold bind. destruct (f s1); intros.
+ discriminate.
+ exists a; exists s'; exists s.
+ destruct (g a s'); inv H.
+ exists s0; auto.
+Qed.
+
+Remark bind2_inversion:
+ forall (A B C: Type) (f: mon (A*B)) (g: A -> B -> mon C)
+ (z: C) (s1 s3: st) (i: st_incr s1 s3),
+ bind2 f g s1 = OK z s3 i ->
+ exists x, exists y, exists s2, exists i1, exists i2,
+ f s1 = OK (x, y) s2 i1 /\ g x y s2 = OK z s3 i2.
+Proof.
+ unfold bind2; intros.
+ exploit bind_inversion; eauto.
+ intros [[x y] [s2 [i1 [i2 [P Q]]]]]. simpl in Q.
+ exists x; exists y; exists s2; exists i1; exists i2; auto.
+Qed.
+
+Ltac monadInv1 H :=
+ match type of H with
+ | (OK _ _ _ = OK _ _ _) =>
+ inversion H; clear H; try subst
+ | (Error _ _ = OK _ _ _) =>
+ discriminate
+ | (ret _ _ = OK _ _ _) =>
+ inversion H; clear H; try subst
+ | (error _ _ = OK _ _ _) =>
+ discriminate
+ | (bind ?F ?G ?S = OK ?X ?S' ?I) =>
+ let x := fresh "x" in (
+ let s := fresh "s" in (
+ let i1 := fresh "INCR" in (
+ let i2 := fresh "INCR" in (
+ let EQ1 := fresh "EQ" in (
+ let EQ2 := fresh "EQ" in (
+ destruct (bind_inversion _ _ F G X S S' I H) as [x [s [i1 [i2 [EQ1 EQ2]]]]];
+ clear H;
+ try (monadInv1 EQ2)))))))
+ | (bind2 ?F ?G ?S = OK ?X ?S' ?I) =>
+ let x1 := fresh "x" in (
+ let x2 := fresh "x" in (
+ let s := fresh "s" in (
+ let i1 := fresh "INCR" in (
+ let i2 := fresh "INCR" in (
+ let EQ1 := fresh "EQ" in (
+ let EQ2 := fresh "EQ" in (
+ destruct (bind2_inversion _ _ _ F G X S S' I H) as [x1 [x2 [s [i1 [i2 [EQ1 EQ2]]]]]];
+ clear H;
+ try (monadInv1 EQ2))))))))
+ end.
+
+Ltac monadInv H :=
+ match type of H with
+ | (ret _ _ = OK _ _ _) => monadInv1 H
+ | (error _ _ = OK _ _ _) => monadInv1 H
+ | (bind ?F ?G ?S = OK ?X ?S' ?I) => monadInv1 H
+ | (bind2 ?F ?G ?S = OK ?X ?S' ?I) => monadInv1 H
+ | (?F _ _ _ _ _ _ _ _ = OK _ _ _) =>
+ ((progress simpl in H) || unfold F in H); monadInv1 H
+ | (?F _ _ _ _ _ _ _ = OK _ _ _) =>
+ ((progress simpl in H) || unfold F in H); monadInv1 H
+ | (?F _ _ _ _ _ _ = OK _ _ _) =>
+ ((progress simpl in H) || unfold F in H); monadInv1 H
+ | (?F _ _ _ _ _ = OK _ _ _) =>
+ ((progress simpl in H) || unfold F in H); monadInv1 H
+ | (?F _ _ _ _ = OK _ _ _) =>
+ ((progress simpl in H) || unfold F in H); monadInv1 H
+ | (?F _ _ _ = OK _ _ _) =>
+ ((progress simpl in H) || unfold F in H); monadInv1 H
+ | (?F _ _ = OK _ _ _) =>
+ ((progress simpl in H) || unfold F in H); monadInv1 H
+ | (?F _ = OK _ _ _) =>
+ ((progress simpl in H) || unfold F in H); monadInv1 H
+ end.
+
+(** * Relational specification of the translation *)
+
+(** We now define inductive predicates that characterise the fact that the
+statemachine that is created by the translation contains the correct
+translations for each of the elements *)
+
+Inductive tr_instr (fin rtrn st stk : reg) : RTL.instruction -> stmnt -> stmnt -> Prop :=
+| tr_instr_Inop :
+ forall n,
+ Z.pos n <= Int.max_unsigned ->
+ tr_instr fin rtrn st stk (RTL.Inop n) Vskip (state_goto st n)
+| tr_instr_Iop :
+ forall n op args dst s s' e i,
+ Z.pos n <= Int.max_unsigned ->
+ translate_instr op args s = OK e s' i ->
+ tr_instr fin rtrn st stk (RTL.Iop op args dst n) (Vnonblock (Vvar dst) e) (state_goto st n)
+| tr_instr_Icond :
+ forall n1 n2 cond args s s' i c,
+ Z.pos n1 <= Int.max_unsigned ->
+ Z.pos n2 <= Int.max_unsigned ->
+ translate_condition cond args s = OK c s' i ->
+ tr_instr fin rtrn st stk (RTL.Icond cond args n1 n2) Vskip (state_cond st c n1 n2)
+| tr_instr_Ireturn_None :
+ tr_instr fin rtrn st stk (RTL.Ireturn None) (Vseq (block fin (Vlit (ZToValue 1%Z)))
+ (block rtrn (Vlit (ZToValue 0%Z)))) Vskip
+| tr_instr_Ireturn_Some :
+ forall r,
+ tr_instr fin rtrn st stk (RTL.Ireturn (Some r))
+ (Vseq (block fin (Vlit (ZToValue 1%Z))) (block rtrn (Vvar r))) Vskip
+| tr_instr_Iload :
+ forall mem addr args s s' i c dst n,
+ Z.pos n <= Int.max_unsigned ->
+ translate_arr_access mem addr args stk s = OK c s' i ->
+ tr_instr fin rtrn st stk (RTL.Iload mem addr args dst n) (nonblock dst c) (state_goto st n)
+| tr_instr_Istore :
+ forall mem addr args s s' i c src n,
+ Z.pos n <= Int.max_unsigned ->
+ translate_arr_access mem addr args stk s = OK c s' i ->
+ tr_instr fin rtrn st stk (RTL.Istore mem addr args src n) (Vnonblock c (Vvar src))
+ (state_goto st n).
+(*| tr_instr_Ijumptable :
+ forall cexpr tbl r,
+ cexpr = tbl_to_case_expr st tbl ->
+ tr_instr fin rtrn st stk (RTL.Ijumptable r tbl) (Vskip) (Vcase (Vvar r) cexpr (Some Vskip)).*)
+Hint Constructors tr_instr : htlspec.
+
+Inductive tr_code (c : RTL.code) (pc : RTL.node) (i : RTL.instruction) (stmnts trans : PTree.t stmnt)
+ (fin rtrn st stk : reg) : Prop :=
+ tr_code_intro :
+ forall s t,
+ c!pc = Some i ->
+ stmnts!pc = Some s ->
+ trans!pc = Some t ->
+ tr_instr fin rtrn st stk i s t ->
+ tr_code c pc i stmnts trans fin rtrn st stk.
+Hint Constructors tr_code : htlspec.
+
+Inductive tr_module (f : RTL.function) : module -> Prop :=
+ tr_module_intro :
+ forall data control fin rtrn st stk stk_len m start rst clk scldecls arrdecls wf,
+ m = (mkmodule f.(RTL.fn_params)
+ data
+ control
+ f.(RTL.fn_entrypoint)
+ st stk stk_len fin rtrn start rst clk scldecls arrdecls wf) ->
+ (forall pc i, Maps.PTree.get pc f.(RTL.fn_code) = Some i ->
+ tr_code f.(RTL.fn_code) pc i data control fin rtrn st stk) ->
+ stk_len = Z.to_nat (f.(RTL.fn_stacksize) / 4) ->
+ Z.modulo (f.(RTL.fn_stacksize)) 4 = 0 ->
+ 0 <= f.(RTL.fn_stacksize) < Integers.Ptrofs.modulus ->
+ st = ((RTL.max_reg_function f) + 1)%positive ->
+ fin = ((RTL.max_reg_function f) + 2)%positive ->
+ rtrn = ((RTL.max_reg_function f) + 3)%positive ->
+ stk = ((RTL.max_reg_function f) + 4)%positive ->
+ start = ((RTL.max_reg_function f) + 5)%positive ->
+ rst = ((RTL.max_reg_function f) + 6)%positive ->
+ clk = ((RTL.max_reg_function f) + 7)%positive ->
+ tr_module f m.
+Hint Constructors tr_module : htlspec.
+
+Lemma create_reg_datapath_trans :
+ forall sz s s' x i iop,
+ create_reg iop sz s = OK x s' i ->
+ s.(st_datapath) = s'.(st_datapath).
+Proof. intros. monadInv H. trivial. Qed.
+Hint Resolve create_reg_datapath_trans : htlspec.
+
+Lemma create_reg_controllogic_trans :
+ forall sz s s' x i iop,
+ create_reg iop sz s = OK x s' i ->
+ s.(st_controllogic) = s'.(st_controllogic).
+Proof. intros. monadInv H. trivial. Qed.
+Hint Resolve create_reg_controllogic_trans : htlspec.
+
+Lemma declare_reg_datapath_trans :
+ forall sz s s' x i iop r,
+ declare_reg iop r sz s = OK x s' i ->
+ s.(st_datapath) = s'.(st_datapath).
+Proof. intros. monadInv H. trivial. Qed.
+Hint Resolve create_reg_datapath_trans : htlspec.
+
+Lemma declare_reg_controllogic_trans :
+ forall sz s s' x i iop r,
+ declare_reg iop r sz s = OK x s' i ->
+ s.(st_controllogic) = s'.(st_controllogic).
+Proof. intros. monadInv H. trivial. Qed.
+Hint Resolve create_reg_controllogic_trans : htlspec.
+
+Lemma declare_reg_freshreg_trans :
+ forall sz s s' x i iop r,
+ declare_reg iop r sz s = OK x s' i ->
+ s.(st_freshreg) = s'.(st_freshreg).
+Proof. inversion 1; auto. Qed.
+Hint Resolve declare_reg_freshreg_trans : htlspec.
+
+Lemma create_arr_datapath_trans :
+ forall sz ln s s' x i iop,
+ create_arr iop sz ln s = OK x s' i ->
+ s.(st_datapath) = s'.(st_datapath).
+Proof. intros. monadInv H. trivial. Qed.
+Hint Resolve create_arr_datapath_trans : htlspec.
+
+Lemma create_arr_controllogic_trans :
+ forall sz ln s s' x i iop,
+ create_arr iop sz ln s = OK x s' i ->
+ s.(st_controllogic) = s'.(st_controllogic).
+Proof. intros. monadInv H. trivial. Qed.
+Hint Resolve create_arr_controllogic_trans : htlspec.
+
+Lemma get_refl_x :
+ forall s s' x i,
+ get s = OK x s' i ->
+ s = x.
+Proof. inversion 1. trivial. Qed.
+Hint Resolve get_refl_x : htlspec.
+
+Lemma get_refl_s :
+ forall s s' x i,
+ get s = OK x s' i ->
+ s = s'.
+Proof. inversion 1. trivial. Qed.
+Hint Resolve get_refl_s : htlspec.
+
+Ltac inv_incr :=
+ repeat match goal with
+ | [ H: create_reg _ _ ?s = OK _ ?s' _ |- _ ] =>
+ let H1 := fresh "H" in
+ assert (H1 := H); eapply create_reg_datapath_trans in H;
+ eapply create_reg_controllogic_trans in H1
+ | [ H: create_arr _ _ _ ?s = OK _ ?s' _ |- _ ] =>
+ let H1 := fresh "H" in
+ assert (H1 := H); eapply create_arr_datapath_trans in H;
+ eapply create_arr_controllogic_trans in H1
+ | [ H: get ?s = OK _ _ _ |- _ ] =>
+ let H1 := fresh "H" in
+ assert (H1 := H); apply get_refl_x in H; apply get_refl_s in H1;
+ subst
+ | [ H: st_prop _ _ |- _ ] => unfold st_prop in H; destruct H
+ | [ H: st_incr _ _ |- _ ] => destruct st_incr
+ end.
+
+Lemma collect_controllogic_trans :
+ forall A f l cs cs' ci,
+ (forall s s' x i y, f y s = OK x s' i -> s.(st_controllogic) = s'.(st_controllogic)) ->
+ @HTLMonadExtra.collectlist A f l cs = OK tt cs' ci -> cs.(st_controllogic) = cs'.(st_controllogic).
+Proof.
+ induction l; intros; monadInv H0.
+ - trivial.
+ - apply H in EQ. rewrite EQ. eauto.
+Qed.
+
+Lemma collect_datapath_trans :
+ forall A f l cs cs' ci,
+ (forall s s' x i y, f y s = OK x s' i -> s.(st_datapath) = s'.(st_datapath)) ->
+ @HTLMonadExtra.collectlist A f l cs = OK tt cs' ci -> cs.(st_datapath) = cs'.(st_datapath).
+Proof.
+ induction l; intros; monadInv H0.
+ - trivial.
+ - apply H in EQ. rewrite EQ. eauto.
+Qed.
+
+Lemma collect_freshreg_trans :
+ forall A f l cs cs' ci,
+ (forall s s' x i y, f y s = OK x s' i -> s.(st_freshreg) = s'.(st_freshreg)) ->
+ @HTLMonadExtra.collectlist A f l cs = OK tt cs' ci -> cs.(st_freshreg) = cs'.(st_freshreg).
+Proof.
+ induction l; intros; monadInv H0.
+ - trivial.
+ - apply H in EQ. rewrite EQ. eauto.
+Qed.
+
+Lemma collect_declare_controllogic_trans :
+ forall io n l s s' i,
+ HTLMonadExtra.collectlist (fun r : reg => declare_reg io r n) l s = OK tt s' i ->
+ s.(st_controllogic) = s'.(st_controllogic).
+Proof.
+ intros. eapply collect_controllogic_trans; try eassumption.
+ intros. eapply declare_reg_controllogic_trans. simpl in H0. eassumption.
+Qed.
+
+Lemma collect_declare_datapath_trans :
+ forall io n l s s' i,
+ HTLMonadExtra.collectlist (fun r : reg => declare_reg io r n) l s = OK tt s' i ->
+ s.(st_datapath) = s'.(st_datapath).
+Proof.
+ intros. eapply collect_datapath_trans; try eassumption.
+ intros. eapply declare_reg_datapath_trans. simpl in H0. eassumption.
+Qed.
+
+Lemma collect_declare_freshreg_trans :
+ forall io n l s s' i,
+ HTLMonadExtra.collectlist (fun r : reg => declare_reg io r n) l s = OK tt s' i ->
+ s.(st_freshreg) = s'.(st_freshreg).
+Proof.
+ intros. eapply collect_freshreg_trans; try eassumption.
+ inversion 1. auto.
+Qed.
+
+Ltac unfold_match H :=
+ match type of H with
+ | context[match ?g with _ => _ end] => destruct g eqn:?; try discriminate
+ end.
+
+Lemma translate_eff_addressing_freshreg_trans :
+ forall op args s r s' i,
+ translate_eff_addressing op args s = OK r s' i ->
+ s.(st_freshreg) = s'.(st_freshreg).
+Proof.
+ destruct op; intros; simpl in *; repeat (unfold_match H); inv H; auto.
+Qed.
+Hint Resolve translate_eff_addressing_freshreg_trans : htlspec.
+
+Lemma translate_comparison_freshreg_trans :
+ forall op args s r s' i,
+ translate_comparison op args s = OK r s' i ->
+ s.(st_freshreg) = s'.(st_freshreg).
+Proof.
+ destruct op; intros; simpl in *; repeat (unfold_match H); inv H; auto.
+Qed.
+Hint Resolve translate_comparison_freshreg_trans : htlspec.
+
+Lemma translate_comparisonu_freshreg_trans :
+ forall op args s r s' i,
+ translate_comparisonu op args s = OK r s' i ->
+ s.(st_freshreg) = s'.(st_freshreg).
+Proof.
+ destruct op; intros; simpl in *; repeat (unfold_match H); inv H; auto.
+Qed.
+Hint Resolve translate_comparisonu_freshreg_trans : htlspec.
+
+Lemma translate_comparison_imm_freshreg_trans :
+ forall op args s r s' i n,
+ translate_comparison_imm op args n s = OK r s' i ->
+ s.(st_freshreg) = s'.(st_freshreg).
+Proof.
+ destruct op; intros; simpl in *; repeat (unfold_match H); inv H; auto.
+Qed.
+Hint Resolve translate_comparison_imm_freshreg_trans : htlspec.
+
+Lemma translate_comparison_immu_freshreg_trans :
+ forall op args s r s' i n,
+ translate_comparison_immu op args n s = OK r s' i ->
+ s.(st_freshreg) = s'.(st_freshreg).
+Proof.
+ destruct op; intros; simpl in *; repeat (unfold_match H); inv H; auto.
+Qed.
+Hint Resolve translate_comparison_immu_freshreg_trans : htlspec.
+
+Lemma translate_condition_freshreg_trans :
+ forall op args s r s' i,
+ translate_condition op args s = OK r s' i ->
+ s.(st_freshreg) = s'.(st_freshreg).
+Proof.
+ destruct op; intros; simpl in *; repeat (unfold_match H); inv H; eauto with htlspec.
+Qed.
+Hint Resolve translate_condition_freshreg_trans : htlspec.
+
+Lemma translate_instr_freshreg_trans :
+ forall op args s r s' i,
+ translate_instr op args s = OK r s' i ->
+ s.(st_freshreg) = s'.(st_freshreg).
+Proof.
+ destruct op; intros; simpl in *; repeat (unfold_match H); inv H; eauto with htlspec.
+ monadInv H1. eauto with htlspec.
+Qed.
+Hint Resolve translate_instr_freshreg_trans : htlspec.
+
+Lemma translate_arr_access_freshreg_trans :
+ forall mem addr args st s r s' i,
+ translate_arr_access mem addr args st s = OK r s' i ->
+ s.(st_freshreg) = s'.(st_freshreg).
+Proof.
+ intros. unfold translate_arr_access in H. repeat (unfold_match H); inv H; eauto with htlspec.
+Qed.
+Hint Resolve translate_arr_access_freshreg_trans : htlspec.
+
+Lemma add_instr_freshreg_trans :
+ forall n n' st s r s' i,
+ add_instr n n' st s = OK r s' i ->
+ s.(st_freshreg) = s'.(st_freshreg).
+Proof. intros. unfold add_instr in H. repeat (unfold_match H). inv H. auto. Qed.
+Hint Resolve add_instr_freshreg_trans : htlspec.
+
+Lemma add_branch_instr_freshreg_trans :
+ forall n n0 n1 e s r s' i,
+ add_branch_instr e n n0 n1 s = OK r s' i ->
+ s.(st_freshreg) = s'.(st_freshreg).
+Proof. intros. unfold add_branch_instr in H. repeat (unfold_match H). inv H. auto. Qed.
+Hint Resolve add_branch_instr_freshreg_trans : htlspec.
+
+Lemma add_node_skip_freshreg_trans :
+ forall n1 n2 s r s' i,
+ add_node_skip n1 n2 s = OK r s' i ->
+ s.(st_freshreg) = s'.(st_freshreg).
+Proof. intros. unfold add_node_skip in H. repeat (unfold_match H). inv H. auto. Qed.
+Hint Resolve add_node_skip_freshreg_trans : htlspec.
+
+Lemma add_instr_skip_freshreg_trans :
+ forall n1 n2 s r s' i,
+ add_instr_skip n1 n2 s = OK r s' i ->
+ s.(st_freshreg) = s'.(st_freshreg).
+Proof. intros. unfold add_instr_skip in H. repeat (unfold_match H). inv H. auto. Qed.
+Hint Resolve add_instr_skip_freshreg_trans : htlspec.
+
+Lemma transf_instr_freshreg_trans :
+ forall fin ret st instr s v s' i,
+ transf_instr fin ret st instr s = OK v s' i ->
+ s.(st_freshreg) = s'.(st_freshreg).
+Proof.
+ intros. destruct instr eqn:?. subst. unfold transf_instr in H.
+ destruct i0; try (monadInv H); try (unfold_match H); eauto with htlspec.
+ - monadInv H. apply add_instr_freshreg_trans in EQ2. apply translate_instr_freshreg_trans in EQ.
+ apply declare_reg_freshreg_trans in EQ1. congruence.
+ - monadInv H. apply add_instr_freshreg_trans in EQ2. apply translate_arr_access_freshreg_trans in EQ.
+ apply declare_reg_freshreg_trans in EQ1. congruence.
+ - monadInv H. apply add_instr_freshreg_trans in EQ0. apply translate_arr_access_freshreg_trans in EQ. congruence.
+ - monadInv H. apply translate_condition_freshreg_trans in EQ. apply add_branch_instr_freshreg_trans in EQ0.
+ congruence.
+ (*- inv EQ. apply add_node_skip_freshreg_trans in EQ0. congruence.*)
+Qed.
+Hint Resolve transf_instr_freshreg_trans : htlspec.
+
+Lemma collect_trans_instr_freshreg_trans :
+ forall fin ret st l s s' i,
+ HTLMonadExtra.collectlist (transf_instr fin ret st) l s = OK tt s' i ->
+ s.(st_freshreg) = s'.(st_freshreg).
+Proof.
+ intros. eapply collect_freshreg_trans; try eassumption.
+ eauto with htlspec.
+Qed.
+
+Ltac rewrite_states :=
+ match goal with
+ | [ H: ?x ?s = ?x ?s' |- _ ] =>
+ let c1 := fresh "c" in
+ let c2 := fresh "c" in
+ remember (?x ?s) as c1; remember (?x ?s') as c2; try subst
+ end.
+
+Ltac inv_add_instr' H :=
+ match type of H with
+ | ?f _ _ = OK _ _ _ => unfold f in H
+ | ?f _ _ _ = OK _ _ _ => unfold f in H
+ | ?f _ _ _ _ = OK _ _ _ => unfold f in H
+ | ?f _ _ _ _ _ = OK _ _ _ => unfold f in H
+ | ?f _ _ _ _ _ _ = OK _ _ _ => unfold f in H
+ end; repeat unfold_match H; inversion H.
+
+Ltac inv_add_instr :=
+ match goal with
+ | H: (if ?c then _ else _) _ = OK _ _ _ |- _ => destruct c eqn:EQN; try discriminate; inv_add_instr
+ | H: context[add_instr_skip _ _ _] |- _ =>
+ inv_add_instr' H
+ | H: context[add_instr_skip _ _] |- _ =>
+ monadInv H; inv_incr; inv_add_instr
+ | H: context[add_instr _ _ _ _] |- _ =>
+ inv_add_instr' H
+ | H: context[add_instr _ _ _] |- _ =>
+ monadInv H; inv_incr; inv_add_instr
+ | H: context[add_branch_instr _ _ _ _ _] |- _ =>
+ inv_add_instr' H
+ | H: context[add_branch_instr _ _ _ _] |- _ =>
+ monadInv H; inv_incr; inv_add_instr
+ | H: context[add_node_skip _ _ _] |- _ =>
+ inv_add_instr' H
+ | H: context[add_node_skip _ _] |- _ =>
+ monadInv H; inv_incr; inv_add_instr
+ end.
+
+Ltac destruct_optional :=
+ match goal with H: option ?r |- _ => destruct H end.
+
+Lemma iter_expand_instr_spec :
+ forall l fin rtrn stack s s' i x c,
+ HTLMonadExtra.collectlist (transf_instr fin rtrn stack) l s = OK x s' i ->
+ list_norepet (List.map fst l) ->
+ (forall pc instr, In (pc, instr) l -> c!pc = Some instr) ->
+ (forall pc instr, In (pc, instr) l ->
+ c!pc = Some instr ->
+ tr_code c pc instr s'.(st_datapath) s'.(st_controllogic) fin rtrn s'.(st_st) stack).
+Proof.
+ induction l; simpl; intros; try contradiction.
+ destruct a as [pc1 instr1]; simpl in *. inv H0. monadInv H. inv_incr.
+ destruct (peq pc pc1).
+ - subst.
+ destruct instr1 eqn:?; try discriminate;
+ try destruct_optional; inv_add_instr; econstructor; try assumption.
+ + destruct o with pc1; destruct H11; simpl in *; rewrite AssocMap.gss in H9; eauto; congruence.
+ + destruct o0 with pc1; destruct H11; simpl in *; rewrite AssocMap.gss in H9; eauto; congruence.
+ + inversion H2. inversion H9. rewrite H. apply tr_instr_Inop.
+ apply Z.leb_le. assumption.
+ eapply in_map with (f := fst) in H9. contradiction.
+
+ + destruct o with pc1; destruct H16; simpl in *; rewrite AssocMap.gss in H14; eauto; congruence.
+ + destruct o0 with pc1; destruct H16; simpl in *; rewrite AssocMap.gss in H14; eauto; congruence.
+ + inversion H2. inversion H14. unfold nonblock. replace (st_st s4) with (st_st s2) by congruence.
+ econstructor. apply Z.leb_le; assumption.
+ apply EQ1. eapply in_map with (f := fst) in H14. contradiction.
+
+ + destruct o with pc1; destruct H16; simpl in *; rewrite AssocMap.gss in H14; eauto; congruence.
+ + destruct o0 with pc1; destruct H16; simpl in *; rewrite AssocMap.gss in H14; eauto; congruence.
+ + inversion H2. inversion H14. rewrite <- e2. replace (st_st s2) with (st_st s0) by congruence.
+ econstructor. apply Z.leb_le; assumption.
+ apply EQ1. eapply in_map with (f := fst) in H14. contradiction.
+
+ + destruct o with pc1; destruct H11; simpl in *; rewrite AssocMap.gss in H9; eauto; congruence.
+ + destruct o0 with pc1; destruct H11; simpl in *; rewrite AssocMap.gss in H9; eauto; congruence.
+ + destruct H2.
+ * inversion H2.
+ replace (st_st s2) with (st_st s0) by congruence.
+ econstructor. apply Z.leb_le; assumption.
+ eauto with htlspec.
+ * apply in_map with (f := fst) in H2. contradiction.
+
+ + destruct o with pc1; destruct H11; simpl in *; rewrite AssocMap.gss in H9; eauto; congruence.
+ + destruct o0 with pc1; destruct H11; simpl in *; rewrite AssocMap.gss in H9; eauto; congruence.
+ + destruct H2.
+ * inversion H2.
+ replace (st_st s2) with (st_st s0) by congruence.
+ econstructor; try (apply Z.leb_le; apply andb_prop in EQN; apply EQN).
+ eauto with htlspec.
+ * apply in_map with (f := fst) in H2. contradiction.
+
+ (*+ destruct o with pc1; destruct H16; simpl in *; rewrite AssocMap.gss in H14; eauto; congruence.
+ + destruct o0 with pc1; destruct H16; simpl in *; rewrite AssocMap.gss in H14; eauto; congruence.
+ + inversion H2.
+ * inversion H14. constructor. congruence.
+ * apply in_map with (f := fst) in H14. contradiction.
+ *)
+ + destruct o with pc1; destruct H11; simpl in *; rewrite AssocMap.gss in H9; eauto; congruence.
+ + destruct o0 with pc1; destruct H11; simpl in *; rewrite AssocMap.gss in H9; eauto; congruence.
+ + inversion H2.
+ * inversion H9.
+ replace (st_st s2) with (st_st s0) by congruence.
+ eauto with htlspec.
+ * apply in_map with (f := fst) in H9. contradiction.
+
+ + destruct o with pc1; destruct H11; simpl in *; rewrite AssocMap.gss in H9; eauto; congruence.
+ + destruct o0 with pc1; destruct H11; simpl in *; rewrite AssocMap.gss in H9; eauto; congruence.
+ + inversion H2.
+ * inversion H9.
+ replace (st_st s2) with (st_st s0) by congruence.
+ eauto with htlspec.
+ * apply in_map with (f := fst) in H9. contradiction.
+
+ - eapply IHl. apply EQ0. assumption.
+ destruct H2. inversion H2. subst. contradiction.
+ intros. specialize H1 with pc0 instr0. destruct H1. tauto. trivial.
+ destruct H2. inv H2. contradiction. assumption. assumption.
+Qed.
+Hint Resolve iter_expand_instr_spec : htlspec.
+
+Lemma create_arr_inv : forall w x y z a b c d,
+ create_arr w x y z = OK (a, b) c d ->
+ y = b /\ a = z.(st_freshreg) /\ c.(st_freshreg) = Pos.succ (z.(st_freshreg)).
+Proof.
+ inversion 1; split; auto.
+Qed.
+
+Lemma create_reg_inv : forall a b s r s' i,
+ create_reg a b s = OK r s' i ->
+ r = s.(st_freshreg) /\ s'.(st_freshreg) = Pos.succ (s.(st_freshreg)).
+Proof.
+ inversion 1; auto.
+Qed.
+
+Theorem transl_module_correct :
+ forall f m,
+ transl_module f = Errors.OK m -> tr_module f m.
+Proof.
+ intros until m.
+ unfold transl_module.
+ unfold run_mon.
+ destruct (transf_module f (max_state f)) eqn:?; try discriminate.
+ intros. inv H.
+ inversion s; subst.
+
+ unfold transf_module in *.
+ unfold stack_correct in *.
+ destruct (0 <=? RTL.fn_stacksize f) eqn:STACK_BOUND_LOW;
+ destruct (RTL.fn_stacksize f <? Integers.Ptrofs.modulus) eqn:STACK_BOUND_HIGH;
+ destruct (RTL.fn_stacksize f mod 4 =? 0) eqn:STACK_ALIGN;
+ crush;
+ monadInv Heqr.
+
+ repeat unfold_match EQ9. monadInv EQ9.
+
+ (* TODO: We should be able to fold this into the automation. *)
+ pose proof (create_arr_inv _ _ _ _ _ _ _ _ EQ0) as STK_LEN. inv STK_LEN. inv H5.
+ pose proof (create_reg_inv _ _ _ _ _ _ EQ) as FIN_VAL. inv FIN_VAL.
+ pose proof (create_reg_inv _ _ _ _ _ _ EQ1) as RET_VAL. inv RET_VAL.
+ destruct x3. destruct x4.
+ pose proof (collect_trans_instr_freshreg_trans _ _ _ _ _ _ _ EQ2) as TR_INSTR.
+ pose proof (collect_declare_freshreg_trans _ _ _ _ _ _ EQ3) as TR_DEC.
+ pose proof (create_reg_inv _ _ _ _ _ _ EQ4) as START_VAL. inv START_VAL.
+ pose proof (create_reg_inv _ _ _ _ _ _ EQ5) as RESET_VAL. inv RESET_VAL.
+ pose proof (create_reg_inv _ _ _ _ _ _ EQ6) as CLK_VAL. inv CLK_VAL.
+ rewrite H9 in *. rewrite H8 in *. replace (st_freshreg s4) with (st_freshreg s2) in * by congruence.
+ rewrite H6 in *. rewrite H7 in *. rewrite H5 in *. simpl in *.
+ inv_incr.
+ econstructor; simpl; auto; try lia.
+ intros.
+ assert (EQ3D := EQ3).
+ apply collect_declare_datapath_trans in EQ3.
+ apply collect_declare_controllogic_trans in EQ3D.
+ replace (st_controllogic s10) with (st_controllogic s3) by congruence.
+ replace (st_datapath s10) with (st_datapath s3) by congruence.
+ replace (st_st s10) with (st_st s3) by congruence.
+ eapply iter_expand_instr_spec; eauto with htlspec.
+ apply PTree.elements_complete.
+Qed.